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Abstract Feature selection plays an important role in the successful application of machine
learning techniques to large real-world datasets. Avoiding model overfitting, especially when
the number of features far exceeds the number of observations, requires selecting informa-
tive features and/or eliminating irrelevant ones. Searching for an optimal subset of features
can be computationally expensive. Functional magnetic resonance imaging (fMRI) produces
datasets with such characteristics creating challenges for applying machine learning tech-
niques to classify cognitive states based on fMRI data. In this study, we present an embedded
feature selection framework that integrates sparse optimization for regularization (or sparse
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regularization) and classification. This optimization approach attempts to maximize train-
ing accuracy while simultaneously enforcing sparsity by penalizing the objective function
for the coefficients of the features. This process allows many coefficients to become zero,
which effectively eliminates their corresponding features from the classification model. To
demonstrate the utility of the approach, we apply our framework to three different real-world
fMRI datasets. The results show that regularized classifiers yield better classification accu-
racy, especially when the number of initial features is large. The results further show that
sparse regularization is key to achieving scientifically-relevant generalizability and functional
localization of classifier features. The approach is thus highly suited for analysis of fMRI
data.

Keywords Sparse optimization · Feature selection · Machine learning · fMRI · Cognitive
neuroscience · Regularization · Pattern classification

1 Introduction

The availability of large datasets in real-world applications poses significant challenges in
optimization and machine learning. These massive datasets are often referred to as Big Data as
they consist of very large numbers of data samples as well as features. Feature selection plays
a pivotal role in the analysis of such data as it enables the extraction of salient information
to base decisions. As Big Data are very high-dimensional, this step reduces the likelihood of
model overfitting and computational complexity of decision models. Feature selection is a
process of selecting a subset of the original features according to certain criteria [59]. Not only
does feature selection reduce the dimensionality of the data, but it also increases the signal-
to-noise ratio by removing irrelevant, redundant or noisy features, which in turns improves
the performance of decision models in terms of prediction accuracy, result interpretability
and computational run-time.

Feature selection is an optimization problem by nature. Its objective is to find the optimal
subset of features that can achieve the best performance on some criterion (e.g., prediction
accuracy). If the number of original features is p, the number of possible subsets is 2p − 1.

Even if the number of features to be selected is known, k, there are still
(

p
k

)
subsets of

features. Generally speaking, feature selection can be formulated as a mathematical program
with p binary variables, each indicating if a feature is selected. The criteria used to select
the features may be modeled as an objective function as well as included as knapsack-type
selection constraints. Thus, one can generally say that feature selection problem is NP-hard
and cannot be solved in a polynomial time [1]. The problem becomes even harder when the
number of features far exceeds the number of observations (data instances). Given that n is
the number of observations, such a problem is often called the “n � p” problem.

In this paper, we focus on an application of feature selection in neuroimaging. Feature
selection is extremely important in neuroimaging because the features correspond to anatom-
ical region(s), allowing inference about which brain structures are involved in cognitive
processes. In addition, there are systematic sources of overfitting that need to be mitigated to
allow for scientifically meaningful generalizability of classification models. Thus, selected
features have real-world meaning and offer interpretability when reconstructing classifica-
tion models. Multi-voxel pattern analysis (MVPA) of functional magnetic resonance imag-
ing (fMRI) data will be the main case study in this paper. MVPA is used to study cognitive
processes measured by fMRI by ascertaining where and how information is encoded in the
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brain. A main focus of MVPA is to classify or “decode” different cognitive states based on
patterns of neural activity measured in a feature subset of image voxels. By the nature of the
functional organization of the brain, only some fMRI voxels will be relevant for decoding.
The remaining voxels will be uninformative for the particular cognitive task, with their signal
variance for practical purposes reflecting noise. Using all the voxels in a classification model
would lead to overfitting and result in poor generalization. Thus, feature selection is key to
building an accurate and robust classification model. Because of the duration and economic
constraints of fMRI acquisition, most fMRI studies include relatively few observations (e.g.,
n < 100). Meanwhile, the number of voxels (also referred to as features) is comparatively
very large (e.g., p > 10,000). Thus, MVPA is a classic “n � p” feature selection problem.

The fMRI signal is inherently multivariate, reflecting spatially distributed neural process-
ing captured in the activity pattern across multiple voxels. Successful interrogation of cog-
nitive representations requires joint assessment of this activity. While there have been many
feature selection algorithms proposed in the literature, certain approaches are better suited to
fMRI. Here we focus on an embedded feature selection framework, which includes all fea-
tures in an integrated feature selection and classification model. In such a framework, sparsity
is enforced in the classification model that is trained to maximize the classification accuracy
and minimize the number of selected features. This sparse optimization for regularization
(or sparse regularization) is very important for MVPA because feature selection allows for
functional localization of cognitive processes, with sparser feature selection providing more
concise localization. In this paper we focus on logistic regression (LR) with sparse regular-
ization as a supervised feature selection and classification framework. Our contribution is
to introduce, employ and evaluate the embedded feature selection framework to the appli-
cation of MVPA. The framework provides an alternative approach to select features while
simultaneously performing classification. The logistic regression is used because its linear
model offers better interpretability in cognitive neuroscience. Three types of regularization
are employed: ridge, lasso and elastic net penalties.

The remainder of the paper is organized as follows. In Sect. 2, we provide the background
of feature selection and more details of MVPA. In Sect. 3, we present the optimization
formulation of logistic regression with various types of penalty. In Sect. 4, the details of
our computational framework including solution approaches, cross-validation and parameter
selection procedure are given. We present the datasets and the experimental results in Sect. 5.
We conclude the study in Sect. 6.

2 Background

2.1 Feature selection

The curse of dimensionality poses challenges to learning algorithms when dealing with high-
dimensional data, in which the number of features is large and only a few are informative.
In such a situation, learning algorithms likely overfit classification models and the learned
models are less generalizable. Feature selection is a method to identify relevant features in
order to improve classification accuracy and facilitate more stable and interpretable results
[15,30,45]. Feature selection algorithms can be categorized as supervised, semi-supervised
or unsupervised. Supervised feature selection algorithms [44,46,52,53] use the statistical
dependency between the feature and the class variable to determine the degree of feature
relevance. In an absence of class labels, unsupervised feature selection algorithms evaluate
the degree of feature relevance from data variance and separability [9,22]. In a situation
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where labeled data can be obtained but very expensive, semi-supervised feature selection
algorithms [55,58] can use a small portion of labeled data as an additional information to
improve the performance of unsupervised feature selection algorithms.

A large number of feature selection algorithms have been developed but most can be
grouped into one of the three models: filter, wrapper or embedded [59]. The filter model
depends on the characteristics of the data alone without involving the learning (e.g., classifi-
cation and regression) algorithms. Many feature selection algorithms in the filter model rely
on using certain metrics to rank or eliminate features. For instance, correlation [6,54,56],
t-test [49,60] and mutual information (MI) [2,39,47,50,51] have been used to rank features
or eliminate irrelevant features. The wrapper model requires a learning algorithm to assess
the classification performance (e.g., prediction accuracy or cardinality) as evaluation crite-
ria to select features [3,25,43]. The embedded model integrates feature selection with the
classification model in the training process. Training performance and selected features are
achieved simultaneously. Examples of embedded models include decision tree C4.5 [42],
L1-norm SVM [32], and logistic regression with L1-norm regularization [10,12,24,48].

