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Abstract This paper presents the surrogate model based algorithm SO-I for solving purely
integer optimization problems that have computationally expensive black-box objective func-
tions and that may have computationally expensive constraints. The algorithm was developed
for solving global optimization problems, meaning that the relaxed optimization problems
have many local optima. However, the method is also shown to perform well on many
local optimization problems, and problems with linear objective functions. The performance
of SO-I, a genetic algorithm, Nonsmooth Optimization by Mesh Adaptive Direct Search
(NOMAD), SO-MI (Müller et al. in Comput Oper Res 40(5):1383–1400, 2013), variable
neighborhood search, and a version of SO-I that only uses a local search has been com-
pared on 17 test problems from the literature, and on eight realizations of two application
problems. One application problem relates to hydropower generation, and the other one to
throughput maximization. The numerical results show that SO-I finds good solutions most
efficiently. Moreover, as opposed to SO-MI, SO-I is able to find feasible points by employing
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a first optimization phase that aims at minimizing a constraint violation function. A feasible
user-supplied point is not necessary.

Keywords Integer optimization · Derivative-free · Computationally expensive ·
Surrogate model · Response surface · Linear and nonlinear · Nonconvex ·
Radial basis functions · Multimodal · Global optimization

List of symbols

GA Genetic algorithm
NOMAD Nonsmooth Optimization by Mesh Adaptive Direct Search
RBF Radial basis function
SEM Standard error of means
SO-I Surrogate Optimization-Integer
SO-MI Surrogate Optimization-Mixed Integer
local-SO-I local-Surrogate Optimization-Integer
VNS Variable neighborhood search
R Real numbers
Z Integer numbers
u Discrete decision variable vector, see Eq. (1d)
f (·) Objective function, see Eq. (1a)
c j (·) j th constraint function, j = 1, . . . , m, see Eq. (1b)
m Number of constraints
k Problem dimension
j Index for the constraints
i Index for the variables
ul

i , uu
i Lower and upper bounds for the i th variable, see Eq. (1c)

Ωb Box-constrained variable domain
Ω Feasible variable domain
S Set of already evaluated points
n0 Number of points in initial experimental design
q(·) Auxiliary function for minimizing constraint violation in phase 1, see Eq. (5)
f p(·) Objective function value augmented with penalty term, see Eq. (6)
fmax Objective function value of the worst feasible point found so far, see Eq. (6)
p Penalty factor, see Eq. (6)
v(·) Squared constraint violation function, see Eq. (7)
χ j j th candidate point for next sample site, j = 1, . . . , t
n Number of already sampled points
s(·) Radial basis function interpolant
V (·) Weighted score, see Eq. (8)
ωR, ωD Weights for response surface and distance criteria, respectively

1 Introduction

Management and engineering disciplines often require solving discrete optimization prob-
lems. Scheduling, inventory control, or structural optimization are just few examples. Also,
applications arising from throughput maximization are often integer problems [50]. This
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type of applications is encountered, for example, in production planning and facility layout
[17,60], but also in the design of networks-on-chip routers [29]. Another purely integer opti-
mization problem arises in hydropower energy generation where several turbines of different
efficiencies are installed in a hydropower plant, and the question is how many turbines of the
same kind should be in use to maximize the total generated power given a certain amount of
water that can be released from the reservoir [41].

Many discrete optimization problems are NP-hard and therefore difficult to solve. Addi-
tionally, in many applications the objective and constraint functions are black-box functions,
i.e. an analytical problem description is not available, and the objective and constraint func-
tion values are the output of a time consuming simulation. When optimizing such problems
the number of objective and constraint function evaluations for finding accurate solutions
must be as low as possible in order to keep computation times reasonable.

The most commonly used algorithms in the literature for solving discrete optimization
problems comprise branch and bound methods (introduced by Land and Doig [38]), evolu-
tionary algorithms as, for example, genetic algorithms [6,7,44], swarm algorithms such as
particle swarm [33,34,39,51,59] or ant colony algorithms [13,42], tabu search [15,20,21,43],
scatter search [19,22,36], and variable neighborhood search (VNS) [24,45].

VNS is a metaheuristic algorithm primarily developed for hard integer (global) opti-
mization problems. The algorithm systematically explores the neighborhood of the current
solution in order to find local optima. A perturbation phase enables the algorithm to escape
from local optima and search globally for further improvements.

Evolutionary algorithms such as genetic algorithms [27] mimic the natural process of
survival of the fittest. The genetic algorithm creates a set of initial candidate solutions (popu-
lation) which may be randomly generated. In every generation the fitness of each individual
is evaluated, and its fitness value is used for selecting the individuals for building the next
generation. The chosen individuals are modified by mutation and crossover operations. Evo-
lutionary algorithms are able to escape from local optima. In the literature genetic algorithms
are often tailored to the specific problem under consideration. Coit and Smith [10], for exam-
ple, use a genetic algorithm for solving optimal reliability design problems, and Haupt [25]
solves a mixed-integer antenna design problem with a genetic algorithm. Attempts to adjust
the crossover and mutation probabilities to improve the performance of the genetic algorithm
have been examined by Hesser and Männer [26], Srinivas and Patnaik [61], Wu et al. [64], and
Zhang et al. [66]. However, genetic algorithms may not be suitable for optimization problems
with computationally expensive objective and constraint functions because a large number of
function evaluations is in general needed to find good approximations of the global optimum.

