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Abstract A set of ellipses, with given semi-major and semi-minor axes, is to be cut from a
rectangular design plate, while minimizing the area of the design rectangle. The design plate
is subject to lower and upper bounds of its widths and lengths; the ellipses are free of any
orientation restrictions. We present new mathematical programming formulations for this
ellipse cutting problem. The key idea in the developed non-convex nonlinear programming
models is to use separating hyperlines to ensure the ellipses do not overlap with each other.
For small number of ellipses we compute feasible points which are globally optimal subject
to the finite arithmetic of the global solvers at hand. However, for more than 14 ellipses none
of the local or global NLP solvers available in GAMS can even compute a feasible point.
Therefore, we develop polylithic approaches, in which the ellipses are added sequentially in
a strip-packing fashion to the rectangle restricted in width, but unrestricted in length. The
rectangle’s area is minimized in each step in a greedy fashion. The sequence in which we
add the ellipses is random; this adds some GRASP flavor to our approach. The polylithic
algorithms allow us to compute good, near optimal solutions for up to 100 ellipses.

Keywords Global optimization · Non-convex nonlinear programming · Mixed integer
programming · Cutting stock problem · Packing problem · Shape constraints · Non-overlap
constraints · Design problem · Polylithic solution approach · Computational geometry

1 Introduction

In an extension of the work by Kallrath [11], we cut a set of ellipses with given semi-major and
semi-minor axes from a rectangular plate. The ellipses are to be placed, free of any orientation
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restrictions, on a rectangular plate such that the area of the rectangle is minimized. The ellipses
are not allowed to overlap; which poses the major challenge of this cutting problem together
with the free rotation of the ellipses. Minimizing the area of the design rectangle is equivalent
to minimizing trimloss.

Part of the motivation of this work is pure mathematical curiosity—ellipse cutting prob-
lems have a variety of real world applications. Color to be painted on walls is usually stored
in paint buckets, which have an elliptical shape. This shape allows the painting rolls to be
larger in length compared to a circular bucket having the same volume. The best area uti-
lization is desired when transporting such buckets (differently or equally sized) on palettes.
As described by Miller [20], ellipses can be used to approximate (irregular or non-convex)
geometric objects via a cover. The obtained ellipse placements can then help to compute
solutions to the original problem and provide safe bounds on optimal solutions, e.g., on the
minimal area of the design rectangle.

The ellipse cutting problem falls into the class of two-dimensional cutting or packing
problems of regular objects. This cutting problem comes close to the 2/V/D/F classification
of Dyckhoff [4]; i.e., two-dimensional, V = a kind of assignment: a selection of objects and
all items, D = an assortment of large objects: different figures, and F = an assortment of small
items: few items of different figures. Packing and cutting problems differ in the following
two aspects: (1) In cutting problems one tries to minimize trimloss or area, while in packing
an area is given and one wants to fit as many objects as possible, and (2) while free objects
are allowed in cutting problems, this might lead to stability problems in packing problems.
Our ellipse problem falls into the category of a cutting problem.

The separation of ellipses by hyperplanes has been treated in a senior thesis by Miller
[20]. His formulation starts from elementary geometry of ellipses from which he derives the
hyperplane conditions. Confinement of the ellipses to the rectangle is modeled as a special
hyperplane representing the boundaries of the rectangle. Our approach starts from a generic
vector representation (to allow for its extension to the 3-D case in future work). At first,
we compute the minimal and maximal extension of shifted and rotated ellipses. Second, we
derive the hyperplane conditions from rotated coordinate systems. Miller reports in his thesis
only on small examples with two ellipses. This is confirmed by his advisor Floudas [6].

Other than the unpublished work by Miller, it is hard to find published work on numerical
approaches towards ellipse cutting and packing. However, the related problems of circle
packing/cutting or orientation-free rectangle packing/cutting into one or multiple (design)
rectangles have a rich body of literature, see Kallrath [11] and Rebennack et al. [24] and the
references therein.

The technical report by Gensane and Honvault [8] establishes optimal packings for the
case of two congruent ellipses in a square. Based on theoretical developments for sphere
packings, the authors are able to derive the position for two congruent ellipses along with
the minimal side length of a square hosting those two ellipses. Thus, their work is theoretical
and not algorithmic, like ours.

The contributions of this paper are twofold: We develop

1. novel mathematical programming models for the ellipse cutting problems which allow
us to solve larger instances to global optimality than previously reported in the literature.

2. two polylithic1 approaches to compute good and near optimal cuttings for instances which
cannot be handled by the current nonlinear and global solvers for the exact mathematical

1 The expression polylithic has been introduced by Kallrath [10,12] to refer to modeling and solution
approaches in which optimization problems are solved by tailor-made methods involving several models
or solve statements or algorithmic components.
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programming formulation developed. Both approaches sequentially solves ellipse cutting
problems with fewer number of ellipses.

The remainder of this article is organized as follows. In Sect. 2, we develop (MI)NLP
models for cutting ellipses from the design rectangle. We construct our polylithic approaches
to compute good feasible, near optimal cuttings for instances which cannot be handled in the
monolith formulation with the currently available solvers in Sect. 3. We present numerical
experiments and results in Sect. 4. Section 5 concludes the paper.

At all places in this paper we use the term global optimum, or global optimality, in the
sense of small relative gaps (difference between upper and lower bound divided by the lower
bound) of the order of 10−5. We are aware that the numeric solvers dealing with finite
number arithmetic are subject to round-off errors. As such, all the presented results are only
approximations, and although the small gaps hint on good/optimal results, due to the rounding
errors, we do not obtain reliable results in the sense of interval analysis. For packing circles
in a unit square, we find high precision guaranteed enclosures for both the global optimizer
and the global optimum value and details of the interval arithmetic-based core elimination
method in a series of publications by Markót and Csendes [19] and Markót [18].

2 Monolithic: non-convex (MI)NLP models

We describe ellipses by the coordinates of their center and an orientation angle to allow for
their rotation. We need to model two types of constraints: (1) non-overlap of ellipses and (2)
bounds placing the ellipses inside the rectangle.

While non-overlap of two circles can be enforced by one non-convex constraint, ensuring
that their centers are apart no less than the sum of their radii, the case for ellipses is more
involved (one reason is the possibility for rotation). We use the following key idea to ensure
non-overlap: Because ellipses are convex objects, there must exist a hyperplane (i.e., a line)
between any two pairs of ellipses, separating them from each other.

When the context allows, then we utilize a vector notation using the Euclidean norm
scalar products to avoid the additional dimension index d . The vector notation is indicated
by bold symbols. We use lower case symbols for variables, and upper case symbols for input
or derived data. The only exceptions are the semi-major and semi-minor axes ai and bi ,
respectively, of the ellipses and the model indices.

Note that we provide lower and upper bounds in the model wherever possible and as tight
as possible as these bounds help to solve the NLP and MINLP problems to global optimality.

We start with the modeling of the non-overlap and boundary constraints for ellipses in
Sect. 2.1. This leads us to two equivalent NLP models, as summarized in Sect. 2.2. To enhance
computational efficiency, we then present symmetry breaking constraints (Sect. 2.3), mixed-
integer extensions (Sect. 2.4), and lower/upper bounding problems (Sect. 2.5).

2.1 Towards the NLP model formulations

The objective function minimizes the area, a, of the design rectangle

min a, a = xR
1 xR

2 , (1)

where decision variable xR
d represents the extension of the design rectangle in dimension

d; xR
1 denotes the length and xR

2 is the with of the rectangle.
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Equivalently to (1), we could minimize waste, i.e.,

min z, z = a −
∑

i∈I
Ai , (2)

where Ai denotes the area of ellipse i ; set I is the collection of ellipses to be packed.
The extensions xR

d of the rectangle are subject to pre-given bounds, S−d and S+d
S−d ≤ xR

d ≤ S+d , ∀d. (3)

The upper bound, S+d , could be motivated by technical limitations; a lower bound, S+d , is
given by the maximum of all the minor ellipse axis lengths (maximum of 2bi over all i).
Refinements of these bounds are described in Sect. 2.5, where we exploit circle cuttings.

2.1.1 Cutting circles

We start with the modeling of the circle cutting problem for two reasons: first, it was the
starting point for our analysis of the ellipses cutting problem, and second, we use it to compute
valid lower and upper bounds on the ellipse cutting problem (cf. Sect. 2.5).

The non-overlap constraints for circles i and j read

∥∥x0
i − x0

j

∥∥2
2 :=

2∑

d=1

(
x0

id − x0
jd

)2 ≥ (
Ri + R j

)2
, ∀{i j : i < j}, (4)

with radius Ri and (decision variable) x0
id modeling the center of circle i in dimension d .

Constraints (4) are non-convex constraints (the left hand side constitutes a convex function).
Note that for n circles we have n(n − 1)/2 inequalities of type (4).

Fitting the circles inside the enclosing rectangles requires

x0
id ≥ Ri , ∀{id} and x0

id + Ri ≤ xR
d , ∀{id}.

2.1.2 Cutting ellipses

One might be tempted to follow the idea of the non-overlapping conditions (4) when treating
ellipses. Unfortunately, the known radii Ri and R j for the cases of circles become orientation-
dependent variables. It turns out that this approach is not ideal, from the perspective of
mathematical programming modeling. Thus, we follow a different idea.

Ellipse i is characterized by its semi-major and semi-minor axis ai and bi , respectively.
The ellipses i will be implicitly described by their centers, and their orientations; see Fig. 1.

The ellipses can be placed at a free “center” represented by the vector x0
i (with compo-

nents x0
id ) with the semi-major axis ai inclined by the angle θi . For θi = 0, the ellipse is

characterized by the equation
(
x1 − x0

i1

)2

a2
i

+
(
x2 − x0

i2

)2

b2
i

= 1, (5)

i.e., all points (x1, x2) ∈ R
2 satisfying constraint (5) lie on the perimeter of ellipse i . For the

rotated ellipse i , we exploit the coordinate transformation
(

x ′1
x ′2

)
= Rθ i

(
x1 − x0

i1

x2 − x0
i2

)
with Rθ i :=

(
cos θi − sin θi

sin θi cos θi

)
(6)
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Fig. 1 Representation of ellipses
i : center x0

i , semi-major axis ai ,
semi-minor axis bi , rotation
angle θi and extrema
x−i1, x−i2, x+i1, and x+i2

or equivalently

x ′1 = (cos θi )(x1 − x0
i1)− (sin θi )(x2 − x0

i2)

x ′2 = (sin θi )(x1 − x0
i1)+ (cos θi )(x2 − x0

i2).

