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Abstract When solving multiobjective optimization problems, preference-based evolution-
ary multiobjective optimization (EMO) algorithms introduce preference information into an
evolutionary algorithm in order to focus the search for objective vectors towards the region
of interest of the Pareto optimal front. In this paper, we suggest a preference-based EMO
algorithm called weighting achievement scalarizing function genetic algorithm (WASF-GA),
which considers the preferences of the decision maker (DM) expressed by means of a refer-
ence point. The main purpose of WASF-GA is to approximate the region of interest of the
Pareto optimal front determined by the reference point, which contains the Pareto optimal
objective vectors that obey the preferences expressed by the DM in the best possible way.
The proposed approach is based on the use of an achievement scalarizing function (ASF) and
on the classification of the individuals into several fronts. At each generation of WASF-GA,
this classification is done according to the values that each solution takes on the ASF for the
reference point and using different weight vectors. These vectors of weights are selected so
that the vectors formed by their inverse components constitute a well-distributed represen-
tation of the weight vectors space. The efficiency and usefulness of WASF-GA is shown in
several test problems in comparison to other preference-based EMO algorithms. Regarding
a metric based on the hypervolume, we can say that WASF-GA has outperformed the other
algorithms considered in most of the problems.
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1 Introduction

Most real-life decision problems have to deal with several criteria, which must be optimized
simultaneously. Suchproblems are calledmultiobjective optimization problemswhenboth the
criteria and the constraints that determine the feasible set of solutions can be mathematically
expressed by functions. Typically, as it is not possible to find a solutionwhere all the objectives
can reach their individual optimum, we are interested in identifying a set of mathematically
equally good solutions, the so-called Pareto optimal solutions. These solutions are defined as
the solutions where none of the objective values can be improved without impairing at least
one of the others. The set of Pareto optimal solutions is referred to as thePareto optimal set and
its image in the objective space is called the Pareto optimal front. When one or a set of Pareto
optimal solutions are found, the decision maker (DM), a person who is interested in solving
the problem, decides which Pareto optimal solution satisfies better his/her preferences, which
is commonly known as the most preferred solution.

As stated in [44], multiple criteria decision making (MCDM) [27,36] and evolutionary
multi-objective optimization (EMO) [6,9] are two research fields focussed on solving mul-
tiobjective optimization problems. Typically, the purpose in MCDM methods is to support
a DM to find the most preferred solution. The multiobjective optimization problem is often
scalarized into a single objective optimization problem taking into account the DM’s prefer-
ence information, which is solved using an appropriatemathematical programming technique
to find a Pareto optimal solution. Different types of preference information asked from the
DM include marginal rates of substitution, surrogate values for trade-offs, classification of
objective functions and reference points. A reference point is defined by desirable objec-
tive function values. Depending on the moment when the DM’s preferences are considered,
MCDM methods can be classified into a priori, a posteriori and interactive methods. For
further details, see [5,27,34,36,43] and references therein.

Compared toMCDM,EMOalgorithms are population-based approacheswhosemain goal
is to find a set of nondominated objective vectors which approximate the whole (unknown)
Pareto optimal front. Once this set is generated, it is shown to the DM in order to allow
him/her to find his/her most preferred solution. EMO algorithms have received a great deal
of attention, mainly because they can generate a set of solutions in just one run. Among
the most well-known EMO algorithms, we can mention the Non-dominated Sorting Genetic
Algorithm (NSGA-II) [15], the Strength Pareto Evolutionary Algorithm 2 (SPEA2) [53] and
the Pareto Archive Evolutionary Strategy (PAES) [30]. A recent group of EMO approaches
is formed by the EMO algorithms based on decomposition. These techniques decompose the
multiobjective optimization problem into a set of scalar (single-objective) optimization sub-
problems andoptimize themsimultaneously or subsequently following a population evolution
based rule. One of them is themultiobjective evolutionary algorithm based on decomposition
(MOEA/D) [50], which relies on the assumption that neighbour weighting vectors produce
neighbour solutions.

Even though they are applied to similar problems, MCDMmethods and EMO algorithms
are based on different methodologies, and both of them have advantages and disadvantages.
On the one hand, although MCDM methods concentrate only on the search for one or a
few Pareto optimal solutions which result interesting for the DM, it may happen that these
techniques cannot be applied to some types of problems due to limitations of mathemat-
ical programming. These limitations often occur in multiobjective problems with integer
variables, nonconvexity conditions, nondifferentiable or discontinuous functions, etc.

On the other hand, EMO algorithms have shown to be very versatile in handling problems
with different types of variables and objectives [56], but their main drawback is that they
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do not consider the preferences of the DM during the solution process. This means that the
DM has to inspect a large set of solutions to find the most preferred solution, requiring both
high computational and cognitive efforts.1 Besides, in EMO algorithms based on the Pareto
dominance, the proportion of nondominated objective vectors in the population increases
considerably in the presence of many objectives. This fact does not leave much room for
new solutions to be included in the population, what may slow down the convergence of the
algorithm and may decrease the diversity of the solutions [8,16].

The advantages of MCDM and EMO philosophies may be hybridized in order to over-
come some of their disadvantages. Considering preferences is important when dealing with
a multiobjective optimization problem and it is not always necessary to explore the whole
set of Pareto optimal objective vectors. In many situations, when the DM gives information
about his/her preferences, (s)he is not usually interested either in a single Pareto optimal
objective vector, or in the whole Pareto optimal front, but in a subset of Pareto optimal objec-
tive vectors which are relevant to him/her. We will refer to this subset as the region of interest
of the Pareto optimal front.

Recently, a new group of algorithms, known as preference-based EMO algorithms, have
been developed, whose main purpose is the approximation of just the region of interest of
the Pareto optimal front. They are population-based algorithms which introduce information
about the DM’s preferences in order to focus the search for nondominated objective vectors in
the most preferred region. As a result, the computational effort is reduced given that objective
vectors far from the region of interest are progressively discarded. Besides, the DM only has
to compare the trade-offs between nondominated objective vectors that are supposed to please
him/her better, avoiding to analyse undesirable solutions and reducing the cognitive burden.
Surveys of preference-based EMO algorithms can be seen in [7,41], and more recent ones
are given in [1,2,28].

Probably, the earliest EMO algorithm incorporating preferences was proposed by Fonseca
and Fleming [23]. In this paper, they suggested a multiobjective genetic algorithm (MOGA)
and they proposed to introduce preferences by ranking the population according to the goals
specified by theDM.The idea behind this approach is to give a higher priority to the objectives
for which the goals are not fulfilled in order to improve them and push the search towards
the region of interest of the Pareto optimal front.

We can also mention the method suggested by Branke et al. [4], the guided multi-objective
evolutionary algorithm (G-MOEA), where the domination criterion is modified in order to
incorporate the DM’s preferences expressed in terms of acceptable trade-offs. Later [3], com-
pares G-MOEA with a modified version of NSGA-II, which incorporates a biased crowding
distance based on a reference direction given by the DM.

The Reference-Point-Based NSGA-II (R-NSGA-II) proposed by Deb et al. [18] modifies
NSGA-II in the way the individuals of the last nondominated front are selected to be passed
to the new population. According to one or several reference points, the crowding distance
used in NSGA-II is replaced by a preference distance, which equally emphasizes objective
vectors are close to any of the reference points with respect to the Euclidean distance.

In Deb and Kumar [11], defined the Reference Direction Based NSGA-II (RD-NSGA-
II), which is based both on NSGA-II and on the interactive Reference Direction Method
[31]. In RD-NSGA-II, according to a reference point provided by the DM and a starting
objective vector, a reference direction is defined by the difference of both vectors. Then,
the individuals at each generation are classified into several fronts using an achievement

1 We mean by ‘cognitive effort’ or ‘cognitive burden’ the DM’s effort required to understand the information
provided by an algorithm, interpret its meaning and learn from it.
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scalarizing function and a set of equidistant reference points lying on the reference direction.
In the proposed classification, the individuals having the smallest values of the achievement
scalarizing function for each one of the reference points are preferred.

