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Abstract In this paper we analyze several new methods for solving nonconvex optimization
problems with the objective function consisting of a sum of two terms: one is nonconvex and
smooth, and another is convex but simple and its structure is known. Further, we consider
both cases: unconstrained and linearly constrained nonconvex problems. For optimization
problems of the above structure, we propose random coordinate descent algorithms and
analyze their convergence properties. For the general case, when the objective function is
nonconvex and composite we prove asymptotic convergence for the sequences generated
by our algorithms to stationary points and sublinear rate of convergence in expectation for
some optimality measure. Additionally, if the objective function satisfies an error bound
condition we derive a local linear rate of convergence for the expected values of the objective
function. We also present extensive numerical experiments for evaluating the performance
of our algorithms in comparison with state-of-the-art methods.

Keywords Large-scale nonconvex optimization · Random coordinate descent algorithms ·
Convergence analysis · Asymptotic convergence · Convergence rate in expectation

1 Introduction

Coordinate descent methods are among the first algorithms used for solving general mini-
mization problems and are some of the most successful in the large-scale optimization field
[3]. Roughly speaking, coordinate descent methods are based on the strategy of updating one
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(block) coordinate of the vector of variables per iteration using some index selection proce-
dure (e.g. cyclic, greedy, random). This often reduces drastically the complexity per iteration
and memory requirements, making these methods simple and scalable. There exist numerous
papers dealing with the convergence analysis of this type of methods [1,10,14,15,22,31],
which confirm the difficulties encountered in proving the convergence for nonconvex and non-
smooth objective functions. For instance, regarding coordinate minimization of nonconvex
functions, Powell [22] provided some examples of differentiable functions whose proper-
ties lead the algorithm to a closed loop. Also, proving convergence of coordinate descent
methods for minimization of nondifferentiable objective functions is challenging [1]. How-
ever, for nonconvex and nonsmooth objective functions with certain structure (e.g. composite
objective functions) there are available convergence results for coordinate descent methods
based on greedy index selection [2,10,31] or random index selection [11]. Recently, Nesterov
[18] derived complexity results for random coordinate gradient descent methods for solving
smooth and convex optimization problems. In [24] the authors generalized Nesterov’s results
to convex problems with composite objective functions. An extensive complexity analysis of
coordinate gradient descent methods for solving linearly constrained optimization problems
with convex (composite) objective function can be found in [2,13–15].

In this paper we also consider large-scale nonconvex optimization problems with the
objective function consisting of a sum of two terms: one is nonconvex, smooth and given
by a black-box oracle, and another is convex but simple and its structure is known. Further,
we analyze unconstrained but also singly linearly constrained nonconvex problems. We also
assume that the dimension of the problem is so large that traditional optimization methods
cannot be directly employed since basic operations, such as the updating of the gradient,
are too computationally expensive. These types of problems arise in many fields such as
data analysis (classification, text mining) [4,6], systems and control theory (optimal control,
pole assignment by static output feedback) [7,8,16,20], machine learning [6,14,25,28,33]
and truss topology design [9,23]. The goal of this paper is to analyze several new random
coordinate gradient descent methods suited for large-scale nonconvex problems with com-
posite objective function. Recently, after our paper came under review, a variant of random
coordinate descent method for solving composite nonconvex problems was also proposed
in [11]. For our coordinate descent algorithm, which is designed to minimize unconstrained
composite nonconvex objective functions, we prove asymptotic convergence of the gener-
ated sequence to stationary points and sublinear rate of convergence in expectation for some
optimality measure. Additionally, if the objective function satisfies an error bound condition,
a local linear rate of convergence for expected values of the objective function is obtained.
We also provide convergence analysis for a coordinate descent method designed for solving
singly linearly constrained nonconvex problems and obtain similar results as in the uncon-
strained case. Note that our analysis is very different from the convex case [13–15,18,24]
and is based on the notion of optimality measure and a supermartingale convergence theo-
rem. Furthermore, unlike to other coordinate descent methods for nonconvex problems, our
algorithms offer some important advantages, e.g. due to the randomization our algorithms are
simpler and are adequate for modern computational architectures. We also present the results
of preliminary computational experiments, which confirm the superiority of our methods
compared with other algorithms for large-scale nonconvex optimization.

Contribution: The contribution of the paper can be summarized as follows:

(a) For unconstrained problems we propose a 1-random coordinate descent method (1-
RCD), that involves at each iteration the solution of an optimization subproblem with
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respect to only one (block) variable while keeping all others fixed. We show that this
solution can be usually computed in closed form (Sect. 2.2).

(b) For the linearly constrained case we propose a 2-random coordinate descent method
(2-RCD), that involves at each iteration the solution of a subproblem depending on two
(block) variables while keeping all other variables fixed. We show that in most cases this
solution can be found in linear time (Sect. 3.1).

(c) For each of the algorithms we introduce some optimality measure and devise a conver-
gence analysis using this framework. In particular, for both algorithms, (1-RCD) and
(2-RCD), we establish asymptotic convergence of the generated sequences to stationary
points (Theorems 1 and 4) and sublinear rate of convergence for the expected values of
the corresponding optimality measures (Theorems 2 and 5).

(d) If the objective function satisfies an error bound condition a local linear rate of conver-
gence for the expected values of the objective function is proved (Theorem 3).

Content: The structure of the paper is as follows. In Sect. 2 we introduce a 1-random coor-
dinate descent algorithm for unconstrained minimization of nonconvex composite functions.
Further, we analyze the convergence properties of the algorithm under standard assumptions.
Also, under the error bound assumption we obtain linear convergence rate for the expected
values of objective function. In Sect. 3 we derive a 2-random coordinate descent method
for solving singly linearly constrained nonconvex problems and analyze its convergence. In
Sect. 4 we report numerical results on large-scale eigenvalue complementarity problems,
which is an important application in control theory.

Notation: We consider the space R
n composed by column vectors. For x, y ∈ R

n we denote
the scalar product by 〈x, y〉 = xT y and ‖x‖ = (xT x)1/2. We use the same notation 〈·, ·〉 and
‖·‖ for scalar products and norms in spaces of different dimensions. For some norm ‖·‖α in
R

n , its dual norm is defined by ‖y‖∗
α = max‖x‖α=1〈y, x〉. We consider the following decom-

position of the variable dimension: n = ∑N
i=1 ni . Also, we denote a block decomposition

of n × n identity matrix by In = [U1 . . .UN ], where Ui ∈ R
n×ni . For brevity we use the

following notation: for all x ∈ R
n and i, j = 1, . . . , N , we denote:

xi = U T
i x ∈ R

ni , ∇i f (x) = U T
i ∇ f (x) ∈ R

ni

xi j =
[
xT

i xT
j

]T ∈ R
ni +n j , ∇i j f (x) =

[
∇i f (x)T ∇ j f (x)T

]T ∈ R
ni +n j .

2 Unconstrained minimization of composite objective functions

In this section we analyze a variant of random block coordinate gradient descent method,
which we call the 1-random coordinate descent method (1-RCD), for solving large-scale
unconstrained nonconvex problems with composite objective function. The method involves
at each iteration the solution of an optimization subproblem only with respect to one (block)
variable while keeping all other variables fixed. After discussing several necessary mathe-
matical preliminaries, we introduce an optimality measure, which will be the basis for the
construction and analysis of Algorithm (1-RCD). We establish asymptotic convergence of the
sequence generated by Algorithm (1-RCD) to a stationary point and then we show sublinear
rate of convergence in expectation for the corresponding optimality measure. For some well-
known particular cases of nonconvex objective functions arising frequently in applications,
the complexity per iteration of our Algorithm (1-RCD) is of order O(max

i
ni ).
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2.1 Problem formulation

The problem of interest in this section is the unconstrained nonconvex minimization problem
with composite objective function:

F∗ = min
x∈Rn

F(x) (:= f (x)+ h(x)) , (1)

where the function f is smooth and h is a convex, separable, nonsmooth function. Since
h is nonsmooth, then for any x ∈ dom(h) we denote by ∂h(x) the subdifferential (set of
subgradients) of h at x . The smooth and nonsmooth components in the objective function of
(1) satisfy the following assumptions:

Assumption 1 (i) The function f has block coordinate Lipschitz continuous gradient, i.e.
there are constants Li > 0 such that:

‖∇i f (x + Ui si )− ∇i f (x)‖ ≤ Li‖si‖ ∀si ∈ R
ni , x ∈ R

n, i = 1, . . . , N .

(ii) The function h is proper, convex, continuous and block separable:

h(x) =
N∑

i=1

hi (xi ) ∀x ∈ R
n,

where the functions hi : R
ni → R are convex for all i = 1, . . . , N .

These assumptions are typical for the coordinate descent framework and the reader can
find similar variants in [11,14,15,18,31]. An immediate consequence of Assumption 1 (i) is
the following well-known inequality [17]:

| f (x + Ui si )− f (x)− 〈∇i f (x), si 〉| ≤ Li

2
‖si‖2 ∀si ∈ R

ni , x ∈ R
n . (2)

Based on this quadratic approximation of function f we get the inequality:

F(x + Ui si ) ≤ f (x)+〈∇i f (x), si 〉 + Li

2
‖si‖2 + h(x + Ui si ) ∀si ∈ R

ni , x ∈ R
n . (3)

Given local Lipschitz constants Li > 0 for i = 1, . . . , N , we define the vector L =
[L1 . . . L N ]T ∈ R

N , the diagonal matrix DL = diag(L1 In1 , . . . , L N InN ) ∈ R
n×n and the

following pair of dual norms:

‖x‖L =
(

N∑

i=1

Li‖xi‖2

)1/2

∀x ∈ R
n, ‖y‖∗

L =
(

N∑

i=1

L−1
i ‖yi‖2

)1/2

∀y ∈ R
n .