Nonsmooth Optimization by Mesh Adaptive Direct Search (NOMAD) [2–4] is a
derivative-free algorithm. NOMAD uses a mesh adaptive direct search algorithm designed
for solving constrained black-box optimization problems. The mesh adaptive direct search
is an extension of generalized pattern search algorithms for which superior convergence
properties can be shown [1]. NOMAD is applicable for integer optimization problems, and
by using the VNS [24,45] option, it is able to escape from local minima [5]. There are no
extensive numerical studies of using NOMAD for solving constrained integer optimization
problems.

In this paper a surrogate model approach is introduced. Surrogate models have proved suc-
cessful when solving continuous global black-box optimization problems (see for example
[23,28,30,47,54,56] and [63]). Although some surrogate model algorithms for mixed-integer
problems have been developed [12,48,53], derivative-free algorithms for solving computa-
tionally expensive (global) integer optimization problems have barely been studied in the
literature.
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The remainder of this paper is organized as follows. In Sect. 2 the mathematical description
of discrete optimization problems is given. The general concept of using surrogate models
is briefly described in Sect. 3. Section 4 introduces the surrogate model based algorithm
Surrogate Optimization-Integer (SO-I) for discrete global optimization problems that may
have computationally expensive constraints. SO-I uses a first optimization phase for finding
feasible points, i.e. an initial user-supplied feasible point is in contrast to SO-MI [48] not
necessary. SO-I has been compared to a genetic algorithm, NOMAD 3.5, SO-MI [48], local-
SO-I, which is a version of SO-I that only uses a local search, and VNS on 17 test problems
from the literature, and two types of application problems (throughput maximization, and
hydropower generation) that are briefly described in Sect. 5. The numerical results presented
in Sect. 6 show that SO-I clearly outperforms algorithms that do not use a surrogate model.
Because the focus is on computationally expensive functions, the computational effort is
measured in the number of objective function evaluations rather than the CPU time needed
by the algorithms. When dealing with computationally expensive objective functions that
may take several hours for computing one function value, the algorithms’ own computation
times become insignificant. Section 7 concludes this paper. The Online Supplement contains
specific information about the examined test problems and additional numerical results.

2 Constrained integer optimization problems

The optimization problem type considered in this paper is in general of the following form

min f (u) (1a)

s.t. c j (u) ≤ 0, ∀ j = 1, . . . , m (1b)

−∞ < ul
i ≤ ui ≤ uu

i < ∞, ∀i = 1, . . . , k (1c)

ui ∈ Z, ∀i = 1, . . . , k (1d)

where f (u) ∈ R denotes the costly black-box objective function, c j (u) ∈ R, j = 1, . . . , m,
are the m costly black-box constraints, and ul

i and uu
i denote the lower and upper bounds on

the variable ui , respectively (box constraints). Denote the box-constrained variable domain
by Ωb, and by Ω the feasible variable domain. Throughout this paper the variables u are
assumed to be discrete and it is assumed that each variable can take on at least two different
values. The set of already sampled points is denoted by S. Moreover, it is assumed that
objective and constraint function evaluations are the output of the same simulation code, i.e.
whenever the objective function value is computed, also the constraint function values are
obtained (if they exist).

A point u∗ = (u∗
1, . . . , u∗

k)
T ∈ Ω is a local minimum of the function f (u) in the domain

Ω if f (u∗) ≤ f (u) for all u ∈ Ω ∩ N (u∗), where the neighborhood N (u∗) ⊂ Ω for integers
is defined as N (u∗) = {ũ ∈ Ω : ‖ũ − u∗‖1 ≤ 1}.

3 Surrogate models and radial basis functions

A surrogate model is an approximation of a simulation model [8]. While costly simulation
models aim to represent the behavior of complex physical processes, surrogate models aim to
cheaply compute approximations of the objective function values produced by the simulation
models. The simulation model output f (u) can be represented by f (u) = s(u) + ε(u),
where s(u) denotes the surrogate model output at point u, and ε(u) is the difference between
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the simulation and the surrogate model output. Different surrogate model types such as
multivariate adaptive regression splines [16], regression polynomials [49], kriging [11,31],
radial basis functions [14,23] as well as surrogate model ensembles [47] have emerged in
the literature (see [30,58] for a review) and have been applied for solving continuous global
optimization problems [18,32,37,40,54–56,63].

Denote in the following u1, . . . , un the sample points where the objective function has
been evaluated (S = {u1, . . . , un}). In this paper radial basis function (RBF) models are
used. An RBF interpolant can be represented as

s(u) =
n∑

ι=1

λιφ(‖u − uι‖2) + ρ(u) (2)

where s denotes the response surface, φ denotes the radial basis function, ρ(u) is a polynomial
tail that depends on the choice of the radial basis function type, and n denotes the number of
points where the costly objective and constraint functions have already been evaluated. Here,
a cubic radial basis function (φ(r) = r3) with linear polynomial tail ρ(u) = bT u + a has
been used, where b = (b1, . . . , bk)

T ∈ R
k , and a ∈ R. The parameters λι, a, and b1, . . . , bk

are determined by solving a linear system of Eqs. [23]:
[

Φ P
PT 0

] [
λ

c

]
=

[
F
0

]
, (3)

where Φι1ι2 = φ(‖uι1 − uι2‖2), ι1, ι2 = 1, . . . , n, ‖ · ‖2 denotes the Euclidean norm,

P =

⎡

⎢⎢⎢⎢⎢⎣

uT
1 1

uT
2 1
...