Now we can insert x ′1 and x ′2 into the ellipse equation (5).
More generally, an arbitrarily oriented ellipse i , centered at x0

i ∈ R
2, is defined by the

equation (quadratic form)
(x − x0

i )
�Ai (x − x0

i ) = 1, (7)

where Ai is a positive definite matrix and x ∈ R
2.

The eigenvectors of Ai define the principal directions of the ellipse (or, ellipsoid in 3-
D) and the eigenvalues of Ai are the inverse squares of the semi-axes: a−2

i and b−2
i . An

invertible linear transformation applied to a circle (sphere) produces an ellipse (ellipsoid),
which can be brought into the above standard form by a suitable rotation, a consequence of
the polar decomposition (cf. Spectral Theorem). If the linear transformation is represented by
a symmetric 2-by-2 (3-by-3) matrix, then the eigenvectors of the matrix are orthogonal (due
to the Spectral Theorem) and represent the directions of the axes of the ellipse (ellipsoid):
the lengths of the semi-axes are given by the eigenvalues. For ellipse i with semi-axes ai and
bi rotated by Rθ i as defined in (6), we have

Aθ i := Rθ i Di R�θ i with Di :=
(

λi1 0
0 λi2

)
=

(
a−2

i 0
0 b−2

i

)
.

To avoid the occurrence of trigonometric terms in the optimization model, we use the follow-
ing transformation into an equivalent (non-convex) quadratic model. We replace the decision
variable θi by the two decision variables

vi := cos θi and wi := sin θi .

The new variables are subject to the bounds −1 ≤ vi ≤ +1 and −1 ≤ wi ≤ +1 and they
are coupled by the Pythagorean Theorem

v2
i + w2

i = 1. (8)

Note that for ellipses, due to their symmetry, it suffices to consider rotation angles, θi , in the
range of 0◦– 180◦, i.e., 0 ≤ wi ≤ 1.
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With this notation, we obtain

Aθ i =
(

vi −wi

wi vi

) (
λi1 0
0 λi2

) (
vi wi

−wi vi

)
=

(
v2

i λi1 + w2
i λi2 viwiλi1 − viwiλi2

viwiλi1 − viwiλi2 v2
i λi2 + w2

i λi1

)
.

Fitting the ellipses inside the enclosing design rectangle requires that

0 ≤ x−id ≤ x+id ≤ xR
d , ∀{id}, (9)

where x−id and x+id are the extreme extensions of ellipse i in dimension d .
In Sect. 2.1.3, we show that

x±i1 = x0
i1 ±

√
a2

i cos2 θi + b2
i sin2 θi and x±i2 = x0

i2 ±
√

b2
i cos2 θi + a2

i sin2 θi .

For instance, θi = 0 implies x±i1 = x0
i1 ± ai and x±i2 = x0

i2 ± bi . Similarly, if the ellipses are

circles (ai = bi = ri ), then for any angle θi we obtain x±i1 = x±i2 = x0
i1 ± ri .

We continue with the derivation of these quantities in the following section; if you believe
in the formulae above, then you can skip this section. The non-overlap conditions (discussed
in Sect. 2.1.4) are then based on the ideas of extremal extensions of the ellipses.

2.1.3 Minimum and maximum extensions of ellipses

Let us compute x−id and x+id for ellipse i with center x0
id by solving the following optimization

problems

x−id = min c�x = min xid , ∀d and x+id = max c�x = max xid , ∀d,

respectively, subject to the ellipse condition (7); for d = 1 we select c� := (1, 0), while for
d = 2 we have c� := (0, 1). Instead of using (7), we can solve the simpler optimization
problem

x−id = min c�(x + x0
i ) = x0

id +min xid , ∀d and (10)

x+id = max c�(x + x0
i ) = x0

id +max xid , ∀d, (11)

respectively, subject to
x�Aθ i x = 1, (12)

which describes an ellipse centered at the origin. Note, however, that ellipse i cannot be
centered at the origin, as the origin is identical to the left-bottom corner of the design rectangle.

The Lagrangian function of both optimization problems (10) and (11) reads

L(x, λ̄) = c�(x + x0
i )+ λ̄

(
x�Aθ i x − 1

)
(13)

for an (unrestricted) Lagrangian multiplier λ̄ ∈ R. The first order Karush–Kuhn–Tucker
(KKT) conditions are derived as

c + 2λ̄A�θ i x = 0 (14)

together with (12). We multiply (14) by x� from the left side, (this operation is safe, as the
center of ellipse i cannot be an extremum) and exploit (12) to obtain xd + 2λ̄ = 0 for all d .
This allows us to eliminate the Lagrangian multiplier λ̄ from (14) yielding

c − xdA�θ i x = 0, ∀d. (15)
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For the first dimension (d = 1) the two equations in (15) read

1− x1 (A11x1 + A21x2) = 0 and x1 (A12x1 + A22x2) = 0

with

Aθ i =
(

A11 A12

A21 A22

)
.

As x1 	= 0 (the center cannot be a stationary point of these KKTs), we derive

x2 = − A12

A22
x1 (16)

from which we further derive

x2
1 =

(
A11 − A21

A12

A22

)−1

= A22

λi1λi2
= A22a2

i b2
i , (17)

where we exploit the fact that det Aθ i = A11 A22 − A12 A21 = λi1λi2 > 0 (cf. Eigenvector
Decomposition). From the geometry of the optimization problems (10) and (11), we know
that each problem has a unique, global extremum. We further know that the global extrema
satisfy the KKT conditions (12) and (14) (i.e., they are necessary). Because we have not
excluded any global optima in our deviation to derive at (16) and (17) and they lead to
exactly two points, we know that x1 and x2 in (16) and (17) define the global optimum for
(11) and (10); one just needs to pick the correct one.

The minimum and maximum extensions of ellipse i in the first dimension, (d = 1), then
reduce to

x−i1 = min c�(x + x0
i ) = x0

i1 −
√

x2
1 = x0

i1 − ai bi

√
A22

= x0
i1 −

√
a2

i cos2 θi + b2
i sin2 θi (18)

and

x+i1 = x0
i1 +

√
a2

i cos2 θi + b2
i sin2 θi , (19)

respectively.
Similarly, for d = 2 we derive

−x2 (A11x1 + A21x2) = 0 and 1− x2 (A12x1 + A22x2) = 0

to obtain

x2
2 =

(
A22 − A12

A21

A11

)−1

= A11

λi1λi2
= A11a2

i b2
i .

This leads to

x−i2 = x0
i2 −

√
b2

i cos2 θi + a2
i sin2 θi and (20)

x+i2 = x0
i2 +

√
b2

i cos2 θi + a2
i sin2 θi . (21)
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2.1.4 Non-overlap condition for ellipses

One might have the following idea to model the non-overlap constraints for pairs of ellipses:
We could enter a few points x j on the circumference of ellipse j into the equation defining
ellipse i . We would then ask that

(x j−x0
i )
�Aθ i (x j−x0

i ) ≥ 1; (22)

the “≥” forces the circumferences of ellipse j not to enter ellipse i . However, to ensure non-
overlap of the two ellipses i and j in this way, we would need to ensure that the (non-convex)
constraints (22) hold for a continuum of points (not just a few), leading to a semi-infinite
programming problem. One could resort to similar ideas of Rebennack and Kallrath [22,23]
or consult one of the various surveys about semi-infinite programming, for instance, by
Hettich and Kortanek [9] or Lopez and Still [16]. We take a different route.

In Sect. 2.1.3, we derive the formulae to compute x−id , the minimum value the ellipse
extends to in coordinate axis direction d . This computation can be extended by the following
idea. Assume we are given a rotated ellipse i whose semi-major axis ai has an angle θi

with the x-axis (the length of the rectangle). Furthermore, we have a separating line (or,
hyperplane) parameterized by

G(t) := g0 + g · t, t ∈ R (23)

with footpoint g0, and direction g normalized to |g| = 1. The footpoint g0 is not uniquely
defined, because it can lie anywhere on the separating hyperplane. As such, g0 has two
degrees of freedom. We eliminate one degree of freedom by requesting that that the footpoint
lies on the intersection of the hyperplane and the line segment between the centers x0

i and x0
j

of ellipses i and j . Therefore, we introduce the non-negative variable λ, 0 ≤ λi j ≤ 1, and
represent the footpoint as the linear combination

g0 = λi j x0
i + (1− λi j )x0

j (24)

of the ellipse centers x0
i and x0

i . With three decision variables (two for g0 and one for λi j )
and two constraints, we are left with one degree of freedom.

Can we provide a necessary condition for the ellipse being completely above G(t), or just
touching it? We can: G(t) has an inclination angle ω as derived from a scalar product of the
unit vector (1, 0)� and g as

cos ω := (1, 0) · g = g1 (25)

with the x1-axis, and intersects with the x1-axis at xh . Note that this intersection point only
exists and necessary in our considerations, if g is not parallel to the x1-axis. The special
parallel case does not depend on the coordinate transformation described below and allows
us to compute the distance of the ellipse to the hyperplane directly. Note that for the moment
we consider a generic hyperplane G(t). Later, for separating two ellipses i and j, G(t), and
also ω, will become dependent on i and j .

