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Abstract We present a control problem for an electrical vehicle. Its motor can be operated in
two discrete modes, leading either to acceleration and energy consumption, or to a recharging
of the battery. Mathematically, this leads to a mixed-integer optimal control problem (MIOCP)
with a discrete feasible set for the controls taking into account the electrical and mechanical
dynamic equations. The combination of nonlinear dynamics and discrete decisions poses a
challenge to established optimization and control methods, especially if global optimality is
an issue. Probably for the first time, we present a complete analysis of the optimal solution
of such a MIOCP: solution of the integer-relaxed problem both with a direct and an indirect
approach, determination of integer controls by means of the sum up rounding strategy, and
calculation of global lower bounds by means of the method of moments. As we decrease
the control discretization grid and increase the relaxation order, the obtained series of upper
and lower bounds converge for the electrical car problem, proving the asymptotic global
optimality of the calculated chattering behavior. We stress that these bounds hold for the
optimal control problem in function space, and not on an a priori given (typically coarse)
control discretization grid, as in other approaches from the literature. This approach is generic
and is an alternative to global optimal control based on probabilistic or branch-and-bound
based techniques. The main advantage is a drastic reduction of computational time. The
disadvantage is that only local solutions and certified lower bounds are provided with no

S. Sager (B)
Faculty of Mathematics, Otto-von-Guericke-Universität Magdeburg, Magdeburg, Germany
e-mail: sager@ovgu.de

M. Claeys
Department of Engineering, University of Cambridge, Cambridge, UK
e-mail: mathieu.claeys@eng.cam.ac.uk

M. Claeys
LAAS, Université de Toulouse, Toulouse, France

F. Messine
LAPLACE-ENSEEIHT, Université de Toulouse, Toulouse, France
e-mail: messine@n7.fr

123



722 J Glob Optim (2015) 61:721–743

possibility to reduce these gaps. For the instances of the electrical car problem, though, these
gaps are very small. The main contribution of the paper is a survey and new combination of
state-of-the-art methods for global mixed-integer optimal control and the in-depth analysis of
an important, prototypical control problem. Despite the comparatively low dimension of the
problem, the optimal solution structure of the relaxed problem exhibits a series of bang-bang,
path-constrained, and sensitivity-seeking arcs.

Keywords Mixed-integer optimal control · Global optimal control · Maximum principle ·
Method of moments · Energy consumption · Electrical car

1 Introduction

Analysis of optimal driving behavior and optimization-driven driver assistant systems (DAS)
become more relevant, as we see the dawn of the era of automatic driving. They have been
attracting a lot of interest in the last three decades, accelerated by recent technological
advances and first successfully operating autonomous cars, developed by Google, Nissan,
Volkswagen and others.

In this paper, we are interested in the optimal control of the motor of an electrical car. The
control task is to drive a given distance in an energy-optimal way. The motor can be operated in
two discrete modes, leading either to acceleration and energy consumption, or to a recharging
of the battery. The induced current is bounded. The electrical car with a hybrid motor with
acceleration-consumption and braking-recharging modes can be seen as a specific type of
hybrid electrical vehicle (HEV). Recent work on controling HEVs and further references can
be found in [13,23,41,46]. Different approaches for DAS have been proposed. Autonomous
predictive control of vehicles is studied, e.g., in [10]. A hybrid model-predictive control
(MPC) approach for vehicle traction control is presented in [2] and [9] considers autonomous
control of a robotized gearbox. Off-line optimal control with explicit consideration of the
optimal gear choice, which again brings a discrete aspect to the optimization problems, is
discussed in [15,16,25]. It is evident, however, that automatic cruise controllers operating
solely on the knowledge of the truck’s current system state inevitably will make control
decisions inferior to those of an experienced driver, cf. [18,45]. Thus, also nonlinear model-
predictive control (NMPC) has been applied to car control. Recent theoretical and algorithmic
advances allow for mixed-integer nonlinear model predictive control in real time for heavy
duty trucks [24], taking into account prediction horizons based on GPS data.

Still, the combination of nonlinear dynamics and discrete decisions in the context of hybrid
vehicles poses a challenge to established optimization and control methods, especially if
global optimality is an issue. One particular challenge when dealing with electrical motors
is the different time scale of the variations of the electrical current with respect to the global
control task. Whereas traditional approaches try to decompose the problem, we follow [32] in
which the electrical car problem based on the electrical and mechanical dynamic equations,
has first been described. As explained in [32], the control needs to switch in the range of
milliseconds. Longer time intervals without switching lead to a violation on the bounds of
the current inside the motor, and thus hardware destruction. For a control task of 10 s an
algorithm must thus optimize over thousands to hundreds of thousands of possible switches.
Note that in practice the electrical switches are designed to reliably handle time-scales above
10 kHz, i.e., below 10−4 s.

Mathematically, the optimal control of an electrical car as considered in this paper, leads to
a mixed-integer optimal control problem (MIOCP) with a discrete feasible set for the controls
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and state constraints. This problem class touches various disciplines: hybrid systems, direct
and indirect methods for optimal control, MIOC, NMPC, global optimization and optimal
control. We are interested in global solutions for MIOCP. Unfortunately, current state-of-the-
art methods for global optimal control that are based on convex underestimators are not able to
solve the electrical car problem in reasonable time, even for very coarse time discretizations.
See [12,42] for references to global optimization and control.

Our approach is based on a combination of recent state-of-the-art methods to analyze
MIOCPs. A global optimality certificate is calculated using the method of moments. This
approach consists of reformulating a given optimization problem as a generalized moment
problem (GMP), i.e., a linear program defined on a measure space. For polynomial data, this
GMP can be relaxed in the form of linear matrix inequality (LMI) problems of increasing
order. Under mild conditions, the objective function values of the LMI relaxations converge
as lower bounds to the one of the original problem [26]. The approach can naturally be
extended to optimal control problems (OCP) [27], and a large class of mixed-integer optimal
control problems (MIOCP) [19].

Unfortunately, the great strength of this approach—excellent global lower bounds—comes
at the price of non-availability of the corresponding trajectory and control strategy. Therefore,
we propose to combine it with a local approach to calculate locally optimal controls, where
local optimality is meant with respect to the solution of an integer-relaxed control problem;
it can be approximated arbitrarily close by a (possibly chattering) integer control. To better
understand the structural properties of a problem, also first optimize, then discretize may be
applied to obtain locally optimal solutions. First, we reformulate and decompose the MIOCP.
Second, we solve the integer-relaxed control problem. Third, we construct an integer solution
by solving a mixed-integer linear program (MILP) that minimizes a certain norm between
integer controls and the relaxed continuous control from the second step. If necessary, we
may adaptively refine the control discretization. For this procedure asymptotic bounds and
very efficient algorithms are known [35,37,39].

