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Abstract For nonlinear programming problems, we propose a new class of smooth exact
penalty functions, which includes both barrier-type and exterior-type penalty functions as
special cases. We develop necessary and sufficient conditions for exact penalty property
and inverse proposition of exact penalization, respectively. Furthermore, we establish the
equivalent relationship between these penalty functions and classical simple exact penalty
functions in the sense of exactness property. In addition, a feasible penalty function algorithm
is proposed. The convergence analysis of the algorithm is presented, including the global
convergence property and finite termination property. Finally, numerical results are reported.
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1 Introduction

The penalty function algorithm is an important method for solving constrained optimization
problems, which, by augumenting a penalty term, transforms the original problem into a
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single unconstrained (or simple constrained) problem or into a sequence of unconstrained
problems. For classical penalty function algorithms, we need to make the penalty parameter
infinitely large in a limiting sense to recover an optimal solution of the original problem,
which incurs numerical instability in implementation. To avoid this difficulty, we require
the penalty function to satisfy the following property: recovering an exact solution of the
original problem for reasonable finite values of the penalty parameter. The penalty function
possessing this property is said to be exact. However, it should be identified that some exact
penalty functions have the disadvantage that they either need Jacobian [7,9,14,15,20] or are
no longer smooth (l1 or l∞ penalty functions etc. [1,3,4,6,12,16,18,19,21,22]).

In this paper, we are mainly concerned with the following nonlinear programming problem

(P) min f (x)

s.t. F(x) = 0, x ∈ [u, v],
where [u, v] = {x ∈ R

n |u ≤ x ≤ v}, u ∈ ({−∞}∪R)n, v ∈ ({+∞}∪R)n and int[u, v] �= ∅.
The functions f : D → R and F : D → R

m are continuously differentiable on an open
set D satisfying [u, v] ⊂ D. We always assume that the feasible region is nonempty and the
function f is bounded below on D, because f can be replaced by e f otherwise.

Let ω ∈ R
m be fixed. The problem (P) can be written equivalently as

min f (x)

s.t. F(x) = εω,

x ∈ [u, v], ε = 0.

For this problem, Huyer and Neumaier [13] introduce the following exact penalty function

fσ (x, ε) =
⎧
⎨

⎩

f (x), if ε = 
(x, ε) = 0;
f (x) + 1

2ε

(x,ε)

1−q
(x,ε)
+ σβ(ε), if ε > 0,
(x, ε) < q−1;

+∞, otherwise,
(1.1)

where q > 0 is a given positive constant, σ > 0 is a penalty parameter, β : [0, ε] → [0,∞)

is continuous on [0, ε] with ε > 0 and continuously differentiable on (0, ε] with β(0) = 0.
The term �(x, ε) measures the violation of the constraints, i.e.,

�(x, ε) = ‖F(x) − εω‖2 =
m∑

j=1

(
Fj (x) − εω j

)2
.

The corresponding penalty problem to (1.1) is

(Pσ ) min fσ (x, ε)

s.t. (x, ε) ∈ [u, v] × [0, ε].
Note that fσ is continuously differentiable on Dq = {(x, ε) ∈ D×(0, ε)|�(x, ε) < q−1}.

The exact penalty property of fσ is discussed thoroughly in [13], e.g., for smooth case, the
exact penalty property is established if DF (see (3.1)) is bounded and each x ∈ DF satisfies
Mangasarian-Fromovitz constraint qualification [13, Theorem 2.1]; for nonsmooth case of
(P), sufficient conditions are established by the regular technique and other strong conditions
[13, Theorem 5.3].

The above penalty function fσ is simple and exact. Here, we call a penalty function
“simple”, if it involves objective and constraint functions of the original problem (P) and does
not involve gradients or the Jacobian. The main reason of fσ to have significant differences
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with the classical simple exact penalty functions is that fσ has good smoothness property,
which is not enjoyed by the latter [2,10]. In this paper, we restrict our focus primarily on the
case of (P) being smooth. The main results are listed as follows.

(i) The term �(x,ε)
1−q�(x,ε)

in (1.1) plays a role as a barrier term. However, to compute an
interior point is not an easy thing in practical applications. Therefore, we extend this
term to a class of convex functions. This allows us to present a unified framework for
some barrier-type and exterior-type penalty functions, in which the latter are smooth
on [u, v] × (0, ε) and have a larger smooth area than the former. The extended penalty
function class (2.1) in Sect. 2 provides several alternatives in the design of penalty
function algorithms.

(ii) Based on (2.1) in Sect. 2, the corresponding penalty problems for (P) are proposed. We
firstly introduce the extended Mangasarian-Fromovitz constraint qualification, which
generalizes the classical Mangasarian-Fromovitz constraint qualification from a single
point to an infinite sequence. The sufficient condition for exact penalty property of f̃σ
is established, provided that ∇ f is bounded on DF and the extended Mangasarian-
Fromovitz constraint qualification holds (see Theorem 3.1). This finding generalizes
[13, Theorem 2.1]. Furthermore, necessary conditions for exact penalty property are
obtained (see Theorem 3.2).

(iii) Following by a series of technical lemmas, we show that these necessary conditions are
also necessary and sufficient conditions for inverse proposition of exact penalization
(see Theorem 4.1). This result accurately characterizes the equivalence between f̃σ
and the classical simple exact penalty functions in the sense of exactness property.
It demonstrates that f̃σ possesses exactness property as the classical simple penalty
functions as well as the smoothness property, which is not shared by the classical
simple exact penalty functions.

(iv) It should be mentioned that, even if the original programming problem has optimal
solutions, the penalty functions may fail to locate an optimal solution. In this case,
it is impossible to obtain optimal solutions via penalty function algorithms, because
in some penalty function algorithms, we need to find the optimal solution of penalty
subproblem at each iteration. It also may occur even for the smooth penalty function with
lower bound. For example, although the penalty function proposed in [8] is smooth and
bounded from below, there exists an example to indicate that, the penalty function may
fail to locate optimal solutions even though the original problem has an optimal solution.
This causes the penalty function algorithm proposed in [8] and its revised version
inapplicable. In addition, some papers discuss the convergence of iterative sequences
generated by penalty function algorithms to FJ points or KKT points; see [5,17,20].
In order to avoid the cases mentioned above, we present a class of revised penalty
function algorithms. The main feature of this class of algorithms is that if the optimal
solution of the penalty subproblem does not exist, then we resort to finding a δ-optimal
solution of the penalty subproblem. Note that the δ-optimal solution always exists,
because penalty functions are bounded from below. This ensures the revised penalty
function algorithms are always feasible. In addition, utilizing the exact penalty property
and structural features of the class of penalty functions, we show that, under certain
conditions, the proposed algorithm has finite termination property, i.e., the algorithm
terminates at the optimal solution of the original problem after finitely many iterations;
otherwise, by a perturbation theorem, the global convergence property is given, that
is, every accumulation point of the sequence generated by the algorithm is an optimal
solution of the original problem.
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The organization of this paper is as follows. Section 2 extends the penalty function proposed
by Huyer and Neumaier (1.1) to a class of penalty functions (2.1), establishes corresponding
penalty problems and introduces the extended Mangasarian-Fromovitz constraint qualifica-
tion. The necessary and sufficient conditions for exact penalty property are developed in
Sect. 3. In Sect. 4, necessary and sufficient conditions for the inverse propositions of exact
penalization are established. Additionally, the equivalence relationship between the new class
of penalty functions and the classical simple exact penalty function in the sense of exactness
property is established. Section 5 is devoted to the revised penalty function algorithm, where
the finite termination property and global convergence property of the proposed algorithm
are discussed, respectively. Numerical results are reported in Sect. 6.