Logistic regression (LR) has been widely used as a classifier because of not only its
performance, but also the interpretability and simplicity to implement. However, LR alone
without regularization often results in a high variance estimation of its coefficients, especially
when there are many correlated features (variables). Such an issue can be mitigated using
ridge (L2-norm) regularization to shrink the size of coefficients [23]. Nevertheless, almost
all (if not all) of the coefficients still remain non-zero. Thus, this method does not possess
the characteristic of feature selection. Moreover, the resulting coefficients tend to spread
equally within a set of correlated features, resulting in underestimated coefficients which can
often be over-enforced when performing feature selection by thresholding the coefficients.
The problem can be alleviated by imposing lasso (L1-norm) regularization [10,14,48] which
introduces sparse solution compared to ridge penalty. However, this penalty tends to pick
only a few features (if not only one) from a set of correlated features, yielding a very sparse
solution which is often not robust in practice. Lq -norm was proposed to relieve the issue
by generalizing the norm and selecting Lq -norm such that q is between 1 and 2 to combine
the effect of both ridge and lasso as appeared in [11]. However, Lq -norm penalty in such
range of q does not provide a sparse solution because the norm is still differentiable at zero
when q > 1. Elastic net penalty [61] was introduced as a linear combination between ridge
and lasso penalty, resulting in a compromise characteristic of both. The lasso part in elastic
net penalty encourages sparse solution whereas the ridge part encourages spreading coeffi-
cients among a set of correlated features, resulting in theoretically more robust classification
compared to lasso and explicit feature selection not available through ridge. More detailed
explanations for each model are described in Sect. 3. Furthermore, LR is a very promising
model computationally as its inference on a large dataset can also be accomplished using
stochastic gradient descent [29,57], which can be parallelized in MapReduce framework, but
is beyond the scope of this paper. Enthusiastic readers please refer to [4,7,26].

2.2 Multi-voxel pattern analysis (MVPA)

Conventional fMRI data analysis has relied on univariate statistical approaches to elucidate
the neural basis of cognition. In such approaches, the response is assessed at each voxel in
the brain independently. However, a growing body of evidence suggests that mental rep-
resentations are more effectively studied by considering the joint activity of multiple vox-
els [19,21,37]. Thus, MVPA, adapted from machine learning and pattern recognition, has
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Fig. 1 An illustration of the canonical data matrix of the fMRI data used in the pattern classification system.
Each experimental condition is induced by a visual stimulus (image) presented to a human subject in a short
period of time, and is eventually transformed into each row i of the n × p data matrix x , whose class label is
denoted by ci

emerged as a new analysis framework for fMRI. MVPA is often used to perform cognitive
state decoding, whereby cognitive representations are classified into discrete categories of
stimulus conditions.

MVPA involves several computational steps: feature extraction, feature selection, and
pattern classification. For fMRI data, features are conventionally operationalized as vox-
els. Feature extraction is a procedure to characterize the temporally-evolving response to a
stimulus at a voxel, often with a summary value such as a regression coefficient. Feature
selection is a procedure to identify and select the subset of voxels to use with the classifier.
The voxel selection process is considerably important, especially in cognitive neuroscience
where selected voxels implicate brain regions involved in cognitive processes. Pattern classi-
fication is a procedure to train a classification algorithm to create a prediction/classification
model that best separates the stimulus categories represented in the multidimensional space
defined by the selected features (voxels).

Figure 1 illustrates the feature extraction step of fMRI signals from the ventral temporal
(VT) cortex as the region of interest (ROI). To characterize the blood-oxygen-level depen-
dence (BOLD) response to a given stimulus condition (an indirect measure of the neural
response), a general linear model (GLM) is applied, and coefficient parameters “beta” are
estimated by fitting a GLM with different predictors for each stimulus block or entity. Unless
otherwise noted, in the studies presented here, the predictors were modeled with a boxcar
convolved with a canonical hemodynamic response function (HRF) [41]. The HRF has been
used to characterize the temporally-evolving BOLD signal change in response to a briefly
presented stimulus. In summary, each stimulus can be represented by a 3-dimensional volume
matrix, with each entry in the matrix representing a real-valued beta coefficient of a voxel.

In practice, when performing feature selection and classification, it is more convenient to
reorganize the volume matrix into a canonical 2-dimensional input data matrix (see Fig. 1).
The data matrix is denoted by x of the dimension n × p, where n is the number of data
instances/observations (the total number of presented stimuli); and p is the number of features
(voxels) in the ROI. The entry xij of the data matrix represents the real-valued coefficient
parameter beta of the i th data instance at the j th voxel. We denote class label ci ∈ {1, . . . , K }
(i.e., stimulus category), where K is the total number of stimulus categories. For each data
instance i, ci is known precisely according to the experiment design.
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In our previous study [3], a new feature selection based on MI criterion, called maximum
informativeness (MaxI), was developed. MI is widely used as a criterion to rank the feature
relevance [2,47,50,51], starting from calculating the MI between each feature and the class
label vector. MaxI prioritizes the voxels to be selected based on the informativeness of
individual features to class labels, assessed by the value of MI (called importance index).
The notion of MaxI is to determine the best level of importance index of voxels, rather than
the best number for voxels to be selected. To optimize the best level of importance index, a
calibration procedure is iteratively carried out with a classification algorithm on the leave-
one-run-out cross validation. In that study, SVM, LR, and Gaussian Naïve Bayes (GNB)
model were used as classification algorithms.

One of the main drawbacks of MaxI is that it evaluates each individual feature on a univari-
ate basis. That is, it does not consider the non-decomposable information of jointly working
features involved in cognitive representations. In the literature, an efficient way to capture
the jointly working features is to use forward/backward selection algorithm [16], where each
feature will be included in the selected set when its combination with the selected features
gives the best performance. This process is continued until all the features are included
into the selected set or until the storage cost is reached. However, the approach requires
O(p2) which is intractable with a large p value. Recently, an efficient approach based on
submodularity optimization has been proposed [27,28,31]. Although this approach provides
theoretical foundation on the performance, it strictly requires that the objective function of
the classification model to be submodular.

3 Logistic regression with regularizations

Logistic regression is widely used as a classifier for classification problems together with
feature selection because of its simplicity on performance and implementation. In this section,
we present the formulation and the characteristics of linear (binomial and multinomial)
logistic regression with penalties of ridge, lasso, Lq -norm, and elastic net, respectively.

3.1 Logistic regression

Let c denote the class variable and C = {1, 2} denote the label set with two categories. A
logistic regression model incorporates a linear function of the predictors x into the class-
conditional probability. The model is formulated as follows:

J (β0, β) = 1

n

n∑
i=1

{I1(ci ) log Pr(ci = 1|xi ) + I2(ci ) log Pr(ci = 2|xi )}, (1)

where n is the number of data instances, Ik(ci ) is an indicator function returning 1 when ci = k
and 0 otherwise, and Pr(ci = 1|x) = 1

1+e−(β0+x�β)
and Pr(ci = 2|x) = 1 − Pr(ci = 1|x)

= e−(β0+x�β)

1+e−(β0+x�β)
are probability functions of both class outcomes. The coefficients (β0, β)

can be computed (trained) by maximizing the objective function J (β0, β) with respect to β0

and β:

max
(β0,β)∈Rp+1

J (β0, β). (2)
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It is noted that the learned coefficients (β0, β) are not scale-invariant to the input x , so it
is often necessary to standardize the input x (e.g., z-score) before solving the maximization
problem in Eq. (2).