The paper is organized as follows. In Sect. 2, we describe the optimal control prob-
lem on the energy consumption of an electrical car performing a displacement and we
discuss the partial outer convexification. In Sect. 3, we discuss direct first discretize, then
optimize approaches and present a very basic NLP reformulation. In Sect. 4, we review
the sum up rounding strategy to derive integer controls and state some theoretical prop-
erties of the corresponding trajectory. An alternative strategy, the optimization of switch-
ing times, is discussed in Sect. 5. In Sect. 6, we state the necessary conditions of opti-
mality in function space by deriving a boundary value problem. The optimal structure
contains two bang-bang arcs, two path-constrained arcs for different state constraints and
a singular arc of order 1. In Sect. 7, the method of moments is explained. It is used
to compute lower bounds, using different reformulations of the considered MIOCP. In
Sect. 8, numerical results for all presented algorithms and formulations are presented,
analyzed, and discussed on several instances of the problem. Section 9 concludes the
paper.

2 Model

We are interested in the optimal control of the motor of an electrical car. The dynamics are
described with four differential states: the electrical current x0, the angular velocity x1, the
position of the car x2, and the consumed energy x3. The control task is to drive a given distance
in an energy-optimal way. The motor can be operated in two discrete modes, u(t) ∈ {1,−1},
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leading either to acceleration with energy consumption, or to a braking-induced recharging
of the battery. The induced current is bounded. In [32], this MIOCP has been first formulated
as

min
x,u

x3(tf )

s.t. ẋ0(t) = (Valimu(t) − Rm x0(t) − Km x1(t)) / Lm

ẋ1(t) = K 2
r

Mr2

(
Km x0(t) − r

Kr

(
MgK f + 1

2ρSCx
r2

K 2
r

x1(t)2
))

ẋ2(t) = r
Kr

x1(t)

ẋ3(t) = Valimu(t)x0(t) + Rbatu(t)2x0(t)2

x(t0) = (0 0 0 0)T

x(tf ) ∈ T ⊆ R
4

x0(t) ≤ imax, x0(t) ≥ −imax

u(t) ∈ {−1, 1}.

(1)

Note that the problem is written in Mayer-form, where the state x3 contains the Lagrange-
type objective function. Mathematically equivalent reformulations may result in different
algorithmic behavior, though, as discussed in Sect. 7.

The used model parameters correspond to an electrical solar car, see [32]. They are the
coefficient of reduction Kr , the air density ρ, the aerodynamic coefficient Cx , the area in the
front of the vehicle S, the radius of the wheel r , the constant representing the friction of the
wheels on the road K f , the coefficient of the motor torque Km , the inductor resistance Rm ,
the inductance of the rotor Lm , the mass M , the gravity constant g, the battery voltage Valim,
and the resistance of the battery Rbat.

The formulation of problem (1) is nonlinear in the integer control u(·). A partial outer
convexification as discussed in [35,39] for the general case, is here equivalent to simply
leaving the expression u2 = 1 away,

min
x,u

x3(tf )

s.t. ẋ0(t) = (Valimu(t) − Rm x0(t) − Km x1(t)) / Lm

ẋ1(t) = K 2
r

Mr2

(
Km x0(t) − r

Kr

(
MgK f + 1

2ρSCx
r2

K 2
r

x1(t)2
))

ẋ2(t) = r
Kr

x1(t)

ẋ3(t) = Valimu(t)x0(t) + Rbatx0(t)2

x(t0) = (0 0 0 0)T

x(tf ) ∈ T ⊆ R
4

x0(t) ≤ imax, x0(t) ≥ −imax

u(t) ∈ {−1, 1}.

(2)

We write f (x, u) = ( f0(x, u), f1(x, u), f2(x, u), f3(x, u))T for the right hand side of the
ordinary differential equation in (2) and J or J ∗ for the optimal objective function value, if
it exists. Whenever, we refer to “relaxed problems” in the following, this indicates that we
replace u(t) ∈ {−1, 1} by u(t) ∈ [−1, 1] for all t ∈ [0, tf ]. The resulting continuous optimal
control problem is denoted by an additional R, e.g., (2)R is the relaxation of (2).

The feasible sets and optimal solutions of problems (1) and (2) are obviously identical.
However, this is not true for their relaxations to u(t) ∈ [−1, 1], namely (1)R and (2)R , as
discussed at length in [36]. To be able to obtain the best integer-valued solution we will work
with (2).
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3 Direct approach: first discretize, then optimize

Direct first discretize, then optimize approaches are straightforward ways to solve the relaxed
problem (2)R . The control function u : [t0, tf ] �→ R

nu is discretized via basis functions with
finitely many parameters that become optimization variables of a finite dimensional nonlinear
optimization problem (NLP). In the context of control problems with integer control functions
it makes sense to use a piecewise constant representation, u(t) = qi ∈ R

nu ∀ t ∈ [ti , ti+1].
There are different ways to parameterize the state trajectories: single shooting [40], Bock’s

direct multiple shooting method [8,30] and direct collocation, [4], all derived from similar
ideas for boundary value problems. Further links and references can be found, e.g., in [3,5].

In the interest of clarity and reproducibility, we transform the relaxed MIOCP (2)R into an
NLP by using collocation of order 1, i.e., an implicit Euler scheme with piecewise constant
controls. The relevant formulation is shown in Listing 1.

Listing 1 AMPL model for direct simultaneous approach with implicit Euler scheme

# Parameters
. . .
param T > 0;
param nt > 0;
param dt := T / (nt−1);
set I := 0. . nt ;

# Variables
var x {I , 0..3};
var u {I} >= −1, <= 1;

minimize Mayer: x[nt ,3] ;

subject to ODE_current {i in I diff {0}}:
x[ i ,0] = x[ i−1,0] + dt∗((u[ i−1]∗V_alim − R_m∗x[ i ,0] − K_m∗x[ i ,1] ) /L_m);

subject to ODE_angularvelocity {i in I diff {0}}:
x[ i ,1] = x[ i−1,1] + dt∗( K_r∗K_r/ (M∗r∗r ) ∗ ( K_m∗x[ i ,0] − r /K_r ∗

( M∗g∗K_f + 0.5∗rho∗S∗C_x∗x[ i ,1]∗x[ i ,1]∗ r∗r / (K_r∗K_r) ) ) ) ;

subject to ODE_position {i in I diff {0}}:
x[ i ,2] = x[ i−1,2] + dt∗( x[ i ,1]∗ r / K_r ) ;

subject to ODE_energyobjective {i in I diff {0}}:
x[ i ,3] = x[ i−1,3] + dt∗(u[ i−1]∗x[ i ,0]∗V_alim + R_bot∗x[ i ,0]∗x[ i ,0] ) ;

subject to initialvalues {j in {0..3}}:
x[0 , j ] = 0;

subject to boundedcurrentU {i in I }:
x[ i ,0] <= i_max;

subject to boundedcurrentL {i in I }:
x[ i ,0] >= −i_max;

subject to endvalues :
x[nt ,2] = . . . ;

Numerical results for different values of N = nt are given in column 2 of Table 1 in
Sect. 8.

4 Sum up rounding for integer controls

Problem (2) is control-affine. Thus, we can apply the integer gap lemma proposed in [37]
and the constructive sum up rounding strategy. We consider a given measurable function
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u : [0, tf ] �→ [−1, 1] and a time grid 0 = t0 < t1 < · · · < tN = tf on which we approximate
the control u(·). We write �t j := t j+1 − t j and �t for the maximum distance

�t := max
j=0...N−1

�t j = max
j=0...N−1

{t j+1 − t j }. (3)

Let then a function ω(·) : [0, tf ] �→ {−1, 1} be defined by

ω(t) = p j , t ∈ [t j , t j+1) (4)

where for j = 0 . . . N − 1 the p j are values in {−1, 1} given by

p j =
{

1 if
∫ t j+1

0
1+u(τ )

2 dτ −∑ j−1
k=0

1+pk
2 �tk ≥ 0.5�t j

−1 else
. (5)

We can now formulate the following corollary.