...

uT
n 1

⎤

⎥⎥⎥⎥⎥⎦
, λ =

⎡

⎢⎢⎢⎣

λ1

λ2
...

λn

⎤

⎥⎥⎥⎦ c =

⎡

⎢⎢⎢⎢⎢⎣

b1

b2
...

bk

a

⎤

⎥⎥⎥⎥⎥⎦
, F =

⎡

⎢⎢⎢⎣

f (u1)

f (u2)
...

f (un)

⎤

⎥⎥⎥⎦, (4)

and where 0 is a matrix with all entries 0 of appropriate dimension. The linear system (3)
has a unique solution if and only if rank(P) = k + 1 [52].

4 SO-I: surrogate model algorithm for discrete global optimization problems

The algorithm for solving discrete optimization problems with costly objective and constraint
functions starts by building an initial experimental design. A symmetric Latin hypercube
design [65] with n0 = 2(k +1) points, where k denotes the problem dimension, is generated,
and the values are rounded to the closest integers. The algorithm uses an RBF interpolant as
defined in Eq. (2), and it must be ensured that the rank of matrix P in Eq. (4) is k + 1. Thus,
the initial experimental design is regenerated until rank(P) = k + 1.

The optimization process following the initial experimental design works iteratively and
consists of two phases. The purpose of phase 1 is to find a first feasible point if there is none
in the initial experimental design. The auxiliary function

q(u) =
m∑

j=1

max
{
0, c j (u)

}
, (5)

is iteratively minimized with respect to the box and integrality constraints defined in Eqs. (1c)
and (1d) until a first feasible point has been found (q(u) = 0 for a feasible point). If the
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optimization problem has only box constraints or the initial experimental design contains at
least one feasible point, optimization phase 1 is skipped.

In optimization phase 2, the penalized objective function

f p(u) =
{

fmax + pv(u) if u is infeasible
f (u) if u is feasible

, (6)

is iteratively minimized subject to the box and integrality constraints in Eqs. (1c) and (1d).
Here, p denotes the penalty factor, and fmax is the feasible point with the largest function
value found so far (the worst feasible function value), and

v(u) =
m∑

j=1

max
{
0, c j (u)

}2
, (7)

where it is assumed that u ∈ Ωb, i.e. only points within the box-constrained domain are
considered. Thus, if v(u) = 0, the point u satisfies every constraint c j (u), j = 1, . . . , m, in
Eq. (1b). Note that the function values of infeasible points may change between iterations
because fmax is being updated throughout the algorithm.

The penalty must be adjusted such that the function values at the infeasible points are higher
than the feasible objective function values. Since the objective function is only defined at
integer points (and sample points have therefore a distance of at least one unit to each other),
there is no risk of creating jump discontinuities at the boundary of the feasible region by
adding a penalty. The fact that the objective function is only evaluated at integer points does
not influence the smoothness of the response surface. Adding a penalty for infeasible points
works similarly to a barrier method and the response surface is likely to predict larger function
values for points close to infeasible points. If no penalty was added, the surrogate model could
predict better objective function values in the infeasible region, the search might be drawn
into that region, and many expensive function evaluations might be done without improving
the solution. To overcome numerical difficulties and to prevent the response surface from
oscillating wildly, which may be caused by adding the penalty, function values that are larger
than the median of all values of f p(u) are replaced by the median value (see also the Online
Supplement for further explanation of the influence of the penalty factor).

Both optimization phases work iteratively and in each iteration one new point for doing the
next expensive function evaluation is added to the set of already sampled points. A candidate
point approach is applied to determine the new sample site. Candidates are generated by
(a) uniformly selecting integer points in Ωb and (b) perturbing the best point found so
far (denoted by umin). In optimization phase 1 the best point found so far is the one with
minimal q(u). In optimization phase 2 the best point found so far is the feasible point with
minimal objective function value. Every variable of umin is perturbed with probability 0.5.
If a variable is perturbed, the value 1, 2, or 3 is at random added or subtracted, where each
perturbation range has the same probability of being selected. The perturbation ranges have
been chosen with the incentive of creating candidate points in the neighborhood of umin in
order to improve the local search. If any value of umin after perturbation exceeds the variable’s
upper or lower bound, the value is set to the value of the variable bound that is exceeded, i.e.
χ j ∈ Ωb,∀j = 1, . . . , t , where χ j denotes the j th candidate point.

Given the sample data obtained so far, the parameters of the RBF model are computed by
solving the system (3). In optimization phase 1 the values of q(u) in Eq. (5) are used, and in
optimization phase 2 the values of f p(u) in Eq. (6) are used in the right hand side F of Eq. (3)
to compute the model parameters, where u ∈ S. The response surface is then used to predict
the values of q(χ j ),∀j = 1, . . . , t , in optimization phase 1, and f p(χ j ),∀j = 1, . . . , t , in
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optimization phase 2 at every candidate point χ j . Note that the response surface is cheap
to evaluate, and this step is therefore computationally inexpensive. The candidate points’
predicted function values are scaled to the interval [0, 1] so that low predicted values obtain
a lower score, and high predicted values obtain a higher score (see [55, page 501] for details;
response surface criterion, VR). The distance of all candidate points to the set of already
sampled points S is calculated. These distances are scaled to the interval [0, 1] so that high
distances obtain a lower score, and low distances obtain a higher score (see [55, page 501]
for details; distance criterion, VD). Based on these two criteria the weighted score

V (χ j ) = ωR VR(χ j ) + ωD VD(χ j ), j = 1, . . . , t, (8)

where ωR + ωD = 1, and ωR ≥ 0 is the weight for the response surface criterion, and
ωD ≥ 0 is the weight for the distance criterion, is computed and the candidate point with
the lowest score is chosen as the next sample site. Note that candidates that coincide with
already sampled points obtain a bad score (V = ∞) and will therefore never be chosen as
new sample sites. In case all candidates have the score ∞, new candidates are generated until
at least one unsampled point has been found.