In the Light Beam Search based EMO [12], NSGA-II is hybridized with the classical Light
Beam SearchMethod [29]. In this approach, the DMprovides a reference direction and a veto
threshold vector, which is used to find possibly interesting neighbouring objective vectors
around the point defined by the reference direction. Thiele et al. [47] proposed a modification
of the Indicator Based Evolutionary Algorithm (IBEA) [52] called the Preference Based
Evolutionary Algorithm (PBEA), where the binary quality indicator of IBEA is redefined
using an achievement scalarizing function and one or several reference points. Later, Figueira
et al. [22]made use of PBEA in theParallelMultiple Reference Point Evolutionary Algorithm
(PMRPEA). In this method, the area between the worst and the best (preferred) objective
values given by the DM is explored by solving multiple PBEAs in parallel.

A progressively interactive EMO algorithm is proposed by Deb et al. [17]. The search
for the most preferred solution is done by accepting preference information from the DM
progressively, which is used to build a value function. Next, an extension of this work based
on polyhedral cones has been published in [46]. After a predefined number of generations,
a polyhedral cone is built using a solution selected by the DM and the domination criterion
is modified in order to focus the search for objective vectors towards the most interesting
region.

In [40], a new dominance relation called g-dominance is suggested based on a reference
point. In the new relation, objective vectors satisfying all the aspiration values and objective
vectors fulfilling none of them are preferred over objective vectors satisfying some of the
aspiration levels. The main advantage of the g-dominance is that it can be incorporated in
any metaheuristic algorithm, given that it does not modify the architecture of the algorithm.
However, the g-dominance does not preserve the Pareto dominance, as said in [1], and a
dominated objective vector may be preferred to the objective vector that dominates it.

Another concept of dominance based on reference points, called the r-dominance, is
proposed in [1]. This new dominance relation distinguishes objective vectors according to
their Euclidean distance to a reference point given by the DM, emphasizing those closer
to the reference point. A parameter δ ∈ [0, 1] controls the selection pressure. In [1], the
performance of the new relation is shown replacing in NSGA-II the usual Pareto dominance
by the r-dominance, and they refer to the modified algorithm as r-NSGA-II.

Recently, a Preference-based Interactive Evolutionary (PIE) algorithm was proposed
in [45]. Starting from a solution selected by the DM from a randomly generated population,
this algorithm progressively improves the objective function values, until the most preferred
solution is found. The idea behind this approach is the minimization of an achievement
scalarizing function at each iteration by using a single-objective evolutionary algorithm. In
addition, the PIE algorithm stores all the solutions of the evolutionary algorithm in an archive
set, what allows the DM to retrieve previously generated solutions if (s)he wants to go back-
wards. Another recently proposed approach is the interactive MOEA/D (iMOEA/D) [25],
which interactively modifies (MOEA/D) [50].

In this paper, we propose a new preference-based EMO algorithm called Weighting
Achievement Scalarizing Function Genetic Algorithm (WASF-GA). It considers the DM’s
preferences expressed by means of aspiration levels, that is, objective function values that
are desirable for the DM and which constitute a so-called reference point. The main pur-
pose of WASF-GA is to generate a well-distributed set of nondominated objective vectors
approximating the region of interest of the Pareto optimal front defined by the reference
point.
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The philosophy of the proposed approach is based on the use of an achievement scalarizing
function (ASF) [38,48] and on the classification of the individuals into several fronts, as in
NSGA-II. In general, an ASF can be minimized in order to find the Pareto optimal solution
whose objective function values adjust the reference point “as best as possible”. However,
the Pareto optimal solution obtained highly depends on a vector of weights used in the ASF,
whose role can vary from purely normalizing coefficients to parameters expressing the DM’s
preferences [33,42].

InWASF-GA, we consider a sample of weight vectors in (0, 1)k . Then, at each generation,
the classification of the individuals into different fronts is done according to the values that
each solution takes on the ASF considered, using the reference point given by the DM, for
each one of the weight vectors in the sample. The use of an appropriate set of weight vectors
in the ASF for the reference point enables us to obtain objective vectors which approximate
the region of the Pareto optimal front that best adjusts the reference point. We will refer to
this region as the region of interest defined by the reference point.

WASF-GA is somehow similar to the algorithm RD-NSGA-II previously introduced,
since both methods are based on reference points and use the values of an ASF to classify
the individuals at each generation into several fronts. However, they differ in the following:
RD-NSGA-II fixes the weight vector used in the ASF and considers a set of reference points
lying on the reference direction, while WASF-GA fixes the reference point in the ASF and
employs a set of weight vectors. In practice, WASF-GA is aimed at generating a set of
solutions whose objective vectors approximate the region of interest of the Pareto optimal
front defined by the reference point. In contrast, RD-NSGA-II finds a set of solutions whose
objective vectors approximate only the projection of the reference direction onto the Pareto
optimal front. In problems with three or more objective functions, the region of interest
approximated by WASF-GA (a subspace of Rk of dimension k − 1) is totally different from
the one approximated by RD-NSGA-II (a subspace of Rk of dimension 1).

The rest of this paper is organized as follows. In Sect. 2, we introduce the main concepts
and notations used. The new method WASF-GA is motivated and described in Sect. 3.
Section 4 is devoted to the analysis of the performance of the new method in several test
problems. We compare the populations generated by WASF-GA with the ones obtained by
other preference-based EMO methods. Later, we discuss the advantages of WASF-GA in
compared to the algorithms considered in the computational tests in Sect. 5. Finally, the
conclusions are given in Sect. 6.

2 Concepts and notation

A multiobjective optimization problem can be mathematically written in the form

minimize { f1(x), f2(x), . . . , fk(x)}
subject to x ∈ S,

(1)

where fi : S → R, for i = 1, . . . , k (k ≥ 2) are the conflicting objective functions that must
be minimized simultaneously, and S ⊂ Rn is the feasible set. The n-dimensional vectors
x = (x1, x2, . . . , xn)T ∈ S are referred as solutions or decision vectors, and their images
f(x) = ( f1(x), f2(x), . . . , fk(x))T are called objective vectors. The image of the feasible set
in the objective space Rk is called the feasible objective region Z = f(S).

As mentioned earlier, it is not possible to find a solution where all the objectives can reach
their individual optimum, but there is a set of solutions that are mathematically equivalent,
those solutions where none of their objective values can be improved without deteriorating at
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least one of the others.We say that a decision vector x ∈ S is aPareto optimal solution if there
does not exist another x′ ∈ S such that fi (x′) ≤ fi (x) for all i = 1, . . . , k and f j (x′) < f j (x)

for at least one index j . The corresponding objective vector f(x) is called Pareto optimal
objective vector. The set of all the Pareto optimal solutions is called the Pareto optimal set
and it is denoted by E, and the set of all the Pareto optimal objective vectors is called the
Pareto optimal front, and it is denoted by f(E). A decision vector x ∈ S is said to be a weakly
Pareto optimal solution if there does not exist another x′ ∈ S such that fi (x′) < fi (x) for
all i = 1, . . . , k. The corresponding objective vector f(x) is called weakly Pareto optimal
objective vector. Besides, a decision vector x ∈ S is said to be a properly Pareto optimal
solution if it is Pareto optimal and if there is a real number M > 0 such that, for each i and
each x′ ∈ S satisfying fi (x′) < fi (x), there exists at least one j such that f j (x) < f j (x′) and
fi (x)− fi (x′)
f j (x′)− f j (x)

≤ M . The corresponding objective vector f(x) is called properly Pareto optimal
objective vector. The set of properly Pareto optimal solutions is included in the Pareto optimal
set, which is, in turn, included into the set of weakly Pareto optimal solutions.

Given two objective vectors z, z′ ∈ Z , we say that z dominates z′ if and only if zi ≤ z′i for
all i = 1, . . . , k and there exists one j such that z j < z′j . In the context of EMO algorithms,
the subset of solutions in a population whose objective vectors are not dominated by any
other objective vector of the population is called the nondominated set. EMO algorithms
usually aim at generating nondominated objective vectors representing the Pareto optimal
front as well as possible (i.e., being close to the Pareto optimal front).