Corollary 1 (Integer Gap) Let (x, u)(·) be a feasible trajectory of the relaxed problem (2)R.
Consider the trajectory (y, ω)(·) which consists of a control ω(·) determined via sum up

rounding (4–5) on a given time grid from u(·) and differential states y(·) obtained by solving
the initial value problem in (2) for the fixed control ω(·). Then there exists a constant C such
that ∥∥∥∥∥∥

t∫

0

u(τ ) − ω(τ)dτ

∥∥∥∥∥∥
≤ �t (6)

and

‖y(t) − x(t)‖ ≤ C�t (7)

for all t ∈ [0, tf ].
Proof Follows from Corollary 8 in [37] and the fact that all assumptions on the right hand
side function in (2) are fulfilled, as it is sufficiently smooth. ��

Corollary 1 implies that the exact lower bound of the control problem (2) can be obtained
by solving the relaxed problem (2)R in which u(t) ∈ conv {−1, 1} instead of u(t) ∈ {−1, 1}.
In other words, anything that can be done with a fractional control can also be done with
a (practicably feasible) bang-bang control. However, the price might be a so-called chatter-
ing behavior, i.e., frequent switching between on and off. Note that the famous bang-bang
principle and the references [14,31] state similar results, however without the linear grid
dependence of the Hausdorff distance that can be exploited numerically by means of an
adaptive error control and the constructive derivation of the controls.

An AMPL implementation is given in Listing 2 that allows to calculate an integer control
in linear time for a given control u(·).
Listing 2 AMPL code to apply Sum Up Rounding to the control u calculated via Listing 1

let mysum := 0;
for {i in I} {

let mysum := mysum + (u[ i ]+1)/2;
i f (mysum < 0.5) then let u[ i ] := −1;
else let u[ i ] := 1;
fix u[ i ] ;
let mysum := mysum − (u[ i ]+1)/2;

}
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Note that (4–5) yields a minimizer to maxt
∥∥ ∫ t

0 u(τ )−ω(τ)dτ
∥∥ over all feasible piecewise

constant ω. In the case of linear control constraints, e.g., a maximum number of switches,
these constraints can be incorporated into a MILP. For a proof, problem formulations, and a
tailored branch and bound code see [22,38].

Numerical results for different values of N = nt are given in column 3 of Table 1.

5 Switching time optimization for integer controls

One possibility to solve problem (2) is motivated by the idea to optimize the switching
times directly, and to fix the values of the integer controls on given intervals. In practice one
will optimize a scaled vector of model stage lengths h j := t j+1 − t j . This concept is old
and well known from (a) indirect approaches, where switching functions (derivatives of the
Hamiltonian with respect to the controls) are used to determine switching times, from (b)
hybrid systems, where switching functions determine phase transitions, and from (c) multi-
stage processes, such as batch processes in chemical engineering, consisting of several phases
with open duration, e.g. [29]. This idea is also being promoted as “control parameterization
enhancing technique” for the special case of integer-valued controls, [28], and has found use
as a proof technique for necessary conditions of optimality [16,17].

For the problem at hand the time transformation boils down to an exchange of the roles
of u (now a fixed parameter, alternating between 1 and −1) and dt (now an optimization
variable) compared to Listing 1.

Listing 3 AMPL code for Switching Time Optimization / Control Parameterization Enhancing Technique

. .
param u{I };
var h{I diff {nt}} >= 0, <= 10 default T/ ( nt−1);

minimize Mayer: x[nt ,3] ;

subject to ODE_current {i in I diff {0}}:
x[ i ,0] = x[ i−1,0] + h[ i−1]∗((u[ i−1]∗V_alim−R_m∗x[ i ,0]−K_m∗x[ i ,1] ) /L_m);

subject to ODE_angularvelocity {i in I diff {0}}:
x[ i ,1] = x[ i−1,1] + h[ i−1]∗(K_r∗K_r/ (M∗r∗r ) ∗ ( K_m ∗ x[ i ,0] − r /K_r ∗

( M∗g∗K_f + 0.5∗rho∗S∗C_x∗x[ i ,1]∗x[ i ,1]∗ r∗r / (K_r∗K_r) ) ) ) ;

subject to ODE_position {i in I diff {0}}:
x[ i ,2] = x[ i−1,2] + h[ i−1]∗(x[ i ,1]∗ r / K_r ) ;

subject to ODE_energyobjective {i in I diff {0}}:
x[ i ,3] = x[ i−1,3] + h[ i−1]∗(u[ i−1]∗x[ i ,0]∗V_alim + R_bot∗x[ i ,0]∗x[ i ,0] ) ;

subject to timetransform :
sum{j in I diff {nt}} h[ j ] = T;

. .

For a discussion of advantages (easy to implement and to include an upper bound on the
number of switches) and of the disadvantages (nonconvex problem formulation that needs
to be well initialized, may violate the practical constraint of a fixed control grid) we refer
to [35,39]. We recommend to optimize switching times only after an initialization has been
found via Listing 2. Numerical results for different values of N = nt without such an
initialization are given in column 4 of Table 1 in Sect. 8.
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6 Indirect approach: first optimize, then discretize

We study a prototypical instance of problem (2)R with T = R × R × {100} × R, as in
subsection 8.1. In [32] the necessary conditions of optimality have been derived for the
relaxed MIOCP (1)R . With a quadratically entering control u in the Hamiltonian the optimal
control for sensitivity-seeking arcs can be readily calculated from Hu = 0. Here we look at
the control problem (2)R that is linear in u.

In the interest of clarity, we omit the arguments of functions and write, e.g., x0 for x0(t). We
start by looking at the path constraints. On path-constrained arcs we have for components of

c(x) := (cu(x), cl(x)) = (−x0 + imax, x0 + imax) ≥ 0,

equality in one of the two inequalities. Hence either

0 = ∂cu

∂t
= −ẋ0 = −(uValim − Rm x0 − Km x1)/Lm,

0 = ∂cl

∂t
= +ẋ0 = +(uValim − Rm x0 − Km x1)/Lm .

Thus upath(x) = Rm x0+Km x1
Valim

whenever cu(x) or cl(x) is active.
The Hamiltonian function is given by

H = λT f (x, u),

= λ0(uValim − Rm x0 − Km x1)/Lm

+ λ1
K 2

r

Mr2

(
Km x0 − r/Kr

(
MgK f + 1

2
ρSCx x1

2r2/K 2
r

))

+ λ2x1r/Kr + λ3
(
ux0Valim + Rbatx0

2) .
Applying Pontryagin’s maximum principle, we obtain adjoint differential equations

λ̇0 = −Hx0 = λ0
Rm

Lm
− λ1

K 2
r Km

Mr2 − λ3(uValim + 2Rbatx0), (8a)

λ̇1 = −Hx1 = λ0
Km

Lm
+ λ1

rρSCx

M Kr
x1 − λ2

r

Kr
, (8b)

λ̇2 = −Hx2 = 0, (8c)

λ̇3 = −Hx3 = 0. (8d)

The corresponding transversality conditions for the Mayer term E(x(tf )) = x3(tf ) and the
end time constraint r(x(tf )) = x2(tf ) − 100 = 0 with corresponding Lagrange multiplier
α ∈ R, are given by

λ(tf )
T = ∂ E

∂x
(x(tf )) + α

∂r

∂x
(x(tf )) = (0 0 α 1).