For ellipse i and hyperplane G(t), we resort again to a coordinate transformation: We
transform the coordinate system in such a way that (1) (xh, 0) becomes the origin of the new
coordinate system and (2) G(t) becomes identical to the new x-axis. If we then represent the
ellipse in the new coordinate system (translation and rotation), we can apply the formulae of
Sect. 2.1.3 to compute the minimum extension of ellipse i in dimension d = 2 in the new
coordinate system: x−′i2 . Now, if x−′i2 ≥ 0, ellipse i lies above the hyperplane; x−′i2 ≥ 0 is
also the necessary and sufficient condition for ellipse i to be above the hyperplane (or, just
touching it).
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Fig. 2 Non-overlap of ellipses i and j via separating line. Notation ellipses: ai , a j semi-major axis; bi , b j

semi-minor axis; θi , θ j orientation angle; x0
i , x0

j center ; δab
i j maximal vertical extension of ellipse i to the

hyperplane; δbe
i j maximal vertical extension of ellipse j to the hyperplane. Notation separating line: g0

i j

footpoint; ωi j inclination angle; (gi j1, gi j2) direction vector; dab
i j , dbe

i j distance to line

Before we algebraically derive the coordinate transformation and the non-overlap con-
ditions for each pair of ellipses, we built some intuition with Fig. 2. Using geometry, dab

i j

is the length of the projection of the vector (x0
i − g0

i j ) on the vector (−gi j2, gi j1). Since
(−gi j2, gi j1) has unit length, the length of the projection is simply the inner product

dab
i j = −gi j2

(
x0

i1 − g0
i j1

)
+ gi j1

(
x0

i2 − g0
i j2

)
.

On the other hand, the length δab
i j is the maximum vertical extension of ellipse i if we

consider the hyperplane as the horizontal axis. Now—relative to the hyperplane—the angle
of the ellipse is θi − ωi j . So using Eq. (20), we obtain

δab
i j =

√
b2

i cos2(θi − ωi j )+ a2
i sin2(θi − ωi j ).

For ellipse i to be “above” the hyperplane, we require (dab
i j )2 ≥ (δab

i j )2.

Similarly, dbe
i j is the projection of the vector (x0

j−g0
i j ) on the vector (−gi j2, gi j1); because

x0
j is on the opposite side of the hyperplane—in the minus (−gi j2, gi j1) direction—the inner

product is negative. Moreover, from Fig. 2, it is clear that the absolute value of dab
i j and dbe

i j
must be at least bi .

Using the trigonometric identities for the cosine of the differences of angles, we can further
derive

cos(θi − ωi j ) = cos(θi ) cos(ωi j )+ sin(θi ) sin(ωi j ) = gi j1 cos(θi )+ gi j2 sin(θi ),

which establishes the connection of the rotation angle θi of ellipse i and the inclination angle
ωi j of the hyperplane.

Now, let us derive the above equations algebraically. To establish the coordinate transfor-
mation for ellipse i and hyperplane G(t), let t0 denote the value of t , for which we obtain
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G2(t) = 0, i.e., the separating line intersects with the original x-axis. In the new, shifted and
rotated coordinate system the center of the ellipse i is given by

v0
i :=

(
x0

i1 − G1(t0)

d0
i

)
,

where di is the distance of the ellipse center to G(t), i.e.,

di := (−g2, g1) · (x0
i − g0)

|g| = (−g2, g1) ·
(
x0

i − g0) , (26)

where we constructed the vector (−g2, g1)
� orthogonal to g. The ellipse, in the new coordi-

nate system, can be generated by

vi (ϕi ) = v0
i + Rθ−ω,i

(
ai cos ϕi

bi sin ϕi

)
, 0 ≤ ϕi ≤ 2π.

It fulfills the constraint

(v − v0
i )
�Eθ−ω,i (v − v0

i ) = 1 with Eθ−ω,i := Aθ−ω,i = Rθ−ω,i Di R�θ−ω,i .

The angle θi − ω for ellipse i satisfies the relation

cos(θi − ω) = (cos θi , sin θi ) · g, (27)

and is the angle between the semi-major axis and the separating line.
With formula (20), we obtain

v−i2 = v0
i2 −

√
v2

2 with v2
2 =

(
E22 − E12

E21

E11

)−1

= E11

λi1λi2
= E11a2

i b2
i ,

or v−i2 = v0
i2 − ai bi

√
E11 = v0

i2 − ai bi

√
cos2(θi − ω)λi1 + sin2(θi − ω)λi2.

The transformation (translation and rotation) leads, eventually, to the final constraint that
ellipse i is “above” the hyperplane

v0
i2 − ai bi

√
cos2(θi − ω)λi1 + sin2(θi − ω)λi2 ≥ 0,

or equivalently
(
v0

i2

)2 − [
b2

i cos2(θi − ω)+ a2
i sin2(θi − ω)

] ≥ 0 ∧ v0
i2 ≥ 0. (28)

Similarly, v0
i2 + ai bi

√
cos2(θi − ω)λi1 + sin2(θi − ω)λi2 ≤ 0,

or
(
v0

i2

)2 − [
b2

i cos2(θi − ω)+ a2
i sin2(θi − ω)

] ≥ 0 ∧ v0
i2 ≤ 0. (29)

enforce ellipse i to stay “below” the separating line.
Finally, we are able to put everything together to state the non-overlap conditions for a

pair of ellipses i and j . For each such pair, we require one separating line of type (23) and
force ellipse i to stay above (recall, that touching is fine) that line via (28) and force ellipse j
to stay below that line via (29). Recall that the decision variables (i.e., di , ω, g and g0) related
to the separating line carry now the double index i j . Especially, di becomes dab

i j , measuring

the distance of ellipse i above the separating line, and−dbe
i j , measuring the distance of ellipse

j below the separating line. We generate only hyperplanes for i < j . This is illustrated in
Fig. 2.
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The case that ellipse j lies above ellipse i is covered by the reflected direction vector−g.
As we do not restrict g, or its components, in sign, the direction is selected automatically
when solving the problem. Thus, it is also automatically decided which ellipse lies above
and which under the hyperplane.

The distances dab
i j and −dbe

i j of the centers of ellipse i and j to the hyperplane, indexed
by i j , separating the ellipses i and j are bounded by

bi ≤ dab
i j ≤ Di j , −Di j ≤ dbe

i j ≤ −bi , ∀{i j : i < j} (30)

as follows from the geometry, for instance,

Di j =
√

(S+1 )2+(S+2 )2−bi−b j

2 , for all {i j : i < j}.
The model is completed by

0 ≤ v0
i2 = dab

i j and 0 ≥ v0
j2 = dbe

i j , ∀{i j : i < j} (31)

for each ellipse i and j , and the computation of ωi j according to (25).
Let us conclude this section with a structural comment which illuminates the non-overlap

constraints from a geometrical point of view and connects the non-overlap constraints to
the non-convex character of the problem. The non-overlap constraints lead to a geometrical
situation with a non-convex domain: Imagine the rectangle, from which to cut the n ellipses,
and assume that ellipse i is fixed. The feasible area of the center coordinate of another ellipse
j 	= i is a subset of the rectangle without the region covered by ellipse i .

Similar to the case for circles, for n ellipses we have n(n − 1)/2 inequalities of type (28)
and (29), each. However, there are the additional constraints to model the separating lines.
We analyze the number of variables and constraints involved in the non-overlap constraints
for ellipses in the following section.

2.2 The NLP formulations

Finally, we are able to state the resulting non-convex NLP formulations. However, before we
start with the mathematical programming problem involving trigonometric terms, we define,
for notational ease,

Sid1 :=
{

a2
i , d = 1

b2
i , d = 2

and Sid2 :=
{

b2
i , d = 1

a2
i , d = 2

, ∀{id}. (32)

The ellipse cutting problem (EP) is then summarized as follows

(EPθ ) : a∗ = min
2∏

d=1

xR
d (33)

subject to
(fit ellipses i into rectangle)

Sid1 cos2 θi + Sid2 sin2 θi ≤
(
x0

id

)2 ∀{id} (34)

Sid1 cos2 θi + Sid2 sin2 θi ≤
(

x R
d − x0

id

)2 ∀{id} (35)

x0
id ≤ x R

d − bi ∀{id} (36)
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(non-overlap of ellipses i and j)

2∑

d=1

(
gi jd

)2 = 1 ∀{i j : i < j} (37)

g0
i jd = λi j x0

id + (1− λi j )x0
jd ∀{i jd : i < j} (38)

dab
i j = −gi j2

(
x0

i1 − g0
i j1

)
+ gi j1

(
x0

i2 − g0
i j2

)
∀{i j : i < j} (39)

dbe
i j = −gi j2

(
x0

j1 − g0
i j1

)
+ gi j1

(
x0

j2 − g0
i j2

)
∀{i j : i < j} (40)

cos(θi − ωi j ) = gi j1 cos θi + gi j2 sin θi ∀{i j : i < j} (41)

cos(θ j − ωi j ) = gi j1 cos θ j + gi j2 sin θ j ∀{i j : i < j} (42)
(

dab
i j

)2 ≥ b2
i cos2(θi − ωi j )+ a2

i sin2(θi − ωi j ) ∀{i j : i < j} (43)
(

dbe
i j

)2 ≥ b2
j cos2(θ j − ωi j )+ a2

j sin2(θ j − ωi j ) ∀{i j : i < j} (44)

(variable domain)

S−d ≤ xR
d ≤ S+d ∀d (45)

bi ≤ x0
id ≤ S+d − bi ∀{id} (46)

0 ≤ θi ≤ π ∀i (47)

0 ≤ λi j ≤ 1 ∀{i j : i < j} (48)

0 ≤ g0
i jd ≤ S+d ∀{i jd : i < j} (49)

−1 ≤ gi jd ≤ 1 ∀{i jd : i < j} (50)

0 ≤ ωi j ≤ 2π ∀{i j : i < j} (51)

bi ≤ dab
i j ≤ Di j ∀{i j : i < j} (52)

−Di j Z ≤ dbe
i j ≤ −bi ∀{i j : i < j}. (53)

We start with the description of the decision variables involved in (EPθ ). We have two variables
for the design rectangle: its length and with, xR

d . Each ellipse is modeled by three decision
variables: the two center coordinates, x0

id , and the rotation angle, θi . For each pair of ellipses
i and j with i < j , we have one hyperplane i j , modeled by five decision variables: the two
footpoint coordinates, g0

i jd , the linear combination variable λi j and the two dimensional slope,
gi jd . The coordinate transformation for ellipse i with respect to hyperplane i j requires the
angles ωi j . Finally, the distance of the two ellipses i and j , in the new coordinate transform,
involve the two decision variables dab

i j and dbe
i j . Thus, for each pair of ellipses there are eight

decision variables involved with the modeling of the non-overlap condition for ellipses.
We minimize with (33) the area of the design rectangle, i.e., objective function (1).
The first group of constraints, (34)–(36), enforces that all ellipses stay inside the design rec-

tangle. Constraints (34) ensure that the minimum extension of each ellipse is non-negative;
using constraints (9), (18), and (20). Similarly, constraints (35) and (36) ensure that the
maximum extension of each ellipse is inside the rectangle; using constraints (9), (19),
and (21).