2 A class of exact penalty functions

In this section, we extend the term �(x,ε)
1−q�(x,ε)

in (1.1) to a class of convex functions. This
allows us to present a unified framework for some barrier-type and exterior-type penalty
functions. Given a ∈ (0,+∞], let a function φ : [0, a) → [0,+∞) satisfy

(i1) φ is convex and continuously differentiable on [0, a) with φ(0) = 0.
(i2) φ′(t) > 0 for all t ∈ [0, a).
Many functions satisfy the conditions (i1), (i2), for example

φ1(t) = t
(1−qt)α (a = q−1, α ≥ 1);

φ2(t) = tan(t) (a = π
2 );

φ3(t) = − log(1 − tα) (a = 1, α ≥ 1);
φ4(t) = t (a = +∞);
φ5(t) = et − 1 (a = +∞);
φ6(t) = 1

2 (
√

t2 + 4 + t) − 1 (a = +∞).

Utilizing φ, a penalty function is given by

f̃σ (x, ε) =
⎧
⎨

⎩

f (x), if ε = 
(x, ε) = 0,

f (x) + 1
2ε

φ(�(x, ε)) + σβ(ε), if ε > 0,
(x, ε) < a,

+∞, otherwise.
(2.1)

It is easy to see that f̃σ is continuously differentiable on Da = {(x, ε) ∈ D × (0, ε)|�(x, ε)

< a}. The barrier-type penalty functions correspond to the case of a < +∞, and the exterior-
type ones correspond to the case of a = +∞.

The corresponding penalty problem is defined as

(P̃σ ) min f̃σ (x, ε)

s.t. (x, ε) ∈ [u, v] × [0, ε].
Let’s firstly recall Mangasarian-Fromovitz constraint qualification. Consider

{
F(z) = 0,

g(z) ≤ 0,
(2.2)

where g : D → R
l is continuously differentiable, and F is defined as before. Denote by

∇F ∈ R
n×m the transpose of Jacobian of F .

Definition 2.1 For constraint system (2.2), we say that Mangasarian-Fromovitz constraint
qualification (hereafter, MFCQ for short) holds at z∗ ∈ R

n , if
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(1) g(z∗) ≤ 0 and rank(∇F(z∗)) = m;
(2) there exists p ∈ R

n such that ∇F(z∗)T p = 0 and ∇g j (z∗)T p < 0 for all j ∈ J (z∗),

where J (z∗) = { j ∈ J |g j (z∗) = 0} and J = {1, 2, . . . , l}.
For an infinite sequence K ⊂ {1, 2, . . .} and {zk}k∈K ⊂ R

n , denote

J+(K ) = { j ∈ J | lim sup
k∈K ,k→∞

g j (z
k) ≥ 0} and J−(K ) = { j ∈ J | lim sup

k∈K ,k→∞
g j (z

k) < 0}.

Definition 2.2 For constraint system (2.2), we say that an extended Mangasarian-Fromovitz
constraint qualification (hereafter, EMFCQ for short) holds for {zk}k∈K , if there exist a matrix
∇F∗ and an infinite subset K0 ⊂ K such that

(1) lim
k∈K0,k→∞ ∇F(zk) = ∇F∗ and rank(∇F∗) = m;

(2) there exists p ∈ R
n such that (∇F∗)T p = 0 and lim sup

k∈K0,k→∞
∇g j (zk)T p < 0 for all

j ∈ J+(K0).

Obviously, if MFCQ holds at z∗, then EMFCQ holds for the constant sequence {zk}k∈K

satisfying zk = z∗ for all k ∈ K . Furthermore, from Definitions 2.1 and 2.2, we readily get
the following result.

Proposition 2.1 Let {zk}k∈K ⊂ R
n. If the standard MFCQ holds for an accumulation point

z∗ of the sequence {zk}k∈K for (2.2), then EMFCQ holds for {zk}k∈K .

The following example shows that EMFCQ is suitable for an unbounded and infeasible
sequence.

Example 2.1 Consider the following constraint system
⎧
⎨

⎩

F(z) = z1 + z2 + z2
3 = 0,

g1(z) = z1 − z2 ≤ 0,

g2(z) = z1 − z2 − z2
3 ≤ 0.

It is easy to see that EMFCQ holds for the unbounded sequence {zk} = {(k+ 1
k , k, 1+ 1

k )T }.
Now let us discuss EMFCQ in more detail. Clearly, from Definition 2.1, Definition 2.2 and
Example 2.1, we generalize MFCQ from a single point z∗ with g(z∗) ≤ 0 to an infinite
sequence {zk}k∈K . This sequence may be unbounded and infeasible, i.e., not necessarily
satisfy g(zk) ≤ 0. Therefore, EMFCQ is suitable to weaken some assumptions on exactness
property in the existing literature. In fact, it, to a great extent, mainly can be used to remove the
level-bounded assumption. For instance, as stated in [13, Theorem 2.1], exactness property
of the penalty function fσ (z, ε) is established, provided that the level set DF is bounded
and every point z ∈ DF satisfies MFCQ. These conditions ensure that the sequence {zk}k∈K

is bounded and every accumulation point satisfies MFCQ, where (zk, εk) is a local optimal
solution of the penalty problem (P̃σ ). According to Proposition 2.1, EMFCQ holds for
{zk}k∈K . Therefore, we can show that f̃σ (z, ε) is also exact (see Theorem 3.1 below) by
requiring the validity of EMFCQ for {zk}k∈K and the boundedness of ∇ f over DF . Therefore,
[13, Theorem 2.1] is a special case of our result (see Corollary 3.1 and Remark 3.1 below).

Similarly, the level-bounded assumption in the convergence analysis of penalty function
methods can be weakened by EMFCQ. For example, in [8], a class of penalty function
methods (see [8, Algorithm 1]) was proposed for the nonlinear programming problem with
inequality constraints. Notice that, in general, the iteration point zk generated by Algorithm
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1 is infeasible. By the assumptions that the level set �ε is bounded and all global optimal
solutions of the original problem satisfy MFCQ (see [8, Assumptions (H1) and (H2)]), an
infinite sequence {zk} generated by Algorithm 1 is proven to be feasible as k sufficiently large.
Similar to the above discussion, it immediately follows from Assumptions (H1), (H2) and
[8, Lemma 3] that {zk} is bounded and every accumulation point satisfies MFCQ. Thus, we
recover [8, Theorem 1] by replacing these assumptions by EMFCQ holds for {zk}k∈K and
∇ f is bounded on the level set. This indicates that [8, Theorem 1] is also a special case in
our work.

3 Exact penalty property

This section deals mainly with the “exact” property of the penalty functions (2.1). In particular,
[13, Theorem 2.1] is generalized by using EMFCQ, instead of standard MFCQ. Define the
level set

DF = {
x ∈ [u, v]∣∣‖F(x)‖ ≤ √

a + ε‖ω‖}, (3.1)

where a ∈ (0,+∞]. If a = +∞, then DF reduces to [u, v]. Before proceeding, we need the
following assumptions.

Assumption (A)
(A1) ∇ f is bounded on DF ;
(A2) For any infinite subsequence {σk}k∈K → +∞, EMFCQ holds for {xk}k∈K , where

(xk, εk) is a local optimal solution of (P̃σk ) with finite value.