3.2 Ridge penalty

When there are many correlated features (variables) in the linear model, the coefficients
(β0, β) of these correlated features may cancel each other out, and unbiased estimates may
be associated with high variance. Such issue can be alleviated by imposing a size constraint
on the coefficients using the L2-norm squared of β, called ridge penalty β̂ridge. A new
maximization model with the size constraint is given by

(LR + ridge) max
(β0,β)∈Rp+1

J (β0, β) (3)

s.t.
p∑

j=1

β2
j ≤ t, (4)

where t is the bound of the sum of coefficients squared. Note that the β0 is excluded from
the sum.

To facilitate such optimization problem, we apply a Lagrange multiplier method to incor-
porate the constraint in Eq. (3) into the objective function in Eq. (4). The Lagrangian is then
given by

max
(β0,β)∈Rp+1

⎧
⎨
⎩J (β0, β) − λ

p∑
j=1

β2
j

⎫
⎬
⎭, (5)

where λ ≥ 0 is the Lagrange multiplier that represents a complexity parameter and in turn
controls the amount of shrinking: the larger value of λ, the greater the amount of shrinkage
and hence the smaller the size of coefficients. There is a one-to-one correspondence between
the parameters λ in Eq. (5) and t in Eq. (3) [11].

It is worth noting that the maximization model with the ridge penalty does not have
the characteristic of feature selection because all the coefficients still remain non-zero even
though the ridge penalty shrinks the size of coefficients toward zero. The coefficients of
correlated features tend to spread among them and underestimate the true importance of the
correlated features. A thresholding strategy can be used to eliminate features with coefficient
values near zero. However, this strategy would degrade the performance of the classification
model, as the weights of these features underestimate their joint contribution to the model.
Theoretically, the lack of explicit thresholding should result in the classification model with
the ridge penalty having the same number as features as the model without any regularization.
However, in practice, coefficients with numerical values very close to zero (e.g., β < 10−14)
are rounded to zero for numerical robustness, leading to an occasional reduction in the number
of features.

3.3 Lasso penalty

Lasso penalty works similar to ridge penalty except that L1-norm is used in the constraint of
the coefficients. The optimization model of logistic regression with a lasso penalty is given
by
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Fig. 2 The geometry of lasso and ridge penalty in the space (β1, β2). The constraint region for L2-norm and
L1-norm is represented by the circular disk (orange) and the diamond disk (red) respectively. The residual
sum of squares has elliptical contour (blue) and has its center at the least square solution β̂. The dotted line
and the outer-most thick solid line each is the contour where the ridge solution and the lasso solution occur
respectively. The corners of the diamond suggest sparse solution, which can happen with greater probability
in the lasso regularization than in the ridge regularization. (Color figure online)

(LR + Lasso) max
(β0,β)∈Rp+1

J (β0, β) (6)

s.t.
p∑

j=1

|β j | ≤ t. (7)

An equivalent Lagrangian form is given by

max
(β0,β)∈Rp+1

⎧⎨
⎩J (β0, β) − λ

p∑
j=1

∣∣β j
∣∣
⎫⎬
⎭. (8)

The lasso (L1-norm) penalty introduces a sparse solution, compared to the ridge (L2-
norm) penalty. Figure 2 displays a geometric example with two parameters β1 and β2. The
residual sum of squares has elliptical contour and has its center at the least squares solution.
The point where the elliptical contour first touches the constraint region is the solution to the
optimization problem. The constraint region of lasso has corners, and each corner forces that
at least one of the features must be zero. It therefore results in a sparse solution. Furthermore,
in a higher-dimensional space (p > 2), there are more corners, and thus there is a higher
chance that the first-touch point ends up at one of the corners. However, it is not true for ridge
because the first-touch point can hit anywhere with equal probability. The sparse solution for
ridge penalty is rare when p is large.

It is important to note that the lasso penalty tends to pick only a few features (if not
only one) from a set of correlated features, yielding a very sparse solution. In practice, the
solution might be less robust across validation folds. Therefore, a more generalized form
is suggested, called Lq -norm with a penalty λ

∑p
j=1

∣∣β j
∣∣q . The value of q in the range of

q ∈ (1, 2) suggests the compromise between the ridge and lasso penalties. However,
∣∣β j

∣∣q
is differentiable at 0 in such range of q , thus does not share the ability of lasso for assigning
some β j ’s to zero. In other words, the Lq -norm does not provide a sparse solution when
q ∈ (1, 2).
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3.4 Elastic net penalty

Lasso penalty may be too stringent in the selection among a set of strong but correlated
features, whereas the ridge regularization tends to shrink the coefficients of correlated features
toward each other. The elastic net penalty is introduced to compromise between both penalties.
A combined optimization model is given by

(LR + Elastic net) max
(β0,β)∈Rp+1

J (β0, β) (9)

s.t.
p∑

j=1

(
α

∣∣β j
∣∣ + (1 − α)β2

j

)
≤ t, (10)

where α ∈ [0, 1] is a tradeoff parameter between the lasso and ridge penalties. Its equivalent
Lagrangian form is given by

max
(β0,β)∈Rp+1

⎧
⎨
⎩J (β0, β) − λ

p∑
j=1

(
α

∣∣β j
∣∣ + (1 − α)β2

j

)
⎫
⎬
⎭. (11)

The penalty term is a linear combination of lasso penalty and ridge penalty. The first term
(lasso) encourages a sparse solution of β, while the second term (ridge) encourages strongly
correlated features to be averaged. Therefore, the elastic net provides both sparsity and
selection of correlated features although the α needs to be predetermined.

3.5 Multinomial logistic regression with elastic net penalty

For multi-class classification problems, a maximization model using a penalized maximum
multinomial log-likelihood and incorporating the elastic net penalty is given by

(MLR + Elastic net) max
(βl0,βl )

K
1 ∈RK (p+1)

{
J

(
(βl0, βl)

K
1

)
− λ

K∑
l=1

Pα(βl)

}
, (12)

where

J
(
(βl0, βl)

K
1

)
= 1

n

n∑
i=1

log Pr(ci |xi )

and

Pα(βl) =
p∑

j=1

(
α

∣∣βl j
∣∣ + (1 − α)β2

l j

)
,

where c is the class variable taking the value from the label set C ={1, . . . , K } and Pr(c= l|x)

= e−(βl0+x�βl )

∑K
l′=1 e−(βl′0+x�βl′ )

is the probability function of multiple outcomes, employed from [61].

4 Computational framework

In this section, we present a computational framework of feature selection in cognitive neu-
roscience datasets where the number of data instances is much less than the number of
features (i.e., n � p) due to the collection-time limitation and human-factor practicality.
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Optimization of feature selection in prediction with a family of logistic regression classifier
is discussed specifically. The coefficients of features represent the contribution of features
and the features with non-zeros coefficients becomes features selected in prediction models.

