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Abstract Production scheduling of open-pit mines is an important problem arising in surface
mine planning as it determines the raw materials to be produced yearly over the life of
the mine, assesses the value of the mine, and contributes to the sustainable utilization of
mineral resources. Finding the optimal schedule is a complex task, involving large data
sets and multiple constraints. This paper introduces a two-phase hybrid solution method.
The first phase relies on solving a series of linear programming problems to generate an
initial solution. In the second phase, a variable neighborhood descent procedure is applied to
improve the solution. Upper bounds provided by CPLEX are used to evaluate the efficiency
of the proposed method. Its performance is also assessed by comparing it to recent solution
methods proposed in the literature and to an alternate method implemented in commercial
mine planning software commonly used by professional mine planners. The results of these
computational experiments indicate the efficiency of the proposed method and its superiority
over the other methods. It finds excellent solutions (within less than 3.2 % of optimality on
average) for large instances of the problem in a few seconds up to a few minutes. It also
provides new best-known solutions for benchmark instances from the literature, and it can
solve instances recently-published algorithms have found intractable.
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1 Introduction

Production scheduling of open-pit mines is an important issue in surface mine planning as
it determines the raw materials to be produced yearly over the life of the mine, assesses the
value of the mine, and contributes to the sustainable utilization of mineral resources. The
problem is complex as it involves large data sets and multiple constraints, placing a strain on
computational resources.

The mineral deposit is represented as a three-dimensional array of blocks. Each block has
a weight and a metal content estimated using information obtained from drilling. To recover
the metal, the block must first be extracted from the ground and then treated in a plant. These
operations are termed mining and processing, respectively. The set of blocks can be divided
into two distinct subsets: the set of ore blocks sent to the plant (i.e., blocks that are processed
to produce metal), and the set of waste blocks formed by the remaining blocks. Waste blocks
are not processed, but the physical nature of the problem requires mining them in order to
have access to ore blocks. Blocks that should be removed to have access to a given block are
called its predecessors. Each block also has an economic value representing the net profit
associated with it. Hence, for an ore block, this value is equal to the selling revenue less the
mining and the processing costs. For a waste block, it is equal to minus the cost of mining
the block.

The open-pit mine production scheduling problem (MPSP), also known as the open-pit
mine block sequencing problem or the constrained pit limit problem, consists of identifying
which blocks should be mined during each period of the life of the mine so as to maximize
the net present value (the total discounted profit) of the mining operation. Decisions on block
scheduling are subject to various constraints, typically:

– Reserve constraints: a block can be mined at most once during the horizon.
– Slope constraints: a block cannot be mined before its predecessors.
– Mining constraints: the total weight of blocks (waste and ore) mined during each period

of the horizon must not exceed the available extraction equipment capacity, referred to as
the mining capacity.

– Processing constraints: the total weight of ore blocks processed during each period of the
horizon must not exceed the processing plant capacity.

The MPSP can be formulated as a combinatorial optimization problem. Because of its
complexity and its practical interest, it has been widely studied since the 1960s [21]. For an
overview of the different formulations and solution methodologies, see [23]. As this review
paper shows, different solution approaches have been proposed in the literature. These include
exact methods [9,13], heuristics [10,17], and metaheuristics [14,16]. Each approach has
strengths and weaknesses.

Exact methods solve optimally the MPSP, but their major limitation is that they can only
be applied to instances of relatively small size. Solving instances of realistic size, where the
number of blocks is typically in the order of tens to hundreds of thousands, requires prohibitive
computational times. To reduce the number of binary variables and thus make larger instances
computationally tractable by exact methods, Ramazan and Dimitrakopoulos [25] propose a
mixed integer programming formulation where only the variables associated with ore blocks
are restricted to be binary. Another approach for handling the large number of binary variables
exploits the structure of the problem to aggregate blocks into groups, leading to a reduction in
the number of variables [5,24]. Aggregation, however, can severely compromise the validity
and usefulness of the solution [3]. It causes loss of profitability and may even lead to infeasible
solutions [5]. In order to reduce the number of binary variables, Bley et al. [4] address a
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different approach involving cutting planes. The authors add to the integer programming
formulation inequalities derived by combining the constraints of the problem to eliminate
a number of decision variables from the model prior to optimization. Their results indicate
that adding such inequalities is, in the majority of the cases tested, beneficial for reducing the
CPU time required by the solver. However, their experiments were conducted on instances
containing only hundreds of blocks and 5 or 10 periods.

Heuristics and metaheuristics can tackle large instances of the MPSP in a reasonable
amount of time, but they do not guarantee optimality. Their efficiency and robustness can
be improved by combining them with other techniques. A number of such hybrid methods
have been developed over the years. Sevim and Lei [26] and Tolwinski and Underwood [27]
combine heuristics with dynamic programming techniques. More recent approaches combine
heuristics with exact methods. Moreno et al. [22] introduce an algorithm for solving the linear
relaxation of the MPSP and an LP-based heuristic to obtain feasible solutions. However, the
algorithm proposed by the authors to solve the linear relaxation is only applicable to the variant
of the MPSP with a single resource constraint per period and for which such a constraint is
an upper bound (i.e., referring to the description given in the beginning of this section, the
variant of the MPSP including either the mining or the processing constraints in addition to
the slope constraints). Bienstock and Zuckerberg [3] propose another algorithm for solving
the linear relaxation of the MPSP that can handle any number of resource constraints.

Another hybrid approach for the MPSP is the one by Amaya et al. [1]. Starting from an
initial feasible solution generated using Gershon’s heuristic [17], the authors iteratively fix
parts of the incumbent solution and re-optimize the ”unfixed” parts. This defines an integer
programming sub-problem at each iteration that is solved exactly, using the commercial
solver CPLEX. Chicoisne et al. [11] use a similar approach. They first use the method in [22]
to generate a feasible solution, followed by an improvement integer programming-based
heuristic, which is an enhanced version of that in [1]. Cullenbine et al. [12] also solve a
series of mixed-integer programs that have fixed variables. The authors consider, however,
a variant of the MPSP incorporating lower bounds on mining and processing, which is, as
noted by the authors, harder to solve than the variant where the lower bounds are omitted
(i.e., the variant described in the beginning of this section and considered by Chicoisne et
al. [11]). The drawback of the recent hybrid algorithms [11,12] is that they rely on time
consuming integer programming algorithms. The method in [11] can solve instances with
up to five million blocks and 15 years but might require 8 h to improve the solution and
cannot handle lower bound constraints. On the other hand, the method in [12] can handle
lower bound constraints but has been able to tackle only instances with up to 25,000 blocks
and 15 periods.

In this paper, we propose a variable neighborhood descent based method for the MPSP.
Variable neighborhood descent (VND) is a variant of variable neighborhood search [18]. The
basic idea is the same: neighborhood change to escape from local optima, but the different
neighborhoods are explored using a best improvement local descent. VND has been shown
effective in solving a variety of combinatorial optimization problems (see [8] for an exam-
ple). To generate the initial solution to be improved by the VND procedure, we develop a
decomposition based heuristic. The basic idea is to reduce the complexity of the problem
by exploiting its structure and decomposing it into easier to solve sub-problems. Each sub-
problem is associated with one period, and solving it consists of solving a linear program,
not an integer or a mixed-integer program. This is followed by a repair heuristic to make
the solution of the sub-problem feasible if necessary. When all sub-problems are considered,
their solutions are combined to obtain a feasible solution of the original problem (the initial
solution).
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We applied the method described above to solve two different variants of the MPSP: the
variant described in the beginning of this section, commonly studied in the literature, and
the variant incorporating lower bounds on mining and processing, considered in [12] and
known to be more difficult to solve. For both variants, the computational results indicate
that the proposed solution method is very effective and robust, providing, for all the tested
instances, near-optimal solutions in a few seconds up to a few minutes. It generally out-
performs recently-proposed solution methods for the MPSP and provides new best-known
solutions for benchmark instances from the literature.

From a broad perspective, the method proposed in this paper is a hybrid method combining
mathematical programming algorithms with heuristic search techniques, able to tackle large
instances of the MPSP. In this sense, it is similar to recent approaches in the literature.
However, it has key characteristics which differentiate it from existing methods. First, it
doesn’t resort to aggregation to tackle large instances of the problem. Second, it doesn’t rely
on solving a series of integer or mixed integer sub-problems but rather exploits the problem
structure and uses variable neighborhood descent to quickly find improving solutions. When
generating the initial solution, it uses an exact method to solve linear programs. Because of
that, its running time has a slower growth rate compared to recent solution methods in the
literature. Third, it is not a specialized method tailored to solve one variant of the MPSP, but it
can be easily adapted to account for additional constraints. Last but not least, it doesn’t require
any external software, such as CPLEX, in order to be implemented. Indeed, although CPLEX
is used in this study to solve the linear programs when generating the initial solution, any
maximum flow algorithm, such as the pseudo-flow algorithm proposed by Hochbaum [19],
can be used.