In optimization phase 1, the weights in Eq. (8) are fixed to ωR = 0.9 and ωD = 0.1.
This emphasizes the local search in an attempt to find a feasible point quickly by giving an
advantage to candidate points with low predicted values of q(u).

In optimization phase 2, four different approaches have been examined for adjusting the
weights in Eq. (8):

– Version 1: ωR = 0.9, ωD = 0.1 constant
– Version 2: At the nth function evaluation, ωD = 1 − log(n)/ log(Nmax), ωR = 1 − ωD ,

where Nmax denotes the maximum number of allowed function evaluations
– Version 3: The algorithm repeatedly cycles through a fixed pattern 〈0, 0.1, 0.2, . . . ,

0.9, 1.0〉, i.e. the weights change in every iteration (e.g. in iteration 1 ωD = 1, ωR = 0;
in iteration 2 ωD = 0.9, ωR = 0.1, etc.)

– Version 4: Adjust the weights as in Version 3 and use the point that minimizes the weighted
score in Eq. (8) as new sample point.

The adjustment in Version 1 may be regarded as a more local search since preference is
always given to candidate points that have a low predicted objective function value, and the
distance criterion has only a low influence. Version 2 may be interpreted as a transition from
a global search (initially candidate points that are far away from already sampled points
are preferred) to a local search. The variable domain is explored during the first iterations
in order to improve the global fit of the response surface, and to find promising regions
where the global optimum might be. As the sampling continues, the search becomes more
local and candidate points with low predicted objective function values obtain better scores,
and therefore the promising regions of the variable domain are examined more thoroughly.
Version 3 repeatedly transitions from a global to a local search in an attempt to escape from
local optima. Version 4 attempts to find the actual optimum of the scoring function rather
than choosing the best candidate among a limited number of points.

Numerical experiments showed that Versions 1 and 2 deliver in general better results than
Versions 3 and 4, and that there are no major differences between the performance of the
algorithms when using Version 1 or 2. For reasons of space considerations the results of these
numerical experiments are not presented here. In the following, Version 1 will be used in
the comparison with the other algorithms because it does not require the knowledge of the
allowed number of function evaluations.
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After the best candidate point has been chosen, the costly objective and constraint functions
are evaluated and the response surface parameters are updated with the new data. This process
(candidate point generation, score calculation, response surface updating) iterates. Note that
for building the response surface the variables are assumed to be continuous to obtain a
smooth surface, but the generated candidate and sample points only have discrete variable
values. The specific steps of SO-I with Version 1 as sampling strategy are summarized in
Algorithm 1.

Algorithm 1 SO-I: surrogate optimization-integer

1. Build an initial experimental design.
2. Compute the costly objective and constraint function values.
3. Optimization phase 1: minimize q(u) in Eq. (5). Iterate until a feasible point has been

found or the stopping criterion has been met:

(a) Find the point with minimal value q(u), u ∈ S, and denote this point by (uq
min, qmin).

(b) Compute the response surface parameters based on the points in S and their corre-
sponding values q(u), taking median rule into account.

(c) Generate candidate points.
(d) Compute the candidate point scores.
(e) Discard candidates that coincide with already sampled points and regenerate new

candidates until at least one unsampled point has been found.
(f) Do the expensive simulation at the best candidate point.

4. Optimization phase 2: minimize f p(u) in Eq. (6). Iterate until the stopping criterion has
been met:

(a) Find the feasible point with lowest objective function value and denote the pair by
(u f

min, fmin). Find the feasible point with highest objective function value and denote

the pair by (u f
max, fmax).

(b) Adjust function values according to Eq. (6) with p = 100, taking median rule into
account.

(c) Compute the response surface parameters using the points u ∈ S and their corre-
sponding function values f p(u).

(d) Generate candidate points.
(e) Compute the candidate point scores.
(f) Discard candidates that coincide with already sampled points and regenerate new

candidates until at least one unsampled point has been found.
(g) Do the expensive simulation at the best candidate point.

5. Return the best point found.

Theorem 1 Algorithm 1 converges to the global minimum.

Proof The convergence of the algorithm follows from a simple counting argument. Let f
be the real-valued function defined on Ωb ⊂ Z

k , and denote the cardinality |Ωb| = κ < ∞.
Let f (u∗) = minu∈Ω f (u) > −∞ be the feasible global minimum of f , i.e. f (u) ≥
f (u∗)∀u = u∗, u ∈ Ω . Assume the candidate points for the next sample site are generated
as described in Algorithm 1 (no point will be sampled more than once and every point in Ωb

may become a candidate point because some of the candidates are generated by uniformly
selecting integer points fromΩb). Denote u1 the first feasible point found. Define the sequence
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of feasible random vectors {u∗
n}n≥1 as u∗

1 = u1, u∗
n+1 = un+1 if f (un+1) < f (u∗

n) and
c j (un+1) ≤ 0 ∀ j , and u∗

n+1 = u∗
n otherwise. Then, u∗

n → u∗ as n → κ − 1. Thus, as the
algorithm proceeds, the probability that the next chosen point will be the global optimum
goes in the limit to 1. ��

The proposed algorithm SO-I differs from the algorithm SO-MI [48] with respect to the
following aspects:

– For constrained problems SO-MI requires the user to supply a feasible solution. SO-I, on
the other hand, contains a routine (Optimization Phase 1) to search for a feasible solution.