Commonly, it is useful to know the ranges of objective vectors in the Pareto optimal
front. Upper and lower bounds for the objective functions are defined by the ideal objective
vector and the nadir objective vector, which represent the best and the worst values that each
objective function can reach in the Pareto optimal front, respectively. The components of the
ideal objective vector z� = (z�1, . . . , z

�
k)

T ∈ Rk are obtained by minimizing each objective
function individually in the feasible set, that is, z�i = minx∈S fi (x) = minx∈E fi (x) for
all i = 1, . . . , k. The nadir objective vector znad = (znad1 , . . . , znadk )T can be defined as
znadi = maxx∈E fi (x) for all i = 1, . . . , k. Often, the nadir objective vector is difficult to
obtain, so it is estimated [13,14,21]. In what follows, we assume that the Pareto optimal front
is bounded and that there are available estimations of the ranges of the objective functions.

Because all Pareto optimal solutions can be regarded as equally desirable in the mathe-
matical sense, we need information about the preferences of a DM [36]. A natural way to
express preferences consists of specifying desirable objective function values, which con-
stitute the components of the so-called reference point. That is, a reference point is given
by q = (q1, . . . , qk)T , where qi is an aspiration value for the objective function fi pro-
vided by the DM, for all i = 1, . . . , k. Usually, a reference point is said to be achievable
if there is a feasible solution whose objective values simultaneously achieve or improve the
corresponding reference levels; otherwise, the reference point is said to be unachievable.

Many reference points-based MCDM methods use achievement scalarizing functions
(ASFs), which combine the original objective functions of the problem (1) and the preference
information given by the reference point in a single real-valued function. Then, the original
problem (1) is transformed into a single-objective optimization problem consisting of the
minimization of the ASF over the feasible set. By solving this problem, we can generate all
(properly) Pareto optimal solutions of problem (1) [36]. For an overview aboutASFs, see [38].

One of the most used ASF is the one proposed by Wierzbicki [48], whose formulation
is based on the L∞ distance. For a given reference point q = (q1, . . . , qk)T , a vector of
weights μ = (μ1, . . . , μk), with μi > 0 for all i = 1, . . . , k, and a parameter ρ > 0, the
Wierzbicki’s ASF is given by:
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s(q, f(x), μ) = max
i=1,...,k

{μi ( fi (x) − qi ) } + ρ

k∑

i=1

μi ( fi (x) − qi ), (2)

which must be minimized over S:

minimize s(q, f(x), μ)

subject to x ∈ S.
(3)

Theweightμi given to each objective function fi must be strictly positive. Theweights can be
defined as normalizing coefficients [42], but they can also have a preferential meaning [33].
The parameter ρ > 0, which must be a small positive value, is the so-called augmentation
coefficient and it is used to assure that the optimal solution of (3) is a Pareto optimal solution
of problem (1) for any reference point. Besides, this term can also improve the computational
efficiency [39]. If the ranges of the objective functions are in very different scales, the values
of the objective functions must be normalized. Commonly, they can be normalized in (2)
dividing fi (x) − qi by znadi − z�i , for every i = 1, . . . , k, although there are other types of
normalization.

For a given reference point q, minimizing an ASF means to find the “best” Pareto optimal
objective vector with respect to q and the weight vector μ. This implies that the solution
obtained does not only depend on the reference point considered, but also on the vector of
weights used. Indeed, for a given reference point, Pareto optimal objective vectors generated
using different weights tend to be different, as several studies have shown [33,37,38,42].
In practice, if the reference point is unachievable, minimizing the ASF in (2) is equivalent
to the minmax distance, while if the reference point is achievable, the objective values in
the optimal solution of (3) improve the given reference levels in the best possible way.
Furthermore, solving (3) means to project q onto the Pareto optimal front in the direction
determined by the inverse of the weights.

Now then, once a DM gives a reference point q, which Pareto optimal objective vectors
are the most interesting ones according to q? It seems logical that, if q is achievable, the
most interesting ones are those that dominate the reference point, namely, the subset of
Pareto optimal objective vectors which do not deteriorate any coordinate of the reference
point. When q is unachievable, the subset of the most interesting Pareto optimal objective
vectors is not so accurately identified because, in this case, no objective vector improves
all the reference levels at the same time. However, we may suppose that the probably most
interesting ones are those Pareto optimal objective vectors dominated by the reference point.
This is motivated because the Pareto optimal objective vectors that are not dominated by the
reference point may improve one or several reference levels at the expense of a sacrifice of
the other reference levels.

Then, we define the region of interest of the Pareto optimal front defined by q in the
following way. When q is achievable, the region of interest is the subset of Pareto optimal
objective vectorswhich dominateq, that is, the objective vectors f(x)with x ∈ E which verify
that fi (x) ≤ qi , for every i = 1, . . . , k. On the other hand, if q is unachievable, the region of
interest is formed by the Pareto optimal objective vectors which are dominated by q, that is,
the objective vectors f(x) with x ∈ E which verify that fi (x) ≥ qi , for every i = 1, . . . , k.
Note that, in most problems, the region of interest considered in the unachievable case is
likely to be constituted by the closest Pareto optimal objective vectors to the reference point
regarding the minmax distance, obtained by varying the weight vector in the entire weight
vector space. However, it should be mentioned that this is not always true.

Figure 1 gives a graphical idea of the region of interest for achievable and unachievable
reference points in a biobjective optimization problem as (1). The region of interest has been

123



108 J Glob Optim (2015) 62:101–129

q

Z=f (S)

(a)

q

Z=f (S)

(b)

Fig. 1 Region of interest of the Pareto optimal front for a reference point. a Achievable reference point. b
Unachievable reference point

highlighted with a bold line in both cases. In the achievable case, we assume that the DM
is interested in the Pareto optimal objective vectors lying inside the region of interest, given
that, as said before, these objective vectors improve all the aspiration values at the same time,
without having to impair any of them. When the reference point is unachievable, no Pareto
optimal objective vector dominates the reference point. In that case, although the Pareto
optimal objective vectors lying inside the region of interest do not improve any aspiration
value, they deteriorate themas little as possible. It can be seen that the Pareto optimal objective
vectors outside the region of interest may improve some of the aspiration values, but at the
expense of a sacrifice of other ones. Furthermore, the higher the improvement of an aspiration
value, the higher is the sacrifice of the others.

3 The weighting achievement scalarizing function genetic algorithm (WASF-GA)

This section is devoted to explain the main features of the proposed algorithm, calledweight-
ing achievement scalarizing function genetic algorithm (WASF-GA). As previously men-
tioned, the main purpose of WASF-GA is to approximate the region of interest of the Pareto
optimal front defined by a reference point given by the DM.

Any (properly) Pareto optimal objective vector can be found by minimizing the ASF
given in (2) for different reference points and vectors of weights [36]. In particular, when
a DM gives a reference point, any Pareto optimal objective vector in our region of interest
can be found by minimizing (2) over S for that reference point and varying the vector of
weights in the whole weight vector space (0, 1)k . Based on this, the idea behind the proposed
algorithm is to approximate the region of interest by minimizing (2) at each generation using
the reference point given by the DM and taking into account a sample of weight vectors.

The diversity of the nondominated objective vectors generated by WASF-GA depends on
the set of weight vectors considered. As pointed out in Sect. 2, when the ASF given in (2) is
minimized over S using strictly positive weights, in practice, the reference point is projected
onto the Pareto optimal front in the direction defined by the inverses of the weights used.
Because of that, the weight vectors considered in WASF-GA verify that the vectors formed
by their inverse components are evenly distributed in the weight vector space (0, 1)k . In that
way, by minimizing (2) at each generation for these weight vectors, in practice, WASF-GA
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projects the reference point onto the region of interest taking into account a sample of evenly
distributed projection directions.