Note that this paper deals with the deterministic version of the MPSP, which assumes that
all the problem parameters are well known. There exist other versions where one or some
components of the problem (e.g., prices, metal content, etc.) are not known with certainty.
These stochastic versions of the MPSP have received increasing attention in recent years (see
for instance, [2,6,7]).

The remainder of the paper is organized as follows: In Sect. 2 a mathematical formulation
of the problem is provided. In Sect. 3 the heuristic for generating an initial solution is outlined.
In Sect. 4 the components of the variable neighborhood descent heuristic used to improve
the solution are described. The results of an extensive computational study are presented in
Sect. 5. This is followed by conclusions in Sect. 6.

2 Mathematical formulation

As mentioned in the introduction, different mathematical formulations of the MPSP have
been proposed in the literature. In this paper, the integer linear programming formulation
proposed by Caccetta and Hill [9] is used. The following notation is used to specify the
mathematical model:

– T : the scheduling horizon.
– t : period index, t = 1, . . . , T .
– N : the number of blocks.
– i : block index, i = 1, . . . , N .
– Pi : the set of predecessors of block i ; i.e., blocks that have to be removed to have access

to block i .
– Si : the set of successors of block i ; i.e., s ∈ Si if i ∈ Ps .
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Fig. 1 Illustration of the sets Pi , Si , and P i when precedences are defined by a 45-degree slope angle and
one level above

– P i : the set of immediate predecessors of block i . The relationship between block prece-
dences is transitive; i.e., if block j is a predecessor of block i , and if block k is a predecessor
of block j , then block k is also a predecessor of block i . This transitivity property is used
to describe the immediate predecessors as being those that are not implied by any other
pair of precedences. In the example above, k is not an immediate predecessor of i .
Figure 1 gives a 2-dimensional illustration of the sets Pi , Si , and P i when precedences
are defined by a 45-degree slope angle and one level above.

– wi : the weight of block i (typically in tons).
– θi : a parameter indicating the group of block i

θi =
{

1 if block i is an ore block,
0 otherwise (i.e., if i is a waste block).

– vi : the economic value of block i .
– d: the discount rate per period.

– vti = vi

(1 + d)t
: the discounted economic value of block i if mined in period t . Note that

we assume that ore blocks are processed during the same period that they are mined and
that the profit is also generated during that period.

– Mt : the mining capacity available at period t .
– Θ t : the processing capacity available at period t .
– A binary variable is associated with each block i for each period t :

xti =
{

1 if block i is mined by period t,
0 otherwise.

This means that if block i is mined in period τ , then xti = 0 for all t = 1, . . . , τ − 1 and
xti = 1 for all t = τ, . . . , T . If i is not mined during the horizon, then xti = 0 for all
t = 1, . . . , T .

The mathematical model can be summarized as follows:

max
N∑
i=1

v1
i x

1
i +

T∑
t=2

N∑
i=1

vti

(
xti − xt−1

i

)
(1)

(MM) Subject to

xt−1
i ≤ xti i = 1, . . . , N , t = 2, . . . , T (2)
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xti ≤ xtp i = 1, . . . , N , p ∈ P i , t = 1, . . . , T (3)

N∑
i=1

wi x
1
i ≤ M1 (4)

N∑
i=1

wi

(
xti − xt−1

i

)
≤ Mt t = 2, . . . , T (5)

N∑
i=1

θiwi x
1
i ≤ Θ1 (6)

N∑
i=1

θiwi

(
xti − xt−1

i

)
≤ Θ t t = 2, . . . , T (7)

xti = 0 or 1 i = 1, . . . , N , t = 1, . . . , T . (8)

The objective function (1) to be maximized is equal to the net present value of the mining
operation. Constraints (2) guarantee that each block i is mined at most once during the
horizon (reserve constraints). The mining precedence (slope constraints) is enforced by
constraints (3). Constraints (4) and (5) impose an upper bound Mt on the amount of material
(waste and ore) mined during each period t (mining constraints). Constraints (6) and (7)
ensure that the amount of ore processed during each period does not exceed the processing
capacity available at that period (processing constraints).

The solution procedure, which includes two phases, is described in the next sections.

3 Phase 1 to construct an initial feasible solution (SH)

In this section, a general overview of the algorithm used to generate an initial feasible solution
is first presented. This is followed by a step-by-step description of it.

3.1 Overview of the algorithm

The sub-problems associated with the periods t (t = 1, . . . , T ) are solved sequentially (in
increasing order of t), and the solutions of the sub-problems are combined to generate the
initial solution. The procedure to deal with the sub-problem associated with each period t
can be summarized as follows: First, a set of blocks to be mined in t is identified by solving
a linear programming model. This solution satisfies the slope constraints, but it may violate
the mining constraints and/or the processing constraints. In this case, a repair heuristic is
applied to modify the solution in order to satisfy these constraints.

3.2 Step 1 solving the sub-problem for period t

We specify and solve a linear programming sub-problem to determine a set of blocks Bt to
be mined in period t .

The reserve and the slope constraints are considered to specify the constraints of the
sub-problem. Let us denote by Rt the set of blocks not mined at the beginning of period
t (R1 = {1, . . . , N } and Rt = Rt−1 \ Bt−1 if t = 2, . . . , T ). In order to satisfy the
reserve constraints, the blocks to be included in Bt should be selected from Rt . Consider
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any candidate block i ∈ Rt . The slope constraints require that to include i in Bt , we must
also include all blocks j ∈ Ni = Pi ∩ Rt (the set of blocks that are predecessors of i and
not mined yet).

To specify the objective function of the sub-problem, we consider the mining and the
processing constraints. Indeed, i should not be included in Bt if wi + ∑

j∈Ni
w j > Mt or

θiwi + ∑
j∈Ni

θ jw j > Θ t because this would lead to violation of the mining constraints or
the processing constraints. The economic value vi of such a block i is thus modified and set to
a large negative value to penalize its extraction. Note that we extend this penalty of extraction
to any block i ∈ Rt such that wi + ∑

j∈Ni
w j > αMt or θiwi + ∑

j∈Ni
θ jw j > αΘ t ,

where α is a random number in the interval [α1, α2] if t < T , and α = 1 if t = T . Moreover,
α1 and α2 are parameters of the procedure in the interval ]0, 1].

For the other blocks i ∈ Rt , vi is also modified but in order to favor blocks having
high value per unit of weight. This can be summarized as follows (v̄i denotes the modified
economic value of block i):

v̄i =
⎧⎨
⎩

vi

wi
if wi +

∑
j∈Ni

w j ≤ αMt and θiwi +
∑
j∈Ni

θ jw j ≤ αΘ t ,

−C otherwise.

The sub-problem associated with period t can then be summarized as follows:

max
∑
i∈Rt

v̄i yi (9)

(SPt ) Subject to

yi − y j ≤ 0 i ∈ Rt , j ∈ P i ∩ Rt (10)

0 ≤ yi ≤ 1 i ∈ Rt . (11)

Consider an optimal solution y∗ for the linear programming model (SPt ). Since the
constraints matrix of (SPt ) is unimodular, y∗ is integer (i.e., y∗

i = 0 or 1 ∀ i ∈ Rt ). For
each block i ∈ Rt , if y∗

i = 1, we include i in Bt (i.e., xτ
i := 1 ∀τ = t, . . . , T ). All the other

blocks (i.e., blocks i such that y∗
i = 0) are inserted in the set Rt+1.

Note that the algorithm described above can be seen as using logical implications of the
constraints to exclude some blocks, and then, considering the remaining blocks, to find an
ultimate pit, but to do that, instead of considering the economic value of each block, the value
per unit of weight is considered. In our tests, we found that using the normalized value (i.e.,
value per unit of weight) leads to better results compared to using the original value.

Even if the mining and processing constraints are used partly to discard some blocks
from Bt (those whose modified economic values are set to −C),

∑
i∈Bt wi (respectively,∑

i∈Bt θiwi ) may exceed the mining (respectively, the processing) capacity available at period
t . We therefore introduce a heuristic allowing us to satisfy the mining and the processing
constraints for period t (if they are violated).

3.3 Step 2 to satisfy the mining and the processing constraints

We use a sequential heuristic procedure where at each iteration a block is removed from the
set Bt and added to the set Rt+1. Let us analyze a typical iteration.