Lemma 3.1 Suppose that there exists β1 > 0 such that β ′(ε) ≥ β1 for all ε ∈ (0, ε]. If
(x, ε) is a KKT point of (P̃σ ) with ε > 0, then

2β1φ
′(0)σε2 1

φ′(�)2 ≤ ‖F(x)‖2,

where � denotes �(x, ε) for simplification.

Proof If (x, ε) is a KKT point of (P̃σ ) with ε > 0, then by the construction of f̃σ , there exist
λ, η ∈ R

n+, λn+1 ≥ 0, and ηn+1 ≥ 0 such that

∇ f (x) + 1

ε
φ′(�)∇F(x)

(
F(x) − εω

) = λ − η,

inf(λi , xi − ui ) = inf(ηi , vi − xi ) = 0, i = 1, 2, . . . , n,

− 1

2ε2 φ(�) − 1

ε
φ′(�)

(
F(x) − εω

)T
ω + σβ ′(ε) = λn+1 − ηn+1, (3.2)

λn+1 = inf(ηn+1, ε − ε) = 0. (3.3)

It follows from (3.2) and (3.3) that

− 1

2ε2 φ(�) − 1

ε
φ′(�)

(
F(x) − εω

)T
ω + σβ ′(ε) ≤ 0,

from which and the fact that φ′(�) > 0 we have

− 1

φ′(�)
φ(�) − 2ε

(
F(x) − εω

)T
ω + 2ε2σβ ′(ε) 1

φ′(�)
≤ 0. (3.4)
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Rearranging (3.4) yields

− 1

φ′(�)
φ(�) + � + ε2‖ω‖2 + 2ε2σβ ′(ε) 1

φ′(�)
≤ ‖F(x)‖2. (3.5)

The convexity of φ, the condition (i2) and the fact φ(0) = 0 ensure that

− � ≤ (
φ(0) − φ(�)

) 1

φ′(�)
= −φ(�)

1

φ′(�)
. (3.6)

Combining (3.5) and (3.6) yields

2ε2σβ ′(ε) 1

φ′(�)
≤ ‖F(x)‖2.

In consideration of β ′(ε) ≥ β1 and the monotonicity of φ′ (since φ is convex), the above
inequality implies that

2β1φ
′(0)σε2 1

φ′(�)2 ≤ ‖F(x)‖2.

��
Lemma 3.2 Suppose that there exists β1 > 0 such that β ′(ε) ≥ β1 for all ε ∈ (0, ε].
If (x∗, ε∗) is a local optimal solution of (P̃σ ) with finite optimal value, then x∗ is a local
optimal solution of (P) if and only if ε∗ = 0.

Proof Since constraint functions of (P̃σ ) are all linear, then (x∗, ε∗) is also a KKT point of
(P̃σ ). If x∗ is a local optimal solution of (P), then F(x∗) = 0. According to Lemma 3.1,
we must have ε∗ = 0. Conversely, if ε∗ = 0, taking account of the finiteness of f̃σ (x∗, 0)

and the construction of f̃σ , we have F(x∗) = 0, and hence x∗ is a local optimal solution of
(P). ��
Lemma 3.3 Suppose that there exists β1 > 0 such that β ′(ε) ≥ β1 for all ε ∈ (0, ε]. If
(xk, εk) is a KKT point of (P̃σk ) with εk > 0, then for σk → +∞(k → ∞), we have

lim
k→∞

1

εk
φ′(�k)

√
�k = +∞,

where �k := �(xk, εk).

Proof Lemma 3.1 implies that

lim
k→∞

1

εk
φ′(�k)‖F(xk)‖ = +∞.

Note that

1

εk
φ′(�k)‖F(xk)‖ ≤ φ′(�k)

(
1

εk

√
�k + ‖ω‖

)

.

Therefore,

lim
k→∞ φ′(�k)

(
1

εk

√
�k + ‖ω‖

)

= +∞,

which, together with the monotonicity of φ′, yields

lim
k→∞

1

εk
φ′(�k)

√
�k = +∞.

��
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Theorem 3.1 Suppose that Assumptions (A1) and (A2) hold, and that there exists β1 > 0
such that β ′(ε) ≥ β1 for all ε ∈ (0, ε]. When σ > 0 is sufficiently large, if (x∗, ε∗) is a local
optimal solution of (P̃σ ) with finite optimal value, then ε∗ = 0. Furthermore, x∗ is a local
optimal solution of (P).

Proof It suffices to show that ε∗ = 0. Suppose on the contrary that there exist σk → +∞
as k → ∞ and a sequence of local optimal solutions (xk, εk) of (P̃σk ) with f̃σ (xk, εk) finite
and εk > 0. Since all constraint functions are linear, then (xk, εk) is a KKT point of (P̃σk ),
i.e., there exist λk, ηk ∈ R

n+ such that

∇ f (xk) + 1

εk
φ′(�k)∇F(xk)(F(xk) − εkω) = λk − ηk, (3.7)

inf(λk
i , xk

i − ui ) = inf(ηk
i , vi − xk

i ) = 0, i = 1, 2, . . . , n. (3.8)

Since the index set {1, . . . , n} is finite, then there exists an infinite subset K ⊂ {1, 2, . . .}
such that for k ∈ K ,

xk
i = ui , i ∈ I1, (3.9)

xk
i = vi , i ∈ I2, (3.10)

ui < xk
i < vi , i ∈ I3, (3.11)

where

I1 ∪ I2 ∪ I3 = {1, 2, . . . , n} and Ii ∩ I j = ∅ if i �= j.

Invoking Assumption (A2), there exist an infinite subset K0 ⊂ K and p ∈ R
n such that

lim
k∈K0,k→∞ ∇F(xk) = ∇F∗, rank(∇F∗) = m, (∇F∗)T p = 0, (3.12)

pi

{
> 0, i ∈ I1,

< 0, i ∈ I2.
(3.13)

Putting (3.7)–(3.11) together yields

∂ f (xk)

∂xi
+ 1

εk
φ′(�k)

(
∇F(xk)(F(xk) − εkω)

)

i

⎧
⎨

⎩

≥ 0, i ∈ I1,

≤ 0, i ∈ I2,

= 0, i ∈ I3,

(3.14)

where ∂ f (x)/∂xi denotes the partial derivative of f with respect to xi . Let

hk = 1

εk
φ′(�k)(F(xk) − εkω) and qk = hk

‖hk‖ .

Lemma 3.3 implies

lim
k∈K0,k→∞ ‖hk‖ = +∞. (3.15)

Since ‖qk‖ = 1 is bounded, we can assume, without loss of generality, that

lim
k∈K0,k→∞ qk = q̃ �= 0. (3.16)

It then follows from (3.14) that

∂ f (xk)

∂xi

1

‖hk‖ +
(
∇F(xk)qk

)

i

⎧
⎨

⎩

≥ 0, i ∈ I1,

≤ 0, i ∈ I2,

= 0, i ∈ I3.
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From Assumption (A1), (3.12), (3.15), and (3.16), taking limits in the above formula yields

(
(∇F∗)q̃

)

i

⎧
⎨

⎩

≥ 0, i ∈ I1,

≤ 0, i ∈ I2,

= 0, i ∈ I3.