Let us denote by N the size of the population at each generation, Nμ the number of
weight vectors in the sample, h the generation number, Ph the population of individuals
at generation h and Fh

n the n-th front at generation h. The main steps of the WASF-GA
algorithm are described in Sect. 3.1. At each generation, the individuals of the population
formed by parents and offsprings (of size 2N ) are divided into different fronts. First of all,
let us assume that any feasible solution is better than any infeasible solution. Consequently,
we classify first the feasible individuals and, later, the infeasible ones.

For the classification of the feasible solutions, we will consider the ASF given in (2) for
the reference point given by the DM and the set of Nμ weight vectors obtained according
to the procedure described in Sect. 3.2. Then, the feasible solutions are divided into several
fronts according to the values that they take on the ASF for the different weight vectors in
the set. Specifically, the first front is formed by the feasible individuals with the lowest ASF
values for each one of the weight vectors. Next, the feasible solutions with the next lowest
ASF values for each one of the weight vectors are passed to the second front, and so on until
all the feasible solution have been included into some front.

Once the feasible solutions have been classified, the infeasible ones are next classified
taking into account their overall constraint violation. Obviously, the smaller the constraint
violation, the better the solution is. Then, the infeasible solution with the lowest constraint
violation is placed in the next front; subsequently, the infeasible solution with the next lowest
constraint violation forms the following front, and so on until all the infeasible solutions have
been classified. This constraint handling procedure is similar to the ones used by other EMO
algorithms, as NSGA-II [15].

Finally, the population for the next generation (of size N ) is formed by the solutions in the
lowest level fronts. If there are more solutions in the last front considered than the remaining
space in the new population, the solutions with the lowest ASF values are selected. Following
this procedure,when all the solutions of the population are feasible (after several generations),
each front is formed by Nμ solutions, except the last one thatmay have less than Nμ solutions.
Consequently, if we want to have, at least, one solution in the new population corresponding
to each one of the weight vectors, it is convenient to consider a value of Nμ less or equal
than N .

The final population of WASF-GA is formed by the solutions in the first front of the last
generation, thus Nμ solutions are shown to the DM. Consequently, the higher Nμ, the larger
is the final population generated by WASF-GA. This means that the parameter Nμ has an
understandable meaning, and, if so desired, the DM can easily set it by indicating the number
of solutions (s)he wants to have in the final population. However, Nμ can be defined as the
population size by default.

3.1 Step-by-step of the WASF-GA algorithm

Step 1. Generation of the sample of weight vectors Following the procedure described
in Sect. 3.2, generate Nμ weight vectors, denoted by μ j for every j = 1, . . . , Nμ.

Step 2. Initialization Set h = 0 and let P0 a population of N randomly created individuals.
Step 3. Mutation and crossoverApply the crossover andmutation operators considered to

Ph (populationof parents), to generate N new individuals (populationof offsprings).
Let P the combined population of parents and offsprings, with 2N individuals.

Step 4. Classification of the individuals into fronts For every feasible solution x ∈ P ,
calculate s(q, f(x), μ j ) for every j = 1, . . . , Nμ. Then, for each j = 1, . . . , Nμ,
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include in Fh
1 and remove temporarily from P the feasible solution in P with the

minimum value of s(q, f(x), μ j ).2 Subsequently, considering the rest of solutions
in P , for each j = 1, . . . , Nμ, include in Fh

2 and remove temporarily from P the
feasible solution in P with the next minimum value of s(q, f(x), μ j ). This process
is repeated until every feasible individual has been included into some front. When
all the feasible solutions have been classified, the infeasible solutions are classified
according to their overall constraint violation.

Step 5. Selection Set Ph+1 = ∅ and n = 1. If #(Ph+1∪Fh
n ) ≤ N , then Ph+1 = Ph+1∪Fh

n
(#(A) denotes the number of elements in a set A). Update n = n + 1 and repeat
that process until #(Ph+1 ∪ Fh

n ) > N , in whose case the individuals from Fh
n

which reach the lowest values of (2) will be included in Ph+1 until Ph+1 has N
individuals.

Step 6. Stopping criterion If the stopping criterion is fulfilled, the individuals in Fh
1 rep-

resents the outcome of WASF-GA and Stop. Otherwise, set h = h + 1 and go to
step 3.

3.2 Generation of the sample of weight vectors

Let {u1, u2, . . . , uNμ} be a set of well-distributed weight vectors in (0, 1)k and let us denote
by {μ1, μ2, . . . , μNμ} the sample of weight vectors considered inWASF-GA. Once the well-
distributed weight vectors in (0, 1)k are obtained, for every j = 1, . . . , Nμ,the weight vector

μ j = (μ
j
1, . . . , μ

j
k ) considered in WASF-GA is defined by:

μ
j
i = 1

u j
i

, for every i = 1, . . . , k. (4)

Note that, in order to assure that the vectors in {μ1, μ2, . . . , μNμ} belong to (0, 1)k , they are
normalized dividing each component by the sum of all the components.

In what follows, the proposed procedure to generate the weight vectors {u1, u2, . . . , uNμ}
is described, which will depends on the number of objective functions. It must be noted that
any procedure to generate well-distributed weight vectors in (0, 1)k could be used, such as
i.e., the generation of weights used in MOEA/D [50].

3.2.1 Two objective functions

In this case, a set of Nμ weight vectors equally distributed in (0, 1)2 can be generated in the

following way. For each j = 1, . . . , Nμ, u j = (u j
1, u

j
2) is defined by:

u j
1 = ε + ( j − 1) 1−2ε

Nμ−1

u j
2 = 1 − u j

1

where ε is a small positive value. We suggest to use ε = 0.01 in order not to move too far
from the extremes of the interval (0, 1). However, this value can be changed if so desired. It
can be observed that the value of Nμ defines the size of the step from one weight to the next
one in (0, 1), which is 1−ε

Nμ−1 .

2 To maintain the diversity of the population, repeating solutions in the same front is not allowed in case one
solution reaches the lowest ASF value for several weight vectors at the same time. That is, once a solution is
selected as the one with the lowest value of s(q, f(x), μ j ) for one j = 1, . . . , Nμ, it is removed and cannot
be chosen for another index r > j .
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We would like to remark that the generation of these weight vectors only depends on the
number Nμ, but not on the problem to be solved. That is, once {u1, u2, . . . , uNμ} have been
generated for a biobjective problem, they can be used to solve any other biobjective problem
using WASF-GA with Nμ vectors of weights.

3.2.2 Three or more objectives

In problems with three or more objectives (k ≥ 3), it is more complicated to generate a set of
Nμ vectors equally distributed along (0, 1)k . Basically, the procedure described here initially
generates a large enough set of weight vectors in (0, 1)k and, subsequently, the Nμ most
representative vectors of this set are selected as the weight vectors needed.

To be more specific, equally distant weights in (0, 1) are first generated, which will be the
components of the vectors of weights. To do so, we consider two sufficiently small positive
real parameters ε and S, where ε is used to avoid having weights equal to 0 and S is the size
of the step between two consecutive weights. Although they can be changed if so desired,
we suggest to use ε = 0.01 and S = 0.03. Now, we generate the following weights in (0, 1):

ur = ε + r · S for every r = 0, . . . , L ,

where L = E( 1−2ε
S ) [E(·) denotes the integer part of a number]. Next, we consider the

set of weight vectors in (0, 1)k for which each weight component is equal to one ur , for
r = 1, . . . , L . Subsequently, these weight vectors are normalized, dividing each component
by the sum of all the components. Let us refer to the resulting set of normalized weight
vectors as W , which contains Lk vectors. Finally, the set W is divided into Nμ clusters by
using e.g. the k-means clustering [35], and the centroid weight vectors of the clusters are the
Nμ vectors of weights needed.

As in the previous case, the sample of Nμ weight vectors generated for a problem with
k ≥ 3 objectives does not depend on the problem itself, and it can be used in WASF-GA to
solve any other problem with k objectives using Nμ vectors of weights. Besides, the set of
randomly generated weight vectors W can be reused whenever we want to run WASF-GA
for another value of Nμ.