Under Assumption 1, we can state the first order necessary optimality conditions for the
nonconvex optimization problem (1): if x∗ ∈ R

n is a local minimum for (1), then the following
relation holds

0 ∈ ∇ f (x∗)+ ∂h(x∗).

Any vector x∗ satisfying this relation is called a stationary point for nonconvex problem (1).
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2.2 A 1-random coordinate descent algorithm

We analyze a variant of random coordinate descent method suitable for solving large-scale
nonconvex problems of the form (1). Let i ∈ {1, . . . , N } be a random variable and pik =
Pr(i = ik) be its probability distribution. Given a point x , one block is chosen randomly
with respect to the probability distribution pi and the quadratic model (3) derived from the
composite objective function is minimized with respect to this block of coordinates (see also
[18,24]). Our method has the following iteration: given an initial point x0, then for all k ≥ 0

Algorithm (1-RCD)

1. Choose randomly a block of coordinates ik with probability pik

2. Set xk+1 = xk + Uik dik ,

where the direction dik is computed as follows:

dik = arg min
sik ∈R

nik
f
(

xk
)

+
〈
∇ik f

(
xk
)
, sik

〉
+ Lik

2
‖sik ‖2 + h

(
xk + Uik sik

)
. (4)

Note that the direction dik is a minimizer of the quadratic approximation model given in (3).
Further, from Assumption 1 (ii) we see that h(xk + Uik sik ) = hik (x

k
ik

+ sik )+
∑

i �=ik
hi (xk

i )

and thus for computing dik we only need to know the function hik (·). An important property
of our algorithm is that for certain particular cases of function h, the complexity per iteration
of Algorithm (1-RCD) is very low. In particular, for certain simple functions h, very often
met in many applications from signal processing, machine learning and optimal control, the
direction dik can be computed in closed form, e.g.:

(I) For some l, u ∈ R
n , with l ≤ u, we consider the box indicator function

h(x) =
{

0 if l ≤ x ≤ u
∞ otherwise.

(5)

In this case the direction dik has the explicit expression:

dik =
[

xk
ik

− 1

Lik

∇ik f
(

xk
)]

[lik , uik ]
∀ik = 1, . . . , N ,

where [x][l, u] is the orthogonal projection of vector x on box set [l, u].
(II) Given a nonnegative scalar β ∈ R+, we consider the �1-regularization function defined

by the 1-norm
h(x) = β‖x‖1. (6)

In this case, considering n = N , the direction dik has the explicit expression:

dik = sgn(tik ) · max

{

|tik | − β

Lik

, 0

}

− xik ∀ik = 1, . . . , n,

where tik = xik − 1
Lik

∇ik f
(
xk
)
.

In these examples the arithmetic complexity of computing the next iterate xk+1, once
∇ik f (xk) is known, is of order O(nik ). The reader can find other favorable examples of
nonsmooth functions h which preserve the low iteration complexity of Algorithm (1-RCD)
(see also [14,31] for other examples). Note that most of the (coordinate descent) methods
designed for solving nonconvex problems usually have complexity per iteration at least of
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order O(n) (see e.g. [31], where the authors analyze a greedy coordinate descent method).
Coordinate descent methods that have similar complexity per iteration as our random method
can be found e.g. in [30], where the index selection is made cyclically (Gauss-Seidel rule).
But Algorithm (1-RCD) also offers other important advantages, e.g. due to the randomiza-
tion the algorithm is adequate for modern computational architectures (e.g distributed and
parallel architectures) [16,25].

We assume that the sequence of random variables i0, . . . , ik are i.i.d. In the sequel, we
use the notation ξ k for the entire history of random index selection

ξ k = {i0, . . . , ik}
and notation

φk = E
[

F
(

xk
)]
,

for the expectation taken w.r.t. ξ k−1. Given s, x ∈ R
n , we introduce the following function

and the associated map (operator):

ψL(s; x) = f (x)+ 〈∇ f (x), s〉 + 1

2
‖s‖2

L + h(x + s),

dL(x) = arg min
s∈Rn

f (x)+ 〈∇ f (x), s〉 + 1

2
‖s‖2

L + h(x + s). (7)

Based on this map, we now introduce an optimality measure which will be the basis for the
analysis of Algorithm (1-RCD):

M1(x, L) = ‖DL · dL(x)‖∗
L .

The map M1(x, L) is an optimality measure for optimization problem (1) in the sense that it
is positive for all nonstationary points and zero for stationary points (see Lemma 1 below):

Lemma 1 For any given vector L̃ ∈ R
N with positive entries, a vector x∗ ∈ R

n is a
stationary point for problem (1) if and only if the value M1(x∗, L̃) = 0.

Proof Based on the optimality conditions of subproblem (7), it can be easily shown that
if M1(x∗, L̃) = 0, then x∗ is a stationary point for the original problem (1). We prove
the converse implication by contradiction. Assume that x∗ is a stationary point for (1) and
M1(x∗, L̃) > 0. It follows that dL̃(x

∗) is a nonzero solution of subproblem (7). Then, there
exist the subgradients g(x∗) ∈ ∂h(x∗) and g(x∗ + dL̃(x

∗)) ∈ ∂h(x∗ + dL̃(x
∗)) such that the

optimality conditions for optimization problems (1) and (7) can be written as:
{∇ f (x∗)+ g(x∗) = 0

∇ f (x∗)+ DL̃ dL̃(x
∗)+ g(x∗ + dL̃(x

∗)) = 0.

Taking the difference of the two relations above and considering the inner product with
dL̃(x

∗) �= 0 on both sides of the equation, we get:

‖dL̃(x
∗)‖2

L̃
+ 〈g(x∗ + dL̃(x

∗))− g(x∗), dL̃ (x
∗)〉 = 0.

From convexity of the function h we see that both terms in the above sum are nonnegative
and thus dL̃(x

∗) = 0, which contradicts our hypothesis. In conclusion M1(x∗, L̃) = 0. ��
Note that ψL (s; x) is an 1-strongly convex function in the variable s w.r.t. norm ‖·‖L and

thus dL(x) is unique and the following inequality holds:

ψL(s; x) ≥ ψL(dL(x); x)+ 1

2
‖dL(x)− s‖2

L ∀x, s ∈ R
n . (8)
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2.3 Convergence of algorithm (1-RCD)

In this section, we analyze the convergence properties of Algorithm (1-RCD). Firstly, we
prove the asymptotic convergence of the sequence generated by Algorithm (1-RCD) to sta-
tionary points. For proving the asymptotic convergence we use the following supermartingale
convergence result of Robbins and Siegmund (see [21, Lemma 11 on page 50]):

Lemma 2 Let vk, uk and αk be three sequences of nonnegative random variables such that

E[vk+1|Fk] ≤ (1 + αk)vk − uk ∀k ≥ 0 a.s. and
∞∑

k=0

αk < ∞ a.s.,

where Fk denotes the collections v0, . . . , vk, u0, . . . , uk, α0, . . . , αk . Then, we have
limk→∞ vk = v for a random variable v ≥ 0 a.s. and

∑∞
k=0 uk < ∞ a.s.

In the next lemma we prove that Algorithm (1-RCD) is a descent method, i.e. the objective
function is nonincreasing along its iterations:

Lemma 3 Let xk be the sequence generated by Algorithm (1-RCD) under Assumption 1.
Then, the following relation holds:

F
(

xk+1
)

≤ F
(

xk
)

− Lik

2
‖dik ‖2 ∀k ≥ 0. (9)

Proof From the optimality conditions of subproblem (4) we have that there exists a subgra-
dient g(xk

ik
+ dik ) ∈ ∂hik (x

k
ik

+ dik ) such that:

∇ik f
(

xk
)

+ Lik dik + g
(

xk
ik

+ dik

)
= 0.

On the other hand, since the function hik is convex, according to Assumption 1 (ii), the
following inequality holds:

hik

(
xk

ik
+ dik

)
− hik

(
xk

ik

)
≤
〈
g
(

xk
ik

+ dik

)
, dik

〉

Applying the previous two relations in (3) and using the separability of the function h, then
under Assumption 1 (ii) we have that

F
(

xk+1
)

≤ F
(

xk
)

+ 〈∇ik f
(

xk
)
, dik 〉 + Lik

2
‖dik ‖2 + hik

(
xk

ik
+ dik

)
− hik

(
xk

ik

)

≤ F
(

xk
)

+
〈
∇ik f

(
xk
)
, dik

〉
+ Lik

2
‖dik ‖2 +

〈
g
(

xk
ik

+ dik

)
, dik

〉

≤ F
(

xk
)

− Lik

2
‖dik ‖2.

��
Using Lemma 3, we state the following result regarding the asymptotic convergence of

Algorithm (1-RCD).