The second group, (37)–(44), models the non-overlap of each pair of ellipses i and j .
Constraints (37) normalize the slope of the hyperplane i j ; constraints (38) place the footpoint
of the hyperplane on the line segment of the two center coordinates of the corresponding
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ellipses; i.e., (24). The distance of the two ellipses i and j to their corresponding hyperplane
i j is computed via (39) and (40); i.e., (26). The angle for the coordinate transformation with
respect to the hyperplanes is given by (41) and (42); i.e., (27). Finally, the non-overlap of the
two ellipses is given via (43) and (44); i.e., (28) and (29), respectively.

With the discussion above, for n ≥ 2 ellipses, (EPθ ) involves 2 − 1
2 n + 7

2 n2 continuous
decision variables and 3

2 n + 9
2 n2 functional constraints, not counting the box constraints

(45)–(53).
We formulated the ellipse cutting problem as the NLP problem (EPθ ), with the non-convex

objective function (33) and the non-convex constraints (34), (35), (37), (39)–(44), leading to
a non-convex feasible region.

In Sect. 2.1.3, we indicate how to transform (EPθ ) into an equivalent (and, thus, non-
convex) quadratic model. Here it is:

(EPQP):a∗ = min
2∏

d=1

xR
d

s.t. (37), (38)–(41)

v2
i + w2

i = 1 ∀i
Sid1v

2
i + Sid2

(
1− v2

i

) ≤ (
x0

id

)2 ∀{id}
Sid1v

2
i + Sid2

(
1− v2

i

) ≤
(

x R
d − x0

id

)2 ∀{id}
pab

i j = gi j1vi + gi j2wi ∀{i j : i < j}
pbe

i j = gi j1v j + gi j2w j ∀{i j : i < j}
(

dab
i j

)2 ≥ b2
i

(
pab

i j

)2 + a2
i

(
1−

(
pab

i j

)2 )
∀{i j : i < j}

(
dbe

i j

)2 ≤ b2
j

(
pbe

i j

)2 + a2
j

(
1−

(
pbe

i j

)2 )
∀{i j : i < j}

(46), (47), (50), (51), (53), (54)

− 1 ≤ vi ≤ 1 ∀i
0 ≤ wi ≤ 1 ∀i
− 1 ≤ pab

i j , pbe
i j ≤ 1 ∀{i j : i < j}

We have re-formulated (EPθ ) as a quadratic optimization problem in form of (EPQP) in order
to utilize algorithms, specializing in bilinear and quadratic terms, which might be superior
to general purpose algorithms and software packages.

The review by Floudas et al. [7] and the paper by Misener and Floudas [21] are good
resources for further references and a description of various approaches to solve problems
of the type of (EPQP); we avoid repeating the material here but list a few of the relevant
references among them Androulakis et al. [3], Maranas and Floudas [17], Adjiman et al.
[1,2]. Algebraic reformulations and convex relaxation techniques as described in Liberti
[13], and Liberti and Pantelides [14] are part of the global mixed-integer quadratic optimizer
GloMIQO by Misener and Floudas [21].

In the remainder of the paper, we refer to the ellipse cutting problem as (EP) and mean
either formulation (EPθ ) or (EPQP); any discussion on (EP) applies for both formulations
equally.
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Next, we enhance (EP) by symmetry breaking constraints (Sect. 2.3) and extensions using
binary decision variables (Sect. 2.4).

2.3 Symmetry breaking

The occurrence of symmetry in (any) mathematical programming problem can pose major
challenges for global solvers for closing the optimality gap (this is also true for MILP
solvers). Often, two symmetric solutions are “physically” identical (e.g., when cutting iden-
tical objects) or can be mapped to each other via a point or axis reflection. Thus, breaking
symmetry does not exclude interesting optimal solutions but may help to solve the problem
instance at hand faster (or even at all). In the following, we address three such symmetries
for our ellipse cutting problem and how to break them.

Given any optimal (ellipse) cutting and the corresponding rectangle, we can obtain several
alternative optimal solutions by horizontal and vertical reflections; the solver views them as
different solutions. We break this symmetry by requesting that the center of one of the ellipses
is placed into the first quadrant of the design rectangle. Let ι be the index of that ellipse. Then,
the symmetry breaking inequalities read x0

ιd ≤ 1
2 xR

d for all d .
If congruent (i.e., identical) ellipses are to be packed, then we break the resulting symmetry

by sorting their center points with respect to the lower left corner of the rectangle. We collect
all pairs (i, j) of congruent ellipses in the set Ico (we assume ordered pairs i < j) and apply
the ordering inequalities

x0
i1 + 5x0

i2 ≤ x0
j1 + 5x0

j2, ∀(i, j) ∈ Ico. (54)

Constraints (54) can be strengthened via lexicographic sorting involving mixed-integer pro-
gramming techniques (cf. Sect. 2.4).

Rather a matter of degeneracy than of symmetry are free ellipses, i.e., ellipses which can
be moved locally without changing the objective function value (the area of the rectangle). In
a cutting problem, free objects cause mainly degeneracy, however, in a packing problem, this
poses major difficulties as they can freely “flow” around. We avoid free ellipses by adding
a soft penalty term which moves the center coordinate towards the lower left corner of the
rectangle.

2.4 MINLP extensions

The NLP models presented in Sect. 2.2 contain a combinatorial component: The ellipses can
be placed in any order to each other. Actually, for n ellipses, there are n!many such orderings.
This combinatorial nature is one of the reasons why the ellipse cutting problem turns out to
be so computationally challenging to solve. We enhance the visibility of this combinatorial
structure to the solvers via the following extension of the NLP models developed so far.

We partition the rectangle into a uniform grid of small rectangles. The size of the small
rectangles depends on the problem instance and is governed by the “smallest” ellipses. It is
chosen such that the center of each ellipse i can be uniquely assigned to one of these small
rectangles. We denote by (cx , cy) one such small rectangle (“cell”) and collect all cells in
the set Ice. We control the assignment of ellipses to cells by the binary variables δicx cy . The
following set of constraints assigns each ellipse to exactly one cell

∑

(cx ,cy)∈Ice

δicx cy = 1, ∀i. (55)
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The centers of the ellipses are then subject to the constraints

x0
id ≥ C−cx cyd − S+d (1− δicx cy ), ∀

{
i, d, (cx , cy) ∈ Ice }

, (56)

x0
id ≤ C+cx cyd + S+d (1− δicx cy ), ∀

{
i, d, (cx , cy) ∈ Ice }

, (57)

where C−cx cyd and C+cx cyd are the lower and upper boundary coordinate of cell (cx , cy), respec-
tively. If δicx cy = 0, then both constraints (56) and (57) (for each dimension) are dominated
by the boundary conditions (9). However, δicx cy = 1 forces the center of ellipse i not to be
outside of cell (cx , cy).

The ellipse cutting problem is now formulated via a MINLP problem. On paper, this
MINLP looks even more difficult to solve than the NLP formulations. We might be surprised
in Sect. 4.

The MINLP framework, and the presence of binary variables δicx cy , allows us to develop an
enhancement for the symmetry breaking constraints (54) for identical ellipses (cf. Sect. 2.3).

Let i and j be the indices of two identical ellipses with the indices ordered as i < j , i.e.,
(i, j) ∈ Ico. We use a lexicographic ordering in the following sense: j is placed in a cell
right of ellipse i , or it is in the same column of cells and above ellipse i (or the same). This
condition is modeled as

δicx cy ≤
∑

c′x : Cc′x cy 1>Ccx cy 1

∑

c′y : (c′x ,c′y)∈Ice

δ jc′x c′y

+
∑

c′y : Ccx c′y 2>Ccx cy 2

δ jcx c′y , ∀
{

(i, j) ∈ Ico, (cx , cy) ∈ Ice }
. (58)

The first term models the “right” condition and the second term the “same column but higher”
property.

2.5 Deriving lower and upper bounds via circle cuttings

(Tight) lower and upper bounds on the minimal area of the design rectangle translate directly
to lower and upper bounds on the length and width of the design rectangle; because of (3).
Good bounds are crucial for the performance of global solvers.

To compute a lower bound on the minimal area of the design rectangle, we replace all
ellipses by their inner circles, i.e., Ri = bi . We then compute the area-minimizing rectangle
hosting all these inner circles with the formulation described in Sect. 2.1.1. Solving the result-
ing circle cutting problem is computationally relative easy compared to the corresponding
ellipsoid cutting problem (note that both problems are in fact NP-hard). The solution of the
circle cutting problem provides only a tight bound on the minimal area, when the semi-minor
axes are not significantly smaller than the semi-major axes of all ellipses to be packed.

We obtain an upper bound on the minimal area of the design rectangle by replacing all
ellipses by their outer circles, i.e., Ri = ai . We then compute the optimal design rectangle
by solving the resulting circle cutting problem. By placing the centers of the ellipses at the
locations of the center of the corresponding circles in an optimal circle cutting yields in a
feasible cutting.

Generally, we denote a lower bound (upper bound) on the minimal area of the design
rectangle by A− (A+) and the lower bound (upper bound) obtained by the inner circle (outer
circle) cutting by Aci,− (Aci,+).

We can now refine the lower and upper bounds on the rectangle length, L , and width,
W , based on the cuttings we obtained for the inner and outer circle approximations. It is

123



420 J Glob Optim (2014) 59:405–437

L · W ≤ Aci,+ and L ≤ Aci,+/W ≤ Aci,+/S−2 . The minimum width, S−2 , of the rectangle,
could be the maximum of all the minor ellipse axis lengths, yielding an upper bound on
the rectangles length. Similarly, by using Aci,−, we obtain a lower bound on the rectangles
length.