4.1 Optimization of the penalized logistic regression

Because the closed-form analytical solution is not available, we resort to numerical opti-
mization approach for logistic regression. The penalized (binomial and multinomial) logistic
regression can be solved differently based on penalty type.

For conventional logistic regression (LR) without regularization and ridge penalized LR
(LR+ ridge), optimal solutions are obtained using a trust-region algorithm. The algorithm
can be available in the unconstrained optimization package in MATLAB. In particular, the
algorithm takes the derivative of the Lagrangian in Eq. (5) with respect to each β j for
j ∈ {0, 1, . . . , K }, and the local minimum of the Lagrangian is obtained for each λ. Because
of the convexity of the objective function, a globally optimal solution can be determined
among all local solutions with respect to λ. When λ = 0, we obtain the solution for LR,
while λ > 0 suggests the solution for LR+ ridge.

Lasso penalized logistic regression (LR+ lasso) can be regarded as a special case of elastic
net penalized logistic regression (LR+elastic net). We employ the algorithms using cyclical
coordinate descent (CCD) to solve the LR+elastic recently proposed by [12] because it
has computational advantages over least angle regression (LAR) algorithm proposed in [10].
They compute a regularization path of λ along. For each value of λ, the CCD creates an outer
loop cycling over class l and evaluates a partial quadratic approximation of the multino-
mial log-likelihood J ((βl0, βl)

K
1 ) about the current parameters (βl0, βl). Consequently, a

quadratic approximation is incorporated with the elastic net penalty and becomes penalized
weighted least squares problem which can be solved using coordinate descent. In our study,
the optimization of LR+elastic net and LR+ lasso are implemented using the optimization
package glmnet provided by [13] while there are considerable numerical techniques used to
stabilize CCD.

Recall the tradeoff parameter α in Eq. (11), the solution of LR+ lasso can be obtained
when α = 1. On the other hand, the solution of LR+ ridge can be obtained when α = 0.
However, the computation is not stable in this paradigm, and it has to derive the solution of
LR+ ridge separately.

4.2 Cross validation and free parameters selection

In this study, we apply a leave-one-run-out cross validation paradigm for optimizing/learning
the model parameters, selecting the free parameters, and reporting the prediction accuracy.
A dataset x is divided into F mutually exclusive sections or runs (a shorthand for experiment
runs); then a run is marked as a testing dataset and the remaining are divided into a training
dataset, and a validation dataset denoted by xtest, xtrain and xvalid , respectively. In a cross
validation process, each run (or a subset of data) takes a turn as a testing run. For each run,
the training dataset is used to train the model parameters, the free parameters are selected
based on the validation dataset, and finally the prediction accuracy is evaluated based on
the testing dataset. Usually, a final (prediction) accuracy is reported as the average accuracy
across all runs.

It was mentioned in [61] that free parameter α is problem-dependent and fixed while a
model refinement can be done by adjusting λ. However, in the current work, we treat both α
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Table 1 Summary of datasets used in this paper, including regions of interest (ROI), the number of subjects
(no. of subjects) and the number of voxels (no. of voxels) in each ROI

Dataset (ROI; no. of
subjects;
no. of voxels)

Description

Haxby (vtc; 6; 307–675),
(wb; 6;
36,292–39,280)

There are 96 observations in total: 12 runs × 8 classes/run × 1
observation/class. The eight classes are “face”, “house”,“cat”,
“bottle”, “scissor”, “shoe”, “chair” and “scrambled pictures”

Lexical-animtool (vtc; 7; 1,254–1,423),
(wb; 4;
9,786–13,239)

There are 104 observations in total: 4 runs × 2 classes/run × 13
observations/class. The 2 classes are “animals”={‘leopard’,
‘ant’, ‘duck’, ‘fish’, ‘turtle’, etc.} and “tools”={‘paperclip’,
‘spatula’, ‘pliers’, ‘scissors’, etc.}

CMU-4class (unknown; 9;
19,750–21,764)

There are 120 observations in total: 6 runs × 4 classes/run × 5
observations/class. The 4 classes are “animal”, “insect”,“tool”
and “vegetable”

CMU-animtool (unknown; 9;
19,750–21,764)

There are 120 observations in total: 6 runs × 2 classes/run × 10
observations/class. The 2 classes are “animals” ={‘animal’,
‘insect’} and “tools” = {‘tool’, ‘furniture’}

and λ as free parameters to be optimized so that the model is fully data-driven. The model
parameters are essentially the function of the free parameters (β0(α, λ), β(α, λ)) and can
be greatly determined by the choice of the free parameters given to the model. Note that the
selection criteria of the free parameters are subjective and problem-dependent.

Given a free parameter pair (α, λ), the training dataset xtrain is used to learn the model
parameters (β0, β) of a LR classifier. Validation accuracy is then reported from the LR clas-
sifier with the learned model parameters on the validation dataset xvalid . The free parameter
pair (α∗, λ∗) is optimized according to the validation accuracy as follows:

(α∗, λ∗) = arg max
(α,λ)∈Ω

accuracy(xvalid, yvalid;β0(α, λ), β(α, λ)),

where Ω is a set of free parameter candidates defined by the user; xvalid and yvalid denote
a data matrix and its corresponding class label vector in the validation dataset, respectively.
Consequently, the optimal model parameters can be obtained from β∗

0 = β0(α
∗, λ∗) and

β∗ = β(α∗, λ∗) accordingly. We report the testing accuracy by applying the optimal model
parameters (β∗

0 , β∗) to the testing dataset xtest .

5 Experimental results

In this paper, we evaluate the performances of feature selection via regularization methods on
three datasets: (1) Haxby, (2) Lexical and (3) CMU. Summary information for each dataset
can be found in Table 1, with more details provided in Sect. 5.2.

5.1 Implementation and evaluation

For each dataset, we applied the linear-kernel logistic regression (LR) with four different
types of penalties as described in Sect. 4:

1. LR+elastic net: using a linear combination of both lasso and ridge regularization to find
the compromise of sparsity and predictivity. That is, 0 < α < 1 and λ > 0.
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2. LR+ lasso: using L1-norm regularization to effectively induce a sparse solution by
assigning a large portion of β j ’s to be zero. That is, α = 1 and λ > 0.

3. LR+ ridge: using L2-norm regularization to shrink the coefficients by imposing a penalty
based on their size. The solution is not sparse however, since the coefficients are still non-
zero. That is, α = 0 and λ > 0.

4. LR+none: this is a control case, meaning that there is no regularization added into the
objective function at all. That is, λ = 0 regardless of α.

Although the free parameter pair (α, λ) are to be selected automatically with respect to the
dataset, it is fair to assure the robustness of the solution by imposing the search range of the
free parameters α ∈ A = {0, 0.1, 0.2, . . . , 1} and λ ∈ L = {0, 0.001, 0.002, . . . , 1}. We
shall emphasize that the range of α and λ should entirely represent all possible regularization
methods we wish to benchmark. That is, for ridge penalty (α = 0, λ ∈ L ); lasso penalty
(α = 1, λ ∈ L ); elastic net penalty (0 < α < 1, λ ∈ L ); and λ = 0 (regardless of any α)
for not penalizing at all.