Theorem 1 If Assumption 1 holds for the composite objective function F of problem (1) and
the sequence xk is generated by Algorithm (1-RCD) using the uniform distribution, then the
following statements are valid:

(i) The sequence of random variables M1(xk, L) converges to 0 a.s. and the sequence F(xk)

converges to a random variable F̄ a.s.
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(ii) Any accumulation point of the sequence xk is a stationary point for optimization prob-
lem (1).

Proof (i) From Lemma 3 we get:

F
(

xk+1
)

− F∗ ≤ F
(

xk
)

− F∗ − Lik

2
‖dik ‖2 ∀k ≥ 0.

We now take the expectation conditioned on ξ k−1 and note that ik is independent on the past
ξ k−1, while xk is fully determined by ξ k−1. We thus obtain:

E
[

F
(

xk+1
)

− F∗| ξ k−1
]

≤ F(xk)− F∗ − 1

2
E
[

Lik · ‖dik ‖2| ξ k−1
]

≤ F
(

xk
)

− F∗ − 1

2N
‖dL

(
xk
)
‖2

L .

Using the supermartingale convergence theorem given in Lemma 2 in the previous inequality,
we can ensure that

lim
k→∞ F

(
xk
)

− F∗ = θ a.s.

for a random variable θ ≥ 0 and thus F̄ = θ+ F∗. Further, due to almost sure convergence of
sequence F(xk), it can be easily seen that lim

k→∞ F(xk)− F(xk+1) = 0 a.s. From xk+1 −xk =
Uik dik and Lemma 3 we have:

Lik

2
‖dik ‖2 = Lik

2
‖xk+1 − xk‖2 ≤ F

(
xk
)

− F
(

xk+1
)

∀k ≥ 0,

which implies that

lim
k→∞‖xk+1 − xk‖ = 0 and lim

k→∞‖dik ‖ = 0 a.s.

As ‖dik ‖ → 0 a.s., we can conclude that the random variable E[‖dik ‖|ξ k−1] → 0 a.s. or
equivalently M1(xk, L) → 0 a.s.

(ii) For brevity we assume that the entire sequence xk generated by Algorithm (1-RCD)
is convergent. Let x̄ be the limit point of the sequence xk . In the first part of the theorem we
proved that the sequence of random variables dL(xk) converges to 0 a.s. Using the definition
of dL(xk) we have:

f
(

xk
)

+
〈
∇ f

(
xk
)
, dL

(
xk
)〉

+ 1

2
‖dL

(
xk
)
‖2

L + h
(

xk + dL

(
xk
))

≤ f
(

xk
)

+
〈
∇ f

(
xk
)
, s
〉
+ 1

2
‖s‖2

L + h
(

xk + s
)

∀s ∈ R
n,

and taking the limit k → ∞ and using Assumption 1 (ii) we get:

F(x̄) ≤ f (x̄)+ 〈∇ f (x̄), s〉 + 1

2
‖s‖2

L + h(x̄ + s) ∀s ∈ R
n .

This shows that dL(x̄) = 0 is the minimum in subproblem (7) for x = x̄ and thus M1(x̄, L)=0.
From Lemma 1 we conclude that x̄ is a stationary point for optimization problem (1). ��

The next theorem proves the convergence rate of the optimality measure M1(xk, L)
towards 0 in expectation.
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Theorem 2 Let F satisfy Assumption 1. Then, the Algorithm (1-RCD) based on the uni-
form distribution generates a sequence xk satisfying the following convergence rate for the
expected values of the optimality measure:

min
0≤l≤k

E

[(
M1(x

l , L)
)2
]

≤ 2N
(
F(x0)− F∗)

k + 1
∀k ≥ 0.

Proof For simplicity of the exposition we use the following notation: given the current
iterate x , denote the next iterate x+ = x + Ui di , where direction di is given by (4) for some
random chosen index i w.r.t. uniform distribution. For brevity, we also adapt the notation
of expectation upon the entire history, i.e. (φ, φ+, ξ) instead of (φk, φk+1, ξ k−1). From
Assumption 1 and inequality (3) we have:

F(x+) ≤ f (x)+ 〈∇i f (x), di 〉 + Li

2
‖di‖2 + hi (xi + di )+

∑

j �=i

h j (x j ).

We now take the expectation conditioned on ξ :

E[F(x+)| ξ ] ≤ E

⎡

⎣ f (x)+〈∇i f (x), di 〉+ Li

2
‖di‖2 + hi (xi + di )+

∑

j �=i

h j (x j )| ξ
⎤

⎦

≤ f (x)+ 1

N

[

〈∇ f (x), dL (x)〉 + 1

2
‖dL (x)‖2

L + h(x + dL (x))+ (N − 1)h(x)

]

.

After rearranging the above expression we get:

E[F(x+)| ξ ] ≤
(

1 − 1

N

)

F(x)+ 1

N
ψL(dL(x); x). (10)

Now, by taking the expectation in (10) w.r.t. ξ we obtain:

φ+ ≤
(

1 − 1

N

)

φ + E

[
1

N
ψL(dL(x); x)

]

, (11)

and then using the 1−strong convexity property of ψL we get:

φ − φ+ ≥ φ −
(

1 − 1

N

)

φ − 1

N
E [ψL(dL(x); x)]

= 1

N
(E [ψL(0; x)] − E[ψL(dL(x); x)])

≥ 1

2N
E
[‖dL(x)‖2

L

] = 1

2N
E
[
(M1(x, L))2

]
. (12)

Now coming back to the notation dependent on k and summing w.r.t. the entire history we
have:

1

2N

k∑

l=0

E
[
(M1(x

l , L))2
]

≤ φ0 − F∗,

which leads to the statement of the theorem. ��
It is important to note that the convergence rate for the Algorithm (1-RCD) given in

Theorem 2 is typical for the class of first order methods designed for solving nonconvex and
nonsmooth optimization problems (see e.g. [19] for more details). Recently, after our paper
came under review, a variant of 1-random coordinate descent method for solving composite
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nonconvex problems was also proposed in [11]. However, the authors in [11] do not provide
complexity results for their algorithm, but only asymptotic convergence in expectation. Note
also that our convergence results are different from the convex case [18,24], since here we
introduce another optimality measure and we use the supermartingale convergence theorem
in the analysis.

Furthermore, when the objective function F is smooth and nonconvex, i.e. h = 0, the
first order necessary conditions of optimality become ∇ f (x∗) = 0. Also, note that in this
case, the optimality measure M1(x, L) is given by: M1(x, L) = ‖∇ f (x)‖∗

L . An immediate
consequence of Theorem 2 in this case is the following result:

Corollary 1 Let h = 0 and f satisfy Assumption 1 (i). Then, in this case, the Algorithm
(1-RCD) based on the uniform distribution generates a sequence xk satisfying the following
convergence rate for the expected values of the norm of the gradients:

min
0≤l≤k

E

[(
‖∇ f (xl)‖∗

L

)2
]

≤ 2N
(
F(x0)− F∗)

k + 1
∀k ≥ 0.

2.4 Linear convergence rate of Algorithm (1-RCD) under error bound assumption

In this subsection, an improved rate of convergence is shown for Algorithm (1-RCD) under an
additional error bound assumption. In what follows, X∗ denotes the set of stationary points of
optimization problem (1), dist(x, S) = miny∈S‖y − x‖ and the vector 1 = [1 . . . 1]T ∈ R

N .

Assumption 2 A local error bound holds for the objective function of optimization problem
(1), i.e. for any η ≥ F∗ = min

x∈Rn
F(x) there exist τ > 0 and ε > 0 such that

dist(x, X∗) ≤ τM1(x, 1) ∀x ∈ V,

where V = {x ∈ R
n : F(x) ≤ η, M1(x, 1) ≤ ε}. Moreover, there exists ρ > 0 such that

‖x∗ − y∗‖ ≥ ρ whenever x∗, y∗ ∈ X∗ with f (x∗) �= f (y∗).

For example, Assumption 2 holds for composite objective functions satisfying the follow-
ing properties (see [31,32] for more examples):

(i) f is a quadratic function (even nonconvex) and h is polyhedral.
(ii) f is strongly convex and has Lipschitz continuous gradient.

Note that the box indicator function (5) and �1-regularization function (6) are polyhedral
functions. Note also that for strongly convex functions, Assumption 2 is globally satisfied.

In this section, we also assume that function f has global Lipschitz continuous gradient,
i.e. there exists a global Lipschitz constant L f > 0 such that:

‖∇ f (x)− ∇ f (y)‖ ≤ L f ‖x − y‖ ∀x, y ∈ R
n .

It is well known that this property leads to the following inequality [17]:

| f (y)− f (x)− 〈∇ f (x), y − x〉| ≤ L f

2
‖x − y‖2 ∀x, y ∈ R

n . (13)

For a given convex function h : R
n → R we also define the proximal map proxh(x) : R

n →
R

n as proxh(x) = arg miny∈Rn
1
2‖y−x‖2+h(y). For convex functions and R

n endowed with
the Euclidean norm, Nesterov shows in [18] the following relation between L f and Li : L f ≤
∑N

i=1 Li . However, in the nonconvex case we cannot derive a similar inequality, but only
the obvious relation: Li ≤ L f . In order to analyze the convergence properties of Algorithm
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(1-RCD) for minimizing a composite objective function which satisfies Assumption 2, we
require the following auxiliary result:

Lemma 4 Let h : R
n → R be a convex function. Then, the map ω : R+ → R+ defined by

ω(α) = ‖proxαh(x + αd)− x‖
α

,

is nonincreasing w.r.t. α for any x, d ∈ R
n.