3 Polylithic: constructive heuristics

If the number of ellipses increases, it becomes more and more difficult to compute a feasible
point. Therefore, we have developed two polylithic approaches.

Both heuristics share the same idea: We sequentially add ellipses in a strip-packing fashion
to the rectangle plate; we restrict the width of the rectangle, but leave its length unrestricted.
We start with the placement of n1 ellipses in the initial phase. Next, we use a greedy idea
and add n2 ellipses. In each step, we minimize the rectangle’s area. The sequence, s ∈ S, in
which we add the ellipses is random. This adds some GRASP flavor to our approach (cf. Feo
and Resende [5]).

Some aspects of our heuristic may look similar to the tiling method introduced by Markót
and Csendes [19], but these similarities are accidental—one of the referees pointed us to this
method during the review process.

The pseudo-code of the first algorithm, H1, looks as follows:

Input: Random sequence of ellipses, S, parameters n1 and n2, time limits
for solver (may be different for steps H1_1.1, H1_1.2.4, H1_1.2.5)

Output: Set of ellipse cuttings, lower bounds, and gaps
H1_1: For all sequences of ellipses s ∈ S, do

H1_1.1: Solve (EP) for the first n1 ellipses from s (usually, not solved to global optimality)
H1_1.2: While there are ellipses in the sequence s which have not been assigned, do
H1_1.2.1: For the best solution found (in steps H1_1.1 or H1_1.2.4 and H1_1.2.5) store

obtained length of rectangle as x̄R
1 ; fix the centers, x0

i , as well as the angles, θi ,
for all ellipses considered so far

H1_1.2.2: Choose the next (up to) n2 ellipses—indexed by ι—in the sequence s
H1_1.2.3: Sequentially initialize the center(s), x0

ι , and angle(s), θι, of the new ellipse(s)
according to the following formulae: x0

ι1 = x̄R
1 + bι, x0

ι2 = aι, and θι = 0,
i.e., the additional ellipse(s) are added to the right of the existing ones; update
x̄R

1 ← x̄R
1 + 2bι; repeat for all n2 ellipses ι

H1_1.2.4: Solve the resulting (EP)
H1_1.2.5: Unfix all center coordinates and angles; solve (EP) with the global solver

selected; theoretically, that should exploit the current feasible point and
improve on it

H1_1.3: Store feasible point (ellipse cutting) and lower bound computed in the latest solve
of step H1_1.2.5; compute and store optimality gap

H1_1.4: Clear the model by removing all ellipses and their corresponding decision variables
from (EP)

H1_2: Return set of feasible points, (safe) lower bounds and gaps.
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The time limits for the (MI)NLP solves in steps H1_1.1, H1_1.2.4, and H1_1.2.5 make the
algorithm a heuristic; typically the optimization problems are not solved to (proven) global
optimality before the time limit is reached. We need to be careful to allow for enough CPU
time (especially for steps H1_1.1 and H1_1.2.4) in order to find a feasible point for the given
number of ellipses. If the ellipse cutting problem in step H1_1.2.5 can be solved to global
optimality when all ellipses are present, then the ellipse cutting problem has been solved
to global optimality as well. In most cases, however, the problem is not solved to global
optimality in step H1_1.2.5—after all, this is why we use a polylithic approach. Rather, the
idea is that the global solver is now getting the benefit of a good initial point and, like most
solvers, it might start by doing local search from that point to improve upon the current point.

The idea of algorithm H1 is to aid the global solver by providing initial values for many
of the decision variables, however, a few decision variables (e.g., related to the separating
lines) need to be determined by the solver. It turns out that, as the problems grow in size,
feasible point(s) cannot be computed anymore—we have developed a second approach. H2
reads in pseudo-code as follows:

Input: Random sequence of ellipses, S, parameters n1, n2, and n3, time
limits for solver (may be different for steps H2_1.2 and H2_1.2.4)

Output: Set of ellipse cuttings
H2_1: For all sequences of ellipses s ∈ S, do

H2_1.1: Solve (EP) for the first n1 ellipses from s (usually, not solved to global optimality)
H2_1.2: While there are ellipses in the sequence s which have not been assigned, do
H2_1.2.1: In the solution computed (in steps H2_1.2 or H2_1.2.4), identify the n3 most

right ellipses; we index them by r ; fix their centers, x0
r , and cos(θr ); save the

solution (x0
i , θi , gi j1) for all ellipses considered in the last (EP); eliminate all

ellipses already placed except for the n3 most right ellipses (i.e., the ellipses
with index r remain in (EP))

H2_1.2.2: Choose the next (up to) n2 ellipses—indexed by ι—in the sequence s
H2_1.2.3: The centers x0

ι of the n2 ellipses are subject to the lower bound X− := min x0
r1

(the smallest center coordinate among the n3 ellipses in coordinate direction
d = 1)

H2_1.2.4: Solve the resulting (EP), for the n2 + n3 ellipses
H2_1.3: Store feasible point (ellipse cutting) by restoring all previously computed values

x0
i , θi , and gi j1

H2_1.4: Clear the model by removing all ellipses and their corresponding decision variables
from (EP)

H2_2: Return set of feasible points.

Heuristics H1 and H2 differ mainly in steps 1.2.1 and 1.2.3; step H1_1.2.5 is entirely
missing in H2. The idea (and advantage in the computational speed compared to H1) of H2 is
to sequentially solve (EP) of the same size; they contain n2+ n3 ellipses. However, a critical
tuning parameter is X− used to prevent new ellipses from being placed left of the front. Note
that H2 does not deliver a lower bound on the ellipse cutting problem, because the ellipses
fixed in step H2_1.2.1 never get unfixed (within the same sequence s) but are not further
considered when a new front is determined.
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4 Numerical experiments

We solve our non-convex MINLPs with the following global solvers available in GAMS:
BARON [25], LindoGlobal [15] and GloMIQO [21]. All the instances used for the
computations are summarized in Table 1. We used the following platforms for the
computations.

Platform 1: Dual-six core machine with CPUs @ 2.93 GHz, 48 GB RAM and 1TB HDD
running Ubuntu 10.04.4.

Platform 2: Dual core machine with CPUs @ 2.5 GHz (Intel booth technology) 48 GB RAM
and 250 GB HDD running Windows 7.

Platform 3: Dual-six core machine with CPUs @ 3.3 GHz, 48 GB RAM and 1TB HDD
running Win2008 Server.

All computations utilize only a single core of the platforms specified above.

4.1 Proof-of-concept: treating circles as ellipses

We use the ellipse cutting formulation (EPQP) to demonstrate the correctness of the approach
by solving (published) circle cutting instances; circles are special cases of ellipses. We use
test instances by Kallrath [11]. Note that there are some typos regarding the instances
5a and 5b as reported in Table 3 in [11]; we provide the correct radii of the circles
here.

Consider now Table 2. In the first two columns, we report on the problem instance; a∗ is the
globally minimal area of the design rectangle as computed via a circle cutting formulation,
cf. Sect. 2.1.1. In the other columns, we summarize the lower bound, A−, and the upper
bound, A+, on the minimal area of the design rectangle as well as the computational time
for (EPQP) with three different global solvers available in GAMS. For these computations,
for obvious reasons, we do not use the lower/upper bounds derived by the inner/outer circle
cutting problems as described in Sect. 2.5. We observe that (1) the results computed with
(EPQP) are consistent with the global optima computed with the circle cutting formulation,
(2) global optimality can only be proven for the instances with 5 circles within the time
limit, (3) the globally optimal cuttings are only found for the cases of 5 circles, and (4) the
global solvers perform very differently in terms of lower bounds and the quality of computed
feasible solutions.

Two optimal circle cuttings are plotted in Fig. 3.

4.2 Monolith

Table 3 summarizes the computational results for the monolith formulation (EPQP). We
observe that (1) all three current state-of-the-art global optimization solvers have difficulties
closing the gap for the tested instances with three or more ellipses (with the given computa-
tional framework) and (2) good cuttings are computed, cf. Fig. 4.

For case TC03, the smallest relative gaps, 	, are obtained on platform 3 using Lin-
doGlobal with GAMS 24.0.2 (A+ = 21.38577, A− = 21.17972,	 = 0.00973, 30 h) and
using GloMIQO with GAMS 23.8.2 (A+ = 21.38577, A− = 20.58535,	 = 0.0388, 63 h).

Figure 4a illustrates the difference between a packing and a cutting. The top right ellipse
is not touching the ellipse centered at (4.07, 1.27), which is allowed for cuttings but not for
packings.
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Table 1 Ellipse cutting instances

Test case (ai , bi ) S−d S+d
∑

i Ai

Ellipse cutting instances “regular”

TC02a (2,1.5), (1.5,1) (0,0) (8,4) 14.13717

TC02b (2,1.5), (1.8,1.4) (0,0) (8,4) 17.34159

TC03a “TC02a” + (1,0.8) (0,0) (8,4) 16.65044

TC03b “TC02b” + (0.8,0.7) (0,0) (8,4) 19.10088

TC04a “TC03a” + (0.9,0.75) (0,0) (8,4) 18.77102

TC04b “TC03b” + (1.1,1) (0,0) (14,4) 22.55664

TC05a “TC04a” + (0.8,0.6) (0,0) (8,4) 20.27898

TC05b “TC04b” + (0.9,0.8) (0,0) (14,4) 24.81858

TC06 “TC05a” + (0.7,0.3) (0,0) (10,5) 20.93872

TC11 (2,1.5), (1.8,1.5), (1.6,1.5), (1.5,1.2), (1.3,1.0),
(1.2,0.9), (1.1,0.8), (1,0.75), (0.9,0.6), (0.8,0.5),
(0.7,0.3)