Consider the set E = {i ∈ Bt : s /∈ Bt ∀s ∈ Si } of blocks i ∈ Bt having no successors in
Bt . Clearly, only these blocks can be removed from Bt while satisfying the slope constraints.

For each candidate block i ∈ E , let fi = vi

wi
+

∑
p∈Pi∩Bt

vp

wp
be the total unit economic
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value of i and its predecessors that belong to Bt . Select the block i∗ ∈ E minimizing the
value of fi . Ties are broken up randomly. Remove i∗ from Bt , add it to Rt+1, and update E .
Note that the rule used to select the blocks in E induces some look-ahead features to remove
less valuable blocks from Bt . However, it does not guarantee that a feasible solution of good
quality will be obtained.

This process is repeated until the mining and the processing constraints are approximately
satisfied; i.e., until ∑

i∈Bt

wi ≤ βMt (12)

∑
i∈Bt

θiwi ≤ βΘ t (13)

where β is a random number in the interval [β1, β2], and β1 and β2 are parameters of the
procedure in ]0, 1].

4 Phase 2 to improve the solution (VND)

As mentioned before, the solution x = ∪T
t=1Bt generated in Phase 1 is feasible, and it is

improved by applying an adaptation of the Variable Neighborhood Descent method (VND)
proposed by Hansen and Mladenovic [18]. The basic idea of VND is to combine different
descent heuristics based on different neighborhood structures to escape from local optima.
In the following, we first describe the neighborhood structures used in our adaptation of the
VND method. Next, we outline the procedure used to improve the solution x .

4.1 Neighborhood structures

The following three neighborhood structures are used in our adaptation of the VND method:

– N 1 (Exchange): Let i and j be two blocks mined in periods t and (t +1), respectively. An
exchange consists of replacing Bt and Bt+1 by (Bt − {i}) + { j} and (Bt+1 − { j}) + {i},
respectively. The exchange of two blocks is feasible if the resulting solution is feasible;
i.e., only if it satisfies the slope, the mining, and the processing constraints. Figure 2 gives
a 2-dimensional illustration of an exchange move involving two blocks, i and j , with
T = 2.

– N 2 (Shift-after): Let i be a block mined in period t , and let I = {i}∪{block s : s ∈ Si∩Bt }
denote the set including i and its successors mined in the same period. A shift-after consists

i 

j

i 

jjj

Current solution x robhgieN solution x obtained by the exchange move

ii 

j

i 

jjj

Current solution x robhgieN solution x obtained by the exchange

i

Fig. 2 Exchange move between blocks i and j with T = 2. The grey area represents the set of blocks to be
mined in the first period (B1), while the white area delimited by the thick lines represents the set of blocks to
be mined in period 2 (B2)
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Current solution x Neighbor solution x obtained by the Shift-after move

i and its succesors 
mined in period 1 

Fig. 3 Shift-after move of block i and its successors mined in the same period. The grey area represents the
set of blocks to be mined in the first period (B1), while the white area delimited by the thick lines represents
the set of blocks to be mined in period 2 (B2)

Current solution x Neighbor solution x obtained by the Shift-before move

i and its predecessors 
mined in period 2 

Current solution x Neighbor solution x obtained by the Shift-before

i and its predecessors 
mined in period 2 

Fig. 4 Shift-before move of block i and its predecessors mined in the same period. The grey area represents
the set of blocks to be mined in the first period (B1), while thewhite area delimited by the thick lines represents
the set of blocks to be mined in period 2 (B2)

of replacingBt andBt+1 byBt−I andBt+1+I, respectively. Clearly, the slope constraints
are satisfied in the resulting solution since the blocks are moved along with their successors.
However, the mining and the processing constraints must be satisfied in period (t + 1) in
order to allow this shift-after. Figure 3 illustrates the Shift-after move where block i and
its successors mined in period 1 are moved to period 2.

– N 3 (Shift-before): Let i be a block mined in period t , and let I = {i} ∪ {block p : p ∈
Pi ∩Bt } denote the set including i and its predecessors mined in the same period. A shift-
before consists of replacing Bt and Bt−1 by Bt − I and Bt−1 + I, respectively. As for the
Shift-after neighborhood, the slope constraints are necessarily satisfied, but the mining
and the processing constraints in period (t − 1) must be satisfied in order to allow this
shift-before. Figure 4 illustrates the Shift-before move where block i and its predecessors
mined in period 2 are moved to period 1.

The strategy to explore any of the three neighborhoods is as follows: Consider the first
neighborhood N 1. Periods t = 1, . . . , (T−1) are considered sequentially in increasing order.
Given a period t , all feasible exchanges involving pairs of blocks mined in t and (t + 1) are
systematically considered. The best exchange is selected. We apply the selected exchange if
it leads to a better solution or to a solution of the same value as the current solution (in order
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to escape from the current local optimum). The process is iterated with the new solution.
When no feasible exchange exists to further improve the solution or to get a solution of equal
value, the next period (t + 1) is considered; i.e., exchanges involving pairs of blocks mined
in periods (t + 1) and (t + 2) are evaluated.

The same exploration strategy is used when considering the Shift-after neighborhood N 2

except that periods t = 1, . . . , (T −1) are considered in decreasing order. For the Shift-before
neighborhood N 3, periods t = 2, . . . , T are considered in increasing order.

4.2 Variable neighborhood descent procedure

The rules of a basic VND are applied: Start by exploring the Exchange neighborhood (N 1).
When the search of N 1 is completed (i.e., for all t = 1, . . . , (T − 1), no feasible exchange
between pairs of blocks mined in periods t and (t + 1) exists to further improve the solution
or to get a solution of equal value), restart a new search using the Shift-after neighborhood
(N 2). Once the search of N 2 is completed, if the solution has been improved, return to N 1;
otherwise, use the Shift-before neighborhood (N 3). This process terminates when no move
in any of the three neighborhoods improves the value of the objective function.

Note that the Shift-after neighborhood (N 2) is explored before the Shift-before neighbor-
hood (N 3) to create an opportunity for other blocks to be added to a given period t without
exceeding the mining and the processing capacities available at t . Indeed, by first moving
blocks from period 1 to period 2 (last shifts using N 2), more capacity becomes available in
period 1 to include other blocks from period 2 (first shifts using N 3).

5 Numerical results

The method described in this paper is tested on instances generated from actual mineral
deposits, as well as on benchmark instances from the literature. All numerical experiments
were performed on an Intel(R) Xeon(R) CPU E7-8837 computer (2.67 GHz) with 1 TB of
RAM running under Linux. Before reporting the numerical results, we first introduce the
instances and the parameters used in the experiments.

5.1 Test instances

5.1.1 Instances generated from actual mineral deposits

Two different sets of instances, P1 and P2, are used. Instances in P1 and P2 are generated from
an actual copper deposit where blocks i are of size 20×20×10 meters and weighwi = 10, 800
tons each, and from an actual gold deposit where blocks i are of size 15 × 15 × 10 meters
and weigh wi = 5, 625 tons each, respectively. The economic parameters used to compute
the blocks’ economic values vi are also based on real-life data, and they are summarized in
Table 1.

Each set (P1 and P2) includes 5 different instances characterized by a number of blocks N
and a number of periods T , specified in Table 2. The 10 instances have been constructed by
varying (perturbing) the blocks’ economic values vi . More precisely, to generate a specific
instance, the profit associated with each block i in the mineral deposit (i = 1, . . . , N ) is
obtained by reducing vi by a factor D. Then, the following mathematical model is solved
to determine the pit limits; i.e., to identify the set of blocks maximizing the total profit but
accounting only for the slope constraints:
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Table 1 Economic parameters Parameters P1 P2

Mining cost $1/t $1/t

Processing cost $9/t $15/t

Metal price $2/lb $900/oz

Selling cost $0.3/lb $7/oz

Discount rate 10 % 10 %

Table 2 Characteristics of the 10 instances generated from actual mineral deposits

Set Instance D Number of
blocks (N )

Number of
periods (T )

P1 C1 20,000 4,273 3

Metal type: copper C2 15,000 7,141 4

Block size: 20 × 20 × 10 m C3 10,000 12,627 7

Block weight: wi = 10,800 tons C4 5,000 20,626 10

C5 0 26, 021 13

P2 G1 20,000 18,821 5

Metal type: gold G2 15,000 23,901 7

Block size: 15 × 15 × 10 m G3 10,000 30,013 8

Block weight: wi = 5,625 tons G4 5,000 34,981 9

G5 0 40,762 11

max
N∑
i=1

(vi − D)yi (14)

(PLD) Subject to

yi ≤ yp i = 1, . . . , N , p ∈ P i (15)

yi = 0 or 1 i = 1, . . . , N . (16)

Referring to an optimal solution y∗ of (PLD), N = |{block i : y∗
i = 1}|. Note that N

decreases with the factor D. Each period is one year long. The number of periods is set to

T = �
∑N

i=1 wi
22.3M 	 (M = million).