An additional criterion is used in our experiment as a tie-breaker when the validation
accuracy of two free parameter pairs are approximately equal (within some tolerance.) In
such a case we prefer the solution that is more sparse (i.e., more interpretable), namely, the
solution with fewer non-zero coefficients. Specifically, the solution with bigger α or bigger
λ is more preferable.

For lasso and elastic net we use the MATLAB package glmnet from [12,13], and for ridge
and none we implemented our own MATLAB code, more details are discussed earlier in
Sect. 4.1. We adopt the cross validation paradigm as illustrated in Sect. 4. For all datasets,
we organized the training, validation, and testing folds according to experiment run number
mentioned in Sect. 4.2. The approach avoids positively biasing results due to the within-run
signal structure but also makes the classification problem more challenging due to the pres-
ence of difference in signal structure among training, testing and validation folds. Details
with respect to each dataset are described in Sect. 5.2 and in Table 1. Performance of each
classification model is evaluated by the prediction accuracy in the testing set or testing accu-
racy for short-handed notation. For each subject, the individual testing accuracy is calculated
by averaging the testing accuracies across all runs. In each run, the individual testing accuracy
is obtained at the optimal free parameter (α∗, λ∗) and the optimal model parameters (β∗

0 , β∗)
according to Sect. 4.2. Finally, we average the testing prediction accuracy across all subjects
in the experiment and report the average testing accuracy. The details of the dataset and the
experiment settings are discussed in the following section.

5.2 Data and experiment setting on each dataset

5.2.1 Haxby dataset

The seminal work by [19] demonstrated the utility of pattern classification approaches in
fMRI for investigating object category representation in ventral temporal cortex (VTC). The
data have since been made publicly available and are widely used to benchmark performance
of pattern classification techniques [17–20,38]. In the study, subjects viewed gray-scale
images from eight different object categories (face, house, cat, bottle, scissor, shoe, chair,
and ‘scrambled pictures’) as part of a one-back detection task. Exemplars from each category
were presented in blocks of 24 s followed by 12 s of rest. Each object category was shown
once per fMRI run, with 12 runs of fMRI data acquired per subject. The fMRI data were
acquired on a 3T GE scanner and consisted of image volumes of 64×64×40 voxels acquired
every 2.5 s.
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Table 2 Summary of the results from Haxby dataset

ROI Model type Train
accur (%)

Valid
accur (%)

Test
accur (%)

Average no. of
selected voxels

vtc LR+ lasso 90.55 78.13 67.54 57.00

LR+elastic net 94.73 87.5 73.44 243.25

LR+ ridge 98.79 91.67 80.56 443.00

LR+none 98.79 60.42 68.75 443.00

wb LR+ lasso 89.04 70.83 58.51 48.50

LR+elastic net 94.21 72.92 62.50 400.75

LR+ ridge 98.79 43.75 39.93 38,888.00

LR+none 98.79 21.88 24.31 38,888.00

Standard processing was performed on the fMRI data, including motion correction and
linear de-trending. Data were then standardized (z-scored) by subtracting the mean and
dividing by the standard deviation of the time series signal at each voxel. To characterize
the fMRI response associated with each object category, beta coefficient parameters were
estimated by fitting a general linear model (GLM). A different predictor was used to model
each object block in each run, producing 96 different parameter estimates (12 parameters for
each of the eight object categories) for each subject. We refer interested readers to [40,41]
for more details.

The original dataset contains 12 runs per subject, which is divided into 1 run for testing,
2 runs for validating and 9 runs for training denoted by (1:2:9). For this dataset, we focus on
selecting features from two different initial regions of interest (ROI):

1. Ventral temporal masks provided by the Haxby group (vtc): The masks were defined using
combined anatomic functional criteria [19]. The resultant ROI masks were relatively
small, ranging from 307 to 675 voxels across subjects.

2. All voxels in the whole brain (wb): Across subjects, the number of voxels varied from
36,292 to 39,280.

The dataset information is summarized in Table 1. The experimental results can be found in
Table 2.

When using the vtc mask, LR+ ridge gives the best classification performance, followed
by LR+elastic net, LR+none, and LR+ lasso. These results illustrate that the ridge penalty
performs very well if the feature subset is initially well-constrained. Although the LR+elastic
net is about 7 % poorer than LR+ ridge, the selected feature subset is roughly half the size
of the initial mask. LR without regularization (LR+none) is the baseline model we want to
compare with as it demonstrates the characteristic of LR when the size of LR coefficients
β’s are not regularized. LR+ lasso gives the fewest, hence, most sparse, voxels of all the
approaches. LR+ lasso gives the poorest results here, perhaps because the solution it gives is
too sparse, especially given it is performed on a dataset with a small feature dimensionality.

It is also interesting to see that the accuracy gap between training accuracy and vali-
dation/testing accuracy is not small despite the regularization is imposed in the classifier.
That is because the dataset is partitioned into training, validation and testing set based on the
experiment run number. fMRI data from different runs have substantial run-related structured
“noise” due to instrument variation and/or differences in the subject factors (e.g., amount of
head movement) [5,33]. Therefore, the model learned by the classifier also likely includes
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the run-specific information present in the training set, but absent from the validation/testing
set, which would contribute to the accuracy gap. Furthermore, the classification model will
not embody the run-related information of the testing/validation run. These run-specific
effects contribute to the gap between training accuracy and validation/testing accuracy and
reflect the reduction in the ability of the classifier to generalize to the class conditions (i.e.
the scientifically meaningful information). While partitioning the data based on run reduces
classification accuracy in the validation/testing runs, it ensures that accuracy is not positively
biased by run effects. The ideal way to partition the data would be to ensure that each dataset
contains at least a few examples from each run so that the run-specific information would
be captured by the model. We note that the accuracy gap is smaller in the approaches with
regularization than ones without regularization, suggesting that regularization mitigates the
undesirable effects caused by run-specific information.

In the case that p is very large compared to n (n � p) like in the wb mask, it is more
obvious that the sparsity regularization approaches such as elastic net and lasso outperform
those without enforcement (i.e., ridge and none). This is because the irrelevant features are
subdued better in approaches with sparsity regularization which can be seen as an automatic
feature selection step in the classifier.

5.2.2 Lexical dataset

The lexical fMRI data, denoted by Lexical, were acquired from seven subjects performing an
object naming task. The subjects were scanned on a Siemens 3T TIM Trio Scanner during
which they produced names out loud in response to 104 color pictures of ‘animals’ or man-
made manipulable objects (i.e., ‘tools’) across four runs. The pictures were presented in a
rapid event-related design, with each pictured entity randomly repeated four times (using
different examples) within a run. Different entities were presented in each run. Imaging data
were analyzed using FMRIB’s Improved Linear Model [54] using standard preprocessing
approaches. Each stimulus entity was modeled separately to obtain individual coefficient
estimates of the fMRI response per entity [36].