(0,0) (15,5) 47.31239

TC14 7× (1, 0.75), 7× (0.5, 0.375) (0,0) (8,4) 20.61670

TC20 “TC06”+14× (1, 0.8) (0,0) (30,5) 56.12455

TC30 “TC06”+24× (1, 0.8) (0,0) (30,5) 81.25729

TC50 “TC06”+44× (1, 0.8) (0,0) (60,5) 131.52278

TC100 “TC06”+94× (1, 0.8) (0,0) (120,5) 257.18648

Identical ellipses; total area of these n identical ellipses is 2πn

TS02 2× (2, 1) (0,0) (8,4) 12.56637

TS03 3× (2, 1) (0,0) (8,4) 18.84956

TS04 4× (2, 1) (0,0) (8,4) 25.13274

TS05 5× (2, 1) (0,0) (12,5) 31.41593

TS06 6× (2, 1) (0,0) (12,5) 37.69911

TS07 7× (2, 1) (0,0) (15,5) 43.98230

TS08 8× (2, 1) (0,0) (20,5) 50.26548

TS09 9× (2, 1) (0,0) (20,5) 56.54867

TS10 10× (2, 1) (0,0) (20,5) 62.83185

TS11 11× (2, 1) (0,0) (22,5) 69.11504

TS12 12× (2, 1) (0,0) (24,5) 75.39822

TS13 13× (2, 1) (0,0) (26,5) 81.68141

TS14 14× (2, 1) (0,0) (28,5) 87.96459

TS15 15× (2, 1) (0,0) (30,5) 94.24778

Different eccentricities; ρ ∈ [0, 1]
TEρ (1.7, ρ1.7), (1.2, ρ1.2), (0.8, ρ0.8) (0,0) (8,4) ρ15.61372

Circle cutting; ([11], Table 3)

5a (1.7,1.7), (1.3,1.3), (1.2,1.2), (0,0) (8,5) 21.70841

(0.5,0.5), (0.8,0.8)

5b “5a” (0,0) (18,5) 21.70841
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Table 1 continued

Test case (ai , bi ) S−d S+d
∑

i Ai

6 “5a” + (0.6,0.6) (0,0) (8,4) 22.83948

7 “6” + (0.6,0.6) (0,0) (8,4) 23.97035

8 “5a” + (2.0,2.0), (1.3,1.3), (0.6,0.6) (0,0) (18,4) 40.71504

9 “8” + (0.6,0.6) (0,0) (18,4) 41.84601

10 “9” + (0.7,0.7) (0,0) (15,4) 43.38539

Table 2 Cutting circles with (EPQP)

Test
case

a∗ BARON LindoGlobal GloMIQO

A− A+ h:mm A− A+ h:mm A− A+ h:mm

5a 30.62727 26.8025 – † *** *** 1:46 30.62697 30.68817 †

5b 28.41130 28.4110 29.01239 † *** *** 8:40 *** *** 0:07

6 30.62727 26.9677 – † 30.62727 30.70490 † 22.83938 31.10945 †

7 31.12348 23.9704 – † 23.97035 31.42927 † 23.97035 – †

8 55.19630 40.7150 – † 40.71504 56.53235 † 40.71504 58.14951 †

9 55.19630 41.8460 – † 41.84601 57.14757 † 41.84601 63.44832 †

10 55.32089 43.3854 – † ‡ ‡ ‡ 43.38539 – †

We fix the rotation angles θi ≡ 0. Test cases are taken from Table 3 in [11]. CPU time limit is 12 h; GAMS
24.0.2; platform 1
*** Solved to proven global optimality (within 10−5)
† Time limit reached
‡ Solver error
– No feasible solution found

(a) (b)

Fig. 3 Feasible circle cuttings computed via (EPQP), including the separating lines. a Test case 5a, b test
case 6

4.2.1 Inner and outer circles

Table 4 shows the lower bounds obtained by the area of ellipses (
∑

i Ai ), the lower bounds
obtained by the cutting computed for the inner circles (Aci,−) and an upper bound derived
from a cutting using outer circles (Aci,+). The lower bounds obtained from the inner circle
cuttings are slightly better than the sum of all areas of the ellipses when the majority of the
ellipses has semi-minor axes not significantly smaller than their semi-major axes; otherwise,
the sum of all areas of the ellipses exceeds Aci,−. As the initial lower bounds obtained by the
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Table 3 Monolith: cutting ellipses with (EPQP)

Test
case

BARON LindoGlobal GloMIQO

A− A+ h:mm A− A+ h:mm A− A+ h:mm

TC02a *** 18.00000 0:02 *** 18.00000 0:01 *** 18.00000 0:04

TC02b *** 22.23152 0:10 *** 22.23152 0:08 *** 22.23152 0:06

TC03a 17.04840 21.38576 † 17.32575 21.38577 † 17.04840 21.38577 †

TC03b 20.54006 25.22467 † 22.17848 25.22467 † 22.73854 25.22467 †

TC04a 19.26952 23.32845 † 19.26971 23.18708 † 19.26952 23.18774 †

TC04b 25.02665 29.22110 † 25.02690 28.54159 † 25.02665 28.54074 †

TC05a 20.27898 28.82368 † 20.27898 25.29557 † 20.27878 25.50112 †

TC05b 26.74996 33.84456 † 26.75023 31.28873 † 26.74996 31.28873 †

TC06 20.9387 – † 20.93872 25.59380 † 20.93851 25.51043 †

TC11 47.3124 – † 47.31238 64.59177 † 47.31239 74.95189 †

TC14 20.6165 – † 20.61670 – † 20.61650 29.65886 †

CPU time limit was 12 h; GAMS 24.0.2; platform 1
*** Solved to proven global optimality (within 10−5)
† Time limit reached
– No feasible solution found

(a) (b)

Fig. 4 Ellipse cuttings computed via (EPQP). a TC05a: A+ = 25.29557. b TC5b: A+ = 31.28873

solvers for (EP) are significantly smaller, we use max{∑i Ai , Aci,−} as the lower bound for
(EP).

4.2.2 Tracking the gap as a function of the eccentricity ellipses

The more the ellipses deviate from circles, the more difficult it becomes to close the gap
when solving (EP) to global optimality. To demonstrate this, we consider three ellipses with
semi-major axes a1 = 1.7, a2 = 1.2, and a3 = 0.8 and semi-minor axes bi = ρai with
0 ≤ ρ ≤ 1, these are the test cases TEρ of Table 1. The numerical eccentricity ε, as a
measure for the deviation of the ellipses from circles, is connected to ρ by

ε =
√

a2 − b2

a
=

√
1− ρ2 ∈ [0, 1].

Computational results for some values of ρ are summarized in Table 5 displaying the com-
puted lower bound, A−, best solution found, A+, and relative gap 	 = (A+ − A−)/A−
versus ρ for the three global solvers BARON, LindoGlobal, GloMIQO. The last column
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Table 4 Comparing area of ellipses, inner circles, outer circles and best solution found (taken from Tables 3
or 9)

Test case
∑

i Ai Aci,− Aci,+ A+

TC02a 14.13716 14.84832 27.85641 18.00000�

TC02b 17.34159 17.39465 30.37893 22.23152�

TC03a 16.65044 17.04857 33.31371 21.38577

TC03b 19.10088 20.54006 34.08285 25.22467

TC04a 18.77102 19.26952 33.80990 23.18708

TC04b 22.55664 25.02665 37.79904 28.54159

TC05a 20.27898 19.82259 37.21122 25.29557

TC05b 24.81858 26.74996 41.48491 31.28873

TC06 20.93872 19.62543 37.36912 25.27463

TC11 47.31239 37.39281 83.04046 57.24034

TC14 20.61670 15.46253 35.48528 24.67185

� Proven global optimality (within 10−5)

computes the fraction of area of the design rectangle covered by the ellipses, which is the
utilization of the cutting.

Consider now Table 5. Even for a mild eccentricity of ε = 0.199, or ρ = 0.98, respectively,
the gap is already very difficult to close. For ρ ≥ 0.7, we observe that the lower bound, A−,
remains close to the sum of the area of the three ellipses. We can see that the gap increases
first linearly, then exponentially and then remains approximately stable, as ρ decreases from
1.0 to 0.1; cf. Fig. 5. Three ellipse cuttings for ρ = 0.80, ρ = 0.50, and ρ = 0.10 are plotted
in Fig. 6. Though we realize that the gaps are not closed (for ρ < 1), the ratio of the area of the
rectangle to the areas of the ellipses appears to stay above 70% and peaks at approximately
80.5 % for ρ ≈ 0.60.

4.2.3 Identical ellipses

Before we report on our numerical results using our mathematical programming formulations
to cut sets of identical ellipses, we derive quasi-analytic cutting configurations which we will
call symmetric for simplicity. This allows us to test our formulations, benchmark the global
solvers and compare the solution to unsymmetrical cuttings.

For identical ellipses, we can place the ellipses symmetrically, enabling us to compute
feasible cuttings as follows. For the case of three ellipses, we place them as shown in Fig. 7a.
The three ellipses are then centered and orientated at (2, 1; 0◦), (2, 3; 0◦) and (x0

31, 2; 90◦)
with nomenclature (x0

i1, x0
i2; θi ). Let us refer to this configuration as 2 − θi which means:

two ellipses with θi = 0◦, and one ellipse with rotation angle θi = 90◦. The results we derive
provide upper bounds as long the width of the rectangle is x R

2 ≥ 4. They are expected to be
exact for x R

2 = 4.
Ellipse 1 and 3 touch each other at point (xs, ys) which can be obtained by solving the

following optimization problem:

max x0
31

s.t.
(xs − 2)2

4
+ (ys − 1)2

1
= 1 (59)
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Fig. 5 Gap for TEρ instances for GloMIQO; see Table 5

(a) (b)

(c)

Fig. 6 Feasible ellipse cuttings computed via (EPQP) for three ellipses with different eccentricities. a TE0.80 :
A+ = 16.09992. b TE0.50 : A+ = 9.74384. c TE0.10 : A+ = 2.08193

(
xs − x0

31

)2

1
+ (ys − 2)2

4
= 1 (60)

x0
31 > xs

0.5 ≤ ys ≤ 1.5

Resolving (59) and (60) leads to equation

xs = 2
√

2ys − y2
s + 2 = x0

31 −
√

1− 1
4 (ys − 2)2,

which allows us to write x0
31 as a function of ys

x0
31 = x0

31(ys) = 2
√

2ys − y2
s + 2+

√
1− 1

4 (ys − 2)2.