– The penalty for constraint violations is treated in SO-MI differently in order to avoid
jump discontinuities when reaching the boundary of the feasible domain. This step is not
necessary in SO-I due to the discreteness of the variable domain.

– Candidate points are generated in SO-MI with a different perturbation probability and
with different perturbation ranges [48, Section 4.3].

– The adjustment of the weights for the scoring criteria in SO-I is such that the response
surface criterion has the weight ωR = 0.9 in every iteration, whereas in SO-MI the
weights cycle through a predefined pattern.

– In SO-MI, four points are chosen for doing expensive evaluations in every iteration
according to the four candidate point creation schemes (one point from each group is
selected). In SO-I only the one best candidate point is selected for doing the expensive
function evaluation.

5 Test setup and test problems

5.1 Test setup

Algorithms for solving discrete global black-box optimization problems with computation-
ally expensive objective functions have not widely been studied in the literature. Therefore,
SO-I is in the following compared to a genetic algorithm, NOMAD, SO-MI, local-SO-I (a
version of SO-I that uses candidate points that are only generated by perturbing the best
point found so far), and a VNS algorithm. Note, however, that SO-MI does not have a rou-
tine for finding feasible points of constrained problems. Therefore, SO-I was used until the
first feasible point has been encountered, and thereafter SO-MI has been applied. Thus, the
used SO-MI implementation is not exactly the original implementation proposed in [48].
Local-SO-I has been included in the experiments in order to show the significance of candi-
date points that are uniformly selected from the variable domain for the solution quality. All
algorithms have been tested with Matlab 2011b.

For every algorithm, 30 trials have been made for the same test problem, i.e. 30 different
initial symmetric Latin hypercube designs were used for SO-I, SO-MI, and local-SO-I, 30
different initial starting points were used for NOMAD and VNS, and 30 different initial
populations were used with GA. The algorithms were stopped after 400 function evaluations
because for expensive black-box problems this is already a rather large number. A time
limit has not been defined for the algorithms because the performance of the algorithms is
measured with respect to the solution quality after an equal number of function evaluations.
Assuming that one objective function evaluation requires a time consuming simulation, the
algorithms’ own computation times become insignificant.

The initial experimental design of SO-I, SO-MI, and local-SO-I is generated by a symmet-
ric Latin hypercube design where each trial of a specific problem is initialized with a different
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random number seed. Note that for the same trial of a given problem all three algorithms use
the same initial design in order to obtain a conclusive comparison.

A branch and bound algorithm was not applicable for many constrained test problems
because the optimization in the tree nodes for finding lower bounds for the objective function
rapidly increases the number of function evaluations, and hence the computational budget
was in many cases used up before a first feasible point had been found. Furthermore, the
application problems do not allow non-integer variable values. Thus, optimizing the relaxed
subproblems (some variables are assumed to be continuous) in the tree nodes failed and a
solution could not be obtained.

For the genetic algorithm, Matlab’s implementation (function ga) with default parameters
has been used, which is able to solve discrete problems (Matlab 2011b and newer versions).
The same point that is the first point in the initial experimental design of SO-I for a respective
trial is given as partial initial population for ga. Matlab’s default function for creating the
initial population is used for generating the remaining points. The default population size
is 20.

NOMAD version 3.5 has been used. Note, that NOMAD is included in the OPTI Toolbox,1

which is a Matlab toolbox for optimization and simplifies the use of NOMAD as compared
to its C++ implementation. The constraints have been treated with the progressive barrier
approach (setting PB), and the VNS has been used in order to enable the algorithm to escape
from local optima (setting VNS 0.75 as suggested in the user manual). The algorithm starts
for a given trial of a certain problem from the same point that is the first point in the initial
experimental design of SO-I for the respective trial.

For VNS the implementation in the MEIGO software2 has been used. The implementation
is designed for box-constrained integer problems only and does not have a routine for finding
feasible points. Hence, two versions of VNS have been tried. Version 1 (VNS-i) minimizes
similarly to SO-I at first a constraint violation function if the given initial point is infeasible.
Version 2 (VNS-ii) uses SO-I to determine the first feasible point for constrained problems
which in turn is used as starting point of MEIGO’s VNS implementation.

5.2 Test problems

The performance of the algorithms has been compared on 17 test problems from the literature,
and eight realizations of two application problems arising in throughput maximization and
hydropower generation maximization. Algorithms for purely integer black-box optimization
problems have not been studied in depth in the literature, and thus finding a representative and
widely used test bench of problems is not possible. Most test problems have been derived
from continuous global optimization test problems by imposing integrality constraints on
every variable. Although the 17 test problems have analytical descriptions (given in the
Online Supplement), the problems are treated as black-boxes, i.e. the mathematical problem
structure cannot be exploited by any of the algorithms. The test problems are used to examine
the algorithms’ ability to solve problems with different characteristics such as multimodality,
linear and nonlinear constraints and objective functions, or binary variables.