The dataset is used in a binary classification experiment of “animals” versus “tools”,
denoted by Lexical-animtool. The class “animals” is obtained from combining all the obser-
vations whose entities belong to the animal category such as ‘leopard’, ‘ant’, ‘duck’, ‘fish’,
‘turtle’, etc. The class “tools” is the combination of ‘paperclip’, ‘spatula’, ‘pliers’, ‘scissors’,
etc. The 4 runs of the data are divided into testing, validation and training in the format of
(1:1:2), and there are 13 observations per class per run, therefore 104 observations in total. For
testing, only category entities not used during training are evaluated. Consequently, testing
accuracy reflects the ability of the classification model to capture generalized category-level
and not the entity-level information.

The gap between the training accuracy and validation/testing accuracy is not small due
to the nature of this experiment where we expect the classifier to capture the generalized
category-level and not the entity-level information. However, there is some entity-level infor-
mation captured by the classifier. In other words, the accuracy gap is contributed partially
by the entity-level information captured by the classifier in each run. It is also worth noting
that the accuracy gap is even larger when regularization is not imposed, underscoring the
importance of regularization to produce scientifically meaningful results.

Instead of analyzing the whole brain data, we focus our attention on two ROI masks:

1. Features (operationally, voxels) were initially selected based on structural anatomical
mask (i.e., posterior occipitotemporal cortex defined using Freesurfer’s Desikan parcel-
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Table 3 Summary of the results from Lexical dataset

ROI Model type Train
accur (%)

Valid
accur (%)

Test
accur (%)

Average no. of
selected voxels

vtc LR+ lasso 99.52 85.19 83.45 68.00

LR+elastic net 100.00 89.45 84.60 258.00

LR+ ridge 100.00 85.32 85.28 2,845.00

LR 100.00 58.59 59.31 2, 845.00

wb LR+ lasso 100.00 78.84 78.25 82.00

LR+elastic net 100.00 82.84 81.77 482.50

LR+ ridge 100.00 70.37 71.36 12,474.50

LR 100.00 52.73 48.33 12,545.50

lation scheme [8]) in the ventral temporal cortex (vtc). This ROI mask is available for all
seven human subjects.

2. The whole brain’s gray-matter mask (wb) which aims to reveal the feature that are relevant.
This ROI mask was evaluated for only four human subjects.

The dataset information is summarized in Table 1. The experimental results can be found
in Table 3. In the vtc mask, which is a small preselected ROI mask, LR+ ridge is the best,
followed by LR+elastic net, LR+ lasso and LR+none. LR+elastic net and LR+ ridge
perform competitively, but LR+elastic net requires fewer features than ridge. In fact, the
testing accuracy of the classification model from the lasso regularization is not much lower
than that for elastic net and ridge, though the model is much sparser than either of them.
LR+none performs the worst, well below all regularized approaches in this experiment.

When considering the case where p is large such as in the wb mask, the prediction
accuracy of both sparsity regularization approaches, LR+elastic net and LR+ lasso, clearly
outperforms that of LR+ ridge and LR+none. Again, the sparse regularization is more
advantageous when p is larger.

5.2.3 CMU dataset

The dataset was collected and used in [34] and is made available to public in the authors’
supplemental website [35]. Since the dataset was originally collected by the researchers from
Carnegie Mellon University, we shall refer to the dataset as CMU.

fMRI data were available from nine participants who viewed 60 different word-picture
pairs, each pair is presented six times, with the randomly permuted sequence of stimuli on
each presentation. Participants were asked to think about the properties of the item as they
were viewing. Data were acquired on a Siemens Allegra 3.0T scanner, with an acquisition
matrix was 64 × 64 with 3.125 mm × 3.125 × 5 mm voxels. Data were corrected for motion
and slice acquisition timing.

The dataset contains 12 image categories, with each category consisting of five entities
each with six observations. The dataset is used in two classification experiments:

1. Binary classification of “animals” versus “tools”, denoted by CMU-animtool. The class
“animals” is obtained from combining the observations from two original categories,
‘animal’ and ‘insect’ in the CMU dataset. The class “tools” is the combination of ‘tool’
and ‘furniture’. Thus, there are 120 observations in total.
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Table 4 Summary of the results from CMU dataset

ROI Model type Train
accur (%)

Valid
accur (%)

Test
accur (%)

Average no. of
selected voxels

Animtool LR+ lasso 98.61 73.06 70.28 199.00

LR+elastic net 100.00 76.11 72.13 629.00

LR+ ridge 100.00 70.37 71.30 20,601.00

LR+none 100.00 51.76 51.57 20,601.00

4class LR+ lasso 87.11 41.30 40.74 198.00

LR+elastic net 99.03 47.50 42.78 3,058.00

LR+ ridge 100.00 46.94 42.41 20,601.00

LR+none 100.00 41.57 39.81 20,601.00

2. Multiclass classification of “animal”, “insect”,“tool” and “vegetable”, denoted by CMU-
4class. The four classes are directly retrieved from the respective categories in the original
dataset without modification. Thus, there are 120 observations in total.

Since there are six runs in total, we arrange testing, validation and training set in the format
of (1:1:4) in both experiments, yielding 10 and 5 observations/class/run in CMU-animtool
and CMU-4class respectively. Since the dataset was preprocessed and the ROI was pre-
selected, we adopt the original voxels set provided by [34] without modification. The feature
size (number of voxels) of the nine subjects varies from 19,750 to 21,764. The dataset
information is summarized in Table 1. The experimental results can be found in Table 4. In
both binary classification and multiclass classification experiments, LR+elastic net gives the
best testing accuracy, followed by LR+ ridge, LR+ lasso and LR+none. All regularization
approaches report the testing accuracies above chance; however, we note that the accuracies
drop significantly from binary to multiclass classification. This may be because the cognitive
processes of those four categories are quite similar.

6 Conclusion

In this paper, we presented a sparse optimization framework for regularizing pattern recog-
nition models. The framework was applied to emerging cognitive neuroscience problems
based on analyses of neuroimaging data. Logistic regression classifiers with a penalty (regu-
larization) yielded better prediction accuracy performance than ones without regularization.
This was especially noticeable when the number of features p was large. The benefits of
regularization were observed even when the features were initially well-constrained using
anatomic functional criteria. Under these initial conditions, the ridge penalty was sufficient
for high classification accuracy and outperformed sparsity-enforcing regularization methods.
We note that the LR+ ridge is not technically a feature selection method, as the ridge penalty
does not eliminate features but rather shrinks their coefficients towards zero.

When the feature size p was bigger (i.e. brain voxels were not restricted using anatomical
and/or functional criteria), the advantages of sparsity-enforcement methods became apparent.
In such cases, both the LR+ lasso and LR+elastic net penalty resulted in classification
models with higher prediction accuracy than models obtained using the LR+ ridge penalty.
These former two regularization methods eliminate irrelevant and noisy features by setting
their coefficients to zero. Thus, they embed a feature selection step as part of the training of
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the classification model and substantially reduce the number of model features. Of the two
methods, the lasso penalty produced the sparsest solution. However, classification models
obtained with the lasso penalty had lower prediction accuracy than those obtained with the
elastic net penalty. This finding suggests that the lasso regularization method produced feature
subsets that were too sparse, and hence as robust in their ability to generalize to the testing data.
When the features were well defined initially, LR+elastic net performed competitively with
LR+ ridge. As elastic net attempts to find the optimal compromise between lasso and ridge
regularization, it retains the good prediction accuracy of the ridge penalty, while still providing
quite sparse solutions like lasso. Therefore, when taking into account both prediction accuracy
and the conciseness in the number of selected features, elastic net appears to be more a
desirable regularization approach for fMRI applications.