Its maximum is obtained by equating the first derivative to zero

2− 2ys√
2ys − y2

s

+ 2− ys

4
√

1− 1
4 (ys − 2)2

= 0, (61)
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(a)

(b)

(c)

(d)

Fig. 7 Ellipse cuttings for identical ellipses. a “symmetric:” A+ = 23.53419. b “symmetric:” A+ =
62.13676 = 15.53419 · 4. c “asymmetric:” A+ = 61.62058 ≈ 14.28642 · 4.31323. d “symmetric:”
A+ = 69.67096

and yields the numerical values (ys, x0
31) ≈ (1.121357, 4.88355) ; (61) does not possess an

analytical solution. For completeness, we also report xs ≈ 3.98521 and the area,

ã3 := 4xR
1,3 := 4

(
x0

31 + 1
) ≈ 23.53419.

The values of x0
31 and xR

1,3 can also be used to derive good upper bounds, ãn = 4xR
1,n , on the

area of rectangles for n identical ellipses.
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Table 6 Cuttings obtained for “symmetric” placing of ellipses

n Configuration Cn Recursion xR
1,n ãn = 4xR

1,n

3 2+ θ = 1× [2+ θ ] x3 + 1 23.53419

4 θ + C3 = θ + 1× [2+ θ ] θ + C3 2(x3 − 2+ 1) 31.06838

5 2+ θ + 2 = 1× [2+ θ ]+ 2 C3 + 2 2x3 39.06838

6 θ + 1× [2+ θ ]+ 2 θ + C5 xR
1,4 − 1+ x3 46.60257

7 θ + 2× [2+ θ ] C6 + θ 2(xR
1,4 − 1) 54.13676

8 2× [2+ θ ]+ 2 2+ C6 2(xR
1,5 − 2) 62.13676

9 θ + 2× [2+ θ ]+ 2 C7 + 2 = θ + C6 xR
1,7 − 1+ x3 69.67096

10 θ + 3× [2+ θ ] C9 + θ 2(xR
1,6 − 2) 77.20515

11 3× [2+ θ ]+ 2 2+ C9 2(xR
1,6 − 1) 85.20515

12 θ + 3× [2+ θ ]+ 2 C10 + 2 = θ + C11 xR
1,10 − 1+ x3 92.73934

13 θ + 4× [2+ θ ] C12 + θ 2(xR
1,7 − 1) 100.27353

14 4× [2+ θ ]+ 2 2+ C12 2(xR
1,8 − 2) 108.27353

15 θ + 4× [2+ θ ]+ 2 θ + C14 xR
1,13 − 1+ x3 115.80772

For n ≥ 7, a general formula is

xR
1,n =

(
xR

1,n−2 − 1
)+ x3,

with x3 ≡ x0
31 ≈ 4.88355 as derived for the three ellipse case. If the configuration is

symmetric, we have

xR
1,n = 2

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

xR
1,1+�n/2� − 1, for n = 2k + (k − 1) = 3k − 1 ∧ k = 2m

xR
1,1+�n/2� − 2, for n = 2k + (k − 1) = 3k − 1 ∧ k = 2m + 1

xR
1,1+�n/2� − 2, for n = 2k + (k + 1) = 3k + 1 ∧ k = 2m + 1

xR
1,1+�n/2� − 1, for n = 2k + (k + 1) = 3k + 1 ∧ k = 2m

We summarize the resulting symmetric cuttings in Table 6. Figure 7a, b, d illustrate the
notation in Table 6 for 3, 8 and 9 ellipses, respectively.

We start with a series of computations for identical ellipses using the monolith formulation
(EPQP), as summarized in Table 7. With only 20 min of CPU time, the lower bounds do not
increases above the sum of the area of all ellipses. This picture does not change when allowing
45 min. However, the runs terminated after 45 min tend to reveal improved solutions compared
to the shorter runs of 20 min. Note that the lower bounds obtained by LindoGlobal are slightly
larger when compared to those obtained by the other two solvers.

As long as the upper bound on x P
2 equals 4 (test cases TS02, TS03, TS04), ãn yields the

optimal area of the design rectangle. They are obtained by the three solvers (cf. Table 7). For
x R

2 > 4 (all other test cases), the solutions obtained are often slightly better than the analytic
bounds ã because additional topological placements to the symmetric ones become possible.
We observe this the first time for TC08. Figure 7b, c contrast the “symmetrical” to the better
“asymmetrical” placement.

Computations exploiting the lexicographic ordering—the MINLP extension as dis-
cussed in Sect. 2.4—are summarized in Table 8. For eight ellipses, the lower bounds are
improved compared to the monolith formulation without the lexicographic ordering; cf.
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Table 7 Identical ellipses with (EPQP) (no MINLP extensions)

Test case ãn BARON LindoGlobal GloMIQO

A− A+ A− A+ A− A+

CPU time limit: 20min

TS02 16.00000 *** 16.00000 15.99262 16.00000 *** 16.00000

TS03 23.53419 18.84937 23.53383 18.84956 23.53419 18.84937 23.53418

TS04 31.06838 25.13249 31.06838 25.13274 31.06838 25.13249 31.06838

TS05 39.06838 31.41561 44.27202 31.41593 39.03709 31.41561 39.03440

TS06 46.60257 37.69873 46.59140 37.69911 46.87235 37.69873 46.59298

TS07 54.13676 43.98186 54.13676 43.98230 63.32598 43.98186 54.13676

TS08 62.13676 50.26498 61.26671 50.26548 61.26671 50.26498 61.26671

TS09 69.67096 56.54810 69.58410 56.54867 69.58592 56.54810 69.58410

TS10 77.20515 62.83122 76.49471 62.83185 78.23977 62.83122 76.49471

TS11 85.20515 69.11435 85.73779 69.11504 – 69.11435 84.61446

TS12 92.73934 75.39747 91.67122 75.39822 94.22207 75.39747 91.67122

TS13 100.27353 81.68059 99.85158 81.68141 – 81.68059 99.85158

TS14 108.27353 87.96371 106.78443 87.96459 – 87.96371 110.6829

TS15 115.80773 94.24684 115.13250 94.24778 – 94.24684 –

CPU time limit: 45min

TS02 16.00000 *** 16.00000 *** 16.00000 *** 16.00000

TS03 23.53419 18.84942 23.53383 18.84956 23.53351 18.84956 23.53418

TS04 31.06838 25.13249 31.06838 25.13274 31.06838 25.13274 31.06838

TS05 39.06838 31.41561 39.01646 31.41593 39.03709 31.41561 39.01646

TS06 46.60257 37.69873 46.59133 37.69911 46.87236 37.69873 46.59133

TS07 54.13676 43.98186 54.13676 43.98230 63.32598 43.98186 54.13676

TS08 62.13676 50.26498 61.26671 56.00000 68.00000 50.26498 61.26671

TS09 69.67096 56.54810 69.58409 56.54867 69.58410 56.54810 69.58410

TS10 77.20515 62.83122 76.49471 62.83185 76.49544 62.83122 76.49471

TS11 85.20515 69.11435 85.64764 69.11504 87.87180 69.11435 84.61819

TS12 92.73934 75.39747 91.67122 75.39822 94.22207 75.39747 91.67122

TS13 100.27353 81.68059 99.85158 81.68141 108.91049 81.68059 99.85158

TS14 108.27353 87.96371 106.78443 87.96459 – 87.96371 106.9077

TS15 115.80772 94.24684 115.13250 94.24778 – 94.24684 –

For 16 and more identical ellipses, no feasible points were found by any of the three solvers used. GAMS 24.1;
platform 2
*** Solved to proven global optimality (within 10−5)
– No feasible solution found

Table 7. Because the MINLP is more difficult to solve than the pure NLP formulation,
we are not surprised to see the upper bound weaker. However, the advantage of the lex-
icographic ordering becomes obvious when we try to close the gap; at least for three
ellipses.

On platform 3, GAMS 23.8, GloMIQO, and the lexicographic MINLP approach, the gap
is closed after 128,329 seconds (35 h 38 m 49 s) within a tolerance of 	 = 10−5. The global
solution has objective function value a = 23.53347. The gap could neither be closed using
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Table 8 Identical ellipses with (EPQP) exploiting lexicographic ordering.

Test case ã BARON LindoGlobal GloMIQO

A− A+ A− A+ A− A+

TS02 16.00000 *** 16.00000 *** 16.00000 *** 16.00000

TS03 23.53419 18.84937 23.53383 18.84992 23.53305 18.84937 23.53418

TS04 31.06838 25.13249 31.06838 25.13274 31.06838 25.13249 31.06838

TS05 39.06838 31.41561 44.27205 31.41593 39.03709 31.41561 39.01646

TS06 46.60257 37.69873 – 37.69911 46.87236 37.69873 47.26726

TS07 54.13676 43.98186 – 43.98230 63.32598 43.98186 64.31777

TS08 62.13676 50.26498 – 50.26548 68.00000 56.12506 67.47646

TS09 69.67096 56.54810 – 56.54867 – 56.54810 78.41787

TS10 77.20515 62.83122 – 62.83185 – 62.83122 84.86555

CPU time limit is 45 min; GAMS 24.1; platform 2
*** Solved to proven global optimality (within 10−5)
– No feasible solution found

GloMIQO embedded in GAMS 23.9 to GAMS 24.1, nor by the other two global solvers, with
48 h of computational time. Baron computed a cutting with area 23.53383; cf. Table 8. It
turns out that this is smaller than the lower bound obtained by GloMIQO. The explanation
lies in the different feasibility tolerances of the two global solvers.

4.3 Polylithic

For the larger test instances (TC20, TC30, TC50 and TC100), none of the global or local
NLP solvers available in GAMS can compute a feasible point. Therefore, we analyze these
cases using our polylithic approaches; cf. Table 9.

We choose value 10 for parameter n1 for both heuristics, because we can obtain reasonable
solutions within approximately 5–15 minutes. The second parameter is n2, the number of
ellipses placed during the sequential phase. We experienced with n2 = 1 and n2 = 2. While,
from the underlying mathematical idea, we expect that the solutions are better for n2 = 2, the
computing effort is higher. This in turn, can lead—and sometimes does—to worse solutions
if the time limit is reached before the gap is closed. Thus, considering this trade-off, we
recommend and prefer n2 = 1.