3.3 Properties

If repeating solutions in the same front is allowed, a feature of the new algorithm is that the
classification of the individuals in WASF-GA into several fronts defines a strict partial order
which is complete with the Pareto dominance. Firstly, let ≺ be the binary relation defined
over a finite set of solutions P , where x ≺ y means that x belongs to a lower level front
of WASF-GA than y. The relation ≺ defines a strict partial order in P given that: (a) it is
irreflexive (for all x ∈ P , it is clear that x ⊀ x); (b) it is asymmetric (if x ≺ y, x belongs
to a lower level front than y and, consequently, y ⊀ x); and (c) it is transitive (if x ≺ y and
y ≺ z, the x belongs to a lower level front than y, which is, in turn, in a lower level front than
z; then, x belongs to a lower level front than z and, consequently, x ≺ z).

Secondly, let us prove that ≺ is complete with the Pareto dominance defined in Sect. 2.
In general, if � is a binary relation where x � y implies that x is preferred to y, � is said
to be complete with the Pareto dominance if and only if x Pareto dominates y implies that
x � y [55]. In our case, let us consider x1, x2 ∈ P such that x1 Pareto dominates x2 (being
both of them feasible) and let us see that x1 ≺ x2. If x1 Pareto dominates x2, we can say
that s(q, f(x1), μ) < s(q, f(x2), μ), for any strictly positive weight vector μ [36], and, in
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particular, for each one of the Nμ weight vectors considered inWASF-GA. Then, it is obvious
that x1 belongs to a lower level front of WASF-GA than x2, so x1 ≺ x2.

4 Computational tests

In order to evaluate the performance of WASF-GA, we have carried out a series of computa-
tional experiments. Firstly, we have compared WASF-GA with two other preference-based
EMO algorithms also based on the reference point preferential scheme: r-NSGA-II [1] and
R-NSGA-II [18]. Although these algorithms approximate a region of the Pareto optimal
front that fits the reference point used, they are not technically designed to approximate
just what we have considered as the region of interest approximated by WASF-GA. How-
ever, as it is shown hereafter, the parameters which r-NSGA-II and R-NSGA-II depend
on have been adjusted to generate final populations whose objective vectors approximate
our region of interest as well as possible. Because of this inconvenience, we have car-
ried out a second set of experiments, given that we can find in the literature other tech-
niques that also exclusively return nondominated objective vectors in our region of interest,
as [23,40]. In these second tests, WASF-GA has been compared with the following ref-
erence point-based EMO algorithms: the NSGA-II version that replaces the usual Pareto
dominance by the g-dominance proposed in [40], which we will refer to as g-NSGA-II,
and the preference-based MOGA algorithm proposed in [23], which we will refer to as P-
MOGA. All the algorithms have been implemented by the same software developer using
jMetal [20], a Java-based framework for multi-objective optimization, and we have car-
ried out 30 independent runs on the same computer (Intel Core2 Duo E7600 @3.06GHz,
4.00GB).

Wehave considered problemswith 2 and3objective functions andwehave used achievable
and unachievable reference points. We have used a population size of 200 individuals and
300 generations for the problems with 2 objectives, and a population size of 300 individuals
and 400 generations for the 3-objective problems. The SBX crossover operator and the
polynomial mutation [10] have been considered, with a distribution index of 20 and 20,
respectively. The crossover probability has been set to 0.9 and the mutation probability
to 1/n, where n is the number of variables. In our tests, the objective values calculated
in the ASF given in (2) and in the Euclidean distances computed in r-NSGA-II and R-
NSGA-II have been normalized as indicated in Sect. 2. The ideal and the nadir objective
vectors can be estimated using any suitable technique. Given that there are approximations
of the Pareto optimal fronts of the problems considered elsewhere, we have estimated these
boundary vectors using the best and the worst objective function values reached in these
approximations.

Regarding WASF-GA, in all test problems, we have considered the number of weight
vectors, Nμ, equal to the size of the population used. For the generation of the weight
vectors following the procedure described in Sect. 3.2, we have used the values of ε and
S recommended there. That is, ε = 0.01 for the 2-objective problems and ε = 0.01 and
S = 0.03 for the 3-objective problems. Let us remember that the sample of Nμ weight
vectors does not depend on the problem itself, but on the number of objectives.

In order to analyse the performance of each algorithm,we have compared: (a) the quality of
the final populations generated by each algorithm using the metric based on the hypervolume
described in Sect. 4.1; (b) the computational complexity of each algorithm; and (c) the number
of solutions in the final population whose objective vectors lie in the region of interest. For
each test problem, we show the mean of the obtained results over the 30 independent runs.
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Fig. 2 Graphical idea of HVq in a 2-objective problem. a Achievable reference point. b Unachievable
reference point

In order to statistically analyse the results obtained in the metric based on the hypervolume,
we have performed the Wilcoxon rank-sum test [49]. This is a non-parametric statistical
hypothesis test, which permits us to make pairwise comparisons between algorithms to study
the significance of the obtained results.

4.1 Hypervolume of the region of interest defined by q

The quality of the final population has been measured using a metric we have defined based
on the hypervolume indicator [24,54]. For a set of objective vectors P , the hypervolume of
P , denoted by HV (P), can be defined as the hypervolume of the portion of the objective
space that is dominated by the objective vectors in P and is bounded by an (achievable)
reference point, R = (r1, . . . , rk). The higher the hypervolume, the better is the population.

For a population of objective vectors P and a reference point q, let us denote by HVq(P)

the hypervolume of P in the region of interest defined by q. HVq(P) is defined as the
hypervolume of the subset of objective vectors in P which lies inside the region of interest
of the Pareto optimal front for q, defined in Sect. 2 (we will refer to this subset of P as Pq).
Then, HVq(P) = HV (Pq). In order to calculate HVq(P), the reference point R needed to
compute HV (Pq) is set in the following way:

• If q is achievable, then R = q, that is, ri = qi for all i = 1, . . . , k.
• If q is unachievable, then R is defined as follows. Let A be a reference set, which is

a good approximation of the Pareto optimal front. Then, ri = maxx∈Aq fi (x) for all
i = 1, . . . , k, where Aq is the subset of objective vectors in A which lies inside the
region of interest for q (Aq = {z ∈ A with zi ≥ qi for every i = 1, . . . , k}).

Figure 2 gives a graphical idea of the area whose hypervolume is calculated in the HVq
metric for a biobjective problem.

The HVq values which are shown hereafter in Sects. 4.2 and 4.3 have been normalized
taking into account the hypervolume of the true region of interest, that is, taking into account
HV (Aq). The Pareto optimal fronts of the problems considered in the computational tests
are available elsewhere.
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Table 1 r-NSGA-II and R-NSGA-II parameters setting

Problem Obj. Achievable Unachievable

q δ ε q δ ε

ZDT1 2 (0.8, 0.6) 0.91 0.0064 (0.2, 0.4) 0.73 0.0016

ZDT2 2 (0.8, 0.8) 0.83 0.0045 (0.5, 0.3) 0.93 0.0049

ZDT3 2 (0.3, 0.8) 0.8405 0.0018 (0.2, 0) 0.71 0.0016

DTLZ2 3 (0.6, 0.7, 0.7) 0.65 0.07 (0.4, 0.4, 0.4) 0.6 0.078

DTLZ7 3 (0.1, 0.8, 6) 0.8 0.07 (0.1, 0.1, 4) 0.8 0.06

4.2 WASF-GA versus r-NSGA-II and R-NSGA-II

Here, we will show the results obtained by WASF-GA, r-NSGA-II [1] and R-NSGA-II [18]
for achievable and unachievable reference points on several test problems.