As α does not enter anywhere else in the boundary value problem, it indicates that the terminal
value λ2(tf ) is an additional degree of freedom. As shown above, a path-constrained control
upath(x) can be directly calculated from active constraints cu and cl, thus the transversality
conditions do not need to incorporate higher order time derivatives of the path constraints.

To analyze a sensitivity-seeking arc, we define the switching function as

S(x, λ) = Hu = λ0
Valim

Lm
+ λ3x0Valim. (9)
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We try to calculate using utilizing S(i)(x, λ) = ∂ i S(x,λ)

∂t i = 0, until this expression depends
explicitly on u. The first derivative of (9) with respect to time is

S(1)(x, λ) = λ̇0
Valim

Lm
+ λ̇3︸︷︷︸

=0

x0Valim + λ3 ẋ0Valim,

=
(

λ0
Rm

Lm
− λ1

K 2
r Km

Mr2 − λ3(uValim + 2Rbatx0)

)
Valim

Lm
,

+ λ3(uValim − Rm x0 − Km x1)
Valim

Lm

=
(

λ0
Rm

Lm
− λ1

K 2
r Km

Mr2 − λ3((2Rbat + Rm)x0 + Km x1)

)
Valim

Lm︸ ︷︷ ︸
ignore

.

The second derivative is

S(2)(x, λ) = λ̇0
Rm

Lm
− λ̇1

K 2
r Km

Mr2 − λ3((2Rbat + Rm)ẋ0 + Km ẋ1),

= u

(
−λ3Valim

Rm

Lm
− λ3(2Rbat + Rm)

Valim

Lm

)

+
(

λ0
Rm

Lm
− λ1

K 2
r Km

Mr2 − λ32Rbatx0

)
Rm

Lm

−
(

λ0
Km

Lm
+ λ1

rρSCx

M Kr
x1 − λ2

r

Kr

)
K 2

r Km

Mr2

− λ3(2Rbat + Rm)(−Rm x0 − Km x1)/Lm

− λ3 Km
K 2

r

Mr2

(
Km x0 − r/Kr

(
MgK f + 1

2
ρSCx x1

2r2/K 2
r

))
.

Hence, we have a singular arc of order 1 (because only even time derivatives of control-
affine systems can depend explicitly on u) and

using(x, λ) =
((

λ0
Rm

Lm
− λ1

K 2
r Km

Mr2 − λ32Rbatx0

)
Rm

Lm

−
(

λ0
Km

Lm
+ λ1

rρSCx

M Kr
x1 − λ2

r

Kr

)
K 2

r Km

Mr2

− λ3(2Rbat + Rm)(−Rm x0 − Km x1)/Lm

− λ3 Km
K 2

r

Mr2

(
Km x0 − r/Kr

(
MgK f + 1

2
ρSCx x1

2r2/K 2
r

)))

/

(
λ3

Valim

Lm
2(Rbat + Rm)

)
.

It would be nice to have feedback controls upath and using as functions of x only. The problem,
however, is that we have four dual states and only two conditions S = S(1) = 0 that we may
use to eliminate them. As λ2 and λ3 are constant in time according to (8c–8d), we replace λ0

and λ1 to obtain controls that depend on x and λ2, λ3. We derive from (9)

λ0 = −λ3x0 Lm,
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and from S(1)(x, λ) = 0 that

λ1 = Mr2λ3(−Km x1 − 2(Rbat + Rm)x0)

K 2
r Km

.

Thus, substituting λ0 and λ1 we get the singular control ufeed(x, λ2, λ3) which depends
only on x, λ2, λ3,

ufeed(x, λ2, λ3) =
(

λ2
Kr Km

Mr
+ λ3

Km Kr gK f

r
+ λ3x0

2(Rbat + Rm)Rm

Lm

+ λ3x1
2(Rbat + Rm)Km

Lm
+ λ3x0x1

2(Rbat + Rm)rρSCx

M Kr

+ λ3x1
2 3KmρSCxr

2M Kr

)/(
λ3

2Valim(Rbat + Rm)

Lm

)
.

Summing up, we obtain the following boundary value problem (BVP)

ẋ(t) = f (x, u)

λ̇(t) = −∂H(x, λ, u)

∂x
x(0) = 0 , x2(tf ) = 100

λ(tf ) = (0 0 free 1)

u(x(t)) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

upath(x) for c·(x(t)) = 0

−1 for S(x, λ) > 0

1 for S(x, λ) < 0

using(x, λ) for S(x, λ) = 0

(10)

For the structure of the optimal solution we look at the solution of the direct approach,
see Fig. 2 in Sect. 8, and make an “educated guess” for the behavior of S(x∗, λ∗). We want
to find τ j for j = 1 . . . 4 such that

u(t) := 1, S(x(t), λ(t)) < 0 , t ∈ [t0, τ1]
u(t) := upath, cu(x(t)) = 0 , t ∈ [τ1, τ2]
u(t) := using, S(x(t), λ(t)) = 0 , t ∈ [τ2, τ3]
u(t) := upath, cl(x(t)) = 0 , t ∈ [τ3, τ4]
u(t) := 1, S(x(t), λ(t)) < 0 , t ∈ [τ4, tf ]

To solve the boundary value problem (10), we formulate it again in AMPL. Note that
we multiply the right hand sides with stage lengths τ j+1 − τ j that we include as degrees of
freedom. To have the same order of accuracy, the overall number of time points is identical
to the discretization of the direct approach. However, equidistancy holds only per stage
[τ j , τ j+1], j = 0 . . . 4.
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Listing 4 AMPL model for BVP from the indirect approach with implicit Euler scheme

# Parameters (selection)
param narcs; param n_total;
set A:= 1..narcs;
param nt{A} > 0;
set I{A};
set SING, BANG, PATH_UPPER, PATH_LOWER, PATH;
set I_total := 0..n_total;

# Variables
var T{A} >= 1e−4;
var x {I_total, 0..3};
var lambda {I_total, 0..1};
var lambda_2, lambda_3;
var u {I_total} >= −1, <= 1;

minimize BVP: x[n_total,3];

subject to ODE_current {k in A, i in I[k]}:
x[i,0] = x[i−1,0]+T[k]/nt[k]∗((u[i−1]∗V_alim

− R_m∗x[i,0] − K_m∗x[i,1])/L_m);
subject to ODE_angularvelocity {k in A, i in I[k]}:
x[i,1] = x[i−1,1]+T[k]/nt[k]∗(K_r∗K_r/(M∗r∗r)∗(K_m∗x[i,0] − r/K_r