Table 1 summarizes the characteristics of all test problems. Note that all variables are
assumed to be discrete. The column “Notes” gives references about the problem’s origin or
on other characteristics that are considered “special”. The last column indicates if the relaxed
problem (all variables continuous) has several local, global and/or stationary points (denoted

1 http://www.i2c2.aut.ac.nz/Wiki/OPTI/.
2 http://www.iim.csic.es/~gingproc/meigo.html.
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Table 1 Test problems (a) http://www.aridolan.com/ga/gaa/MultiVarMin.html

ID k Domain Notes Characteristics

1c 2 [13, 100] × [0, 100] [35] MM, 2 NLC

2 5 [−100, 100]5 (a) MM

3c 5 [0, 10]3 × [0, 1]2 [9] lin.obj., 2 NLC, 3 LC

4c 5 [78, 102] × [33, 45] × [27, 45]3 [35] UM, 6 NLC

5c 7 [−10, 10]7 [35] UM, 4 NLC

6c 13 [0, 1]10 × [0, 100]3 [35] MM, 9 LC

7 10 [3, 9]10 [9] UM

8c 16 [0, 1]16 [9] MM, 7 NLC

9 12 [−1, 3]12 Rastrigin [62] MM

10 30 [−1, 3]30 Rastrigin [62] MM

11c 25 [0, 10]25 [35] MM, 1 NLC, 1 LC

12 20 [0, 1]20 Schoen [57] MM

13 10 [3, 99]10 [9] MM

14c 13 [0, 100]13 [35] MM, 9 LC

15 12 [−10, 30]12 Rastrigin [62] MM

16 8 [−10, 10]8 convex UM

17c 5 [0, 10]3 × [0, 1]2 linear lin.obj., 3 LC

18c 5 [1, 20]5 max. throughput BB objective, 2 LC

19c 23 [1, 20]23 max. throughput BB objective, 2 LC

20ac 5 [0, 10]5 max. hydropower BB objective, 1 NLC

20bc 5 [0, 10]5 max. hydropower BB objective, 1 NLC

20cc 5 [0, 10]5 max. hydropower BB objective, 1 NLC

21ac 5 [0, 10]5 max. hydropower BB objective, 2 NLC

21bc 5 [0, 10]5 max. hydropower BB objective, 2 NLC

21cc 5 [0, 10]5 max. hydropower BB objective, 2 NLC

c denotes constrained problems; see the Online Supplement for further information

by MM), or if the relaxed problem has only one local optimum and no other stationary
points (denoted by UM). Furthermore, it is indicated how many linear constraints (LC) and
nonlinear constraints (NLC) each problem has, and if the objective function is linear (lin.obj.)
or a black-box (BB objective).

5.2.1 Throughput maximization application

Two realizations of an application problem about throughput maximization [50] have been
used to compare the algorithms. The problem of throughput maximization given restrictions
on the total buffer size B and service rate R is encountered in different application areas such
as production planning and facility layout [17,60]. The space in the production facility is
limited and practical restrictions enforce limits on the total service rate at each station.

Throughput maximization is also an important topic in data networks in computer science
where the goal is to maximize the throughput subject to given restrictions on the buffer size.
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Especially for networks-on-chip router design the on-chip network should be implemented
with very little area overhead in order to minimize implementation costs. The input buffers of
on-chip routers take in general a significant portion of the silicon area of networks-on-chips,
and thus their size should be as small as possible [29].

Here, the throughput maximization of a flow line with h stations is considered. The
buffer storage in front of station 1 is infinite, whereas the buffer storages b2, b3, . . . , bh in
front of stations 2, 3, . . . , h are finite. Every station i has a single server with service rate
ri , i = 1, . . . , h. The service time required by every job is known. If the buffer at station i is
full, then station i − 1 is blocked because no job finished at station i − 1 can be transferred
to the buffer at station i . The total buffer space and the total service rate is limited, i.e.

h∑

i=2

bi ≤ B (buffer space restriction), (9a)

h∑

i=1

ri ≤ R (service rate restriction), (9b)

where B and R are known constants. The goal is to find a buffer allocation and service rates
such that the throughput (average output of the flow line per unit time) is maximized.

Two problem realizations have been considered. First, a small scale problem with
h = 3 stations has been used. For this problem B = R = 20. There are five variables
(b2, b3, r1, r2, r3) and their lower and upper bounds have been set to 1 and 20, respectively.
Secondly, a flow line with h = 12 stations has been considered where R = B = 80. For
this problem the lower and upper bounds on the variable values have also been set to 1 and
20, respectively, and there are 23 variables (b2, . . . , b12, r1, . . . , r12). Altogether, 2,050 jobs
have to be processed for each problem realization. To calculate the objective function value,
the processing of all jobs has to be simulated. The system is initially empty and then 2,000
jobs are released. The time T for releasing the 50 last jobs is recorded, and the throughput is
calculated as 50/T .

5.2.2 Hydropower generation maximization application

Six realizations of a hydropower generation application problem have been considered. The
goal is to maximize the power output over one day for hydropower plants with multiple
types of generating units. Electricity produced by hydropower plants is an important source
of renewable energy around the world. Large hydropower facilities, like the Three Gorges
Project in China, are designed with different generator types (denoted by ui , i = 1, . . . , k)
because some generators are more efficient (in terms of power generated/volume of dis-
charged water) with high water heads and others are more efficient with lower heads. The
water head is the height of the water in the reservoir relative to its height after discharge and
thus determines the kinetic energy.