In r-NSGA-II, a threshold δ ∈ [0, 1] controls the selection pressure of the r-dominance,
which is stronger for values of δ closer to 0, and softer for values closer to 1. In [1], the authors
proposed a procedure that adjusts δ adaptively during the process, by which δ is initially set
as 0 and it progressively varies until reaching a given value δ0 ∈ [0, 1]. The idea is to guide
the search gradually during the evolution process towards the region of interest, avoiding
a lack of diversity and a premature convergence. We have used this adaptive procedure in
r-NSGA-II in our experiments. On the other hand, an ε-based selection strategy is used in
R-NSGA-II to control the diversity. For a small positive quantity ε, this strategy makes that
all objective vectors having a distance of ε or less between them are represented by just one
of them. The larger the value of ε, the more extended is the generated set of nondominated
objective vectors.

Given that the spread of the final populations of r-NSGA-II and R-NSGA-II depends on
δ0 and ε, their values have been adjusted on each case so that to obtain final populations
which can be compared to the final population of WASF-GA. That is, since the purpose of
WASF-GA is to approximate the region of interest defined by the reference point, we have
adjusted the values of δ0 and ε in order to generate final populations whose objective vectors
approximate this region.

We have considered the 2-objective ZDT1, ZDT2 and ZDT3 with 30 variables each
one [51] and the 3-objective problems DTLZ2 and DTLZ7 with 12 and 22 variables [19],
respectively. For each test problem, Table 1 shows the reference points and the values of the
parameters δ0 and ε used in r-NSGA-II and in R-NSGA-II, respectively. Given that it has
been tedious to set δ0 and ε for each test problem and each reference point in order to fit
the region approximated to our region of interest, we decided that these test problems were
enough to show the performance of the three algorithms.

The mean and the standard deviation of the HVq values obtained for the achievable
reference points can be seen in Table 2, and the ones for the unachievable reference points in
Table 3. We have coloured in dark grey the algorithm which has reached the best HVq mean
and in light grey the onewith the second bestHVq mean. FromTables 2 and 3, we can see that
WASF-GA has reached the best HVq mean in all the problems, for both the achievable and
the unachievable cases. Although all the objective vectors generated byWASF-GA lie inside
the region of interest, not all the objective vectors generated by r-NSGA-II and R-NSGA-II
are inside this area, given that the extension of the region approximated by them is controlled
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Table 2 Mean and standard deviation of HVq, when q is achievable

Table 3 Mean and standard deviation of HVq, when q is unachievable

Table 4 Wilcoxon test in the two and three-objective problems, when q is achievable

by δ0 and ε, respectively. Then, it is important to know how many objective vectors were
considered on each algorithm to calculate HVq. On average, 100% of the objective vectors
generated by WASF-GA, 52.6% of the ones obtained by r-NSGA-II and 63.4% of the ones
provided by R-NSGA-II were inside the region of interest. We would like to remark that
we have tested several values of δ0 and ε before choosing the ones which approximate
regions as similar as possible to our region of interest on each case. In practice, one does
not know beforehand how wide the region approximated by r-NSGA-II and R-NSGA-II will
be according to the values of δ0 and ε. In this regard, we could say that WASF-GA is more
robust, given that it always generates objective vectors approximating the region of interest
defined by the reference point considered.

As previously said, the Wilcoxon rank-sum test has been used on each test problem to
determine whether the comparative among the HVq means of each pair of algorithms is
statistically significant or not. Tables 4 and 5 contain the results obtained in the achievable
and in the unachievable cases, respectively.We have used a 5% significance level and the null
hypothesis is “The two algorithms have the same HVq mean”. That is, the Wilcoxon test is
used to determine whether the difference between the HVq means is statistically significant.
If p-value < 0.05, the null hypothesis is rejected and, then, the HVq means of the two
algorithms are comparable. In this case, in Tables 4 and 5, a symbol � indicates that the
algorithm in the row has reached a better HVq mean than the algorithm in the column, and
a symbol � is used if the algorithm in the column has a better HVq mean than the algorithm
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Table 5 Wilcoxon test in the two and three-objective problems, when q is unachievable

Table 6 Computational complexities

Algorithm Basic operations Complexities Global Complexity

WASF-GA ASF assignment O(k · 2N · Nμ) O(k · N · Nμ)

Classification into several fronts O(2N · Nμ)

R-NSGA-II Nondominated sorting O(k · (2N )2) O(k · N2)

Preference distance assignment O(k · 2N )

Preference distance sorting O(2N · log(2N ))

ε-Based selection strategy O(k · (2N )2)

r-NSGA-II r-nondominated sorting O(k · (2N )2) + O(k · 2N ) O(k · N2)

Crowding distance assignment O(k · 2N · log(2N ))

Crowding distance sorting O(2N · log(2N ))

in the row. If the null hypothesis is true (p value ≥ 0.05), a symbol—is used to indicate that
the comparative is not statistically significant. According to Tables 4 and 5, we observe that
statistical confidence has been found in all the results. From them, we can see thatWASF-GA
performs better than r-NSGA-II and R-NSGA-II in all the test problems, for the achievable
and the unachievable reference points.

Next, we have compared the computational complexities of WASF-GA, r-NSGA-II and
R-NSGA-II. Table 6 shows the complexities of their basic operations in one iteration, consid-
ering their worst cases. The complexities of r-NSGA-II and R-NSGA-II have been calculated
using one reference point. Taking into account that we suggest to set Nμ ≤ N , the global
complexity of WASF-GA is lower or equal than those of the other two methods.

Besides, wewould like to show the performances ofWASF-GA, r-NSGA-II andR-NSGA-
II in practice. Due to lack of space, we will plot just the populations generated in the problem
ZDT2. The graphics of the other problems are available upon request. The objective vectors
provided by each method for ZDT2 in the 30 independent runs and the reference point
considered can be seen in Fig. 3. In the graphics for the achievable case, we have distinguished
between objective vectors dominating the reference point (and which approximate the region
of interest) and objective vectors not dominating it. Similarly, in the unachievable case,
objective vectors which are dominated by the reference point (and which approximate the
region of interest) and objective vectors not dominating it have been represented in a different
way. In this test problem, the non-convexity of the Pareto optimal front does not cause any
difficulty to the proposed method. In the achievable case, it can be seen that WASF-GA
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Fig. 3 Objective vectors obtained for the ZDT2 problem

provides a final set of objective vectors that are inside of the region of interest, which means
that all the generated objective vectors byWASF-GA improve all the given aspiration values.
The results obtained by r-NSGA-II and R-NSGA-II are similar: they generate objective
vectors both inside and outside the region of interest. This implies that these algorithms
provide the DM objective vectors that improve the reference point (the ones inside the region
of interest) and objective vectors that worsen it (the ones out of the region of interest).
Regarding theunachievable referencepoint, similar results are obtained.WASF-GAgenerates
a set of objective vectors which are distributed along the whole region of interest and the
objective vectors found by the other two algorithms lie both inside and outside this region.

4.3 WASF-GA versus g-NSGA-II and P-MOGA

Hereafter, we have compared the populations retrieved by WASF-GA to the ones gener-
ated by g-NSGA-II (the NSGA-II version that replaces the usual Pareto dominance by the
g-dominance [40]) and P-MOGA (the preference-basedMOGA algorithm proposed in [23]).
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Given that the spread of the final objective vectors of the populations generated by
g-NSGA-II and P-MOGA does not depend on any parameter, we have been able to use
more test problems than in the previous Sect. 4.2. Then, as benchmark problems, we have
chosen problems with 2 and 3 objectives from the families ZDT [51], DTLZ [19], WFG
[26] and LZ09 [32], which are designed to represent various complicated situations. Table 7
contains the problems considered and the achievable and unachievable reference points used
on each case.