∗(M∗g∗K_f+0.5∗rho∗S∗C_x∗x[i,1]∗x[i,1]∗r∗r/(K_r∗K_r))));
subject to ODE_position {k in A, i in I[k]}:
x[i,2] = x[i−1,2]+T[k]/nt[k]∗(x[i,1]∗r/K_r);

subject to ODE_energyobjective {k in A, i in I[k]}:
x[i,3] = x[i−1,3]+T[k]/nt[k]∗(u[i−1]∗x[i,0]∗V_alim+R_bot∗x[i,0]∗x[i,0]);

subject to ODE_lambda0 {k in A, i in I[k]}:
lambda[i,0] = lambda[i−1,0]+T[k]/nt[k]∗(lambda[i,0]∗R_m/L_m
−lambda[i,1]∗K_r^2∗K_m/(M∗r^2)−lambda_3∗(u[i−1]∗V_alim+2∗R_bot∗x[i,0]));

subject to ODE_lambda1 {k in A, i in I[k]}:
lambda[i,1] = lambda[i−1,1]+T[k]/nt[k]∗(lambda[i,0]∗K_m/L_m+lambda[i,1]

∗r∗rho∗S∗C_x/(M∗K_r)∗x[i,1] − lambda_2∗r/K_r);
subject to initialvalues {j in {0..3}}:
x[0,j] = 0;

subject to endvalueX:
x[n_total,2] = 100;

subject to endvalueLambda {j in 0..1}:
lambda[n_total,j] = 0;

subject to fixlambda3:
lambda_3 = 1;

# feedback, eliminated lambda0 and lambda1
subject to controls_sing{k in SING, i in I[k]}:
u[i−1] = (lambda_2∗K_r∗K_m/(M∗r)+lambda_3∗K_m∗K_r∗g∗K_f/r+lambda_3

∗x[i,0]∗2∗(R_bot+R_m)∗R_m/L_m+lambda_3∗x[i,1]∗2∗(R_bot+R_m)
∗K_m/L_m+lambda_3∗x[i,0]∗x[i,1]∗2∗(R_bot+R_m)∗r∗rho∗S∗C_x
/(M∗K_r)+lambda_3∗x[i,1]^2∗3∗K_m∗rho∗S∗C_x∗r/(2∗M∗K_r))

/ (lambda_3∗2∗V_alim∗(R_bot+R_m)/L_m);
subject to controls_bang{k in BANG, i in I[k]}:
u[i−1] = 1;

subject to boundedcurrentU {k in PATH_UPPER, i in I[k] union {Ip[k]}:
x[i,0] = 150;

subject to boundedcurrentL {k in PATH_LOWER, i in I[k] union {Ip[k]}}:
x[i,0] = − 150;

subject to boundedcurrentU {k in PATH_UPPER, i in I[k]}:
x[i,0] = i_max;

subject to boundedcurrentL {k in PATH_LOWER, i in I[k]}:
x[i,0] = − i_max;

subject to switchingzero {k in SING, i in SWITCH[k]}:
0 = lambda[i,0]∗V_alim/L_m+lambda_3∗x[i,0]∗V_alim;

subject to timing:
sum{k in A} T[k] = 10;
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Numerical results for different values of N = nt are given in column 1 of Table 1 in
Sect. 8. Note that Listing 4 is a simple, but not very efficient approach to solve a boundary
value problem. A better choice would be, e.g., a multiple shooting approach, based on the
original work of Osborne and Bulirsch [11,33]. To look into more sophisticated algorithms,
the book of Uri Ascher [1] is a good starting point.

The optimal control for the relaxed problem (2)R that can be calculated with Listing 4 can
be used as an input for the sum up rounding strategy of Sect. 4. As an alternative, one can
directly formulate the maximum principle for hybrid systems, e.g., [44]. This basic idea of
the Competing Hamiltonian approach to mixed-integer optimal control has been described
already in [6,7]. It builds on the fact that a global maximum principle does not require the set
U of feasible controls to be connected. Hence, it is possible to choose the optimal control u∗(t)
as the point wise maximizer of a finite number of Hamiltonians. This allows to formulate the
mixed-integer optimal control problem as a boundary value problem with state-dependent
switches. Bock and Longman applied this to the energy-optimal control of subway trains,
[6,7]. However, the relaxed solution turns out to be of bang-bang type. In our setting, we
also have path-constrained and singular arcs, for which an application is not straightforward
anymore.

7 Computing lower bounds by the moment approach

In this section, we develop a moment based optimization technique to obtain lower bounds
on the cost of problem (2). In Sect. 8, these bounds are compared to the costs of the candidate
solutions found by the direct and indirect methods.

The moment approach in optimization consists of reformulating a problem as a generalized
moment problem (GMP), which is a linear program defined on a measure space. When the
problem data is polynomial, this GMP can be relaxed in the form of Linear Matrix Inequality
(LMI) problems of increasing order. Under mild conditions, the costs of the LMI relaxations
converge to that of the original problem. These relaxations provide lower bounds on the
globally optimal value of the problem. See [26] for an extensive treatment of the approach.

In this section, after setting up the notations, we make a general presentation of the GMP.
After this, we develop several instances of the approach applicable to problem (2), following
[19,27].

Before presenting the GMP, we set up the notations and terminology used in this section.
Let Z ∈ R

n be a compact set of an Euclidean space. We note by M+(Z) the cone of finite,
non-negative, Borel measures supported on Z, equipped with the weak-∗ topology. For the
purpose of this paper, it is enough to consider M+(Z) as (isomorphic to) the space of non-
negative continuous linear functionals on C(Z), via the operation of measure integration, see
e.g. [34, §21.5] and the whole part III of that reference for a thorough introduction on the
subject. For a continuous function f (z) ∈ C(Z), denote by

∫
Z f (z) μ(dz) the integral of f (z)

by the measure μ ∈ M+(Z). When no confusion may arise, we note 〈 f, μ〉 for the integral
to simplify exposition and to insist on the duality relationship between C(Z) and M(Z). The
Dirac measure supported at z∗, denoted by δz∗ , is the measure for which 〈 f, δz∗ 〉 = f (z∗),
∀ f ∈ C(Z).

For multi-index α ∈ N
n and vector z ∈ R

n , we use the notation zα := ∏n
i=1 zαi

i . The
moment of multi-index α ∈ N

n of measure μ ∈ M+(Z ⊂ R
n) is then defined as the real

yα = 〈zα, μ〉. A multi-indexed sequence of reals {yα}α∈Nn is said to have a representing
measure on Z if there exists μ ∈ M+(Z) such that yα = 〈zα, μ〉 for all α ∈ N

n .
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Denote by R[z] the ring of polynomials in the variables z. A set Z ∈ R
n is basic semi-

algebraic if it is defined as the intersection of finitely many polynomial inequalities: Z :=
{z ∈ R

n : gi (z) ≥ 0, gi (z) ∈ R[z], i = 1 . . . nZ}.
Finally, we use the notation x to denote parameters of the state space where trajectories

x(t) live. We use the same convention u for the controls u(t). This notation makes the passage
from temporal integration to integration with respect to a measure transparent.