(3.17)

Combining this with (3.12) implies

0 = pT (∇F∗)q̃ =
∑

i∈I1

pi

(
(∇F∗)q̃

)

i
+

∑

i∈I2

pi

((∇F∗)q̃
)

i
,

which, together with (3.13) and (3.17) yields (∇F∗)q̃ = 0, and hence q̃ = 0 since ∇F∗ has
full column rank by (3.12). This leads to a contradiction to q̃ �= 0 in (3.16). Therefore, the
desired result readily follows from Lemma 3.2. ��

As a corollary of Theorem 3.1, we have

Corollary 3.1 Suppose that

(1) the set DF is bounded,
(2) the standard MFCQ holds at each point of DF ,
(3) there exists β1 > 0 such that β ′(ε) ≥ β1 for all ε ∈ (0, ε].
Then, whenever σ > 0 is large enough, every local optimal solution (x∗, ε∗) of (P̃σ ) with
finite value satisfies ε∗ = 0. Furthermore, x∗ is a local optimal solution of (P).

Proof The validity of Assumption (A1) comes from the condition (1), and Assumption (A2)

is due to the conditions (1), (2), and Proposition 2.1. ��
Remark 3.1 In particular, Corollary 3.1 recovers [13, Theorem 2.1] by taking φ(t) = t

1−qt .

Inspired by [13], a necessary condition for exact penalty property is given below. Toward
this end, consider a class of functions � : [0, a) → [0,+∞), where a > 0, satisfying

( j1) � is continuous and increasing on [0, a) with �(0) = 0,
( j2) there exists a′ ∈ (0, a) such that �(t) ≥ t for all t ∈ [0, a′].

Such a class of functions includes several important functions as special cases, for example

�1(t) = tα, t ∈ [0,+∞), α ∈ (0, 1],
�2(t) = − log(1 − tα), t ∈ [0, 1), α ∈ (0, 1],
�3(t) = et − 1, t ∈ [0,+∞).

Assumption (B) Let x∗ be a feasible point of (P). There exist γ > 0 and a neighborhood
N (x∗) such that

f (x) − f (x∗) + γ�(‖F(x)‖) ≥ 0, ∀x ∈ N (x∗) ∩ [u, v], (3.18)

where � satisfies the conditions ( j1) and ( j2).

The function � plays a key role in (3.18), which is illustrated by the following example.

Example 3.1

min f (x) = x

s.t. F(x) = x2 = 0,

x ∈ (−∞,+∞).
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Clearly, the optimal solution is x∗ = 0. If �(t) = t , i.e., �(‖F(x)‖) = x2, then (3.18) is
false for all γ > 0, while if �(t) = √

t , i.e., �(‖F(x)‖) = |x |, then (3.18) is true by taking
γ = 1.

Theorem 3.2 Suppose that β(ε) = �(ε) for ε > 0 sufficiently small. If (x∗, 0) is a local
optimal solution of (P̃σ0) with finite value for some σ0 > 0, then Assumption (B) holds at x∗
for � with γ ≥ σ0 + φ′(0)(1 + ‖ω‖)2.

Proof Let γ ≥ σ0 + φ′(0)(1 + ‖ω‖)2. Suppose on the contrary that there exists a sequence
xk ∈ [u, v] converging to x∗ such that

f (xk) − f (x∗) ≤ f (xk) − f (x∗) + γ�(‖F(xk)‖) < 0. (3.19)

Since (x∗, 0) is a local optimal solution of (P̃σ0) and the corresponding optimal value is
finite, it follows from the construction of f̃σ that x∗ is feasible (cf.(2.1)) and thus x∗ is a
local optimal solution of (P). Therefore, xk is infeasible by (3.19). This, together with the
continuity of F , implies that

‖F(xk)‖ > 0 and lim
k→∞ ‖F(xk)‖ = ‖F(x∗)‖ = 0.

Let εk = ‖F(xk)‖, i.e., εk > 0 and εk → 0 as k → ∞. Notice that

�k = ‖F(xk) − εkω‖2 ≤ ε2
k (1 + ‖ω‖)2. (3.20)

Thus,

lim
k→∞ �k ≤ lim

k→∞ ε2
k (1 + ‖ω‖)2 = 0.

As a result,

φ′(�k) ≤ 2φ′(0), (3.21)

whenever k is sufficiently large, since φ′ is continuous and φ′(0) > 0. Since (x∗, 0) is a local
optimal solution of (P̃σ0), then for k large enough we have

0 ≤ f (xk) − f (x∗) + 1

2εk
φ(�k) + σ0β(εk)

= f (xk) − f (x∗) + 1
2εk

φ(�k) + σ0�(εk) by Assumption β(ε) = �(ε)

< 1
2εk

φ(�k) + σ0�(εk) − γ�(‖F(xk)‖) by (3.19)

≤ 1
2εk

φ′(�k)�k + σ0�(εk) − γ�(εk), by the convexi ty o f φ and φ(0) = 0

≤ εkφ
′(0)(1 + ‖ω‖)2 + (σ0 − γ )�(εk) by (3.20) and (3.21)

≤ �(εk)
[
φ′(0)(1 + ‖ω‖)2 + σ0 − γ

]
, by condition j2

≤ 0, since γ ≥ σ0 + φ′(0)(1 + ‖ω‖)2

which leads to a contradiction. ��

4 Inverse propositions for exact penalization

In this section, we shall show that, if x∗ is a local optimal solution of (P), then Assumption (B)
introduced in Sect. 3 is a necessary and sufficient condition for (x∗, 0) to be a local optimal
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solution of (P̃σ ). Based on Theorem 3.2, we further establish the equivalence between this
new class of exact penalty functions and the classical simple and exact penalty functions
in the sense of “exact penalty property”. Our conclusions clarify that this class of penalty
functions (2.1) possesses not only exactness property as the classical simple penalty function,
but also the smoothness property, which is not shared by the classical simple exact penalty
function, however.

Theorem 4.1 Let x∗ be a local optimal solution of (P). The following two statements hold:

(1) If Assumption (B) holds at x∗ for �, and β(ε) ≥ �(
√

ε) for ε > 0 sufficiently small,
then (x∗, 0) is a local optimal solution of (P̃σ ) for all σ ≥ γ ;

(2) Let β(ε) = �(ε) for ε > 0 sufficiently small. If there exists σ0 > 0 such that (x∗, 0) is
a local optimal solution of (P̃σ ) for all σ ≥ σ0, then Assumption (B) holds at x∗ for �

with γ ≥ σ0 + φ′(0)(1 + ‖ω‖)2.