For each of the 10 instances, the production capacities are identical in all periods
and emulate those in real-world problems. For each period t , the mining capacity Wt

is set to �1.25
∑N

i=1 wi
T 	 and �1.30

∑N
i=1 wi
T 	 for instances in P1 and P2, respectively (i.e.,

total amount of rock
number of periods plus a margin of 25 % and 30 %, respectively). The processing capacity

Θ t is set to �1.05
∑N

i=1 wi θi
T 	

(
i.e, total amount of ore

number of periods plus a margin of 5 %
)

.

5.1.2 First set of benchmark instances

As mentioned in the introduction, recent methods for solving the open-pit mine production
scheduling problem (MPSP) have been proposed by Amaya et al. [1], Moreno et al. [22],
and Chicoisne et al. [11]. These methods have been applied to a set of four instances. In our
experiments, we use two of these four instances; namely, AmericaMine and Marvin. Note
that Marvin is also used in the studies by Bienstock and Zuckerberg [3] and Cullenbine et
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Table 3 Characteristics of the two instances in the first set of benchmark instances

Instance Number of blocks (N ) Number of periods (T )

AmericaMine 19,320 15

Metal type: polymetalic (not specified by the authors)

Block size: Unknown

Block weight wi : variable

Marvin 53,668 15

Metal type: copper and gold

Block size: 30 × 30 × 30 m

Block weight wi : variable

al. [12]. We don’t use the other two instances (AsiaMine and Andina) because they were not
available in the public domain (due to confidentiality considerations).

The characteristics of the two instances considered in this paper are as follows and are
summarized in Table 3: AmericaMine is a hard rock polymetalic mine containing 19,320
blocks, while Marvin is a fictitious copper and gold orebody, included in Whittle [28], and
has 53,668 blocks (Whittle is a commercial mine planning software commonly used by pro-
fessional mine planners). In both instances, blocks have different weights and are scheduled
over 15 years. The production capacities are identical in all years. For AmericaMine, the
mining capacity Wt is equal to 1M and the processing capacity Θ t is equal to 0.55M (M =
million). For Marvin, Wt = 60M and Θ t = 20M .

5.1.3 Second set of benchmark instances: MineLib test instances

The last dataset on which the method proposed in this paper is tested consists of instances
from MineLib, a library of publicly available test problem instances proposed by Espinoza et
al. [15] for three classical types of open pit mining problems. The authors refer to the variant
of the open-pit mine production scheduling problem, denoted in this paper by MPSP, as the
constrained pit limit problem, and they denote it by CPIT. They provide 11 instances where
the number of operational resource constraints ranges from 1 to 3, and they are related to
the total amount extracted and/or the total amount processed in one or two different mills.
In 3 of these 11 instances (namely, D, McLaughlin Limit, and McLaughlin) data related to
the weight of the blocks (wi ) is only available for ore blocks (i.e., data is missing for waste
blocks). Therefore, the method described in Sect. 3 cannot be applied to generate the initial
solution for these instances ( recall that this method is based on the value per unit of weight of
each block; i.e., vi

wi
). Hence, these instances are not used in our experiments, and we consider

only the 8 other instances in MineLib. Table 4 reports the size of each of these 8 instances;
their other characteristics can be found at http://mansci.uai.cl/minelib. Note that the instance
“marvin in Table 4 is different from the instance “marvin” in Table 3 as far as the number of
blocks (N ) and the number of periods (T ) are concerned.

5.2 Parameter calibration

Version 12.5 of the commercial solver CPLEX was used to solve the sub-problems (SPt );
i.e., the mathematical model (9)–(11) introduced in Sect. 3.2. The predual parameter of
CPLEX was set to 1; that is, the dual linear programming problem is passed to the optimizer.
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Table 4 Characteristics of the
eight instances in the second set
of benchmark instances
(instances from MineLib)

Instance Number of
blocks (N )

Number of
periods (T )

newman1 1,060 6

Metal type: Unknown

Block size: Unknown

Block weight wi : variable

zuck-small 9,400 20

Metal type: Unknown

Block size: Unknown

Block weight wi : variable

zuck-medium 29,277 15

Metal type: Unknown

Block size: Unknown

Block weight wi : variable

p4hd 40,947 10

Metal type: gold and copper

Block size: 50 × 50 × 20 ft

Block weight wi : variable

marvin 53,271 20

Metal type: gold and copper

Block size: 30 × 30 × 30 m

Block weight wi : variable

w23 74,260 12

Metal type: Unknown

Block size: 25 × 25 × 20 ft

Block weight wi : variable

zuck-large 96,821 30

Metal type: Unknown

Block size: Unknown

Block weight wi : variable

sm2 99,014 30

Metal type: Unknown

Block size: Unknown

Block weight wi : variable

This is a useful technique for problems with more constraints than variables [20]. All other
CPLEX parameters were set to their default values. Note that although CPLEX is used in
this study to solve the sub-problems (SPt ), any maximum flow algorithm can be used.

As explained in Sect. 3, the mining and processing capacities are multiplied by a factor
α and by a factor β when solving the sub-problems (SPt ) and when applying the heuristic,
respectively. α and β are random numbers in the intervals [α1, α2] and [β1, β2], and α1, α2,
β1, and β2 are parameters of the solution procedure in the interval ]0,1]. To fix the values of
these parameters, some preliminary numerical experiments were completed with the largest
two instances in each of the sets P1 and P2 (i.e., with instances C4, C5, G4, and G5). 15
different combinations generated with the 5 values for the interval [α1, α2] ([0.7, 0.75],
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Table 5 Evaluating the efficiency of SH-VND: instances generated from actual mineral deposits

Set Problem N T SH-VND CPLEX

%Min Gap %Max Gap %Ave Gap Ave C PU (seconds) Ave C PU (seconds)

P1 C1 4,273 3 0.63 0.91 0.74 0.49 11.38

C2 7,141 4 0.72 0.79 0.74 1.51 145.36

C3 12,627 7 1.28 2.31 1.95 5.10 2,250.15

C4 20,626 10 1.63 2.82 2.11 14.89 21,919.40

C5 26,021 13 1.50 1.86 1.66 23.87 47,237.90

P2 G1 18,821 5 0.58 0.84 0.67 10.48 5,037.59

G2 23,901 7 0.92 1.34 1.13 18.89 18,524.60

G3 30,013 8 0.97 1.33 1.23 27.88 39,837.80

G4 34,981 9 1.13 2.12 1.44 39.18 64,811.80

G5 40,762 11 1.60 2.40 1.86 55.12 96,536.30

[0.65, 0.7], [0.6, 0.65], [0.55, 0.6], and [0.5, 0.55]) and the 3 values for the interval [β1, β2]
([1, 1], [0.95, 1], and [0.9, 0.95]) were considered. The best results were obtained with the
following combination:

– [α1, α2] = [0.6, 0.65]
– [β1, β2] = [0.95, 1].

Hence, the rest of the numerical tests were completed using these values for the parameters
for all instances.

Finally, the value of the parameter C , used to define the modified economic values v̄i (i.e.,
the coefficients of the objective function (9)), was set to C = Nmax

i
vi .

5.3 Hybrid method applied to instances generated from actual mineral deposits

The results of our computational experiments on the 10 instances described in Sect. 5.1.1
are reported below. We first present results for the variant of the MPSP described in Sect. 2
and commonly studied in the literature. Then we provide results for the variant where lower
bounds on mining and processing are added to the constraint set. As mentioned Sect. 1, the
variant incorporating lower bounds is considered in [12] and is known to be more difficult to
solve.

5.3.1 MPSP described in Sect. 2

The linear relaxation of the MPSP formulation (1)–(8) was solved using the commercial
solver CPLEX to obtain an upper bound on the optimal value, allowing us to assess the
quality of the solutions produced with the proposed solution method, denoted SH-VND
(SH stands for the sequential heuristic used to generate the initial solution and VND for the
variable neighborhood descent used to improve the initial solution).

Since SH-VND includes random choices, each instance was solved 10 times. The results
are summarized in Table 5. The first four columns give the name and the size of the instances.
The next four columns display respectively
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– %Min Gap = ZLR−Zbest
ZLR

× 100: the value of the relative gap between the value Zbest of
the best solution obtained by SH-VND over the 10 runs and the optimal value ZLR of
the linear relaxation.