Proof Note that this lemma is a generalization of [5, Lemma 2.2] from the projection operator
to the “prox” operator case. The proof of this generalization is given in Appendix. ��

Using separability of h according to Assumption 1 (ii), it is easy to see that the map dL(x)
satisfies:

x + dL(x) = arg min
y∈Rn

1

2
‖y − x + D−1

L ∇ f (x)‖2 +
N∑

i=1

1

Li
hi (yi ),

and in a more compact notation we have:

(dL(x))i = prox 1
Li

hi
(xi − 1/Li∇i f (x))− xi ∀i = 1, . . . , N .

Using this expression in Lemma 4, we conclude that:

‖(d1(x))i‖ ≤ max{1, Li } · ‖(dL(x))i‖ ∀i = 1, . . . , N (14)

and moreover,
M1(x, 1) ≤ max

1≤i≤N
{1, 1/

√
Li } · M1(x, L). (15)

Further, we denote τL = max1≤i≤N {1, 1/
√

Li }. The following theorem shows that Algorithm
(1-RCD) for minimizing composite functions with error bound (Assumption 2) has linear
convergence rate for the expected values of the objective function:

Theorem 3 Under Assumptions 1 and 2, let xk be the sequence generated by Algorithm
(1-RCD) with uniform probabilities. Then, we have the following linear convergence rate for
the expected values of the objective function:

φk − F̄ ≤
(

1 − 1

N [ττL (L f + L̄)+ 1]

)k
(
F(x0)− F̄

)

for any k sufficiently large, where L̄ = max1≤ j≤N L j and F̄ = F(x∗) for some stationary
point x∗ of (1).

Proof As in the previous section, for a simple exposition we drop k from our derivations:
e.g. the current point is denoted x , and x+ = x + Ui di , where direction di is given by
Algorithm (1-RCD) for some random selection of index i . Similarly, we use (φ, φ+, ξ)
instead of (φk, φk+1, ξ k−1). From the Lipschitz continuity relation (13) we have:

f (x)+ 〈∇ f (x), y − x〉 ≤ f (y)+ L f

2
‖x − y‖2 ∀x, y ∈ R

n .
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Adding the term 1
2‖x − y‖2

L + h(y)+ (N − 1)F(x) in both sides of the previous inequality
and then minimizing w.r.t. s = y − x we get:

min
s∈Rn

f (x)+ 〈∇ f (x), s〉 + 1

2
‖s‖2

L + h(x + s)+ (N − 1)F(x)

≤ min
s∈Rn

F(x + s)+ L f

2
‖s‖2 + 1

2
‖s‖2

L + (N − 1)F(x).

Based on the definition of ψL we have:

ψL(dL(x); x)+ (N − 1)F(x) ≤ min
s∈Rn

F(x + s)+ L f + L̄

2
‖s‖2 + (N − 1)F(x)

≤ F(x∗)+ L f + L̄

2
‖x − x∗‖2 + (N − 1)F(x),

for any x∗ stationary point, i.e. x∗ ∈ X∗. By taking expectation w.r.t. ξ and dividing by N ,
results in:

1

N
E[ψL(dL(x); x)]+

(

1 − 1

N

)

φ ≤ 1

N

(

F(x∗)+ L f + L̄

2
E[‖x − x∗‖2] + (N − 1)φ

)

.

Now, we come back to the notation dependent on k. Since the sequence F(xk) is nonincreasing
(according to Lemma 3), then F(xk) ≤ F(x0) for all k. Further, M1(x, 1) converges to 0 a.s.
according to Theorem 1 and inequality (15). Then, from Assumption 2 it follows that there
exist τ > 0 and k̄ such that

‖xk − x̄ k‖ ≤ τM1(x, 1) ∀k ≥ k̄,

where x̄ k ∈ X∗ satisfies ‖xk − x̄ k‖ = dist(xk, X∗). It also follows that ‖xk − x̄ k‖ converges
to 0 a.s. and then using the second part of Assumption 2 we can conclude that eventually the
sequence x̄ k settles down at some isocost surface of F (see also [31]), i.e. there exists some
k̂ ≥ k̄ and a scalar F̄ such that

F(x̄ k) = F̄ ∀k ≥ k̂.

Using (11), assuming k ≥ k̂ and taking into account that x̄ k ∈ X∗, i.e. x̄ k is a stationary
point, we have:

φk+1 ≤ 1

N

(

F̄ + τ
L f + L̄

2
E

[∥
∥
∥d1(x

k)

∥
∥
∥

2
]

+ (N − 1)φk

)

.

Further, by combining (12) and (15) we get:

φk+1 ≤ 1

N

(
F̄ + NττL

(
L f + L̄

) (
φk − φk+1

)
+ (N − 1)φk

)
,

Multiplying with N we get:

φk+1 − F̄ ≤ (NττL (L f + L̄)+ N − 1
) (
φk − F̄ + F̄ − φk+1

)
.

Finally, we get the linear convergence of the sequence φk :

φk+1 − F̄ ≤
(

1 − 1

NττL (L f + L̄)+ N

)
(
φk − F̄

)
.

��
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In [31], Tseng obtained a similar result for a block coordinate descent method with greedy
(Gauss-Southwell) index selection. However, due to randomization, our Algorithm (1-RCD)
has a much lower complexity per iteration than the complexity per iteration of Tseng’s
coordinate descent algorithm.

3 Constrained minimization of composite objective functions

In this section we present a variant of random block coordinate gradient descent method for
solving large-scale nonconvex optimization problems with composite objective function and
a single linear equality constraint:

F∗ = min
x∈Rn

F(x) (:= f (x)+ h(x))

s.t.: aT x = b, (16)

where a ∈ R
n is a nonzero vector and functions f and h satisfy similar conditions as in

Assumption 1. In particular, the smooth and nonsmooth part of the objective function in (16)
satisfy:

Assumption 3 (i) The function f has 2-block coordinate Lipschitz continuous gradient,
i.e. there are constants Li j > 0 such that:

‖∇i j f (x + Ui si + U j s j )− ∇i j f (x)‖ ≤ Li j‖si j‖
for all si j = [sT

i sT
j ]T ∈ R

ni +n j , x ∈ R
n and i, j = 1, . . . , N .

(ii) The function h is proper, convex, continuous and coordinatewise separable:

h(x) =
n∑

i=1

hi (xi ) ∀x ∈ R
n,

where the functions hi : R → R are convex for all i = 1, . . . , n.

Note that these assumptions are frequently used in the area of coordinate descent methods
for convex minimization, e.g. [2,13–15,31]. Based on this assumption the first order necessary
optimality conditions become: if x∗ is a local minimum of (16), then there exists a scalar λ∗
such that:

0 ∈ ∇ f (x∗)+ ∂h(x∗)+ λ∗a and aT x∗ = b.

Any vector x∗ satisfying this relation is called a stationary point for nonconvex problem
(16). For a simpler exposition in the following sections we use a context-dependent notation
as follows: let x =∑N

i=1 Ui xi ∈ R
n and xi j = [xT

i xT
j ]T ∈ R

ni +n j , then by addition with a
vector in the extended space y ∈ R

n , i.e., y + xi j , we understand y + Ui xi + U j x j . Also, by
the inner product 〈y, xi j 〉 we understand 〈y, xi j 〉 = 〈yi , xi 〉+〈y j , x j 〉. Based on Assumption
3 (i) the following inequality holds [14]:

| f (x + si j )− f (x)+ 〈∇i j f (x), si j 〉| ≤ Li j

2
‖si j‖2 ∀x ∈ R

n, si j ∈ R
ni +n j (17)

and then we can bound the function F with the following quadratic expression:

F(x + si j ) ≤ f (x)+ 〈∇i j f (x), si j 〉 + Li j

2
‖si j‖2 + h(x + si j ) ∀si j ∈ R

ni +n j , x ∈ R
n .

(18)
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Given local Lipschitz constants Li j > 0 for i �= j ∈ {1, . . . , N }, we define the vec-
tor � ∈ R

N with the components �i = 1
N

∑N
j=1 Li j , the diagonal matrix D� =

diag(�1 In1 , . . . , �N InN ) ∈ R
n×n and the following pair of dual norms:

‖x‖� =
(

N∑

i=1

�i‖xi‖2

)1/2

∀x ∈ R
n, ‖y‖∗

� =
(

N∑

i=1

�−1
i ‖yi‖2

)1/2

∀y ∈ R
n .