We benchmark the polylithic approach by comparing it to the best results obtained by
the monolith one (Table 3) for TC11 and TC14. For TC11, the monolith yields A− =
47.31238 and A+ = 64.59177 (LindoGlobal) whereas H1 provides A− = 37.11006 and
A+ = 57.24034 (BARON) and H2 provides A+ = 57.73518 (BARON) and for TC14,
the monolith yields A− = 20.61650 and A+ = 29.65886 (GloMIQO) whereas H1 pro-
vides A− = 13.69538 and A+ = 24.67185 (BARON) and H2 provides A+ = 24.84634
(GloMIQO). Thus, for TC11 and TC14 both heuristics find better cuttings than the monolith
formulation.

We reach the limits of H1 when we approach 30 and more ellipses (the solvers cannot
compute a feasible cutting for the resulting (EP) in step H1_1.2.4). The front heuristics,
H2, works fine for all cases TC11, TC14, TC20, TC30, TC50 and TC100. For both H1
and H2, results with n2 = 2 are superior to n2 = 1 but are somewhat more computational
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Table 9 Heuristic methods H1 (n1 = 10) and H2 (n1 = 10, n3 = 5) for cutting ellipses; |S| = 8

Test
case

BARON LindoGlobal GloMIQO

A− seq. A+ seq. A− seq. A+ seq. A− seq. A+ seq.

H1: n2 = 1

TC11 37.11006 2 57.24034 3 37.11006 2 58.34738 5 37.11006 2 58.30057 5

TC14 13.69538 2 24.67185 1 13.69538 3 24.86237 4 13.69538 2 25.12648 2

TC20 24.92068 2 69.17487 3 mtol mtol 24.92068 4 67.95753 2

H1: n2 = 2

TC11 37.11006 2 57.24034 3 37.11006 2 58.30057 5 37.11006 2 58.34738 5

TC14 11.04466 2 24.97945 6 13.69538 2 25.93243 1 11.04466 2 25.12648 5

TC20 24.92068 2 69.51981 4 mtol mtol 19.86272 4 69.82890 7

H2: n2 = 1

TC11 n/a 57.73518 7 n/a 58.34738 5 n/a 58.30057 5

TC14 n/a 25.67342 1 n/a 25.72716 4 n/a 24.84634 8

TC20 n/a 68.47550 4 n/a 68.23159 2 n/a 67.83459
 1

TC30 n/a 103.45212 2 n/a 113.05175 6 n/a 109.43025
 1

TC50 n/a 167.10549 4 n/a 176.89313 7 n/a 174.43153
 1

TC100 n/a 326.64228 1 n/a – n/a 331.77321
 1
H2: n2 = 2

TC11 n/a 57.73518 7 n/a 58.34738 5 n/a 58.30057 5

TC14 n/a 25.72871 2 n/a 26.75323 2 n/a 25.73702 5

TC20 n/a 71.14951 7 n/a – n/a 78.31584
 1

TC30 n/a 104.31177 7 n/a – n/a 105.57857
 1

TC50 n/a 167.71486 8 n/a – n/a 166.91505
 1

TC100 n/a 325.23287 3 n/a – n/a 322.64663
 1

CPU time limit is 5 h (for steps H1_1.1, H1_1.2.4, H1_1.2.5, H2_1.2 and H2_1.2.4); GAMS 24.0.2; platform 1
– No feasible solution found in any of the sequences
n/a H2 does not provide a lower bound on the area of the design rectangle
mtol Model too large for the available licence

 CPU time limit is 1 h; GAMS 24.0; platform 2

expensive. Computations for n2 = 3 are even more challenging and do not provide a clear
direction.

Figure 8a shows a feasible cutting computed by BARON with H1 (n2 = 1) and Fig. 8b
the cutting computed by GloMIQO with H2 (n2 = 1).

5 Conclusions

We developed non-convex (MI)NLP models describing the problem of cutting ellipses from a
design rectangular plate. Small problem instances can be solved with the current state-of-the
art global solvers available in GAMS. The more the ellipses deviate from circles, the more
difficult it is to close the gap. As it is expected from the NP-hard nature of the ellipse cutting
problem, global solvers reach their limitations fast and it becomes a very challenging task for
the solvers just to compute a feasible point. For these cases, we have developed two polylithic
methods, generating good ellipse cuttings.
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(a)

(b)

Fig. 8 Feasible cuttings computed by the heuristics. a TC14: A+ = 24.67185. b TC20: A+ = 67.83459

The developed (MI)NLP formulations lean themselves naturally to higher dimensional
extensions. The 3-D case is of particular practical interest. Who was never curious on how
to pack smarties, a German chocolate sweet, optimally?

Acknowledgments Thanks are directed to Prof. Dr. Siegfried Jetzke (Ostfalia Hochschule, Salzgitter, Ger-
many) for his interest in this work, comments on the manuscript and discussion about the usefulness of ellipses
and ellipsoids in real world problems.

Appendix: Notation

We start with the notation used in the derivation of the model; they are not used in the
mathematical programming formulations directly.

Aθ i positive definite matrix defining ellipses; entries are A11, A12, A21, and A22

c objective function coefficient vector of auxiliary problems; c� = (1, 0) or
c� = (0, 1)

di distance of ellipse i to line G(t)
Di diagonal matrix for ellipse i with eigenvalues of Aθ i in the diagonal
δab

i j maximum vertical extension of ellipse i to the hyperplane in the new coor-
dinate system

δbe
i j maximum vertical extension of ellipse j to the hyperplane in the new coor-

dinate system
Eθ−ω,i positive definite matrix defining rotated ellipses; Eθ−ω,i := Aθ−ω,i ; entries

are E11, E12, E21, and E22

G(t) separating line, i.e., hyperplane
L(x, λ̄) Lagrangian function
λid eigenvalue of matrix Aθ i ; λi1 = a−2

i and λi2 = b−2
i

λ̄ Lagrangian multiplier associated with ellipse equation
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ϕi rotation angle to generate ellipse i in new coordinate system
Rθ i rotation matrix for ellipse i at angle θi

vi (ϕi ) equation for ellipse i in new coordinate system
v0

id center coordinate (in dimension d) of ellipse i in the new coordinate system
v−i2 minimal extension (in dimension d = 2) of ellipse i in the new coordinate

system
x−id minimum extension of ellipse i in dimension d
x+id maximum extension of ellipse i in dimension d

The notation used in the mathematical programming models and heuristics is summarized
in the following sections.

Indices and sets

d ∈ {1, 2} index for the dimension; d = 1 represents the length and d = 2 the
width

i ∈ I := {1, . . . , n} objects (ellipses or circles) to be cut
(cx , cy) ∈ Ice small rectangles, cells, dividing the design rectangle
(i, j) ∈ Ico pairs of congruent ellipses; we assume i < j

Data

ai semi-major axis of ellipse i; ai ≥ bi

ãn area of the design rectangle for the “symmetric” cutting for n identical
ellipses

Ai area of ellipse i; Ai = πai bi

A−, A+ lower and upper bound on the area, a, of the design rectangle obtained
during the computation

Aci,− minimal area of the design rectangle to host the inner circles associ-
ated with the ellipses. Aci,− provides a lower bound on the associated
ellipse cutting problem

Aci,+ area of the design rectangle to host the outer circles associated with
the ellipses. Aci,− provides an upper bound on the associated ellipse
cutting problem

bi semi-minor axis of ellipse i; ai ≥ bi

C−cx cyd , C+cx cyd lower and upper boundary coordinate of cell (cx , cy)

Di j bound on the distance variables dab
i j and dbe

i j
	 relative gap
ε eccentricity measuring the deviation of an ellipses from a circle
n1, n2, n3 parameters in the heuristics: number of ellipses selected
Ri radius of circle i to be cut
ρ factor (parameter) for semi-minor axis for test instances TEρ

Sid1, Sid2 auxiliary data derived from semi-major and semi-minor axis, as
defined in (32)

S−d , S+d minimum (lower bound) and maximum size (upper bound) of the
extension of the design rectangles in dimension d

xR
1,n length of the design rectangle for the “symmetric” cutting of n iden-

tical ellipses
X− smallest center coordinate among the n3 ellipses in coordinate direc-

tion d = 1—only used for heuristic H2
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Decision variables

a (continuous) area of the design rectangle; a∗ defines (globally) optimal area
dab

i j (continuous) distance of the center of ellipse i to the separating line between the
ellipses i and j ; ellipse i is above the separating line

dbe
i j (continuous) distance of the center of ellipse j to the separating line between the

ellipses i and j ; ellipse j is below the separating line
δicx cy (binary) assign ellipse i to cell (cx , cy)

g0
i jd (continuous) footpoint coordinate (in dimension d) of separating line between

ellipses i and j ; we place the footpoint inside the design rectangle; index i j is
dropped in Sect. 2.1.4

gi jd (continuous) slope (in dimension d) of the separating line between ellipses i and
j ; index i j is dropped in Sect. 2.1.4

λi j (continuous) linear combination variable for hyperplane and ellipses i and j
ωi j (continuous) inclination angle of the separating line between the ellipses i and

j; ωi j ∈ [0, 2π ]; index i j is dropped in Sect. 2.1.4
pab

i j (continuous) auxiliary variable modeling cos(θi − ωi j ); pab
i j ∈ [−1, 1]

pbe
i j (continuous) auxiliary variable modeling cos(θ j − ωi j ); pbe

i j ∈ [−1, 1]
θi (continuous) orientation angle of ellipse i; θi ∈ [0, 2π]
vi (continuous) auxiliary variable representing trigonometric term cos θi ;

vi ∈ [−1, 1]
wi (continuous) auxiliary variable representing trigonometric term sin θi ;

wi ∈ [0, 1]
xR

d (continuous) extension of the design rectangle in dimension d
x0

id (continuous) coordinates of the center vector of object i to be cut
z (continuous) waste of the design rectangle; z = a −∑

i∈I Ai
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