In Table 8, we can see the means and standard deviations of the HVq values obtained
for the achievable case. The results for the unachievable case are included in Table 9. As
previously, in Tables8 and9, the algorithmwhich has reached the best HVq value is coloured
in dark grey and the one which attains the second best HVq value has been highlighted in
light grey. The color of the cells means the same as in Sect. 4.2. On average, the percentage
of objective vectors generated by each algorithm inside the region of interest is 96.5% for
WASF-GA, 88.48% for g-NSGA-II and 89.35% for P-MOGA. According to Tables 8 and 9,
we can say thatWASF-GAhas reached the bestHVq mean inmore problems than g-NSGA-II
and P-MOGA. To be more precise, from the 46 problems considered, WASF-GA wins in 33
problems, g-NSGA-II in 4 and P-MOGA in 9 when q is achievable; in the unachievable case,
WASF-GA is the best in 35 problems, g-NSGA-II in 2 and P-MOGA in 9. It can be noted that
the HVq mean obtained by g-NSGA-II is 0 for the 3-objective problem DTLZ1 (achievable
case) and for the 3-objective problem DTLZ3 (achievable and unachievable case). In these
cases, we observed that g-NSGA-II had convergence problems, and this is because the g-
dominance does not preserve the Pareto dominance, and may wrongly emphasize dominated
objective vectors over nondominated ones (this fact can be observed, for example, in Fig. 4).
Regarding the standard deviation, WASF-GA obtained the lowest standard deviation in most
of the problems, which means that the results generated byWASF-GA in the 30 independent
runs were very similar. This analysis shows that WASF-GA outperforms g-NSGA-II and
P-MOGA in terms of the HVq metric.

The results obtained by the Wilcoxon rank-sum test can be seen in Tables 10 and 11, for
the achievable and the unachievable reference points, respectively. The symbols �, � and–
have the same meanings as in Tables 4 and 5. In the achievable case, from the 46 problems
considered, WASF-GA is better than g-NSGA-II in 32 problems, g-NSGA-II wins in just 5
problems and the difference between their HVq is not statistically significant in 9 of them.
Regarding the results obtained by WASF-GA against P-MOGA, WASF-GA is better in 28,
P-MOGA in 7 and their HVq means are not statistically different in 11 problems. For the
unachievable reference points, WASF-GA reaches better HVq means than g-NSGA-II in 29
problems, g-NSGA-II performs better just in 7 problems and the difference between their
HVq means is not statistically significant in 10 of them. If we check the results of WASF-GA
against P-MOGA, we see that WASF-GA is better in 29 cases, P-MOGA in 10 and the HVq
mean difference between the algorithms is not statistically significant in 7 problems.

Regarding the computational complexities, Table 12 shows the complexities of the basic
operations of WASF-GA, g-NSGA-II and P-MOGA in one iteration, considering their worst
cases. Having in mind that we propose to set Nμ ≤ N , WASF-GA has a global complexity
that is lower or equal than those of the other two methods.

Finally, Fig. 4 gives a graphical idea of the performances of WASF-GA, g-NSGA-II
and P-MOGA in the LZ09_F6 problem. The graphics of the rest of problems are available
upon request. In these graphics, we have plotted the objective vectors obtained for the 30 runs
following the same indications stated for Fig. 3. In the achievable case, the solutions obtained
by the three algorithms are inside the region of interest but, given that the highest HVq value
is obtained byWASF-GA, we could say that the solutions generated byWASF-GA are closer
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Table 7 Problems and reference
points used in WASF-GA,
g-NSGA-II and P-MOGA

Problem Obj. q achievable q unachievable

ZDT1 2 (0.80, 0.60) (0.20, 0.40)

ZDT2 2 (0.80, 0.80) (0.50, 0.30)

ZDT3 2 (0.30, 0.80) (0.20, 0.00)

ZDT4 2 (0.99, 0.95) (0.08, 0.25)

ZDT6 2 (0.78, 0.61) (0.39, 0.21)

DTLZ1 2 (0.41, 0.36) (0.00, 0.02)

DTLZ2 2 (0.83, 0.92) (0.07, 0.51)

DTLZ3 2 (0.87, 1.00) (0.15, 0.42)

DTLZ4 2 (0.97, 0.59) (0.41, 0.51)

DTLZ5 2 (0.97, 0.59) (0.03, 0.27)

DTLZ6 2 (0.76, 0.84) (0.08, 0.48)

DTLZ7 2 (0.85, 3.88) (0.62, 1.27)

WFG1 2 (1.31, 1.61) (0.49, 0.88)

WFG2 2 (1.80, 2.91) (0.23, 0.20)

WFG3 2 (1.75, 2.55) (0.56, 1.61)

WFG4 2 (1.88, 3.71) (0.29, 2.93)

WFG5 2 (1.88, 2.46) (0.47, 1.98)

WFG6 2 (1.46, 3.44) (1.28, 0.10)

WFG7 2 (1.17, 3.74) (0.11, 3.03)

WFG8 2 (1.92, 3.60) (0.29, 3.56)

WFG9 2 (1.83, 3.92) (0.81, 2.15)

LZ09_F1 2 (0.77, 0.29) (0.09, 0.01)

LZ09_F2 2 (0.78, 0.38) (0.49, 0.10)

LZ09_F3 2 (0.98, 0.52) (0.62, 0.10)

LZ09_F4 2 (0.37, 0.71) (0.21, 0.24)

LZ09_F5 2 (0.79, 0.81) (0.05, 0.09)

LZ09_F7 2 (0.91, 0.67) (0.22, 0.25)

LZ09_F8 2 (0.78, 0.82) (0.06, 0.57)

LZ09_F9 2 (0.73, 0.90) (0.25, 0.59)

DTLZ1 3 (0.38, 0.07, 0.41) (0.90, 0.00, 0.01)

DTLZ2 3 (0.60, 0.70, 0.70) (0.40, 0.40, 0.40)

DTLZ3 3 (0.37, 0.79, 1.00) (0.21, 0.31, 0.19)

DTLZ4 3 (1.00, 0.11, 0.67) (0.75, 0.02, 0.00)

DTLZ5 3 (0.54, 0.65, 0.99) (0.37, 0.17, 0.54)

DTLZ6 3 (0.67, 0.69, 0.96) (0.30, 0.40, 0.58)

DTLZ7 3 (0.10, 0.80, 6.00) (0.10, 0.10, 4.00)

WFG1 3 (0.80, 2.70, 4.93) (0.17, 0.06, 0.13)

WFG2 3 (1.26, 2.87, 5.12) (0.07, 0.19, 1.87)

WFG3 3 (0.71, 1.40, 3.41) (0.27, 0.40, 2.62)

WFG4 3 (0.83, 1.30, 6.00) (0.03, 0.01, 4.50)

WFG5 3 (1.90, 3.90, 2.87) (0.83, 2.16, 2.06)

WFG6 3 (1.06, 3.79, 3.35) (0.45, 0.20, 1.49)

WFG7 3 (1.42, 3.94, 1.95) (0.23, 0.02, 1.54)
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Table 7 continued Problem Obj. q achievable q unachievable

WFG8 3 (1.24, 3.56, 5.81) (0.40, 2.05, 0.55)

WFG9 3 (1.05, 2.50, 5.95) (1.35, 0.20, 2.59)

LZ09_F6 3 (0.49, 0.94, 0.57) (0.21, 0.42, 0.46)

to the Pareto optimal front than the ones provided by g-NSGA-II and P-MOGA. Regarding
the unachievable case, it can be seen that the three algorithms generate solutions both inside
and outside the region of interest. Specifically, on average, the percentage of solutions inside
the region of interest are 67.07% for WASF-GA, 58.51% for g-NSGA-II and 26.52% for P-
MOGA. This fact shows that, besides the convergence difficulties of the three algorithms for
the unachievable reference point, WASF-GA has better approximated this region of interest.
In this case, g-NSGA-II generatesmanyweakly Pareto dominated solutions, which are Pareto
dominated, because it is not assure that the g-dominance preserves the Pareto dominance,
as said before. Regarding P-MOGA, we believe that it has generated so many solutions
outside the region of interest because, in the unachievable case, the preference relation used
may consider as equivalent a nondominated solution outside the region of interest and a
nondominated solution inside it.

5 Discussion

In this section, we will point out the advantages and disadvantages of the algorithm WASF-
GA in comparison with r-NSGA-II, R-NSGA-II, g-NSGA-II and P-MOGA.