3.1 A 2-random coordinate descent algorithm

Let (i, j) be a two dimensional random variable, where i, j ∈ {1, . . . , N } with i �= j and
pik jk = Pr((i, j) = (ik, jk)) be its probability distribution. Given a feasible x , two blocks
are chosen randomly with respect to a given probability distribution pi j and the quadratic
model (18) is minimized with respect to these coordinates. Our method has the following
iteration: given a feasible initial point x0, that is aT x0 = b, then for all k ≥ 0

Algorithm (2-RCD)

1. Choose randomly 2 block coordinates (ik, jk) with probability pik jk

2. Set xk+1 = xk + Uik dik + U jk d jk ,

where directions dik jk = [dT
ik

dT
jk
]T minimize the quadratic model (18):

dik jk = arg min
sik jk

f
(

xk
)

+
〈
∇ik jk f (xk), sik jk

〉
+ Lik jk

2
‖sik jk ‖2 + h

(
xk + sik jk

)

s.t.: aT
ik

sik + aT
jk s jk = 0. (19)

The reader should note that for problems with simple separable functions h (e.g. box indicator
function (5), �1-regularization function (6)) the arithmetic complexity of computing the
direction di j is O(ni + n j ) (see [14,31] for a detailed discussion). Moreover, in the scalar
case, i.e. when N = n, the search direction di j can be computed in closed form, provided that
h is simple (e.g. box indicator function or �1-regularization function) [14]. Note that other
(coordinate descent) methods designed for solving nonconvex problems subject to a single
linear equality constraint have complexity per iteration at least of order O(n) [2,10,29,31].
We can consider more than one equality constraint in the optimization model (16). However,
in this case the analysis of Algorithm (2-RCD) is involved and the complexity per iteration
is much higher (see [14,31] for a detailed discussion).

We assume that for every pair (i, j) we have pi j = p ji and pii = 0, resulting in N (N−1)
2

different pairs (i, j). We define the subspace S = {s ∈ R
n : aT s = 0} and the local

subspace w.r.t. the pair (i, j) as Si j = {x ∈ S : xl = 0 ∀l �= i, j}. Also, we denote
ξ k = {(i0, j0), . . . , (ik, jk)} and φk = E

[
F(xk)

]
for the expectation taken w.r.t. ξ k−1.

Given a constant α > 0 and a vector with positive entries L ∈ R
N , the following property is

valid for ψL :

ψαL(s; x) = f (x)+ 〈∇ f (x), s〉 + α

2
‖s‖2

L + h(x + s). (20)

Since in this section we deal with linearly constrained problems, we need to adapt the def-
inition for the map dL(x) introduced in Sect. 2. Thus, for any vector with positive entries
L ∈ R

N and x ∈ R
n , we define the following map:

dL(x) = arg min
s∈S

f (x)+ 〈∇ f (x), s〉 + 1

2
‖s‖2

L + h(x + s). (21)
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In order to analyze the convergence of Algorithm (2-RCD), we introduce an optimality
measure:

M2(x, �) = ‖D� · dN�(x)‖∗
�.

Lemma 5 For any given vector �̃ with positive entries, a vector x∗ ∈ R
n is a stationary

point for problem (16) if and only if the quantity M2(x∗, �̃) = 0.

Proof Based on the optimality conditions of subproblem (21), it can be easily shown that
if M2(x∗, �̃) = 0, then x∗ is a stationary point for the original problem (16). We prove
the converse implication by contradiction. Assume that x∗ is a stationary point for (16) and
M2(x∗, �̃) > 0. It follows that dN �̃(x

∗) is a nonzero solution of subproblem (21) for x = x∗.
Then, there exist the subgradients g(x∗) ∈ ∂h(x∗) and g(x∗+dN �̃(x

∗)) ∈ ∂h(x∗+dN �̃(x
∗))

and two scalars γ, λ ∈ R such that the optimality conditions for optimization problems (16)
and (21) can be written as:

{∇ f (x∗)+ g(x∗)+ λa = 0
∇ f (x∗)+ DN �̃dN �̃(x

∗)+ g(x∗ + dN �̃(x
∗))+ γ a = 0.

Taking the difference of the two relations above and considering the inner product with
dN �̃(x

∗) �= 0 on both sides of the equation, we get:

‖dN �̃(x
∗)‖2

�̃
+ 1

N

〈
g
(
x∗ + dN �̃

(
x∗))− g

(
x∗), dN �̃

(
x∗)〉 = 0,

where we used that aT dN �̃(x
∗) = 0. From convexity of the function h we see that both terms

in the above sum are nonnegative and thus dN �̃(x
∗) = 0, which contradicts our hypothesis.

In conclusion, we get M2(x∗, �̃) = 0. ��
3.2 Convergence of algorithm (2-RCD)

In order to provide the convergence results of Algorithm (2-RCD), we have to introduce some
definitions and auxiliary results. We denote by supp(x) the set of indexes corresponding to
the nonzero coordinates in the vector x ∈ R

n .

Definition 1 Let d, d ′ ∈ R
n , then the vector d ′ is conformal to d if: supp(d ′) ⊆ supp(d) and

d ′
j d j ≥ 0 for all j = 1, . . . , n.

We introduce the notion of elementary vectors for the linear subspace S = Null(aT ).

Definition 2 An elementary vector d of S is a vector d ∈ S for which there is no nonzero
d ′ ∈ S conformal to d and supp(d ′) �= supp(d).

We now present some results for elementary vectors and conformal realization, whose
proofs can be found in [26,27,31]. A particular case of Exercise 10.6 in [27] and an interesting
result in [26] provide us the following lemma:

Lemma 6 [26,27] Given d ∈ S, if d is an elementary vector, then |supp(d)| ≤ 2. Otherwise,
d has a conformal realization d = d1 + · · · + ds , where s ≥ 2 and dt ∈ S are elementary
vectors conformal to d for all t = 1, . . . , s.

An important property of convex and separable functions is given by the following lemma:
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Lemma 7 [31] Let h be componentwise separable and convex. For any x, x +d ∈ domh, let
d be expressed as d = d1 + · · · + ds for some s ≥ 2 and some nonzero dt ∈ R

n conformal
to d for all t = 1, . . . , s. Then,

h(x + d)− h(x) ≥
s∑

t=1

(
h(x + dt )− h(x)

)
,

where dt ∈ S are elementary vectors conformal to d for all t = 1, . . . , s.

Lemma 8 If Assumption 3 holds and sequence xk is generated by Algorithm (2-RCD) using
the uniform distribution, then the following inequality is valid:

E
[
ψLik jk 1

(
dik jk ; xk

)
|ξ k−1

]

≤
(

1 − 2

N (N − 1)

)

F
(

xk
)

+ 2

N (N − 1)
ψN�

(
dN�

(
xk
)

; xk
)

∀k ≥ 0.

Proof As in the previous sections, for a simple exposition we drop k from our derivations:
e.g. the current point is denoted x , next iterate x+ = x +Ui di +U j d j , where direction di j is
given by Algorithm (2-RCD) for some random selection of pair (i, j) and ξ instead of ξ k−1.
From the relation (20) and the property of minimizer di j we have:

ψLi j 1
(
di j ; x

) ≤ ψLi j 1
(
si j ; x

) ∀si j ∈ Si j .

Taking expectation in both sides w.r.t. random variable (i, j) conditioned on ξ and recalling
that pi j = 2

N (N−1) , we get:

E[ψLi j 1(di j ; x)| ξ ]

≤ f (x)+ 2

N (N − 1)

⎡

⎣
∑

i, j

〈∇i j f (x), si j 〉 +
∑

i, j

Li j

2
‖si j‖2 +

∑

i, j

h(x + si j )

⎤

⎦

= f (x)+ 2

N (N − 1)

⎡

⎣
∑

i, j

〈∇i j f (x), si j 〉 +
∑

i, j

1

2
‖√Li j si j‖2 +

∑

i, j

h(x + si j )

⎤

⎦ ,

for all si j ∈ Si j . We can apply Lemma 7 for coordinatewise separable functions ‖·‖2 and
h(·) and we obtain:

E[ψLi j 1(di j ; x)| ξ ] ≤ f (x)+ 2

N (N − 1)

⎡

⎣

〈

∇ f (x),
∑

i, j

si j

〉

+ 1

2
‖
∑

i, j

√
Li j si j‖2

+ h

⎛

⎝x +
∑

i, j

si j

⎞

⎠+
(

N (N − 1)

2
−1

)

h(x),

⎤

⎦

for all si j ∈ Si j . From Lemma 6 it follows that any s ∈ S has a conformal realization defined
by s = ∑

t st , where the vectors st ∈ S are elementary vectors conformal to s. Therefore,
observing that every elementary vector st has at most two nonzero blocks, then any vector
s ∈ S can be generated by s = ∑i, j si j , where si j ∈ S are conformal to s and have at most
two nonzero blocks, i.e. si j ∈ Si j for some pair (i, j). Due to conformal property of the
vectors si j , the expression ‖∑i, j

√
Li j si j‖2 is nondecreasing in the weights Li j and taking

in account that Li j ≤ min{N�i , N� j }, the previous inequality leads to:

123



J Glob Optim (2015) 61:19–46 35

E[ψLi j 1(di j ; x)| ξ ]

≤ f (x)+ 2

N (N − 1)

⎡

⎢
⎣

〈

∇ f (x),
∑

i, j

si j

〉

+ 1

2

∥
∥
∥
∥
∥
∥

∑

i, j

D1/2
N�si j

∥
∥
∥
∥
∥
∥

2

+ h

⎛

⎝x +
∑

i, j

si j

⎞

⎠

+
(

N (N − 1)

2
− 1

)

h(x)

⎤

⎦

= f (x)+ 2

N (N −1)

[

〈∇ f (x), s〉+ 1

2
‖√N D1/2

� s‖2+h(x+s)+
(

N (N −1)

2
−1

)

h(x),

]

for all s ∈ S. As the last inequality holds for any vector s ∈ S, it also holds for the particular
vector dN�(x) ∈ S:

E[ψLi j 1(di j ; x)|ξ ] ≤
(

1 − 2

N (N − 1)

)

F(x)+ 2

N (N − 1)

×
[

f (x)+ 〈∇ f (x), dN�(x)〉 + N

2
‖dN�(x)‖2

�+h(x+dN�(x))

]

=
(

1 − 2

N (N − 1)

)

F(x)+ 2

N (N − 1)
ψN�(dN�(x); x).