Hydropower planning is done for different time periods. For longer time periods (e.g.
one or more weeks), stochastic analysis is more important since the weather in the future
affects the inflow. For planning over a shorter period like one day, stochastic factors are less
important because Q j , the total amount of water to be released from reservoir j , over one
day and the water head is known at the beginning of the day.

In this application problem a short term analysis of how to distribute Q j units of water
over one time period, e.g. a day, among all different generator units is done. This problem
is inspired by current research in the Three Gorges Project-Gezhouba system on how to
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allocate water over a year long period to determine what the Q j for each day should be [41].
For computational reasons the allocation of water among different generating units cannot
be considered directly in an annual analysis. The problem examined here is a subproblem
of the annual hydroelectric power generation problem to determine the water allocation
among generating units of different types. The current Three Gorges Project analysis solves
this subproblem associated with the daily allocation of water among the generator units by
exhaustive search on the integer values of ui , which is much less efficient than the SO-I method
proposed here. Because the Three Gorges Dam is such a large power source in the power grid,
the focus of this study is to determine the maximum power output possible, assuming other
capacities of elements of the power grid will be adjusted by long term planning after knowing
the maximum power output of the Three Gorges system. Thus, there are no maximum hourly
demand constraints incorporated in the optimization problem. Of course, if the problem is
changed to examine optimization under additional demand constraints, it is expected that
SO-I will perform similarly or even better since the constraints further restrict the parameter
space.

The general problem description follows. Given are five types of hydropower generating
units u1, . . . , u5 that have minimum and maximum capacities of the water qi , i = 1, . . . , 5,
that runs through the respective generator type. All identical generator units of type i will
receive the same amount of water qi . The goal is to determine how many identical units of
each generator type should be used in order to maximize the total power generated while
not exceeding the maximum amount of water Q j that may be released from reservoir j . For
each variable set u1, . . . , u5 the amount of water qi , i = 1, . . . , 5, that goes through the
generating unit of type i must be adjusted such that the generated power is maximized while
not exceeding Q j .

Considered are two groups of hydropower test problems related to water distribution
among generator types. The first problem group has only one reservoir and one hydropower
plant with five different generator types. The second group has two reservoirs and two
hydropower plants, one upstream with two different generator types that are more efficient
with higher water heads, and one further downstream with three different generator types
that are more efficient with lower water heads. For both groups three different limits on
the maximal available water Q j were considered, representing the different water heads at
different times of the year.

6 Numerical results

In the following the abbreviation GA stands for genetic algorithm, VNS-i and VNS-ii denotes
the VNS algorithms, SO-I is the new surrogate model based algorithm for integer problems,
SO-MI is the (slightly altered) mixed-integer algorithm introduced in [48], and local-SO-
I denotes the integer surrogate model algorithm that generates candidate points by only
perturbing the best point found so far.

Tables 2, 3 and 4 show for all problems the average objective function value after 400
function evaluations together with the standard errors of the means (column “mean (SEM)”).
These numbers are computed based on the successful trials (feasible points have been found
within 400 evaluations). Thus, if, for example, an algorithm failed to find a feasible solution
for two out of 30 trials, the values are computed based on the remaining 28 successful
trials. The number of unsuccessful trials of each algorithm is reported in the column “#NF”.
Some algorithms had difficulties finding feasible solutions for constrained test problems.
GA failed to find feasible solutions for the fewest trials, followed by SO-I (and SO-MI and
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Table 2 Constrained problems ID Algorithm #NF Mean (SEM)

1c GA 2 −3,971.00 (0.00)

SO-I 0 −3,971.00 (0.00)

local-SO-I 19 −3,971.00 (0.00)

SO-MI 0 −3,971.00 (0.00)

NOMAD 30 –

VNS-i 14 −3,971.00 (0.00)

VNS-ii 0 −3,971.00 (0.00)

3c GA 0 0.72 (0.14)

SO-I 0 0.00 (0.00)

local-SO-I 0 0.00 (0.00)

SO-MI 0 0.00 (0.00)

NOMAD 0 0.00 (0.00)

VNS-i 10 0.00 (0.00)

VNS-ii 0 0.03 (0.03)

4c GA 0 −30,073.77 (43.30)

SO-I 0 −30,303.66 (31.17)

local-SO-I 0 −29,069.70 (106.61)

SO-MI 0 −30,075.73 (53.15)

NOMAD 0 −30,192.67 (35.29)

VNS-i 0 −29,574.12 (92.80)

VNS-ii 0 −29,486.62 (68.83)

5c GA 0 896.53 (29.21)

SO-I 0 771.40 (14.97)

local-SO-I 0 997.10 (246.89)

SO-MI 0 812.17 (12.46)

NOMAD 0 1,770.50 (462.58)

VNS-i 4 8,906.35 (6,161.61)

VNS-ii 0 2,097.17 (1,367.02)

6c GA 0 −6.07 (0.59)

SO-I 0 −14.83 (0.10)

local-SO-I 0 −12.00 (0.00)

SO-MI 0 −12.00 (0.32)

NOMAD 0 −5.97 (0.03)

VNS-i 30 –

VNS-ii 0 −14.37 (0.24)

8c GA 8 17.73 (0.86)

SO-I 14 14.00 (0.68)

local-SO-I 8 20.96 (3.11)

SO-MI 14 13.50 (0.50)

NOMAD 22 13.00 (0.00)