Proof We only need to show the validity of part (1), since part (2) follows from Theorem 3.2.
Suppose on the contrary that for some σ ≥ γ , there exist (xk, εk) ∈ [u, v] × (0, ε], xk → x∗,
and εk → 0 as k → ∞ such that f (x∗) = f̃σ (x∗, 0) > f̃σ (xk, εk),, i.e.,

0 > f (xk) − f (x∗) + 1

2εk
φ(�k) + σβ(εk)

≥ f (xk) − f (x∗) + 1

2εk
φ′(0)�k + σβ(εk), (4.1)

where we have used the gradient inequality of convex functions, i.e., φ(�k) ≥ φ(0) +
φ′(0)�k = φ′(0)�k . Taking limits on both sides of (4.1) yields lim

k→∞ �k/εk = 0, which

means that
√

�k ≤ 1

2

√
εk and

√
εk ≤ 1

2‖ω‖ + 1

whenever k is sufficiently large. So,

‖F(xk)‖ ≤ √
�k + εk‖ω‖ ≤

(
1

2
+ √

εk‖ω‖
) √

εk ≤ √
εk . (4.2)

Since εk → 0, then by hypothesis, for k large enough,

β(εk) ≥ �(
√

εk). (4.3)

Therefore, we conclude that for k sufficiently large,

0 > f (xk) − f (x∗) + 1

2εk
φ′(0)�k + σβ(εk)

≥ f (xk) − f (x∗) + σβ(εk) by the nonnegativi t y o f φ′

≥ σβ(εk) − γ�(‖F(xk)‖) by Assumption(B)

≥ σ�(
√

εk) − γ�(‖F(xk)‖) by (4.3)

≥ �(
√

εk)(σ − γ ) by the monotonici t y o f � and (4.4)

≥ 0, since σ ≥ γ

which leads to a contradiction. ��
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The concept of regular zero is introduced in [13, Definition 4.1]. To be consistent with
their notation, let us define H : R

n → R
p with p = m + |I ∗| ≤ n and

H(x) =
(

F(x)

xI ∗ − x∗
I ∗

)

,

where |I ∗| signifies the number of elements in I ∗ = I ∗
1 ∪ I ∗

2 , I ∗
1 and I ∗

2 are, respectively, the
active index sets of u ≤ x∗ and x∗ ≤ v, i.e.,

I ∗
1 = {i |ui = x∗

i } and I ∗
2 = {i |vi = x∗

i }.
According to Theorem 4.1, we obtain

Corollary 4.1 Let x∗ be a local optimal solution of (P) and β(ε) ≥ √
ε for all ε sufficiently

small. If x∗ is a regular zero of H, then there exists γ > 0 such that (x∗, 0) is a local optimal
solution of (P̃σ ) for all σ ≥ γ .

Proof Since x∗ is a regular zero of H , it then follows from [13, Lemmas 5.1 and 5.2] that
Assumption (B) holds at x∗ for �(t) = t . Combining this and Theorem 4.1 yields the desired
result. ��
Remark 4.1 For the smooth case, Corollary 4.1 reduces to [13, Theorem 5.3] by taking
φ(t) = t

1−qt .

Corollary 4.2 Let x∗ be a strict local optimal solution of (P) and β(ε) ≥ √
ε for ε > 0

sufficiently small. If MFCQ holds at x∗, then there exists γ > 0 such that (x∗, 0) is a local
optimal solution of (P̃σ ) for all σ ≥ γ .

Proof Since MFCQ holds at x∗, it then follows from [10, Theorem 4.4] that Assumption (B)
holds at x∗ for �(t) = t . Therefore, the desired result follows from Theorem 4.1. ��

Actually, these two sufficient conditions given in Corollaries 4.1 and 4.2 are independent.
This is illustrated by the following examples.

Example 4.1

F(x) = x1 − x2 = 0,

x = (x1, x2) ∈ [0,+∞) × [0,∞).

It is easy to see that MFCQ holds at x∗ = (0, 0), while x∗ is not a regular zero of H .
Now let us show that the second-order sufficient conditions guarantee the validity of

Assumption (B). Recall that, for (P), the second-order sufficient conditions are said to hold
at x∗ if

(a) x∗ is a KKT point, i.e., there exist λ∗, η∗ ∈ R
n+, and μ∗ ∈ R

m such that

∇ f (x∗) − λ∗ + η∗ + ∇F(x∗)μ∗ = 0, (4.4)

inf(λ∗
i , x∗

i − ui ) = inf(η∗
i , vi − x∗

i ) = 0, i = 1, 2, . . . , n. (4.5)

(b) the matrix ∇2
xx L(x∗, μ∗) is positive definite on the cone {d �= 0|∇F(x∗)d = 0, di =

0, as λ∗
i > 0 or η∗

i > 0}, where L(x, μ) = f (x) + μT F(x).

The following example shows that the second-order sufficient conditions are independent
of MFCQ and regular zero of H .
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Example 4.2

min f (x) = x2
1 + x2

2

s.t. F(x) = x1 − x2 = 0,

x = (x1, x2) ∈ [0,+∞) × (−∞, 0].
It is easy to check that at the point x∗ = (0, 0), the second-order sufficient conditions

hold, while MFCQ and regular zero of H do not hold true.

Corollary 4.3 If β(ε) ≥ √
ε for all ε > 0 sufficiently small and the second-order sufficient

conditions hold at x∗, then there exists γ > 0 such that (x∗, 0) is a local strict optimal
solution of (P̃σ ) for all σ ≥ γ .

Proof Since the second-order sufficient conditions hold at x∗, it then readily follows from
[10, Theorem 4.6] that Assumption (B) is valid for �(t) = t with the inequality being strict.
The desired result follows from Theorem 4.1. ��

Now we propose a new sufficient condition for the validity of Assumption (B) from a
different way.

Proposition 4.1 Let x∗ be a local optimal solution of (P). If x∗ is a KKT point and

lim
x∈[u,v]→x∗

F(x)�=0

1

�(‖F(x)‖)
1∫

0

(
∇x L(x∗ + s(x − x∗), μ∗) − ∇x L(x∗, μ∗)

)T
(x − x∗)ds = 0,

(4.6)

where λ∗, η∗ ∈ R
n+, μ∗ ∈ R

m are the corresponding Lagrangian multipliers, then Assump-
tion (B) holds at x∗ for � with γ = 1 + ‖μ∗‖.

Proof It is sufficient to show the existence of a neighborhood of x∗, say N (x∗), such that

f (x) − f (x∗) + γ�(‖F(x)‖) ≥ 0, x ∈ N (x∗) ∩ [u, v]. (4.7)

Since x∗ is a local optimal solution of (P), then there exists a neighborhood of x∗, say Ñ (x∗),
such that (4.7) holds true for all x ∈ Ñ (x∗) ∩ [u, v] satisfying F(x) = 0. Now consider
the case of x ∈ Ñ (x∗) ∩ [u, v] with F(x) �= 0. Putting (4.4), (4.5), and (4.6) together
yields

f (x) − f (x∗) = ∇ f (x∗)T (x − x∗) +
1∫

0

(
∇ f (x∗ + s(x − x∗)) − ∇ f (x∗)

)T
(x − x∗)ds

=
∑

i∈I ∗
1

λ∗
i (xi − x∗

i ) −
∑

i∈I ∗
2

η∗
i (xi − x∗

i ) − μ∗T ∇F(x∗)T (x − x∗)

+
1∫

0

(
∇ f (x∗ + s(x − x∗)) − ∇ f (x∗)

)T
(x − x∗)ds

≥ −μ∗T ∇F(x∗)T (x − x∗) +
1∫

0

(
∇ f (x∗ + s(x − x∗)) − ∇ f (x∗)

)T
(x − x∗)ds
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= −μ∗T F(x) +
1∫

0

μ∗T
(
∇F(x∗ + s(x − x∗)) − ∇F(x∗)

)T
(x − x∗)ds

+
1∫

0

(
∇ f (x∗ + s(x − x∗)) − ∇ f (x∗)

)T
(x − x∗)ds

= −μ∗T F(x) +
1∫

0

(
∇x L(x∗ + s(x − x∗), μ∗) − ∇x L(x∗, μ∗)

)T
(x − x∗)ds

= −μ∗T F(x) + o(�(‖F(x)‖)). (4.8)

Note that there exists a neighborhood N (x∗) ⊂ Ñ (x∗) of x∗ such that

1

�(‖F(x)‖)
∣
∣
∣o

(
�(‖F(x)‖)

)∣
∣
∣ ≤ 1

2
, (4.9)

whenever x ∈ N (x∗) ∩ [u, v] with F(x) �= 0. Therefore,

f (x) − f (x∗) + γ�(‖F(x)‖) ≥ γ�(‖F(x)‖) − μ∗T F(x) + o
(
�(‖F(x)‖)) by (4.8)

≥ γ�(‖F(x)‖) − ‖μ∗‖‖F(x)‖ + o
(
�(‖F(x)‖))

≥ �(‖F(x)‖)(γ − ‖μ∗‖) + o
(
�(‖F(x)‖)) by �(t) ≥ t

= �(‖F(x)‖) + o
(
�(‖F(x)‖)) by γ = 1 + ‖μ∗‖

≥ 1

2
�(‖F(x)‖) by (4.9)

> 0.