7.1 Solving the generalized moment problem

In this paper, we consider the following generalized problem of moments:

JGMP = inf
μ

m∑
j=1

〈c j , μ j 〉

s.t.
m∑

j=1

〈ai j , μ j 〉 = bi , i ∈ I

μ j ∈ M+(Z j ⊂ R
n j ), j = 1 . . . m,

(11)

where the decision variable of the problem is a vector μ of m measures, each posed on its
own set Z j parameterized by variables z j . The cost is given by a vector c of polynomial
functions, i.e., c j ∈ R[z j ]. The constraints are materialized by at most countably many
equality constraints indexed by given set I, with bi ∈ R and ai j ∈ R[z j ] for i ∈ I.

This problem, its method of resolution and several of its applications are extensively
discussed in [26]. We summarize here the main results. A problem with polynomial data
such as (11) (that is, a problem where each function is polynomial and each set is defined
as a basic semi-algebraic set) can be relaxed as a problem on the moment sequences {yα}
of the measures. This new problem has now countably many decision variables, one for
each moment of each measure. It is a semi-definite program, as constraints of this form are
necessary for sequences of reals to have a representing measure. When only a finite set of
the moments is considered, that is when the moment sequences are truncated to their first
few elements of degree less than 2r , one obtains a proper relaxation of (11) in the form of
Linear Matrix Inequalities of finite size, with associated cost Jr

GMP. These can be solved by
off-the-shelf software to obtain a lower bound on the cost of (11), i.e.,

Jr
GMP ≤ JGMP. (12)

See [26, Chap. 4] for an in-depth treatment of the LMI relaxations.

7.2 GMP formulations for problem (2)

A successful application of the moment approach requires measures that are supported on
Euclidean spaces of small dimension. The sizes of the LMIs grow polynomially with respect to
the relaxation order, when the number of variables remains constant. This limits the dimension
of the underlying spaces to values below 6 on current computers with standard semi-definite
solvers. However, in many cases such relaxations are sufficient to obtain sharp enough lower
bounds.

In this section, we show several methods to relax problem (2) as an instance of (11), and
compare their benefits from a computational point of view.
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We start with the procedure proposed in [27]. For an admissible pair (x, u), define the
following occupation measures. The time-state occupation measure μ ∈ M+([0, t f ] × U ×
X) is defined by:

μ(A, B, C) :=
∫

[0,t f ]∩A

δu(t)(B) δx(t)(C) dt, (13)

where A, B and C are Borel subsets of respectively [0, t f ], U and X. That is, for a continuous
test function w(t, u, x), the property

t f∫

0

w(t, u(t), x(t)) dt = 〈w(t, u, x), μ〉 (14)

holds by definition. Similarly, define the final state occupation measure φ ∈ M+(X f ) for
the same admissible pair as:

φ(C) := δx(t f )(C), (15)

where C is a Borel subset of X f . By definition, for a continuous test function w(x), the
following relation holds

w(x(t f )) = 〈w(x), φ〉. (16)

Evaluating a polynomial test function v ∈ R[t, x] yields by the chain rule

v(t f , x(t, f )) − v(0, x(0)) =
t f∫

0

dv(t, x(t)) =
t f∫

0

(
∂v

∂t
+ ∂v

∂x
f (x(t), u(t))

)
dt. (17)

Making use of properties (14) and (16) in (17) leads to the following relaxation of (2) as a
GMP:

JM = inf
μ,φ

〈x3, φ〉

s.t. ∀v ∈ R[t, x] : 〈v(t f , x), φ〉 − v(0, x(0)) = 〈∂v

∂t
+ ∂v

∂x
f (x, u), μ〉,

μ ∈ M+([0, tf ] × X × U ⊂ R
6), φ ∈ M+(X f ⊂ R

4),

(18)

where the different sets are defined by

X = {
x ∈ R

4 : i2
max − x2

0 ≥ 0
}
, (19)

U = {
u ∈ R : 1 − u2 = 0

}
, (20)

X f = {
x ∈ T

}
. (21)

In (18), the decision variables are arbitrary pairs of measures (μ, φ), and not specifically
the occupation measures defined above. Hence,

J ≥ JM . (22)

Also remark that (18) is indeed an instance of (11): all functions are polynomial in their
arguments and the sets are all basic semi-algebraic, if one uses the obvious characterization
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[0, t f ] = {t ∈ R : t (t f − t) ≥ 0}. In addition, the problem has countably many equality con-
straints: one for each polynomial test function. We can therefore use the moment relaxations
presented in the previous subsection. Note that the problem is not formulated over compact
sets; it is therefore not guaranteed that the costs of the LMI relaxations do converge to JM .

In (18), the measure supported on the Euclidean space of highest dimension is μ. The
dimension of the underlying space is six: time, four states and one control. As an alternative
formulation, we reduce this dimension by writing problem (2) in Lagrange form, i.e., we
remove the dependence on x3(t),

J = inf
u

t f∫

0

f3(x(t), u(t)) dt

s.t.

⎡
⎢⎣

ẋ0(t)

ẋ1(t)

ẋ2(t)

⎤
⎥⎦ =

⎡
⎢⎣

f0(x(t), u(t))

f1(x(t), u(t))

f2(x(t), u(t))

⎤
⎥⎦ ,

x(0) = 0, x(t) ∈ X, u(t) ∈ U, x(t f ) ∈ X f ,

(23)

where, by a slight abuse of notation, X now refers to a subset of R
3. By the same treatment as

for Mayer problem (2), problem (23) can be relaxed as an instance of GMP (11) on a space
of dimension five.

We reduce the dimension further by observing that the state x2 is a simple end-constrained
integrator. We reformulate (23) as

J = inf
u

t f∫

0

f3(x(t), u(t)) dt

s.t.

[
ẋ0(t)

ẋ1(t)

]
=
[

f0(x(t), u(t))

f1(x(t), u(t))

]
,

t f∫

0

f2(x(t), u(t)) dt = x2(t f ),

x(0) = 0, x(t) ∈ X, u(t) ∈ U, x(t f ) ∈ X f ,

(24)

with obviously redefined X ⊆ R
2 and X f ⊆ R

2. This reformulation leads to the following
instance of GMP (11):

JM = inf
μ,φ

〈 f3(x, u), μ〉

s.t. ∀v ∈ R[t, x] : 〈v(t f , x), φ〉 − v(0, x(0)) =
〈
∂v

∂t
+ ∂v

∂x
f (x, u), μ

〉
,

〈 f2(x, u), μ〉 = x2(t f ),

μ ∈ M+([0, tf ] × X × U ⊂ R
4), φ ∈ M+(X f ⊂ R

2).