– %Max Gap = ZLR−Zworst
ZLR

× 100: the value of the relative gap between the value Zworst

of the worst solution obtained by SH-VND over the 10 runs and the optimal value of the
linear relaxation.

– %Ave Gap = ZLR−Zaverage
ZLR

× 100: the value of the relative gap between the average
value Zaverage of the 10 solutions generated by SH-VND and the optimal value of the
linear relaxation.

– Ave C PU : the average solution time in seconds.

The last column of Table 5 indicates the CPU time required by CPLEX to solve the linear
relaxation of the problems. Note that the length of the interval [%Min Gap, %Max Gap]
indicates the robustness of the proposed method with respect to random choices. The follow-
ing observations can be derived from Table 5:

– SH-VND is very efficient in the sense that for each problem the value of %Min Gap
is less than 2 % away from the upper bound provided by CPLEX. This indicates that at
least one of the 10 solutions generated is of excellent quality. Even though 10 runs are
required to achieve this %Min Gap, this is acceptable since the CPU time of a run is
less than 1 min for all the tested instances.

– SH-VND is very robust in the sense that in all cases (considering the 10 instances and
the 10 runs) the gap between the solution generated and the upper bound provided by
CPLEX is smaller than 3 %, and in 92 % of all cases, it is smaller than 2 % (cf. values of
%Max Gap).

– The time required to find these high quality solutions is very reasonable. For the smallest
problem, C1, a near-optimal solution is found almost immediately (less than 1 s). For the
largest problem, G5, the CPU time is less than 1 min.

– As expected, the solution time increases with the number of blocks in the instance, but
the rate of increase is larger for CPLEX than for SH-VND. Indeed, CPLEX may require
more than 1 day (almost 27 h) to solve the linear relaxation of the largest problem, G5,
while a very good feasible solution for this problem is obtained in less than 1 min by
SH-VND.

Next the performance of SH-VND is investigated in more detail. Table 6 shows the
improvement gained at each step of the algorithm. For each instance, we first give %Gapinit ,
the gap of the initial solution computed as the relative difference between the value of this
initial solution, obtained using the sequential heuristic (SH) described in Sect. 3, and the
optimal value of the linear relaxation. This is followed by %Gap f inal , the gap of the final
solution obtained after applying the VND procedure described in Sect. 4, and %Imp.V ND =
%Gapinit−%Gap f inal

%Gapinit
× 100 as a measure of the improvement achieved by using VND. Note

that the three measures above (%Gapinit , %Gap f inal , and %Imp.V ND) are averaged over
the 10 runs and hence %Gap f inal corresponds to %Ave Gap in Table 5. We then report for
each of the three neighborhood structures, used in our adaptation of VND, the two following
measures also averaged over the 10 runs:

– # T imes: the number of times that the neighborhood has been explored
– %Imp.N : the average improvement in percent gained by using the neighborhood. To

compute the value of %Imp.N , we proceed as follows: Suppose that the neighborhood
is explored for the kth time (k = 1, . . . , # T imes). Let %Gapstartk and %Gapendk be the
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Table 6 Evaluating the efficiency of each step of SH-VND: instances generated from actual mineral deposits

Instance %Gapinit %Gap f inal %Imp.V ND Exchange (N1) Shift-after (N2) Shift-before (N3)

# T imes %Imp.N # T imes %Imp.N # T imes %Imp.N

C1 1.29 0.74 42.61 5.40 4.82 4.00 0.28 3.20 7.05

C2 1.44 0.74 48.54 7.40 3.91 4.60 0.25 3.40 8.53

C3 3.01 1.95 35.20 8.70 2.15 7.10 0.18 4.20 6.42

C4 4.24 2.11 50.21 8.90 1.48 8.20 0.17 4.40 5.25

C5 3.65 1.66 54.54 9.90 1.37 8.70 0.58 5.10 9.48

G1 1.25 0.67 46.28 6.40 0.48 5.10 0.04 3.50 12.84

G2 1.96 1.13 42.18 8.00 0.57 6.40 0.04 3.50 11.19

G3 2.46 1.23 50.08 8.80 0.84 6.70 0.05 3.30 12.99

G4 3.31 1.44 56.29 9.20 0.94 6.60 0.10 4.00 13.83

G5 3.98 1.86 53.28 11.20 1.40 7.70 0.21 3.60 12.23

gap of the best solution found so far at the beginning and at the end of the exploration,
respectively. The average improvement achieved by using the neighborhood is then:

%Imp.N =
∑# T imes

k=1
%Gapstartk −%Gapendk

%Gapstartk
× 100

# T imes
.

From Table 6, it appears that SH was successful in determining good local optimal solutions
for all tested instances and that VNDwas able to improve these initial solutions by up to 56 %.
The three neighborhoods proved to perform well as they were all able to improve the solutions
for all the tested instances (c.f. values of %Imp.N ). This clearly indicates that changing
neighborhood is very useful for escaping local optima. The first neighborhood (Exchange) has
been used more than the other two neighborhoods, and the second neighborhood (Shift-after)
has been used more than the third one (Shift-before). This behaviour is due to the variable
neighborhood search framework: Whenever a new local optimum is found, if it is better than
the incumbent, the search is recentered around it and begins again with the first neighborhood;
otherwise, the next neighborhood is used. Hence, the third neighborhood is only used if the
first two neighborhoods fail to improve the best-known solution and the first neighborhood is
used more frequently. Now, regarding the improvement gained by each neighborhood, one can
see that the third neighborhood provides the best performance. We believe that the reason
for such performance is that the extraction of many profitable blocks is advanced at each
iteration when using this neighborhood, which increases the objective function considerably.
Delaying the extraction of non-profitable blocks (the second neighborhood) has a modest
impact as the blocks are selected in a greedy manner when generating the initial solution
using SH, and thus many neighbor solutions are non-improving and are not selected. Finally,
the first neighborhood has the two effects (delaying and advancing blocks), but only one
block can be advanced at each iteration, and only moves that respect the slope constraints
are allowed. This means that the third neighborhood is larger than the first neighborhood and
thus provides better quality solutions. It is worth mentioning that if the value of the parameter
β were fixed to 1 at each iteration of SH, then it would be more difficult to find a feasible
neighbor solution when applying the Shift-before and Shift-after operators. This motivates
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Table 7 Comparing SH-VND and WM

Set Instance N T %Ave Gap Ave C PU (seconds)

SH-VND WM %Imp. SH-VND WM

P1 C1 4,273 3 0.74 14.48 94.89 0.49 43.00

C2 7,141 4 0.74 18.26 95.95 1.51 64.00

C3 12,627 7 1.95 19.58 90.04 5.10 78.00

C4 20,626 10 2.11 20.98 89.94 14.89 85.00

C5 26,021 13 1.66 3.19 47.96 23.87 101.00

P2 G1 18,821 5 0.67 3.77 82.24 10.48 30.00

G2 23,901 7 1.13 5.51 79.49 18.89 57.00

G3 30,013 8 1.23 2.94 58.14 27.88 44.00

G4 34,981 9 1.44 2.33 38.08 39.18 63.00

G5 40,762 11 1.86 4.91 62.10 55.12 65.00

the introduction of constraints (12) and (13). This observation is corroborated by the results
presented in Sect. 5.5.

To further assess the performance of SH-VND, we compare our results with those obtained
by Whittle [28], which is, as mentioned earlier, a commercial mine planning software com-
monly used by professional mine planners. Three different algorithms are implemented in
this software to solve the MPSP. We have used the Milawa NPV algorithm, which has been
shown to find solutions with very high net present value (objective function (1)) compared
to the other two algorithms [28]. In the following, we refer to the Whittle’s Milawa NPV
algorithm as WM.

The numerical results comparing the performance of SH-VND and WM on the 10
instances in sets P1 and P2 are summarized in Table 7. Each row is associated with an
instance indicating the %Ave Gap and the Ave C PU (as defined above) for each method.
Note that each instance is solved only once with WM since the results of different runs are
identical. We also give in Table 7 the value %Imp. defined as follows:

%Imp. = %Ave Gap with WM − %Ave Gap with SH

%Ave Gap with WM
× 100

indicating the gain in reducing the %Ave Gap when using SH-VND instead of WM.
Clearly, SH-VND dominates WM. On average, when SH-VND is used, the %Ave Gap

is improved by 74 %, and the Ave C PU is reduced by a factor of 3. Moreover, it can be seen
from the values of %Max Gap in Table 5 that, for all the tested instances, the 10 solutions
generated by SH-VND are strictly better than the one produced by WM. On the other hand,
from Table 7, it appears that the values of %Ave Gap obtained byWM are somewhat smaller
for problems in P2 than for problems in P1, indicating that WM is not as robust as SH-VND,
which gives similar results for all instances.