This yields the inequality as desired. ��
It should be emphasized that the condition (4.6) is also independent of other conditions

given in the previous discussion, which is illustrated by the following example.

Example 4.3

min f (x) = −|x | 3
2

s.t. F(x) = x2 = 0,

x ∈ (−∞,+∞).

By a simple calculation, we know that, at x∗ = 0, the condition (4.6) holds when �(t) =√
t , while MFCQ, the second-order sufficient conditions, and regular zero of F do not hold

at x∗. In addition, the condition (4.6) is also true for Example 4.2 when �(t) = t .
Applying Theorem 4.1 and Proposition 4.1 yields the following corollary.

Corollary 4.4 Let x∗ be a local optimal solution of (P) and β(ε) ≥ �(
√

ε) for all ε > 0
sufficiently small. If x∗ is a KKT point and the condition (4.6) holds, then (x∗, 0) is a local
optimal solution of (P̃σ ) with σ ≥ 1 + ‖μ∗‖.

We turn our attention to the relationship between this new class of exact penalty functions
and the classical simple penalty functions in the sense of “exactness” property. Define

fγ (x) = f (x) + γ�(‖F(x)‖),
where � satisfies ( j1) and ( j2). Clearly, fγ is a classical simple and exact penalty function.
The associated penalty problem is
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(Pγ ) min fγ (x)

s.t. x ∈ [u, v].
Note that (3.18) in Assumption (B) is equivalent to saying that x∗ is a local optimal solution
of (Pγ ). Let x∗ be a local optimal solution of (P). According to Theorem 4.1, the relationship
between (P̃σ ) and (Pγ ) is summarized as follows:

(1) Suppose that β(ε) ≥ �(
√

ε) for ε > 0 sufficiently small. If there exists γ > 0 such that
x∗ is a local optimal solution of the penalty problem (Pγ ), then (x∗, 0) is a local optimal
solution of the penalty problem (P̃σ ) when σ > 0 is sufficiently large.

(2) Suppose that β(ε) = �(ε) for ε > 0 sufficiently small. If there exists σ > 0 such that
(x∗, 0) is a local optimal solution of the penalty problem (P̃σ ), then x∗ is a local optimal
solution of the penalty problem (Pγ ) when γ > 0 is sufficiently large.

5 Penalty function methods

In this section, we present a revised penalty function algorithm via f̃σ . The algorithm is
always feasible, since f̃σ is bounded from below. It should be noted that the parameter ε

in f̃σ plays a key role in the framework of the algorithm. It follows from the Assumption
(A) and Theorem 3.1 that the proposed algorithm terminates at the optimal solutions of (P)

after finitely many iterations (see Theorem 5.1). We further analyze the case in the absence
of Assumption (A). In this case, we present a perturbation theorem about the algorithm (see
Theorem 5.2). This allows us to obtain the global convergence property of the algorithm (see
Corollary 5.1). Furthermore, necessary and sufficient conditions for zero duality gap are also
derived between the original problem (P) and its dual problem (L) defined by the penalty
function f̃σ (see Corollary 5.2).

Assumption (C) The function β satisfies inf
ε≥ε0

β(ε) > 0 for all ε0 > 0.

Indeed, the function β given in the previous discussion satisfies this assumption.

Algorithm 5.1 Let α ∈ (0, 1) be sufficiently small number, δ0 > 0, σ0 ≥ 1, and k := 0;
Step 1. If argmin(P̃σk ) �= ∅, solve

(xk, εk) ∈ argmin(P̃σk )

and go to Step 2. Otherwise, solve

(xk, εk) ∈ δk − argmin(P̃σk ),

i.e.,

f̃σ (xk, εk) ≤ inf{ f̃σ (x, ε)|(x, ε) ∈ [u, v] × [0, ε̄]} + δk,

and go to Step 3.
Step 2. If εk = 0, stop; Otherwise, go to Step 4.
Step 3. If εk = 0 and δk ≤ α, stop; Otherwise, go to Step 4.
Step 4. Let

δk+1 = 1

2
δk and σk+1 =

{
σk, if εk = 0,

ρσk, otherwise;
where ρ > 1 is a constant.

Step 5. Let k := k + 1 and go back to step 1.
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This algorithm is always feasible, since the existence of δ-optimal solution is ensured
by the lower-boundedness of f̃σ over D × [0, ε]. In addition, due to the smoothness of
f̃σk (·, ε) on DF , many descent algorithms can be used to find (xk, εk). Given η ≥ 0, define
a perturbation function of (P) as follows

θ(η) = inf{ f (x)|x ∈ [u, v], ‖F(x)‖ ≤ η}.
Clearly, θ is a nonincreasing function with θ(0) equal to the optimal value of (P). Since f (x)

is lower-bounded on [u, v], then the limit of θ as η approaches to 0+ exists and

lim
η→0+ θ(η) ≤ θ(0), (5.1)

i.e., θ is upper semicontinuous at zero.

Theorem 5.1 Under the assumptions of Theorem 3.1, let {(xk, εk)} be a sequence generated
by Algorithm 5.1 and (xk, εk) ∈ argmin(P̃σk ). Then there exists k0 such that when σk ≥
σk0 , εk = 0, i.e., xk is an optimal solution of (P).

Proof From Theorem 3.1, there exists k0 such that when σk ≥ σk0 , εk = 0. It readily
follows from the finiteness of f̃σk (xk, 0) and the definition of f̃σ that F(xk) = 0, i.e.,
f̃σk (xk, 0) = f (xk). Note that (xk, 0) ∈ argmin(P̃σk ) yields that xk ∈ argmin(P). ��
Lemma 5.1 Let β satisfy Assumption (C), and {(xk, εk)} be an infinite sequence generated
by Algorithm 5.1. Then

(1) ∃k0 > 0 such that εk > 0 for all k ≥ k0;
(2) lim

k→∞ εk = 0;

(3) lim
k→∞ F(xk) = 0.