In the methods described here, optimization of the classifier was achieved by incorpo-
rating a penalty term into the objective function. This optimization framework is extensible
and allows for incorporation of additional domain specific constraints. In neuroimaging,
functional and/or anatomical criteria, such as spatial contiguity and anatomical or functional
connectivity, could also be included as constraints embedded in the training process of the
classification model. Implementing such approaches could improve scientific interpretability
of the results and is an exciting, but non-trivial, future research direction for optimization.

References

1. Amaldi, E., Kann, V.: On the approximability of minimizing nonzero variables or unsatisfied relations in
linear systems. Theor. Comput. Sci. 209(1), 237–260 (1998)

2. Chou, C.-A., Kampa, K., Mehta, S.H., Tungaraza, R.F., Chaovalitwongse, W.A., Grabowski, T.J.:
Information-theoretic based feature selection for multi-voxel pattern analysis of fMRI data. In: Brain
Informatics, pp. 196–208. Springer (2012)

3. Chou, C.-A., Kampa, K., Mehta, S.H., Tungaraza, R.F., Chaovalitwongse, W.A., Grabowski, T.J.: Voxel
selection framework in multi-voxel pattern analysis of fMRI signals for prediction of neural response to
visual stimuli. IEEE Trans. Med. Imag., under review (2013)

4. Chu, C., Kyun, K.S., Kunle, O.: Map-reduce for machine learning on multicore. Adv. Neural Inf. Process.
Syst. 19, 281 (2007)

5. Coutanche, M.N., Thompson-Schill, S.L.: The advantage of brief fmri acquisition runs for multi-voxel
pattern detection across runs. Neuroimage 61(4), 1113–1119 (2012)

6. Cui, Y., Jin, J., Zhang, S., Luo, S., Tian, Q.: Correlation-based feature selection and regression. In: Qiu,
G., Lam, K., Kiya, H., Xue, X.-Y., Kuo, C.-C., Lew, M. (eds.) Advances in Multimedia Information
Processing—PCM 2010, vol. 6297 of Lecture Notes in Computer Science, pp. 25–35. Springer, Berlin,
Heidelberg (2010) ISBN 978-3-642-15701-1

7. Dean, J., Ghemawat, S.: Mapreduce: simplified data processing on large clusters. Commun. ACM 51(1),
107–113 (2008)

8. Desikan, R.S., Ségonne, F., Fischl, B., Blacker, D., et al.: An automated labeling system for subdividing
the human cerebral cortex on mri scans into gyral based regions of interest. Neuroimage 31(3), 968–980
(2006)

9. Dy, J.G., Brodley, C.E.: Feature selection for unsupervised learning. J. Mach. Learn. Res. 5, 845–889
(2004)

10. Efron, B., Hastie, T., Johnstone, I., Tibshirani, R.: Least angle regression. Ann. Stat. 32(2), 407–499
(2004)

11. Friedman, J., Hastie, T., Tibshirani, R.: The Elements of Statistical Learning: Data Mining, Inference and
Prediction. Springer, New York, NY (2009)

12. Friedman, J., Hastie, T., Tibshirani, R.: Regularization paths for generalized linear models via coordinate
descent. J. Stat. Soft. 33(1), 1 (2010a)

13. Friedman, J., Hastie, T., Tibshirani, R.: Lasso (l1) and elastic-net regularized generalized linear models
(2010b). http://www-stat.stanford.edu/tibs/glmnet-matlab/

14. Fuchs, J.-J.: On the application of the global matched filter to DOA estimation with uniform circular
arrays. IEEE Trans. Signal Process. 49(4), 702–709 (2001)

123

http://www-stat.stanford.edu/tibs/glmnet-matlab/


456 J Glob Optim (2014) 59:439–457

15. Guyon, I., Elisseeff, A.: An introduction to variable and feature selection. J. Mach. Learn. Res. 3, 1157–
1182 (2003)

16. Guyon, I., Weston, J., Barnhil, S., Vapnik, V.: Gene selection for cancer classification using support vector
machines. Mach. Learn. 46, 389–422 (2002)

17. Hanke, M., Halchenko, Y.O., Sederberg, P.B., Haxby, J.V.: Pymvpa: A python toolbox for multivariate
pattern analysis of fMRI data. Neuroinformatics 7(1), 37–53 (2009)

18. Hanson, S.J., Matsuka, T., Haxby, J.V.: Combinatorial codes in ventral temporal lobe for object recogni-
tion: Haxby (2001) revisited: is there a face area? Neuroimage 23(1), 156–166 (2001)

19. Haxby, J.V., Gobbini, M.I., Ishai, A., Pietrini, P.: Distributed and overlapping representations of faces and
objects in ventral temporal cortex. Science 293(5539), 2425–2430 (2001)

20. Haxby, J.V., Gobbini, M.I., Furey, M.L., Ishai, A., Schouten, J.L., Pietrini, P.: Faces and objects in ventral
temporal cortex (fMRI). http://data.pymvpa.org/datasets/haxby2001/ (2010)

21. Haynes, J.-D., Rees, G.: Decoding mental states from brain activity in humans. Neuroscience 7, 523–534
(2006)

22. He, X., Cai, D., Niyogi, P.: Laplacian score for feature selection. Adv. Neural Inf. Process. Syst. 18, 507
(2006)

23. Hoerl, A.E., Kennard, R.W.: Ridge regression: biased estimation for nonorthogonal problems. Techno-
metrics 12(1), 55–67 (1970)

24. Koh, K., Kim, S.-J., Boyd, S.: An interior-point method for large-scale l1-regularized logistic regression.
J. Mach. Learn. Res. 8(8), 1519–1555 (2007)

25. Kohavi, R., John, G.H.: Wrappers for feature subset selection. Artif. Intell. 97(1), 273–324 (1997)
26. Komarek, P.: Logistic regression for data mining and high-dimensional classification. Robotics Institute,

p. 222 (2004)
27. Krause, A., Guestrin, C.: Near-optimal nonmyopic value of information in graphical models. arXiv,

preprint arXiv:1207.1394 (2012)
28. Krause, A., Guestrin, C., Gupta, A., Kleinberg, J.: Near-optimal sensor placements: maximizing infor-

mation while minimizing communication cost. In: Proceedings of the 5th International Conference on
Information Processing in Sensor Networks, pp. 2–10. ACM (2006)

29. Le Cun, L.B.Y., Bottou, L.: Large scale online learning. Adv. Neural Inf. Process. Syst. 16, 217 (2004)
30. Liu, H., Yu, L.: Toward integrating feature selection algorithms for classification and clustering. IEEE

Trans. Knowl. Data Eng. 17(4), 491–502 (2005)
31. Lovász, L.: Submodular functions and convexity. In: Mathematical Programming: The State of the Art,

pp. 235–257. Springer (1983)
32. Mangasarian, O.L.: Minimum-support solutions of polyhedral concave programs*. Optimization 45(1–4),