The results also indicate that, in general, SH-VND produces solutions with quite balanced
mining and processing flows throughout the periods as compared with WM. Figure 5 shows
illustrative results on the largest problem, G5.
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Fig. 5 Mining and processing flows throughout the periods for problem G5

5.3.2 MPSP with lower bounds on mining and processing

To avoid unbalanced mining and processing flows throughout the periods (i.e., situations like
the ones depicted in Fig. 5), one can add to the MPSP formulation (1)–(8) the following set
of constraints:

N∑
i=1

wi x
1
i ≥ M1 (17)

N∑
i=1

wi (x
t
i − xt−1

i ) ≥ Mt t = 2, . . . , T (18)

N∑
i=1

θiwi x
1
i ≥ Θ1 (19)

N∑
i=1

θiwi (x
t
i − xt−1

i ) ≥ Θ t t = 2, . . . , T . (20)

Constraints (17) and (18) impose a lower bound Mt on the amount of material (waste and
ore) mined during each period t . Constraints (19) and (20) ensure that the amount of ore
processed during each period is at least equal to Θ t .

As mentioned in [12], these constraints are important for practical applications as they
can prevent large set-up costs incurred by stopping and restarting the processing operations.
However, including them adds significantly to the complexity of the problem and hampers
certain specialized computational methods proposed in the literature. The authors note that
“even a small problem with lower bounds on resource consumption can be dramatically
harder to solve than the same problem with those lower bounds omitted.” They give an
example of a small test problem solved with CPLEX for which the solution time increases
by a factor of 21 when lower bounds are added. To further test the proposed SH-VND
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Table 8 Evaluating the efficiency of SH-VND to account for additional constraints: instances generated from
actual mineral deposits

Set Problem N T SH-VND CPLEX

%Min Gap %Max Gap %Ave Gap Ave C PU (s) Ave C PU (s)

P1 C1 4,273 3 0.63 0.91 0.74 0.49 10.72

C2 7,141 4 0.64 0.72 0.68 1.55 72.5

C3 12,627 7 1.18 2.36 1.93 15.55 3,019.79

C4 20,626 10 1.32 3.51 2.33 129.89 32,639.20

C5 26,021 13 2.77 3.91 3.45 1,723.22 143,676.00

P2 G1 18,821 5 0.58 0.84 0.67 11.64 3,118.11

G2 23,901 7 0.94 1.33 1.13 20.80 19,430.60

G3 30,013 8 0.98 2.01 1.29 34.50 35,087.70

G4 34,981 9 1.01 2.23 1.70 51.02 63,296.70

G5 40,762 11 2.19 3.54 2.92 1,108.80 146,317.00

method, we examine how it performs when lower bounds on mining and processing are
added (constraints (17)–(20)). Accounting for these constraints requires minor modifications
to the solution procedure, which are described below.

Consider an initial solution generated using the procedure described in Sect. 3 and with
the same parameter values as in Sect. 5.2. A repair method based on a simple tabu search is
applied if this solution does not satisfy constraints (17)–(20). The neighborhood is obtained
by moving a block i currently scheduled at period t to another period τ �= t provided
that the slope constraints are satisfied. When moving i from t to τ , block i is forbidden
to be scheduled at t for the next numI ter iterations, where numI ter is a random integer
number chosen in [0.8N , 1.2N ] (moving i to t is declared tabu). At each iteration, one of
the best non-tabu neighbor solutions is selected, and the tabu search terminates when the
solution is feasible. To maintain the feasibility of the solution during the second phase of the
solution procedure (where we apply variable neighborhood descent), when exploring any of
the three neighborhoods (Exchange, Shift-after, and Shift-before), moves that would violate
constraints (17)–(20) are not allowed.

Table 8 shows the results of applying the modified version of SH-VND to the 10 test

instances described in Sect. 5.1.1. Lower bounds on mining Wt are set to �0.75
∑N

i=1 wi
T 	 and

�0.70
∑N

i=1 wi
T 	 for instances in P1 and P2, respectively (i.e., total amount of rock

number of periods minus a mar-

gin of 25 % and 30 %, respectively). Lower bounds on processingΘ t are set to �0.75
∑N

i=1 wi θi
T 	

(i.e, total amount of ore
number of periods minus a margin of 25 %). We solved the linear relaxation of the MPSP

formulation (1)–(8),(17)–(20) using version 12.5 of the commercial solver CPLEX to obtain
an upper bound on the optimal value, and we use the same criteria as in Sect. 5.3.1 to evaluate
the efficiency of the modified version of SH-VND to deal with the variant of the MPSP with
additional operational constraints (lower bounds on mining and processing).

As can be seen, globally, SH-VND still provides very good quality solutions in reasonable
computational times when lower bounds on mining and processing are accounted for. The
average gap is only 1.68 % (versus 1.35 % when lower bounds are omitted). The small
difference between the values of %Min Gap and %Max Gap indicates the robustness of
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Fig. 6 Mining and processing flows throughout the periods for problem G5 when lower bounds are added

SH-VND. Overall, solution times tend to remain reasonable. We observe that for instances
C1, C2, G1, and G2, adding lower bounds does not affect the solution time (CPU times are
comparable to those when lower bounds are omitted, c.f. Table 5). For these instances, the
initial solutions generated were actually in most of the runs feasible, so the repair heuristic
(tabu search) was not necessary. However, for the other instances, the solutions times are
longer because it is hard to find a feasible solution. For the largest problem in the set P1, C5,
the bounds are very tight, and typically about 80 % of the CPU time is spent in looking for
a feasible solution. Although the solution times required by SH-VND are longer when we
account for the lower bounds constraints than when we don’t (range between 1 s and 29 min
versus 1 s and 1 min), they are still significantly smaller than those required by CPLEX to
solve the linear relaxation of the problem. For instance, for the largest instance G5, CPLEX
requires almost 2 days to solve the linear relaxation of the problem, while SH-VND can
find a near-optimal solution in only about 18 min on average. Figure 6 shows the mining and
processing flows throughout the periods for this problem in a solution generated by SH-VND.

Next, Table 9 presents detailed results allowing us to analyze the efficiency of each step
of the proposed algorithm. This table has the same structure as Table 6. Similar conclusions,
as in solving the variant without lower bounds on mining and processing, are obtained:

– For each instance, except C5, the initial solutions are of very good quality, within less
than 5 % of optimality

– VND was able to improve the initial solutions by more than 50 % on average
– The three neighborhoods perform well as they all improve the solutions for all the tested

instances
– The Shift-before (N 2) neighborhood is again the best one; that is, the one that improves

the most the solution
– The Shift-after (N 3) neighborhood is not competitive although it performs slightly better

than when solving the variant where the lower bounds are omitted, especially for the
largest problems, C5 and G5, which are much harder to solve.
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Table 9 Evaluating the efficiency of each step of SH-VND when lower bounds on mining and processing
are added: instances generated from actual mineral deposits

Instance %Gapinit %Gap f inal %Imp.VND Exchange (N1) Shift-after (N2) Shift-before (N3)

# T imes %Imp.N # T imes %Imp.N # T imes %Imp.N

C1 1.29 0.74 42.61 5.40 4.82 4.00 0.28 3.20 7.05

C2 1.32 0.68 48.42 7.70 3.69 5.00 0.17 3.40 8.59

C3 2.94 1.93 34.28 20.80 1.05 18.50 0.25 3.60 3.77

C4 4.72 2.33 50.64 14.80 1.14 16.00 0.24 4.90 2.89

C5 10.31 3.45 66.54 21.00 0.69 22.50 2.23 7.70 1.92

G1 1.25 0.67 46.28 6.40 0.48 5.10 0.04 3.50 12.84

G2 1.91 1.13 40.88 8.10 0.58 7.10 0.05 3.70 10.56

G3 2.41 1.29 46.43 9.60 0.85 9.70 0.09 4.50 8.84

G4 3.26 1.70 47.84 12.20 0.85 9.50 0.11 7.20 6.96

G5 4.60 2.92 36.59 18.30 0.46 19.90 1.15 4.20 2.02

Notice also that when solving the variant of MPSP without lower bounds on mining and
processing, VND performs fewer iterations than when solving the variant with lower bounds
(c.f. columns # T imes in Tables 6 and 9). This partly explains the differences in CPU times
(c.f. columns Ave C PU in Tables 5 and 8).