��
The main convergence properties of Algorithm (2-RCD) are given in the following theo-

rem:

Theorem 4 If Assumption 3 holds for the composite objective function F of problem (16)
and the sequence xk is generated by Algorithm (2-RCD) using the uniform distribution, then
the following statements are valid:

(i) The sequence of random variables M2(xk, �) converges to 0 a.s. and the sequence F(xk)

converges to a random variable F̄ a.s.
(ii) Any accumulation point of the sequence xk is a stationary point for optimization problem

(16).

Proof (i) Using a similar reasoning as in Lemma 3 but for the inequality (18) we can show the
following decrease in the objective function for Algorithm (2-RCD) (i.e. Algorithm (2-RCD)
is also a descent method):

F(xk+1) ≤ F
(

xk
)

− Lik jk

2
‖dik jk ‖2 ∀k ≥ 0. (22)

Further, subtracting F∗ from both sides, applying expectation conditioned on ξ k−1 and then
using supermartingale convergence theorem given in Lemma 2 we obtain that F(xk) con-
verges to a random variable F̄ a.s. for k → ∞. Due to almost sure convergence of sequence
F(xk), it can be easily seen that lim

k→∞ F(xk) − F(xk+1) = 0 a.s. Moreover, from (22) we

have:
Lik jk

2
‖dik jk ‖2 = Lik jk

2
‖xk+1 − xk‖2 ≤ F

(
xk
)

− F
(

xk+1
)

∀k ≥ 0,

which implies that

lim
k→∞ dik jk = 0 and lim

k→∞‖xk+1 − xk‖ = 0 a.s.
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As in the previous section, for a simple exposition we drop k from our derivations: e.g. the
current point is denoted x , next iterate x+ = x + Ui di + U j d j , where direction di j is given
by Algorithm (2-RCD) for some random selection of pair (i, j) and ξ stands for ξ k−1. From
Lemma 8, we obtain a sequence which bounds from below ψN�(dN�(x); x) as follows:

N (N − 1)

2
E[ψLi j 1(di j ; x)| ξ ] +

(

1 − N (N − 1)

2

)

F(x) ≤ ψN�(dN�(x); x).

On the other hand, from Lemma 6 it follows that any s ∈ S has a conformal realization
defined by s = ∑

i, j si j , where si j ∈ S are conformal to s and have at most two nonzero
blocks, i.e. si j ∈ Si j for some pair (i, j). Using now Jensen inequality we derive another
sequence which bounds ψN�(dN�(x); x) from above:

ψN�(dN�(x); x)) = min
s∈S

f (x)+ 〈∇ f (x), s〉 + 1

2
‖s‖2

N� + h(x + s)

= min
si j ∈Si j

⎡

⎢
⎣ f (x)+

〈

∇ f (x),
∑

i, j

si j

〉

+ 1

2

∥
∥
∥
∥
∥
∥

∑

i, j

si j

∥
∥
∥
∥
∥
∥

2

N�

+ h

⎛

⎝x +
∑

i, j

si j

⎞

⎠

⎤

⎥
⎦

= min
s̃i j ∈Si j

f (x)+ 1

N (N − 1)

〈

∇ f (x),
∑

i, j

s̃i j

〉

+ 1

2

∥
∥
∥
∥
∥
∥

1

N (N − 1)

∑

i, j

s̃i j

∥
∥
∥
∥
∥
∥

2

N�

+ h

⎛

⎝x + 1

N (N − 1)

∑

i, j

s̃i j

⎞

⎠

≤ min
s̃i j ∈Si j

f (x)+ 1

N (N − 1)

∑

i, j

〈∇ f (x), s̃i j
〉+ 1

2N (N − 1)

∑

i, j

‖s̃i j ‖2
N�

+ 1

N (N − 1)

∑

i, j

h
(
x + s̃i j

) = E[ψN�(di j ; x)|ξ ],

where we used the notation s̃i j = N (N − 1)si j . If we come back to the notation depen-
dent on k, then using Assumption 3 (ii) and the fact that dik jk → 0 a.s. we obtain that
E[ψN�(dik jk ; xk)|ξ k−1] converges to F̄ a.s. for k → ∞. We conclude that both sequences,
lower and upper bounds of ψN�(dN�(xk); xk) from above, converge to F̄ a.s., hence
ψN�(dN�(xk); xk) converges to F̄ a.s. for k → ∞. A trivial case of strong convexity
relation (8) leads to:

ψN�

(
0; xk

)
≥ ψN�

(
dN�

(
xk
)

; xk
)

+ N

2

∥
∥
∥dN�

(
xk
)∥
∥
∥

2

�
.

Note thatψN�(0; xk) = F(xk) and since both sequencesψN�(0; xk) andψN�(dN�(xk); xk)

converge to F̄ a.s. for k → ∞, from the above strong convexity relation it follows that the
sequence M2(xk;�) = ‖dN�(xk)‖� converges to 0 a.s. for k → ∞.

(ii) The proof follows the same ideas as in the proof of Theorem 1 (ii). ��
We now present the convergence rate for Algorithm (2-RCD).

Theorem 5 Let F satisfy Assumption 3. Then, the Algorithm (2-RCD) based on the uni-
form distribution generates a sequence xk satisfying the following convergence rate for the
expected values of the optimality measure:

min
0≤l≤k

E

[(
M2(x

l , �)
)2
]

≤ N
(
F(x0)− F∗)

k + 1
∀k ≥ 0.
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Proof Given the current feasible point x , denote x+ = x + Ui di + U j d j as the next iterate,
where direction (di , d j ) is given by Algorithm (2-RCD) for some random chosen pair (i, j)
and we use the notation (φ, φ+, ξ) instead of (φk, φk+1, ξ k−1). Based on Lipschitz inequality
(18) we derive:

F(x+) ≤ f (x)+ 〈∇i j f (x), di j 〉 + Li j

2
‖di j‖2 + h(x + di j ).

Taking expectation conditioned on ξ in both sides and using Lemma 8 we get:

E [F(x+)|ξ ] ≤
(

1 − 2
N (N−1)

)
F(x)+ 2

N (N−1)ψN�(dN�(x); x).

Taking now expectation w.r.t. ξ , we can derive:

φ − φ+ ≥ E[ψN�(0; x)] −
(

1 − 2

N (N − 1)

)
E[ψN�(0; x)]

− 2

N (N − 1)
E[ψN�(dN�(x); x)]

= 2

N (N − 1)
(E[ψN�(0; x)] − E[ψN�(dN�(x); x)])

≥ 1

N − 1
E
[‖dN�(x)‖2

�

] ≥ 1

N
E
[
(M2(x, �))

2] ,

where we used the strong convexity property of function ψN�(s; x). Now, considering iter-
ation k and summing up with respect to entire history we get:

1

N

k∑

l=0

E

[(
M2(x

l , �)
)2
]

≤ F(x0)− F∗.

This inequality leads us to the above result. ��
3.3 Constrained minimization of smooth objective functions

We now study the convergence of Algorithm (2-RCD) on the particular case of optimization
model (16) with h = 0. For this particular case a feasible point x∗ is a stationary point for
(16) if there exists λ∗ ∈ R such that:

∇ f (x∗)+ λ∗a = 0 and aT x∗ = b. (23)

For any feasible point x , note that exists λ ∈ R such that:

∇ f (x) = ∇ f (x)⊥ − λa,

where ∇ f (x)⊥ is the projection of the gradient vector ∇ f (x) onto the subspace S orthogonal
to the vector a. Since ∇ f (x)⊥ = ∇ f (x)+ λa, we defined a particular optimality measure:

M3(x, 1) = ‖∇ f (x)⊥‖.
In this case the iteration of Algorithm (2-RCD) is a projection onto a hyperplane so that the
direction dik jk can be computed in closed form. We denote by Qi j ∈ R

n×n the symmetric
matrix with all blocks zeros except:

Qii
i j = Ini − ai aT

i

aT
i ai

, Qi j
i j = − ai aT

j

aT
i j ai j

, Q j j
i j = In j − a j aT

j

aT
i j ai j

.
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It is straightforward to see that Qi j is positive semidefinite (notation Qi j � 0) and Qi j a = 0
for all pairs (i, j) with i �= j . Given a probability distribution pi j , let us define the matrix:

Q =
∑

i, j

pi j

Li j
Qi j ,

that is also symmetric and positive semidefinite, since Li j , pi j > 0 for all (i, j). Furthermore,
since we consider all possible pairs (i, j), with i �= j ∈ {1, . . . , N }, it can be shown that the
matrix Q has an eigenvalue ν1(Q) = 0 (which is a simple eigenvalue) with the associated
eigenvector a. It follows that ν2(Q) (the second smallest eigenvalue of Q) is positive. Since
h = 0, we have F = f . Using the same reasoning as in the previous sections we can easily
show that the sequence f (xk) satisfies the following decrease:

f (xk+1) ≤ f
(

xk
)

− 1

2Li j
∇ f

(
xk
)T

Qi j∇ f
(

xk
)

∀k ≥ 0. (24)

We now give the convergence rate of Algorithm (2-RCD) for this particular case:

Theorem 6 Let h = 0 and f satisfy Assumption 3 (i). Then, Algorithm (2-RCD) based
on a general probability distribution pi j generates a sequence xk satisfying the following
convergence rate for the expected values of the norm of the projected gradients onto subspace
S:

min
0≤l≤k

E

[(
M3(x

l , 1)
)2
]

≤ 2(F(x0)− F∗)
ν2(Q)(k + 1)

.