149–162 (1999)
33. Misaki, M., Kim, Y., Bandettini, P.A., Kriegeskorte, N.: Comparison of multivariate classifiers and

response normalizations for pattern-information fMRI. NeuroImage 53(1), 103–118 (2010)
34. Mitchell, T.M., Shinkareva, S.V., Carlson, A., Chang, K.-M., Malave, V.L., Mason, R.A., Just, M.A.:

Predicting human brain activity associated with the meanings of nouns. Science 320, 1191–1195 (2008)
35. Mitchell, T.M., Shinkareva, S.V., Carlson, A., Chang, K.-M., Malave, V.L., Mason, R.A., Just, M.A.: Sup-

plemental web site in support of the paper: predicting human brain activity associated with the meanings of
nouns, September (2009). http://www.cs.cmu.edu/afs/cs/project/theo-73/www/science2008/data.html/

36. Mumford, J.A., Turner, B.O., Ashby, F.G., Poldrack, R.A.: Deconvolving bold activation in event-related
designs for multivoxel pattern classification analyses. NeuroImage 59(3), 2636–2643 (2012)

37. Norman, K.A., Polyn, S.M., Detre, G.J., Haxby, J.V.: Beyond mind-reading: multi-voxel pattern analysis
of fMRI data. RENDS Cogn. Sci. 10(9), 424–430 (2006)

38. O’toole, A.J., Jiang, F., Abdi, H.: Partially distributed representations of objects and faces in ventral
temporal cortex. J. Cogn. Neurosci. 17(4), 580–590 (2005)

39. Peng, H., Long, F., Ding, C.: Feature selection based on mutual information criteria of max-dependency,
max-relevance, and min-redundancy. IEEE Trans. Pattern Anal. Mach. Intell. 27(8), 1226–1238 (2005).
ISSN 0162–8828. doi:10.1109/TPAMI.2005.159

40. Pereira, F., Mitchell, T., Botvinick, M.: Machine learning classifiers and fMRI: a tutorial overview. Neu-
roImage 45, 199–209 (2009)

41. Poldrack, R.A., Mumford, J.A., Nichols, T.E.: Handbook of Functional MRI Data Analysis. Cambridge
University Press, Cambridge (2011)

42. Quinlan, J.R.: C4. 5: Programs for Machine Learning, vol. 1. Morgan Kaufmann, Los Altos (1993)
43. Reunanen, J.: Overfitting in making comparisons between variable selection methods. J. Mach. Learn.

Res. 3, 1371–1382 (2003)
44. Robnik-Šikonja, M., Kononenko, I.: Theoretical and empirical analysis of ReliefF and RReliefF. Mach.

Learn. 53(1–2), 23–69 (2003)

123

http://data.pymvpa.org/datasets/haxby2001/
http://www.cs.cmu.edu/afs/cs/project/theo-73/www/science2008/data.html/
http://dx.doi.org/10.1109/TPAMI.2005.159


J Glob Optim (2014) 59:439–457 457

45. Saeys, Y., Inza, I., Larrañaga, P.: A review of feature selection techniques in bioinformatics. Bioinformatics
23(19), 2507–2517 (2007)

46. Song, L., Smola, A., Gretton, A., Borgwardt, K. M., Bedo, J.: Supervised feature selection via dependence
estimation. In: Proceedings of the 24th International Conference on Machine Learning, pp. 823–830. ACM
(2007)

47. Thomas, J.A., Cover, T.M.: Elements of Information Theory. Wiley, New York (2006)
48. Tibshirani, R.: Regression shrinkage and selection via the lasso. J. R. Stat. Soc. Ser. B (Methodological),

267–288 (1996)
49. Tusher, V.G., Tibshirani, R., Chu, G.: Significance analysis of microarrays applied to the ionizing radiation

response. Proc. Natl. Acad. Sci. 98(9), 5116–5121 (2001)
50. Verleysen, M., Rossi, F., François, D.: Advances in feature selection with mutual information. In: Biehl,

M., Hammer, B., Verleysen, M., Villmann, T. (eds.) Similarity-Based Clustering, pp. 52–69. Springer,
Berlin, Heidelberg (2009) ISBN 978-3-642-01804-6

51. Vinh, La The, Thang, N.D., Lee, Y.-K.: An improved maximum relevance and minimum redundancy
feature selection algorithm based on normalized mutual information. In: International Symposium on
Applications and the Internet, IEEE/IPSJ vol. 0, pp. 395–398 (2010)

52. Weston, J., Mukherjee, S., Chapelle, O., Pontil, M., Poggio, T., Vapnik, V.: Feature selection for SVMs.
In: Advances in Neural Information Processing Systems, vol. 13, pp. 668–674. MIT Press (2001)

53. Weston, J., Elisseeff, A., Schölkopf, B., Tipping, M.: Use of the zero norm with linear models and kernel
methods. J. Mach. Learn. Res. 3, 1439–1461 (2003)

54. Woolrich, M.W., Ripley, B.D., Brady, M., Smith, S.M.: Temporal autocorrelation in univariate linear
modeling of fMRI data. Neuroimage 14(6), 1370–1386 (2001)

55. Xu, Z., King, I., Jin, R.: Discriminative semi-supervised feature selection via manifold regularization.
IEEE Trans. Neural Netw. 21(7), 1033–1047 (2010)

56. Yu, L., Liu, H.: Feature selection for high-dimensional data: a fast correlation-based filter solution. In:
Proceedings of the 20th International Conference on Machine Learning, pp. 856–863 (2003)

57. Zhang, T.: Solving large scale linear prediction problems using stochastic gradient descent algorithms.
In: Proceedings of the 21st International Conference on Machine Learning, p. 116. ACM (2004)

58. Zhao, Z., Liu, H.: Semi-supervised feature selection via spectral analysis. In: Proceedings of the 7th SIAM
International Conference on Data Mining, Minneapolis, MN, pp. 1151–1158 (2007)

59. Zhao, Z., Morstatter, F., Sharma, S., Alelyani, S., Aneeth, A., Huan, L.: Advancing feature selection
research, ASU Feature Selection Repository (2010)

60. Zhou, N., Wang, L.: A modified t-test feature selection method and its application on the hapmap genotype
data. Genomics, Proteomics Bioinf. 5(3), 242–249 (2007)

61. Zou, H., Hastie, T.: Regularization and variable selection via the elastic net. J. R. Stat. Soc. Ser. B
(Statistical Methodology) 67(2), 301–320 (2005)

123


	Sparse optimization in feature selection: application  in neuroimaging
	Abstract
	1 Introduction
	2 Background
	2.1 Feature selection
	2.2 Multi-voxel pattern analysis (MVPA)

	3 Logistic regression with regularizations
	3.1 Logistic regression
	3.2 Ridge penalty
	3.3 Lasso penalty
	3.4 Elastic net penalty
	3.5 Multinomial logistic regression with elastic net penalty

	4 Computational framework
	4.1 Optimization of the penalized logistic regression
	4.2 Cross validation and free parameters selection

	5 Experimental results
	5.1 Implementation and evaluation
	5.2 Data and experiment setting on each dataset
	5.2.1 Haxby dataset
	5.2.2 Lexical dataset
	5.2.3 CMU dataset


	6 Conclusion
	References