5.4 Hybrid method applied to the instances in the first set of benchmark instances

We now report the results of our computational experiments on the two benchmark instances
described in Sect. 5.1.2. We first present results for the case where only upper bounds on
mining and processing are considered, and then we provide results for the variant of the
problem where lower bounds on mining and processing are considered as well.

5.4.1 MPSP described in Sect. 2

The results produced by the proposed method, SH-VND, are compared with those produced
by the method described in [11] and summarized in Sect. 1, from now on ExTS-LS. We
do not compare SH-VND with the methods in [1] and [22] because they have been shown
to be dominated by ExTS-LS. In Table 10, we use the same comparison criteria as in the
previous section; i.e., %Min Gap, %Max Gap, %Ave Gap, and Ave C PU . The values of
the gaps and the CPU times for ExTS-LS have been taken from [11]. Note that the values of
%Min Gap, %Max Gap, and %Ave Gap are identical for this method since it provides only
one solution. Furthermore, in [11], to evaluate the quality of the solutions, the authors use
the value of the solution generated by their method divided by the optimal value of the linear
relaxation rather than the value of the relative gap between the value of the solution generated
and the optimal value of the linear relaxation. Therefore, in the interest of consistency with
the results presented in the previous sections, we convert the values of the criterion they use
to the relative gap.

From Table 10, it can be seen that for the Marvin instanceSH-VND significantly dominates
ExTS-LS. On average, the gap is improved by 17 % and the solution time is reduced by a
factor of 450 when SH-VND is used. Furthermore, all the solutions generated by SH-VND
over the 10 runs are better than the one found using ExTS-LS. Although SH-VND is not as
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Table 10 Comparing SH-VND and ExTS-LS: instances in the first benchmark set

Instance N T %Min Gap %Max Gap %Ave Gap Ave CPU (s)

SH-VND ExTS-LS SH-VND ExTS-LS SH-VND ExTS-LS SH-VND ExTS-LS

AmericaMine19,320 15 3.56 1.00 4.43 1.00 3.96 1.00 17.71 28, 800.00

Marvin 53,668 15 1.71 2.30 2.12 2.30 1.90 2.30 64.06 28, 800.00

Table 11 Evaluating the efficiency of each step of SH-VND: instances in the first benchmark set

Instance %Gapinit %Gap f inal %Imp.VND Exchange (N1) Shift-after (N2) Shift-before (N3)

# T imes %Imp.N # T imes %Imp.N # T imes %Imp.N

AmericaMine 6.25 3.96 36.64 15.50 1.31 12.20 0.50 5.90 3.50

Marvin 4.19 1.90 54.69 14.40 1.66 10.50 0.02 5.00 8.38

Table 12 Evaluating the efficiency of SH-VND to account for additional constraints: instances in the first
benchmark set

Problem N T SH-VND CPLEX

%Min Gap %Max Gap %Ave Gap Ave CPU
(s)

Ave CPU
(s)

AmericaMine 19,320 15 3.91 4.80 4.40 18.21 2,624.42

Marvin 53,668 15 3.99 5.34 4.63 67.00 97,702.30

successful as ExTS-LS on the AmericaMine instance, it is still robust and able to find good
solutions quickly. In [11], the authors report that the gap obtained after 15 min of running
their local search procedure is about 4.50 %, indicating that the 10 solutions we found in
less than 18 s are on average 12 % better than ExTS-LS solution after 15 min. Note that 15
min represent the time spent to improve the solution and doesn’t include the time required
to generate the initial solution.

The question addressed next is whether SH and the three neighborhoods exhibit the
same performance as when solving the 10 instances generated from actual mineral deposits
(instances C1-C5 and G1-G5); that is, if the initial solution is of good quality, if VND is able
to improve it, if the three neighborhoods are used, and if the Shift-before (N 3) neighborhood
outperforms the other two neighborhoods. The answer is positive as can be seen from the
results in Table 11. This table has the same structure as Tables 6 and 9.

5.4.2 MPSP with lower bounds on mining and processing

The sliding time window heuristic (STWH) proposed in [12] to solve the variant of MPSP
with lower bounds on mining and processing is limited by the size of the instances. Indeed,
the authors couldn’t solve the Marvin instance and solved instead “slices” or parts of it with
up to 25,000 blocks. The range of the gap in their results is between 1.4 % for the smallest
instance and 4.3 % for the largest one, and the solution times are between 30 min and 2.7 h.
Results presented in Table 12 clearly show the superiority of the method proposed in this
paper, SH-VND, over STWH. SH-VND is able to tackle Marvin, and provides in almost
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Table 13 Evaluating the efficiency of each step of SH-VNDwhen solving the instances in the first benchmark
set with lower bounds on mining and processing

Instance %Gapinit %Gap f inal %Imp.V ND Exchange (N1) Shift-after (N2) Shift-before (N3)

# T imes %Imp.N # T imes %Imp.N # T imes %Imp.N

AmericaMine 6.47 4.40 32.05 14.40 1.03 13.70 0.47 5.70 2.71

Marvin 5.78 4.63 19.75 17.30 0.83 17.80 0.02 4.90 1.44

Table 14 Testing SH-VND on instances from MineLib

Instance N T %Ave Gap Best Known Gap Ave C PU (s)
SH-VND LR+Modified TopoSort SH-VND

newman1 1,060 6 1.68 4.10 0.08

zuck-small 9,400 20 1.80 7.70 7.77

zuck-medium 29,277 15 8.08 13.40 121.60

p4hd 40,947 10 6.61 0.50 78.57

marvin 53,271 20 1.87 5.00 70.74

w23 74,260 12 9.96 2.10 203.46

zuck-large 96,821 30 8.07 1.10 1,003.97

sm2 99,014 30 5.85 0.20 105.00

1 min very good solutions with an average gap of 4.63 %. Regarding the efficiency of the steps
of SH-VND, results reported in Table 13 indicate that each step of the algorithm performs
similarly as in the experiments discussed in the previous sections: good initial solutions with
SH, improved significantly by VND, and the largest improvement are obtained with the third
neighborhood, Shift-before.

5.5 Hybrid method applied to the instances in the second set of benchmark instances
(instances from MineLib)

As mentioned earlier in Sect. 5.1.3, the method proposed in this paper, SH-VND, was also
compared on instances from MineLib. The results are given in Table 14. We first recall in the
first three columns the name of the instances and their sizes. Then, we give the %Ave Gap,
as defined earlier (the value of the relative gap between the average value Zaverage of the
10 solutions generated by SH-VND and the optimal value of the linear relaxation). This
time, the optimal value of the linear relaxation has not been obtained using CPLEX, but it
has been taken from [15]. The authors mention that it has been computed using a modified
version of Bienstock-Zuckerberg’s algorithm [3]. The criterion %Ave Gap is followed by
Best Known Gap, the value of the gap of the current best-known integer-feasible solution
computed as the relative difference between the value of this feasible solution and the optimal
value of the linear relaxation. The values of Best Known Gap are also taken from [15]. The
authors report that the current best-known integer-feasible solution has been obtained from the
LP relaxation using a modified version of the TopoSort heuristic. The CPU time (in seconds)
required by SH-VND to solve each instance is given in the last column of the table. We do not
report the CPU times of the method used to obtain the current best-known solutions because
they are provided neither in [15] nor in http://mansci.uai.cl/minelib. Finally, when comparing
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Table 15 Evaluating the efficiency of each step of SH-VND when solving the instances in the second
benchmark set (instances from MineLib)

Instance %Gapinit %Gap f inal %Imp.V ND Exchange (N1) Shift-after (N2) Shift-before (N3)

# T imes %Imp.N # T imes %Imp.N # T imes %Imp.N

newman1 2.58 1.68 34.89 8.90 2.53 4.10 0.01 7.50 2.55

zuck-small 3.83 1.80 53.10 14.70 1.70 10.50 0.02 7.90 5.07

zuck-medium 10.20 8.08 20.80 21.00 0.58 11.80 0.07 6.70 1.54

p4hd 10.08 6.61 34.40 23.50 1.07 17.90 0.10 9.20 1.49

marvin 3.79 1.87 50.78 14.50 1.35 12.80 0.02 8.60 4.64

w23 15.54 9.96 35.91 33.70 0.52 21.70 0.04 15.40 1.68

zuck-large 13.28 8.07 39.21 53.20 0.75 28.00 0.07 9.70 0.94

sm2 8.13 5.85 27.99 48.20 0.19 28.40 0.09 57.10 0.37

%Ave Gap with Best Known Gap the best results are indicated with bold numbers. Results
evaluating the efficiency of each step of SH-VND when solving the instances from MineLib
are summarized in Table 15, which has the same structure as Tables 6, 9, 11, and 13.