Proof As in the previous section, for a simple exposition we drop k from our derivations: e.g.
the current point is denoted x , and x+ = x + Ui di + U j d j , where direction di j is given by
Algorithm (2-RCD) for some random selection of pair (i, j). Since h = 0, we have F = f .
From (24) we have the following decrease: f (x+) ≤ f (x)− 1

2Li j
∇ f (x)T Qi j∇ f (x). Taking

now expectation conditioned in ξ in this inequality we have:

E[ f (x+)| ξ ] ≤ f (x)− 1

2
∇ f (x)T Q∇ f (x).

From the above decomposition of the gradient ∇ f (x) = ∇ f (x)⊥ − λa and the observation
that Qa = 0, we conclude that the previous inequality does not change if we replace ∇ f (x)
with ∇ f (x)⊥:

E[ f (x+)|ξ ] ≤ f (x)− 1

2
∇ f (x)T⊥Q∇ f (x)⊥.

Note that ∇ f (x)⊥ is included in the orthogonal complement of the span of vector a, so that
the above inequality can be relaxed to:

E[ f (x+)| ξ ] ≤ f (x)− 1

2
ν2(Q)‖∇ f (x)⊥‖2 = f (x)− ν2(Q)

2
(M3(x, 1))2 . (25)

Coming back to the notation dependent on k and taking expectation in both sides of inequality
(25) w.r.t. ξ k−1, we have:

φk − φk+1 ≥ ν2(Q)

2
E

[(
M3(x

k, 1)
)2
]

.

Summing w.r.t. the entire history, we obtain the above result. ��
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Note that our convergence proofs given in this section (Theorems 4, 5 and 6) are different
from the convex case [13–15], since here we introduce another optimality measure and we
use supermartingale convergence theorem in the analysis. It is important to see that the
convergence rates for the Algorithm (2-RCD) given in Theorems 5 and 6 are typical for
the class of first order methods designed for solving nonconvex and nonsmotth optimization
problems, e.g. in [2,19] similar results are obtained for other gradient based methods designed
to solve nonconvex problems.

4 Numerical experiments

In this section we analyze the practical performance of the random coordinate descent meth-
ods derived in this paper and compare our algorithms with some recently developed state-
of-the-art algorithms from the literature. Coordinate descent methods are one of the most
efficient classes of algorithms for large-scale optimization problems. Therefore, we present
extensive numerical simulation for large-scale nonconvex problems with dimension ranging
from n = 103 to n = 107. For numerical experiments, we implemented all the algorithms
in C code and we performed our tests on a PC with Intel Xeon E5410 CPU and 8 Gb RAM
memory.

For tests we choose as application the eigenvalue complementarity problem. It is well-
known that many applications from mathematics, physics and engineering require the efficient
computation of eigenstructure of some symmetric matrix. A brief list of these applications
includes optimal control, stability analysis of dynamic systems, structural dynamics, electri-
cal networks, quantum chemistry, chemical reactions and economics (see [7,12,20,29] and
the reference therein for more details). The eigenvalues of a symmetric matrix A have an
elementary definition as the roots of the characteristic polynomial det (A − λI ). In realistic
applications the eigenvalues can have an important role, for example to describe expected
long-time behavior of a dynamical system, or to be only intermediate values of a computa-
tional method. For many applications the optimization approach for eigenvalues computation
is better than the algebraic one. Although, the eigenvalues computation can be formulated
as a convex problem, the corresponding feasible set is complex so that the projection on this
set is numerically very expensive, at least of order O(n2). Therefore, classical methods for
convex optimization are not adequate for large-scale eigenvalue problems. To obtain a lower
iteration complexity as O(n) or even O(p), where p � n, an appropriate way to approach
these problems is through nonconvex formulation and using coordinate descent methods. A
classical optimization problem formulation involves the Rayleigh quotient as the objective
function of some nonconvex optimization problem [12]. The eigenvalue complementarity
problem (EiCP) is an extension of the classical eigenvalue problem, which can be stated as:
given matrices A and B, find ν ∈ R and x �= 0 such that

{
w = (νB − A)x,
w ≥ 0, x ≥ 0, wT x = 0.

If matrices A and B are symmetric, then we have symmetric (EiCP). It has been shown in [29]
that symmetric (EiCP) is equivalent with finding a stationary point of a generalized Rayleigh
quotient on the simplex:

min
x∈Rn

xT Ax

xT Bx

s.t.: 1T x = 1, x ≥ 0,
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where we recall that 1 = [1 . . . 1]T ∈ R
n . A widely used alternative formulation of (EiCP)

problem is the nonconvex logarithmic formulation (see [8,29]):

max
x∈Rn

f (x)

(

= ln
xT Ax

xT Bx

)

s.t.: 1T x = 1, x ≥ 0. (26)

Note that optimization problem (26) is a particular case of (16), where h is the indicator
function of the nonnegative orthant. In order to have a well-defined objective function for
the logarithmic case, in the most of the aforementioned papers the authors assumed positive
definiteness of matrices A = [ai j ] and B = [bi j ]. In this paper, in order to have a more
practical application with a highly nonconvex objective function [7], we consider the class
of nonnegative matrices, i.e. A, B ≥ 0, with positive diagonal elements, i.e. aii > 0 and
bii > 0 for all i = 1, · · · , n. For this class of matrices the problem (26) is also well-defined
on the simplex. Based on Perron-Frobenius theorem, we have that for matrices A that are also
irreducible and B = In the corresponding stationary point of the (EiCP) problem (26) is the
global minimum of this problem or equivalently is the Perron vector, so that any accumulation
point of the sequence generated by our Algorithm (2-RCD) is also a global minimizer. In
order to apply our Algorithm (2-RCD) on the logarithmic formulation of the (EiCP) problem
(26), we have to compute an approximation of the Lipschitz constants Li j . For brevity, we
introduce the notation �n = {x ∈ R

n : 1T x = 1, x ≥ 0} for the standard simplex and the
function gA(x) = ln xT Ax . For a given matrix A, we denote by Ai j ∈ R

(ni +n j )×(ni +n j ) the
2 × 2 block matrix of A by taking the pair (i, j) of block rows of matrix A and then the pair
(i, j) of block columns of A.

Lemma 9 Given a nonnegative matrix A ∈ R
n×n such that aii �= 0 for all i = 1, · · · , n,

then the function gA(x) = ln xT Ax has 2 block coordinate Lipschitz gradient on the standard
simplex, i.e.:

‖∇i j gA(x + si j )− ∇i j gA(x)‖ ≤ L A
i j‖si j‖, ∀x, x + si j ∈ �n,

where an upper bound on Lipschitz constant L A
i j is given by

L A
i j ≤ 2N

min1≤i≤N aii
‖Ai j‖.

Proof The Hessian of the function gA(x) is given by

∇2gA(x) = 2A

xT Ax
− 4(Ax)(Ax)T

(xT Ax)2
.

Note that ∇2
i j gA(x) = 2Ai j

xT Ax
− 4(Ax)i j (Ax)Ti j

(xT Ax)2
. With the same arguments as in [29] we have

that: ‖∇2
i j gA(x)‖ ≤ ‖ 2Ai j

xT Ax
‖. From the mean value theorem we obtain:

∇i j gA(x + si j ) = ∇i j gA(x)+
1∫

0

∇2
i j gA(x + τ si j ) si j dτ,
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for any x, x + si j ∈ �n . Taking norm in both sides of the equality results in:

‖∇i j gA(x + si j )− ∇i j gA(x)‖ =
∥
∥
∥
∥
∥
∥

⎛

⎝

1∫

0

∇2
i j gA(x + τ si j )dτ

⎞

⎠ si j

∥
∥
∥
∥
∥
∥

≤
1∫

0

‖∇2
i j gA(x + τ si j )‖dτ‖si j‖ ≤ ‖ 2Ai j

xT Ax
‖‖si j‖ ∀x, x + si j ∈ �n .

Note that min
x∈�n

xT Ax > 0 since we have:

min
x∈�n

xT Ax ≥ min
x∈�n

(

min
1≤i≤n

aii

)

‖x‖2 = 1

N
min

1≤i≤n
aii .

and the above result can be easily derived. ��

Based on the previous notation, the objective function of the logarithmic formulation (26)
is given by:

max
x∈�n

f (x) (= gA(x)− gB(x)) or min
x∈�n

f̄ (x) (= gB(x)− gA(x)).

Therefore, the local Lipschitz constants Li j of function f are estimated very easily and
numerically cheap as:

Li j ≤ L A
i j + L B

i j = 2N

min1≤i≤n aii
‖Ai j‖ + 2N

min1≤i≤n bii
‖Bi j‖ ∀i �= j.