Proof Note that the condition δk ≤ α is always true as k large enough, since δk+1 = δk/2
by Step 4. This, according to Step 2 and Step 3, means that the termination condition is
εk = 0. In other words, the algorithm will generate an infinite sequence only if εk > 0 as k
sufficiently large. By the iteration strategy on σk in Step 4, we have

lim
k→∞ σk = ∞. (5.2)

From Step 1, we have

f (xk) + 1

2εk
φ(�k) + σkβ(εk) ≤ inf{ f̃σk (x, ε)|(x, ε) ∈ [u, v] × [0, ε]} + δk

≤ f (x) + δk, (5.3)

where x is a feasible point of (P). Note that f is bounded from below on D and φ is
nonnegative. It immediately follows from (5.2) and (5.3) that lim

k→∞ β(εk) = 0,which, together

with Assumption (C), further implies that

lim
k→∞ εk = 0. (5.4)

Similarly, according to the nonnegativity of β, we get from (5.3) and (5.4) that lim
k→∞ φ(�k)

= 0, and hence

lim
k→∞ �k = 0, (5.5)
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where we have used the gradient inequality of convex function φ, i.e., φ(�k) ≥ φ′(0)�k ≥ 0.
Since ‖F(xk)‖ ≤ √

�k + εk‖ω‖, putting (5.4) and (5.5) together yields lim
k→∞ ‖F(xk)‖ = 0

as claimed. ��

The global convergence property of Algorithm 5.1 is given below.

Theorem 5.2 Let β satisfy Assumption (C). The following statements hold:

(1) Assume Algorithm 5.1 stops after finitely many iterations, then xk is an either optimal
solution or α-optimal solution of (P).

(2) If an infinite sequence is generated, then

lim
k→∞ f (xk) = lim

η→0+ θ(η),

and

lim
k→∞ inf{ f̃σk (x, ε) | (x, ε) ∈ [u, v] × [0, ε]} = lim

η→0+ θ(η).

Proof (1). Suppose the algorithm stops at the k-th iteration, then εk = 0. Since f̃σk (xk, 0) is
finite, then F(xk) = 0, and hence f̃σk (xk, 0) = f (xk) by the definition of f̃σ . Therefore,
according to Step 1, we have (xk, 0) ∈ argmin(P̃σk ) or (xk, 0) ∈ δk − argmin(P̃σk ).
This together with f̃σk (xk, 0) = f (xk) and δk ≤ α yields xk ∈ argmin(P) or xk ∈
α − argmin(P).

(2). If the algorithm does not stop after finitely many iterations, then we have lim
k→∞ σk =

+∞. By Lemma 5.1, there exists a k0 such that εk > 0 for all k ≥ k0. Because
f̃σk (xk, εk) is finite, then

f̃σk (xk, εk) = f (xk) + 1

2εk
φ(�k) + σkβ(εk).

The continuity of β and the fact β(0) = 0 guarantee the existence of εk > 0 such that
lim

k→∞ εk = 0 and

lim
k→∞ σkβ(εk) = 0. (5.6)

Indeed, this is ensured by choosing εk such that β(εk) ≤ 1/σ 2
k . Choose another sequence

{ξk} with ξk > 0 and lim
k→∞ ξk = 0. According to the definition of infimum in θ , there exist

yk ∈ [u, v] such that ‖F(yk)‖ ≤ εk, and

f (yk) ≤ θ(εk) + ξk . (5.7)

Let �k = ‖F(yk) − εkω‖2. Since ‖F(yk)‖ ≤ εk , then

�k ≤ ε2
k(1 + ‖ω‖)2, (5.8)

from which and the fact lim
k→∞ εk = 0, we get �k < a for all k sufficiently large.

Thus, fσk (yk, εk) is finite by (2.1). Lemma 5.1 implies that, for any η > 0, we have
‖F(xk)‖ ≤ η as k large enough. Hence, θ(η) ≤ f (xk) holds by the definition of θ .
Therefore,
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θ(η) ≤ f (xk)

≤ f (xk) + 1

2εk
φ(�k) + σkβ(εk)

= f̃σk (xk, εk)

≤ inf{ f̃σk (x, ε)|(x, ε) ∈ [u, v] × [0, ε]} + δk

≤ f̃σk (yk, εk) + δk

= f (yk) + 1

2εk
φ(�k) + σkβ(εk) + δk

≤ θ(εk) + ξk + 1

2εk
φ′(�k)�k + σkβ(εk) + δk

≤ θ(εk) + ξk + 1

2
φ′(�k)εk(1 + ‖ω‖)2 + σkβ(εk) + δk,

where the fifth inequality comes from (5.7) and the convexity of φ as before, and the last
inequality is due to (5.8). Using (5.6) and the arbitrariness of η > 0, we get the desired
result by taking limits on both sides of above inequality. ��

Corollary 5.1 Let β satisfy Assumption (C), and {(xk, εk)} be an infinite sequence generated
by Algorithm 5.2. The following statements hold.

(1) lim
k→∞ f (xk) = θ(0) if and only if θ is lower semicontinuous at zero.

(2) If x∗ is an accumulation point of {xk}, then x∗ is a global optimal solution of (P).

Proof (1). This follows directly from Part 2) of Theorem 5.2.
(2). If x∗ is an accumulation point, then F(x∗) = 0 by Lemma 5.1, i.e., x∗ is feasible.

According to Part 2) in Theorem 5.2, we get from (5.1) that

θ(0) ≥ lim
η→0+ θ(η) = lim

k→∞ f (xk) = f (x∗) ≥ θ(0),

which implies f (x∗) = θ(0), i.e., x∗ is a global optimal solution of (P). ��
Using the penalty function f̃σ , define the associated dual optimization problem

(L) max l(σ )

s.t. σ ≥ 0,

where l(σ ) = inf{ f̃σ (x, ε) | (x, ε) ∈ [u, v] × [0, ε]}. It is easy to see that the weak dual
theorem holds, i.e.,

sup
σ≥0

l(σ ) ≤ θ(0).

Note that l is a nondecreasing function. Therefore, invoking Part 2) in Theorem 5.2, we
develop the following necessary and sufficient conditions for the validity of zero duality gap
property, i.e.,

sup
σ≥0

l(σ ) = θ(0).

Corollary 5.2 Let β satisfy Assumption (C). Then the zero duality gap property between
(P) and (L) holds if and only if θ is lower semicontinuous at zero.
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6 Numerical results

To give some insight into the behavior of Algorithm 5.1, numerical tests are performed on
four nonlinear programming problems with equality constraints obtained from [11]. The
algorithm is implemented in Matlab 7.8.0 and runs on Intel Core 2 CPU 2.39 GHz with
1.99 GB memory. We use ‖∇(x,ε) f̃σ (x, ε)‖ ≤ 10−6 as stopping criteria. Tables 1, 2, 3 and 4
show the computational results for the corresponding problems with the following items:

φi (t) (i = 1, 2, . . . , 6) as defined in Section 2,

σk the penalty parameter,
xk, εk the final iterate,
�(xk, εk) the violation measure of the constraints,
f̃σk (xk, εk) the value of penalty function f̃σ (x, ε) at the final (xk, εk)

with the penalty parameter σk .