The results in Table 14 are promising as they indicate that the best-known solution was
improved for 4 out of the 8 instances from MineLib. The computational time required for
solving each of the 8 instances is comparable with the time required to solve the instances
from the other sets (previous experiments); that is, it ranges from a fraction of second to
few minutes, even for the largest instances with more than 95,000 blocks and 30 periods.
Regarding the efficiency of each step of SH-VND (c.f. Table 15), the results are also similar
to the previous experiments with the other sets of instances: VND is efficient in improving
the initial solutions generated by SH, and overall, the Shift-before neighborhood (N 3) would
rank first, the Exchange neighborhood (N 1) second, and the Shift-after neighborhood (N 2)
last.

To further analyze the performance of the proposed variable neighborhood descent pro-
cedure (VND), additional tests were performed on the same 8 instances from MineLib, but
instead of starting VND from the solution generated using SH, it is started using the current
best-known integer-feasible solution provided in http://mansci.uai.cl/minelib. Recall that this
solution has been obtained from the LP relaxation using a modified version of the TopoSort
heuristic (henceforth referred to as LR-MTS). The %Ave Gap obtained using this variant
of the solution procedure, denoted in what follows LR-MTS-VND, is given in Table 16. We
also recall in this table the values of %Ave Gap obtained using SH-VND and LR-MTS.
Bold numbers indicate the best results. The criterion Ave C PU (solution time) is not used
in the comparison because, as mentioned earlier, we don’t know the CPU times of LR-
MTS. Finally, details about the efficiency of each step of LR-MTS-VND are summarized
in Table 17.

Notice first that for each instance, we have been able to improve on LR-MTS results; that
is, the best results previously published, by using the VND approach either combined with
SH or with LR-MTS. As can be observed, LR-MTS-VND outperforms LR-MTS, as the
best-known solution to each instance has been improved using LR-MTS-VND. However,
LR-MTS-VND does not always produce better results than SH-VND (4 out of the 8 instances
only). Regarding the improvement in percent gained by VND (%Imp.V ND), it can be seen
from Tables 15 and 17 that, on average, %Imp.V ND is higher when the initial solution
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Table 16 Comparing SH-VND, LR-MTS, and LR-MTS-VND on instances from MineLib

Instance %Ave Gap

SH-VND LR-MTS LR-MTS-VND

newman1 1.68 4.10 2.34

zuck-small 1.80 7.70 4.88

zuck-medium 8.08 13.40 9.04

p4hd 6.61 0.50 0.19

marvin 1.87 5.00 3.20

w23 9.96 2.10 1.06

zuck-large 8.07 1.10 0.56

sm2 5.85 0.20 0.04

Table 17 Evaluating the efficiency of each step of LR-MTS-VND when solving the instances in the second
benchmark set (instances from MineLib)

Instance %Gapinit %Gap f inal %Imp.VND Exchange (N1) Shift-after (N2) Shift-before (N3)

# T imes %Imp.N # T imes %Imp.N # T imes %Imp.N

newman1 4.09 2.34 42.85 10.90 3.97 6.30 0.01 5.00 1.65

zuck-small 7.67 4.88 36.39 19.20 1.73 17.70 0.59 6.30 0.07

zuck-medium 13.40 9.04 32.56 31.30 0.50 23.20 1.02 4.20 0.05

p4hd 0.52 0.19 62.46 28.10 2.15 25.10 1.33 3.90 0.51

marvin 5.00 3.20 35.95 13.00 1.65 11.00 1.93 1.00 0.00

w23 2.10 1.06 49.45 15.30 1.33 11.40 3.49 3.90 0.02

zuck-large 1.07 0.56 47.35 18.60 1.12 14.10 2.72 3.70 0.01

sm2 0.17 0.04 78.77 20.50 5.44 10.00 0.00 16.00 0.04

is generated with LR-MTS than when it is generated with SH (48.22 % versus 37.13 %).
Finally, when considering the efficiency of each neighborhood, one can observe that the
efficiency of the neighborhood Shift-before is reduced when the initial solution is generated
using LR-MTS (recall that in all previous experiments, this neighborhood was the most
efficient one). This is due to the fact that in the initial solutions generated using LR-MTS,
either the mining capacity or the processing capacity is reached in almost all periods where
blocks are mined. This restricts the efficiency of the Shift-before neighborhood since it is
impossible to find a feasible neighbor solution when applying this operator in most periods.
Table 17 shows that when this situation occurs, the Exchange neighborhood is the best one
among the three neighborhoods considered in this paper. These results clearly confirm that
the use of more than one neighborhood is very useful for escaping local optima.

5.6 Summary

The proposed solution method SH-VND outperforms CPLEX in terms of solution time. It
is worth mentioning though that, unlike CPLEX, it doesn’t provide optimal solutions but
rather sub-optimal solutions (very close to the optimal for almost all the tested instances).
SH-VND outperforms Whittle, the commercial mine planning software commonly used by
professional mine planners, in terms of efficiency and robustness. The 20 instances considered
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in this paper were solved within less than 3.2 % of optimality, on average, in less than 2 min.
When comparing SH-VND to recent solution methods proposed in the literature, the results
indicate that it is better than the ExTS-LS method proposed by [11], providing an excellent
compromise between solution time and solution quality, as well as a new best-known solution
for the instance Marvin. SH-VND and/or LR-MTS-VND also provide new best-known
solutions for all the 8 instances from MineLib [15], indicating their superiority over the LR-
MTS method. Another interesting feature of the proposed solution method is that it is not a
specialized method tailored to solve one variant of the open-pit mine production scheduling
problem, but it can be easily adapted to account for additional operational constraints. We
have modified it to account for lower bounds on mining and processing. The results indicate
that although the average CPU time is higher than in the case when the lower bounds are
omitted, the solution quality does not deteriorate when accounting for lower bounds. On
average, considering the 12 instances in which lower bounds on mining and processing were
added, the gap is slightly above 2 % (2.15 %) and the solution time is only about 4 min. The
Marvin instance is intractable by the method proposed in [12], but it is successfully solved
by the method we have developed, SH-VND, indicating the superiority of SH-VND over
that method. Because SH-VND doesn’t rely on solving integer programming problems, its
running time has a slower growth rate compared to other solution methods in the literature
such as the ones in [11] and [12]. Indeed, the CPU time of SH-VND ranges between a fraction
of second and 16 min for instances whose sizes vary from 1,060 blocks and 6 years to 99,014
blocks and 30 periods.

6 Conclusions

Production scheduling is a challenging and critical issue for mining companies exploiting
open-pit mines. Determining the block mining sequence is a crucial step in maximizing
the net present value of the mining operation. It involves significant capital investment in
the order of hundreds of millions of dollars and is a key factor in determining investment
returns. Decisions on block scheduling are subject to various types of constraints, typically
slope constraints, bounds on mining, and bounds on processing. An additional characteristic
of open-pit mine production scheduling, which makes the problem even more difficult, is
that the number of blocks is large, in the order of tens to hundreds of thousands, yielding a
large-scale optimization problem.

We have proposed a hybrid method (SH-VND), based on linear programming and variable
neighborhood descent, able to solve large instances of this problem in a short amount of
time. Unlike recent solution methods, SH-VND does not rely on time-consuming integer
programming algorithms, and we believe this is one reason for its success. Instead, it relies
on solving a series of linear programs to generate an initial solution. A variable neighborhood
descent procedure is then applied to improve this solution.

Upper bounds provided by CPLEX were used to evaluate the efficiency of the proposed
solution method. The performance of the method was also assessed by comparing it to
recent solution methods proposed in the literature and to an alternate method implemented
in commercial mine planning software commonly used by professional mine planners. The
results indicate that SH-VND is superior to existing solution approaches, allowing us to find
high quality solutions in very short computational times. The average quality of the solutions
produced overall is better than previously published results.

SH-VND can also easily handle more complex variants of the open-pit mine production
scheduling problem, and the computational experiments indicate that it is successful on the
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variant incorporating lower bounds on mining and processing, able to find very good solutions
for instances intractable with recently-published algorithms. Another important feature of
the proposed method is that it doesn’t require any external software, such as CPLEX, in order
to be implemented. Indeed, although CPLEX is used in this study to solve the sub-problems
when generating the initial solution, any maximum flow algorithm can be used.

Future research will be devoted to extending the method to account for uncertainty in the
metal content of blocks and in metal prices.
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