In [29] the authors show that a variant of difference of convex functions (DC) algorithm is
very efficient for solving the logarithmic formulation (26). We present extensive numerical
experiments for evaluating the performance of our Algorithm (2-RCD) in comparison with
the Algorithm (DC). For completeness, we also present the Algorithm (DC) for logarithmic
formulation of (EiCP) in the minimization form from [29]: given x0 ∈ R

n , for k ≥ 0 do

Algorithm (DC) [31]

1. Set yk =
(

μIn + 2A

〈xk, Axk〉 − 2B

〈xk, Bxk〉
)

xk,

2. Solve the QP : xk+1 = arg min
x∈Rn

{μ

2
‖x‖2 − 〈x, yk〉 : 1T x = 1, x ≥ 0

}
,

where μ is a parameter chosen in a preliminary stage of the algorithm such that the function
x �→ 1

2μ‖x‖2 + ln(xT Ax) is convex. In both algorithms we use the following stopping crite-
rion: | f (xk)− f (xk+1)| ≤ ε, where ε is some chosen accuracy. Note that Algorithm (DC) is
based on full gradient information and in the application (EiCP) the most computations con-
sists of matrix vector multiplication and a projection onto simplex. When at least one matrix
A and B is dense, the computation of the sequence yk is involved, typically O(n2) opera-
tions. However, when these matrices are sparse the computation can be reduced to O(pn)
operations, where p is the average number of nonzeros in each row of the matrix A and B.
Further, there are efficient algorithms for computing the projection onto simplex, e.g. block
pivotal principal pivoting algorithm described in [8], whose arithmetic complexity is of order
O(n). As it appears in practice, the value of parameter μ is crucial in the rate of convergence
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of Algorithm (DC). The authors in [29] provide an approximation of μ that can be computed
easily when the matrix A from (26) is positive definite. However, for general copositive matri-
ces (as the case of nonnegative irreducible matrices considered in this paper) one requires the
solution of certain NP-hard problem to obtain a good approximation of parameter μ. On the
other hand, for our Algorithm (2-RCD) the computation of the Lipschitz constants Li j is very
simple and numerically cheap (see previous lemma). Further, for the scalar case (i.e. n = N )
the complexity per iteration of our method applied to (EiCP) problem is O(p) in the sparse
case.

In Table 1 we compare the two algorithms: (2-CRD) and (DC). We generated random
sparse symmetric nonnegative and irreducible matrices of dimension ranging from n = 103

to n = 107 using the uniform distribution. Each row of the matrices has only p = 10
nonzero entries. In both algorithms we start from random initial points. In the table we
present for each algorithm the final objective function value (F∗), the number of itera-
tions (iter) and the necessary CPU time (in seconds) for our computer to execute all the
iterations. As Algorithm (DC) uses the whole gradient information to obtain the next iter-
ate, we also report for Algorithm (2-RCD) the equivalent number of full-iterations which
means the total number of iterations divided by n/2 (i.e. the number of iterations groups
x0, xn/2, ..., xkn/2). Since computing μ is very difficult for this type of matrices, we try to
tune μ in Algorithm (DC). We have tried four values for μ ranging from 0.01n to 50n.
We have noticed that if μ is not carefully tuned Algorithm (DC) cannot find the optimal
value f ∗ in a reasonable time. Then, after extensive simulations we find an appropriate
value for μ such that Algorithm (DC) produces an accurate approximation of the optimal
value. From the table we see that our Algorithm (2-RCD) provides better performance in
terms of objective function values and CPU time (in seconds) than Algorithm (DC). We also
observe that our algorithm is not sensitive w.r.t. the Lipschitz constants Li j and also w.r.t.
the initial point, while Algorithm (DC) is very sensitive to the choice of μ and the initial
point.

Further, in Fig. 1 we plot the evolution of the objective function w.r.t. time for Algorithms
(2-RCD) and (DC), in logarithmic scale, on a random (EiCP) problem with dimension n =
5·105 (Algorithm (DC) with parameter left:μ = 1.42·n; right:μ = 50·n). For a good choice
ofμwe see that in the initial phase of Algorithm (DC) the reduction in the objective function
is very fast, but while approaching the optimum it slows down. On the other hand, due to
the sparsity and randomization our proposed algorithm is faster in numerical implementation
than the (DC) scheme.

In Fig. 2 we plot the evolution of CPU time, in logarithmic scale, required for solving the
problem w.r.t. the average number of nonzeros entries p in each row of the matrix A. We
see that for very sparse matrices (i.e. for matrices with relatively small number of nonzeros
per row p � n), our Algorithm (2-RCD) performs faster in terms of CPU time than (DC)
method. The main reason is that our method has a simple implementation, does not require
the use of other algorithms at each iteration and the arithmetic complexity of an iteration is of
order O(p). On the other hand, Algorithm (DC) is using the block pivotal principal pivoting
algorithm described in [8] at each iteration for projection on simplex and the arithmetic
complexity of an iteration is of order O(pn).

We conclude from the theoretical rate of convergence and the previous numerical results
that Algorithms (1-RCD) and (2-RCD) are easier to be implemented and analyzed due to
the randomization and the typically very simple iteration. Furthermore, on certain classes
of problems with sparsity structure, that appear frequently in many large-scale real appli-
cations, the practical complexity of our methods is better than that of some well-known
methods from the literature. All these arguments make our algorithms to be competitive

123



J Glob Optim (2015) 61:19–46 43

Table 1 Performance of algorithms (2-RCD) and (DC) on randomly generated (EiCP) sparse problems with
p = 10 and random starting point x0 for different problem dimensions n

n (DC) (2-RCD)

μ CPU (s) Iter F∗ CPU (sec) Full-iter F∗

5 × 103 0.01n 0.0001 1 1.32 0.09 56 105.20

n 0.001 2 82.28

2n 0.02 18 105.21

50n 0.25 492 105.21

2 × 104 0.01n 0.01 1 1.56 0.39 50 73.74

n 0.01 2 59.99

1.43n 0.59 230 73.75

50n 0.85 324 73.75

5 × 104 0.01n 0.01 1 1.41 1.75 53 83.54

n 0.02 2 67.03

1.43n 1.53 163 83.55

50n 2.88 324 83.57

7.5 × 104 0.01n 0.01 1 2.40 3.60 61 126.04

n 0.03 2 101.76

1.45n 6.99 480 126.05

50n 4.72 324 126.05

105 0.01n 0.02 1 0.83 4.79 53 52.21

n 0.05 2 41.87

1.43n 6.48 319 52.22

50n 6.57 323 52.22

5 ×105 0.01n 0.21 1 2.51 49.84 59 136.37

n 0.42 2 109.92

1.43n 94.34 475 136.38

50n 66.61 324 136.38

7.5 ×105 0.01n 0.44 1 3.11 37.59 38 177.52

n 0.81 2 143.31

1.43n 72.80 181 177.52

50n 135.35 323 177.54

106 0.01n 0.67 1 3.60 49.67 42 230.09

n 1.30 2 184.40

1.43n 196.38 293 230.09

50n 208.39 323 230.11

107 0.01n 4.69 1 10.83 758.1 41 272.37

n 22.31 2 218.88

1.45n 2947.93 325 272.37

50n 2929.74 323 272.38

in the large-scale nonconvex optimization framework. Moreover, our methods are suited
for recently developed computational architectures (e.g., distributed or parallel architectures
[16,25]).
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Fig. 1 Performance in terms of function values of Algorithms (2-RCD) and (DC) on a randomly generated
(EiCP) problem with n = 5 · 105: left μ = 1.42 · n and right μ = 50 · n

Fig. 2 CPU time performance of
Algorithms (2-RCD) and (DC)
for different values of the sparsity
p of the matrix on a randomly
generated (EiCP) problem of
dimension n = 2 × 104
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Appendix

Proof of Lemma 4 We derive our proof based on the following remark (see also [5]), for
given u, v ∈ R

n if 〈v, u − v〉 > 0, then

‖u‖
‖v‖ ≤ 〈u, u − v〉

〈v, u − v〉 . (27)

Let α > β > 0. Taking u = proxαh(x + αd) − x and v = proxβh(x + βd) − x , we show
first that inequality 〈v, u − v〉 > 0 holds. Given a real constant c > 0, from the optimality
conditions corresponding to proximal operator we have:

x − proxch(x) ∈ ∂ch(proxch(x)).

Therefore, from the convexity of h we can derive that:

ch(z) ≥ ch(proxch(y))+ 〈y − proxch(y), z − proxch(y)〉 ∀y, z ∈ R
n .

Taking c = α, z = proxβh(x + βd) and y = x + αd we have:

〈u, u − v〉 ≤ α
(〈d, u − v〉 + h(proxβh(x + βd))− h(proxαh(x + αd))

)
. (28)

Also, if c = β, z = proxαh(x + αd) and y = x + βd , then we have:

〈v, u − v〉 ≥ β
(〈d, u − v〉 + h(proxh(x + βd))− h(proxh(x + αd))

)
. (29)
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Summing these two inequalities and taking in account that α > β we get:

〈d, u − v〉 + h(proxh(x + βd))− h(proxh(x + αd)) > 0.

Therefore, replacing this expression into inequality (28) leads to 〈v, u − v〉 > 0. Finally,
from (27),(28) and (29) we get the inequality:

‖u‖
‖v‖ ≤ α〈d, u − v〉

β〈d, u − v〉 ,

and then the statement of Lemma 4 can be easily derived. ��
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