(25)

The maximal dimension of (25) is now four. We now look at an alternative relaxation as a
GMP that has been proposed in [19], reducing the size of the underlying space furthermore.
It applies to switched systems of the form
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J = inf
σ(t)

t f∫

0

hσ(t)(t, x(t)) dt

s.t. ẋ(t) = f σ(t)(t, x(t)), σ (t) ∈ {1, 2, . . . , m}
x(0) = 0, x(t f ) ∈ X f

x(t) ∈ X, t ∈ [0, t f ]

(26)

with an integer-valued signal σ : [0, t f ] → {1, 2, . . . , m} choosing between several available
modes driven by their associated dynamics f σ(t). Clearly, problem (2) can be reformulated
as a switched system with two modes. The first mode, selected by signal σ1(t), consists of
driving the system with u(t) = 1, hence with dynamics ẋ = f 1(x) := f (x, 1). The second
mode drives the system with u(t) = −1, hence with dynamics ẋ = f 2(x) := f (x,−1).
Following [19], this yields the following GMP relaxation:

JM = inf
μ1,μ2,φ

〈
f 1
3 (x), μ1

〉+ 〈
f 2
3 (x), μ2

〉

s.t. ∀v ∈ R[t, x] : 〈v(t f , x), φ〉 − v(0, x(0)) =〈
∂v

∂t
+ ∂v

∂x
f 1(x), μ1

〉
+
〈
∂v

∂t
+ ∂v

∂x
f 2(x), μ2

〉

〈
f 1
2 (x), μ1

〉+ 〈
f 2
2 (x), μ2

〉 = x2(t f )

μ1, μ2 ∈ M+([0, t f ] × X ⊂ R
3)

φ ∈ M+(X f ⊂ R
2). (27)

Notice that this alternative formulation involves one extra measure, but both mode mea-
sures are supported on time and state only, and the control space disappears altogether.
Therefore, computation gains are expected with respect to (25) for high relaxation orders. In
Sect. 8, we confirm this finding on a practical implementation of (18) and (27), and compare
the sharpness of the lower bounds at given relaxation orders.

To sum up, we present in this section four different ways of relaxing problem (2) as an
instance of GMP (11): Mayer form (18), Lagrange form (not explicited), integrated form (25)
and switched form (27). Although mathematically equivalent, the behavior of the problems
when truncated as LMI relaxations are expected to differ greatly in terms of computational
load. The exact numerical results are given in Table 2 of Sect. 8.

8 Numerical results

In this section, we look at particular instances of problem (1) and apply the different refor-
mulations and algorithms to them, by stressing that our methodology is very generic and
can be easily adapted to similar control tasks. The parameter values are real world data and
model an ENSEEIHT electrical solar car. They are Rbat = 0.05 �, Valim = 150 V, Rm =
0.03 �, Km = 0.27, Lm = 0.05, r = 0.33 m, Kr = 10, M = 250 kg, g = 9.81, K f =
0.03, ρ = 1.293 kg/m3, S = 2m2, Cx = 0.4 and imax = 150 A. The electrical and mechan-
ical parts of the model are explained and detailed in [32].

We present numerical results for the different approaches discussed so far. The results have
been obtained on different computers and with different solvers, hence the computational
times are only indicative and should by no means be compared among one another.
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Table 1 Upper bounds JN and computational times tN in seconds for different control discretizations N and
approaches from Sects. 3, 4, 5, and 6

OCP Indirect (2)R Direct (2)R Sum up rounding (2) Switch times (2)
Listing 4 Listing 1 Listing 2 Listing 3

u(·) Relaxed Relaxed Integer Integer

N JN tN JN tN JN tN viol JN tN

100 24,051.7 0.1 23,903.2 0.0 198,524.0 0.0 3e0 124,934.0 0.2

1,000 22,903.1 0.6 22,980.5 0.2 38,003.8 0.0 2e−2 32,811.1 0.6

5,000 22,801.4 4.4 22,818.7 1.5 25,784.3 0.1 1e−3 24,792.4 3.2

10,000 22,788.7 14.5 22,795.6 3.0 24,275.2 0.2 3e−4 23,782.8 4.1

50,000 22,778.5 295.8 22,776.5 11.7 23,071.9 1.4 1e−5 22,974.0 335.5

100,000 22,777.2 1,204.4 22,774.0 26.9 22,921.7 3.8 7e−6 22,872.8 2,216.7

For the sum up rounding approach also the violation of the state and end point constraint is given. The solutions
have been obtained with listings 1 , 3, and 4 using IPOPT. The computational costs of the sum up rounding
approach with listing 2 are in addition to those to calculate a relaxed solution first

8.1 A detailed case study

We look at the particular instance of problem (2) with tf = 10 s and target set T = R × R ×
{100} × R, in which the car needs to cover 100 m in 10 s.

Table 1 summarizes the results for the different approaches from Sects. 3, 4, and 6. One
observes the convergence of all three approaches to the optimal value J ∗ as N goes to infinity.
The computational costs increase as well. One notes the low additional costs of the sum up
rounding strategy to determine an integer control. The interior point solver IPOPT was
used to solve both the NLPs from the direct approach (“first discretize, then optimize”) and
the discretized boundary value problems from the indirect approach (“first optimize, then
discretize”). It is further evident from the computational times that large-scale discretized
boundary value problems are not well suited for generic black-box optimization codes. The
numerical linear algebra becomes expensive due the additional adjoint variables. Instead,
shooting methods should be used, as already mentioned in Sect. 6.

Also the switching time optimization approach suffers from high computational times
when N increases, due to bad convergence properties which are well known from the solution
of boundary value problems. Note that, for reasons of comparison, the BVP variables have
not been initialized with the solution of the direct method, and the switching time interval
lengths have not been initialized with the solution of the sum up rounding strategy. Doing
so, a reduction of iterations and computing time can be expected.

Figure 1 shows a plot of the differential states of the optimal trajectory of (2)R for N =
1,000. One observes that the current x0 increases to its maximal value of 150A, stays there for
a certain time, decreases on its minimal value of −150A, stays on this value and eventually
increases slightly. This behavior corresponds to the different arcs bang, path-constrained,
singular, path-constrained, bang that have been discussed in Sect. 6 and can be observed also
in Fig. 2. It shows the corresponding switching function and the optimal control.

Note that the plots show data from the solution with the indirect approach, but that for the
chosen discretization of N = 1,000 differences to the solution using the direct approach are
negligible (at least to the human eye).

Applying the sum up rounding strategy results in an integer-feasible chattering solution.
The resulting primal states are shown in Fig. 3. One observes the high-frequency zig-zagging
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Fig. 1 Primal states of an optimal trajectory for (2)R on a control discretization grid with N = 1,000. The
car moves from its origin (x2 = 0) to its destination (x2 = 100) in 10 s with minimum (non-monotonic due
to recharging) energy x3

Fig. 2 Continuation of Fig. 1, showing the optimal control and switching function. The dotted vertical lines
show the switching times τi where transitions between bang, path-constrained, singular, path-constrained, and
bang arc occur

of the current x0(t) that results from the fast switches in the control. The infeasibility of the
trajectory (x1(t) > 150A, x1(t) < −150A, x2(tf ) �= 100) is visible. As shown in Table 1,
this infeasibility converges to zero as N increases.

The direct and indirect approaches from Sects. 3 and 6 are local optimization techniques
and only provide upper bounds for problem (2)R and hence for (2).