On the one hand, as said before, the distribution of the final populations generated by
r-NSGA-II and R-NSGA-II highly depends on the parameters δ0 and ε, respectively, which
must be set for each problem and for each reference point, independently. There are no clear
indications in [1] and [18] about how to set δ0 and ε and, in our computational tests, we
found satisfactory values for them by trial and error, following our intuition. Based on our
experience, it may not be easy to find appropriate values of them in order to generate objective
vectors as much interesting as possible according to the reference point used. Although it
is true that r-NSGA-II and R-NSGA-II are not designed for approximating just our region
of interest, at least, when the reference point is achievable, there is no doubt that the most
interesting Pareto optimal objective vectors which dominate the reference point (that is,
which are inside our region of interest). Consequently, the fact that WASF-GA assures the
generation of nondominated objective vectors approximating just our region of interest is an
advantage against r-NSGA-II and R-NSGA-II, at least in the achievable case.

In WASF-GA, the only extra parameter that must be set is the number of weight vectors,
Nμ. However, this parameter also represents the number of the objective vectors in the final
population shown to the DM, and it can easily set by him/her. Indeed, if the DM is unable to
give a value, we can use Nμ = N by default. We would like to remark that the parameters
ε and S needed for the generation of the weights do not depend on the problem itself, but
on the number of objective functions, and we have proposed appropriate values for them in
Sect. 3.2.

On theother hand, the algorithmsR-NSGA-II and r-NSGA-II share anotherweakness: they
have been defined to emphasize solutions whose objective vectors are close to the reference
point(s) with respect to the Euclidean distance. When the reference point is achievable,
the Euclidean distance may produce undesirable effects, since objective vectors are close
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Table 8 Mean and standard deviation of HVq, when q is achievable
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Table 9 Mean and standard deviation of HVq, when q is unachievable
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Table 10 Wilcoxon test in the two and three-objective problems, when q is achievable

to the reference point may not be near to the Pareto optimal front. Then, for achievable
reference points, the use of the Euclidean distance may emphasize inadequate objective
vectors, what may complicate the convergence of the algorithm. In this regards, WASF-GA
has been formulated considering the ASF given in (2), which behaves properly for both
achievable and unachievable reference points, avoiding undesired effects in the achievable
case.

As mentioned before, the g-dominance may prefer a dominated objective vector over the
objective vector which dominates it, and this is due to the fact that solutions whose objective
vectors satisfy all aspiration levels and solutions whose objective vectors fulfill none of
the aspiration levels are emphasized over solutions whose objective vectors satisfy some of
the aspiration levels. This weakness has been overcome by WASF-GA. According to the
classification of the individuals in WASF-GA, an objective vector dominated by another one
can never be in a lower level front than the one which dominates it.

Regarding P-MOGA, we would like to say that the preference domination defined in [23]
has a small inconvenience for unachievable reference points. Specifically, when the reference
point is unachievable, an objective vector outside the region of interest can be incomparable
to another objective vector inside that region. However, in this situation, the objective vector
inside should be preferred to the solution outside. Even though this fact, P-MOGA has been
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Table 11 Wilcoxon test in the two and three-objective problems, when q is unachievable

Table 12 Computational complexities

Algorithm Basic operations Complexities Global complexity

WASF-GA ASF assignment O(k · 2N · Nμ) O(k · N · Nμ)

Classification into several fronts O(2N · Nμ)

g-NSGA-II Nondominated sorting O(k · (2N )2) O(k · N2)

Crowding distance assignment O(k · 2N · log(2N ))

Crowding distance sorting O(2N · log(2N ))

Compute Flagg O(2k · 2N )

P-MOGA Preference ranking procedure O(3k · (2N )2) O(k · N2)

ranked as the second best method after WASF-GA in our computational tests, what shows
its potential.

When the objective functions are in very different scales, we need to have approximations
of the ideal and the nadir vectors for the normalization carried out in the ASF given in (2).
This fact may be a disadvantage of WASF-GA, given that other algorithms do not need to
normalize and, thus, do not require estimations of the ideal and the nadir vectors, as g-NSGA-
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Fig. 4 Solutions obtained for the LZ09_F6 problem

II and P-MOGA. In our computational tests, we set these boundary vectors using the best and
the worst objective values reached in the Pareto optimal fronts of the problems considered.
Any other available technique for estimating the ideal and the nadir vectors can be used for
problems with unknown Pareto optimal fronts.

Regarding the procedure described in Sect. 3.2 for the generation of the vector
of weights, we would like to remark why we have considered in WASF-GA a set
of weight vectors whose inverse components form vectors well-distributed in (0, 1)k .
Minimizing the ASF given in (2) over the feasible set means to project the refer-
ence point onto the Pareto optimal front in the direction defined by the inverse of
the weights used. Then, by using weight vectors which verify that the vectors formed
by their inverse components are well-distributed in (0, 1)k , the ASF used in WASF-
GA will project the reference point taking into account an evenly distributed set of
projection directions. Otherwise, if we had used the evenly distributed weight vec-
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tors in (0, 1)k instead, this ASF would have projected q in the directions given by
the inverses of these weight vectors, but we cannot assure that these projection direc-
tions are evenly distributed. Furthermore, it should be said that, in WASF-GA, the
weight vectors whose inverses are well-distributed in (0, 1)k generated better results
than the ones obtained when the evenly distributed weight vectors in (0, 1)k were used.
However, it must be noted that this fact does not guarantee to generate evenly distributed
objective vectors in the region of interest, although it may help to cover the whole region of
interest.

6 Conclusion

Themain purpose of preference-based EMO algorithms consists of approximating the region
of thePareto optimal frontwhich contains themost promisingPareto optimal objective vectors
and their correspondingPareto optimal solutions for theDM. In this paper,we have proposed a
preference-based EMO algorithm called weighting achievement scalarizing function genetic
algorithm (WASF-GA), which considers a reference point given by a DM as preferential
information. This algorithm tries to approximate the region of interest of the Pareto optimal
front defined by the reference point. For an achievable reference point, this region of interest
contains all the Pareto optimal objective vectorswhich dominate the reference point and, thus,
which are the most interesting objective vectors for the DM. For an unachievable reference
point, the region of interest is formed by the Pareto optimal objective vectors which dominate
the reference point. In this case, the objective vectors lying in this region are likely to be more
appealing for the DM than the ones outside it, given that they worsen the reference values as
little as possible.

To approximate the region of interest, at each generation of WASF-GA, the population
of individuals is divided into several fronts, taking into account the values that each solution
reaches on an ASF for each vector of weights in a sample of the weight vector space. The
key of the success of WASF-GA is to consider a sample of weight vectors which verify that
the vectors formed by their inverse components are evenly distributed in the weight vector
space. Taking into account the obtained results, this fact has permitted us to generate good
approximations of the region of interests defined by several reference points in the problems
considered.

An important feature ofWASF-GA is that the DMdoes not need to set any extra parameter
by his/her ownwithout any understandable criterion. (S)he just has to give the reference point,
and the number of objective vectors (solutions) (s)he wants to have in the final population,
which represent the number of weight vectors used inWASF-GA. However, if so desired, the
number of weight vectors may be set by default as the size of the population of WASF-GA.

The usefulness ofWASF-GA has been shown in several test problems.We have compared
WASF-GA with four preference-based EMO algorithms which also use the reference point
preferential scheme: r-NSGA-II,R-NSGA-II, g-NSGA-II andP-MOGA.Theobtained results
have shown that WASF-GA has been able to approximate the region of interest of several
types of Pareto optimal fronts, for achievable and unachievable reference points. An analysis
of the computational complexities and the qualities of the final populations generated by all
the algorithms states that WASF-GA is the least computationally complex, and gets the best
values of the hypervolume metric used in nearly all the cases.

One possible line of future research would be to propose an interactive method on which
WASF-GAwere embedded at each iteration. In this case, the number of weight vectors could
be lower in order to decrease the computation time.
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