We make numerical tests using different choices of φi , i = 1, 4, 6 defined in Sect. 2, where
φ1(t) is barrier-type penalty function and φ4(t), φ6(t) are exterior-type penalty functions.
Here, β(ε) in (2.1) is set as

√
ε and ρ = 2 or ρ = 4. Tables 1, 2, 3 and 4 illustrate the

practical behavior of the algorithm. The penalty subproblem can be (approximately) solved
by unconstrained smooth minimization techniques since the proposed penalty function has

Table 1 Numerical results of Example 6.1

φi (t) σk xk εk �(xk , εk) f̃σk (xk , εk )

φ1(t) = t
1−0.1t 1 (1.0242, 1.0620, −0.0033, 0.0214) 0.0060 5.3129e−4 −0.9024

2 (0.9955, 0.9884, 0.0445, 0.0494) 5.7578e−5 2.0030e−8 −0.9801

4 (1.0000, 1.0000, −5.7647e−4,0.0032) 1.7402e−7 5.2608e−10 −0.9968

φ4(t) 1 (0.9994, 0.9984, −0.0252, −0.0157) 0.0014 3.7181e−6 −0.9600

2 (1.0001, 1.0004, 0.0185, −0.0047) 1.3967e−4 2.7711e−7 −0.9755

4 (0.9999, 0.9999, 0.0003, −0.0022) 2.6207e−7 9.9595e−10 −0.9960

φ6(t) 1 (1.0064, 1.0296, 0.0860, −0.0031) 0.0028 2.9153e−4 −0.9274

2 (0.9953, 0.9878, 0.0439, −0.0528) 5.4413e−7 4.8769e−9 −0.9919

4 (0.9998, 0.9993, 9.3599e−4, 0.0152) 8.6056e−9 1.3469e−11 −0.9990

Table 2 Numerical results of Example 6.2

φi (t) σk xk εk �(xk , εk ) f̃σk (xk , εk )

φ1(t) = t
1−0.1t 1 (1.0026, 1.0019, 0.9979, 0.9936, 0.9971) 6.4899e−8 2.5015e−7 0.0100

2 (0.9997, 0.9908, 1.0062, 1.0216, 1.0003) 5.6659e−8 2.3655e−11 0.0010

4 (0.9972, 1.0071, 0.9962, 0.9852, 1.0028) 1.3359e−8 8.6253e−12 0.0010

φ4(t) 1 (0.9915, 0.9905, 1.0090, 1.0272, 1.0084) 6.4169e−5 2.1140e−7 0.0100

2 (1.0034, 1.0016, 0.9978, 0.9941, 0.9966) 1.2454e−6 6.8508e−9 0.0050

4 (0.9979, 1.0006, 1.0003, 0.9999, 1.0021) 1.0000e−6 6.5704e−11 0.0040

φ6(t) 1 (0.9835, 0.9875, 1.0135, 1.0397, 1.0163) 3.7318e−5 4.7781e−7 0.0100

2 (1.0221, 1.0006, 0.9922, 0.9840, 0.9784) 1.5117e−6 1.2133e−8 0.0050

4 (1.0083, 1.0038, 0.9947, 0.9856, 0.9917) 8.8059e−7 6.7950e−10 0.0040
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Table 3 Numerical results of Example 6.3

φi (t) σk xk εk �(xk , εk ) f̃σk (xk , εk )

φ1(t) = t
1−0.01t 10 ( −0.1083, 0.0360, 0.5365, −0.4644,0.0360) 1.3508e−6 7.7016e−6 5.3317

20 (−0.0935, 0.0311, 0.5130, −0.4506,0.0311) 1.0000e−6 6.0195e−11 5.3266

40 (−0.0936, 0.0312, 0.5130,−0.4505,0.0312) 1.0000e−6 5.7181e−11 5.3266

φ4(t) 10 (−0.0701, 0.0551, 0.7457, −0.1994,0.2297) 0.0299 0.0475 3.5825

20 (−0.0936, 0.0312, 0.5124, −0.4499,0.0312) 1.0515e−6 5.8772e−11 5.3266

40 (−0.0944, 0.0315, 0.5126, −0.4495,0.0315) 1.1337e−6 9.8943e−11 5.3265

φ6(t) 10 (−0.0365, 0.0864, 1.0685, 0.1549,0.5093) 0.0588 0.2727 1.7232

20 (−0.0997, 0.0332, 0.5246, −0.4583,0.0332) 1.0000e−6 5.7256e−8 5.3280

40 (−0.0942, 0.0314, 0.5149, −0.4521,0.0314) 1.0626e−6 3.6097e−6 5.3265

good smoothness property. Here, in our numerical experiments, trust-region methods are
employed for solving the penalty subproblems.

Example 6.1 ([11])

min f (x) = −x1

s.t. F1(x) = x2 − x3
1 − x2

3 = 0,

F2(x) = x2
1 − x2 − x2

4 = 0.

The point x̄ = (1, 1, 0, 0) is the unique (global) minimizer with the optimal objective
function value −1.0000.

Example 6.2 ([11])

min f (x) = (x1 − x2)
2 + (x2 − x3)

2 + (x3 − x4)
4 + (x4 − x5)

4

s.t. F1(x) = x1 + x2
2 + x3

3 − 3 = 0,

F2(x) = x2 − x2
3 + x4 − 1 = 0.

The point x̄ = (1, 1, 1, 1, 1) is the (global) minimizer with the optimal objective function
value 0.

Example 6.3 ([11])

min f (x) = (4x1 − x2)
2 + (x2 + x3 − 2)2 + (x4 − 1)2 + (x5 − 1)2

s.t. F1(x) = x1 + 3x2 = 0,

F2(x) = x3 + x4 − 2x5 = 0,

F3(x) = x2 − x5 = 0.

The point x̄ = (− 33
349 , 11

349 , 180
349 ,− 158

349 , 11
349 ) is a minimizer with the optimal objective

function value 1859
349 .

Example 6.4 ([11])

min f (x) =
10∑

j=1

x j

(

c j + ln
x j

x1 + · · · + x10

)

s.t. F1(x) = x1 + 2x2 + 2x3 + x6 + x10 − 2 = 0,
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F2(x) = x4 + 2x5 + x6 + x7 − 1 = 0,

F3(x) = x3 + x7 + x8 + 2x9 + x10 = 0,

xi ≥ 0, i = 1, 2, . . . , 10.

where c1 = −6.089, c2 = −17.164, c3 = −34.054, c4 = −5.914, c5 = −24.721, c6 =
−14.986, c7 = −24.100, c8 = −10.708, c9 = −26.662, c10 = −22.179. The point x̄ =
(0.1083, 0.9438, 0, 0.0004, 0.4978, 0.0040, 0, 0, 0, 0) is a (but not unique) local minimizer
with the optimal objective function value −30.581215.

As shown, for whatever choices of φi , with the penalty parameter gradually increasing,
the values of indicator variable εk and constraint violation measure �(xk, εk) tend to zero as
desired. Additionally, it is not difficult to observe that the minimizers can be obtained without
requirements of large penalty parameters for the choices of φi considered here. Numerical
performances verify the correctness of the developed theory as desired. For example, as
illustrated in Tables 1, 2, 3 and 4, the iterates (xk, εk) are already quite close to the point
(x̄, 0), where x̄ is a minimizer of the original problem. As stated in Theorem 3.1, the optimal
solution of the penalty problem must take the form of (xk, εk) with εk = 0 for sufficiently
large penalty parameters, which further means xk is a local optimal solution of the original
problem (P).

In summary, our numerical experiments on four examples of nonlinear programming prob-
lems with equality constraints confirm the efficiency of the proposed algorithm. As shown in
Tables 1, 2, 3 and 4, the numerical outputs for the different choices for φi , i = 1, 4, 6 seem to
have no significant differences, which demonstrates the class of convex functions presenting a
unified framework for some barrier-type and exterior-type functions are effective for solving
nonlinear programming problems. Nevertheless, there exists a little difference in the algo-
rithm implementation process for solving exterior-type penalty functions and barrier-type
penalty functions; for barrier-type penalty functions, we must take the additional constraint
�(x, ε) < a into account in contrast to exterior-type penalty functions, for instance, a = q−1

for φ1(t), a = π
2 for φ2(t), and a = 1 for φ3(t).
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