We compare them to the lower bounds from the moment approach presented in Sect. 7.
For the practical implementation of the method, we used the GloptyPoly toolbox [20],
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Fig. 3 Sum up rounding on grid with �t = 10−2. Primal states

Table 2 Lower bounds J r
M and computational times tr as a function of the relaxation order r for the different

GMP formulations

Mayer (18) Lagrange Integrated (25) Integrated (27)

r J r
M tr J r

M tr J r
M tr J r

M tr

1 −213,750 0.7 −213,750 0.7 −213,750 0.7 −213,750 0.9

2 20,686 3.4 20,756 1.7 20,673 1.8 20,732 2.0

3 22,748 8.6 22,739 3.2 22,662 2.6 22,676 3.0

4 22,764 262 22,762 14 22,756 3.5 22,755 4.8

5 22,764 4,200 22,764 130 22,762 8.4 22,761 8.2

6 N.A. N.A. 22,764 800 22,762 20 22,763 20

which allows to build instances of (11) with high level commands. From this definition, the
LMI relaxations at a given order are constructed automatically and passed on to a semi-
definite solver for resolution. For this paper, we used SeDuMi [43], the default solver for
GloptyPoly. We also used the verified semi-definite solver VSDP [21] that uses interval
analysis to rigorously certify SeDuMi’s solutions. This can be done by noticing that all
moments are bounded by 1 when the problem is rescaled such that each measure is supported
on a unit box. This uniform bound is essential for VSDP to compute efficiently numeric lower
bounds on each moment relaxation cost.

Table 2 summarizes the results for the different GMP formulations. As expected, for a given
relaxation order r , the switched system formulation (27) on the integrated problem statement
(26) yields faster computations, and the generic GMP formulation on Mayer statement (2)
is the slowest. Notice however that for the former, lower bounds J r

M are slightly sharper
at a given relaxation order. This is due to the much higher number of decision variables
(moments) that are involved.

We would like to draw the reader’s attention to a beautiful reverse view of the outer con-
vexification results. While we solved the (integer-)relaxation (2)R and used sum up rounding
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to obtain an asymptotically feasible and optimal solution for (2), in the method of moments
approach we reverse the procedure. We solve the (LMI-)relaxation of MIOCP (2)—which
is more efficient to solve than the (LMI-)relaxation of (2)R!—and know that the bound is
also valid for (2)R . This is due to the fact that relaxing the dynamics weakly with occupation
measures is equivalent to convexifying the vector field f (t, x, · ). Hence, given the affine
control dependence of (2), this amounts to convexifying the control set.

Combining the upper bound from Table 1 and the lower bound from Table 2 we state for
the relaxed problem (2)R

22763 ≤ J ∗
(2)R ≤ 22774 (28)

with an optimality gap of approximately 0.04 %. Thus, the solution that is structurally equiva-
lent to the one from Figs. 1 and 2 is certified to be 0.04 %–globally optimal. This ε–optimality
carries over to the integer case of (2), as we do know that asymptotically the sum up rounding
strategy will provide the same upper bound as the solution to the relaxed problem (2)R . The
price for such a control would be a very fast switching behavior. We stopped at an upper
bound of 22,921 with an optimality gap of 0.7 %.

8.2 Additional scenarios

To illustrate the general applicability of our proposed approach (to combine direct solution
of a relaxed and partially convexified MIOCP to obtain an upper bound and a candidate
solution, and the method of moments to obtain a lower bound) we provide objective function
values and optimality gaps for the following scenarios.

1. As in Sect. 8.1

T = R × R × {100} × R, t f = 10 s.

2. Fixed final velocity

T = R × {0 Kr

3.6r
} × {100} × R, t f = 10 s.

3. Fixed final velocity

T = R × {50
Kr

3.6r
} × {100} × R, t f = 10 s.

4. Bounded velocity

x2(t) ≤ 45
Kr

3.6r
∀ t, T = R × R × {100} × R, t f = 10 s.

5. Bounded velocity, longer time horizon

x2(t) ≤ 30
Kr

3.6r
∀ t, T = R × R × {100} × R, t f = 15 s.

6. Fixed final velocity, bounded velocity, longer time horizon

x2(t) ≤ 30
Kr

3.6r
∀ t, T = R × {30

Kr

3.6r
} × {100} × R, t f = 15 s.

Table 3 shows lower bounds that have been calculated with relaxation (27) and r = 6
and upper bounds that have been calculated with the direct method of Sect. 3 and the SUR
strategy of Sect. 4 for N = 100, 000. Again, these bounds correspond to the global optima
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Table 3 Global optimality gaps
for different scenarios. Note that
the gap of the relaxed problem is
the relevant one, as we can
approximate it arbitrarily closely
by refining the grid underlying
the sum up rounding method

Inst. Lower Bd Upper Bd Upper Bd Opt Gap Opt Gap
Inst. (2)&(2)R (2)R (2) (2)R % (2) %

1 22,763 22,774 22,921 0.04 0.7

2 25,224 25,242 25,385 0.07 0.6

3 41,991 41,995 42,142 0.01 0.4

4 23,325 23,358 23,507 0.14 0.8

5 13,160 13,170 13,600 0.08 3.3

6 20,355 20,360 20,791 0.02 1.6

of different instances of (2) and (2)R . The computational times are omitted as they are in the
same order of magnitude as in Sect. 8.1.

The alternative approach to solve the control problem globally, e.g., by applying a global
NLP solver to the discretization, is outperformed by orders of magnitude. As an (unfair)
comparison, we ran the solver couenne on the first scenario with N = 10. We stopped
after 50 min of computational time. Couenne had visited 1,706,800 nodes, with 646,833
open nodes on the tree and a gap of 26,282 for the best solution minus a lower bound of
14,526.

However, as the method of moments does not provide a candidate solution, we cannot
guarantee that upper and lower bound coincide. For many practical purposes our approach
that provides a candidate integer solution and an ε certificate should be well suited and be
applied before turning to global solvers. For other instances further research in global optimal
control is encouraged.

9 Conclusions

In this paper, we combine several optimal control techniques to obtain ε-optimal global solu-
tions for minimizing the energy consumption of an electric car performing a displacement.

To obtain an upper bound, we apply an outer convexification of the MIOCP (1). This
allows us to solve relaxed, continuous control problems (1)R . In this paper we present two
ways to solve them, a direct and an indirect approach. Based on the calculated solution, a
sum up rounding strategy is applied that yields a suboptimal integer solution for (1). This
solution provides an upper bound and is known to converge to the optimal objective function
of (1) as the control discretization grid is refined.

To obtain a lower bound to the MIOCP (1), we apply the method of moments, making use
of a particular reformulation for switched systems that was proposed in [19]. This approach
yields the best results in terms of the trade-off between sharpness of the bounds and compu-
tational load. For all instances, we provided numerically certified bounds, based on interval
arithmetic. Hence, the method is able to offer rigorous numeric bounds for all admissible
controls in their natural functional space.

For the considered control task of an electrical car, the gaps between the upper and lower
bounds are very sharp (about 0.1 %) for all considered instances of the problem. This suggests
a general way to propose numeric frameworks for globally solving this kind of mixed-integer
optimal control problems (MIOCP); the direct and indirect methods provide quality candidate
solutions, whereas the moment method certifies their (epsilon-)global optimality. Up to our
knowledge, this is the first time that such a global framework is used successfully on a
MIOCP.
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The main advantage is the extremely fast computational time. This put us in the com-
fortable position to present all methods with prototypical implementations that facilitate
the presentation from a didactical point of view. In particular, the solution of local control
problems can be done more efficiently by applying more involved implementations of direct
multiple shooting or direct collocation.
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