VNS-i 4 13.73 (0.44)

VNS-ii 14 13.00 (0.00)
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Table 2 continued

Mean objective function values
and standard errors of means over
30 trials after 400 function
evaluations. Best result of all
algorithms is marked in bold font.
All problems are minimization
problems.
c denotes constrained problems

ID Algorithm #NF Mean (SEM)

11c GA 0 −0.22 (0.01)

SO-I 0 −0.21 (0.01)

local-SO-I 0 −0.24 (0.01)

SO-MI 0 −0.17 (0.00)

NOMAD 0 −0.17 (0.01)

VNS-i 15 −0.19 (0.02)

VNS-ii 0 −0.24 (0.01)

14c GA 1 −40,105.07 (3,175.53)

SO-I 0 −40,687.10 (3,145.90)

local-SO-I 0 −42,185.67 (1,966.68)

SO-MI 0 −50,024.17 (36.40)

NOMAD 0 −48,363.03 (1,197.02)

VNS-i 30 –

VNS-ii 0 −35,687.03 (3,252.89)

17c GA 0 −7.10 (0.16)

SO-I 0 −8.00 (0.00)

local-SO-I 0 −6.88 (0.21)

SO-MI 0 −8.00 (0.00)

NOMAD 8 −8.00 (0.00)

VNS-i 16 −7.75 (0.11)

VNS-ii 0 −7.93 (0.04)

Table 3 Unconstrained
problems

ID Algorithm #NF Mean (SEM)

2 GA 0 −427.91 (7.38)

SO-I 0 −437.16 (12.09)

local-SO-I 0 −348.42 (20.54)

SO-MI 0 −459.56 (8.52)

NOMAD 0 −485.73 (9.18)

VNS-i/VNS-ii 0 −308.57 (3.86)

7 GA 0 −43.13 (0.00)

SO-I 0 −43.13 (0.00)

local-SO-I 0 −43.13 (0.00)

SO-MI 0 −43.13 (0.00)

NOMAD 0 −43.13 (0.00)

VNS-i/VNS-ii 0 −43.13 (0.00)

9 GA 0 −10.87 (0.19)

SO-I 0 −12.00 (0.00)

local-SO-I 0 −10.03 (0.77)

SO-MI 0 −12.00 (0.00)

NOMAD 0 −12.00 (0.00)

VNS-i/VNS-ii 0 −12.00 (0.00)

10 GA 0 −17.17 (0.66)

SO-I 0 −27.23 (0.16)
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Table 3 continued

Mean objective function values
and standard errors of means over
30 trials after 400 function
evaluations. Best result of all
algorithms is marked in bold font.
All problems are minimization
problems. VNS-i and VNS-ii are
the same for unconstrained
problems

ID Algorithm #NF Mean (SEM)

local-SO-I 0 −27.43 (0.16)

SO-MI 0 −30.00 (0.00)

NOMAD 0 −29.17 (0.41)

VNS-i/VNS-ii 0 −26.63 (0.86)

12 GA 0 −12.23 (0.19)

SO-I 0 −13.36 (0.00)

local-SO-I 0 −13.36 (0.00)

SO-MI 0 −13.36 (0.00)

NOMAD 0 −13.31 (0.02)

VNS-i/VNS-ii 0 −13.36 (0.00)

13 GA 0 −9,289.87 (81.24)

SO-I 0 −9,591.72 (0.00)

local-SO-I 0 −9,591.72 (0.00)

SO-MI 0 −9,591.72 (0.00)

NOMAD 0 −9,591.72 (0.00)

VNS-i/VNS-ii 0 −5,448.97 (358.19)

15 GA 0 33.83 (4.52)

SO-I 0 −12.00 (0.00)

local-SO-I 0 −12.00 (0.00)

SO-MI 0 −12.00 (0.00)

NOMAD 0 −10.67 (1.33)

VNS-i/VNS-ii 0 16.47 (22.67)

16 GA 0 2.72 (0.95)

SO-I 0 0.00 (0.00)

local-SO-I 0 0.00 (0.00)

SO-MI 0 0.00 (0.00)

NOMAD 0 0.00 (0.00)

VNS-i/VNS-ii 0 0.00 (0.00)

VNS-ii),3 local-SO-I, NOMAD, and VNS-i. Noticeable about the results is that GA failed to
find feasible solutions for a lower total number of trials, but for a larger number of different
problems than SO-I. The tables also show that VNS-i failed to find feasible solutions for
many more trials than VNS-ii.

The problems have been divided into constrained (Table 2), unconstrained (Table 3), and
application (Table 4) problems. The column “ID” contains the problem identification number
as defined in Table 1 and the superscript “c” at that number indicates that the problem has
additional constraints besides the variables’ upper and lower bounds. The best solution for
every problem is marked in bold font, and the SEM value is given in italic font. Table entries
marked by a dash denote that the respective algorithm was not able to find a feasible solution
within 400 function evaluations in any trial.

3 Note that SO-I is used in order to find a feasible solution from which both algorithms could start. Thus, the
number of failed trials for SO-I, SO-MI, and VNS-ii are identical.
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Table 4 Application problems ID Algorithm #NF Mean (SEM)

18c GA 0 8.24 (0.17)

SO-I 0 9.12 (0.12)

local-SO-I 0 6.57 (0.40)

SO-MI 0 7.46 (0.49)

NOMAD 3 7.66 (0.26)

VNS-i 11 6.14 (0.69)

VNS-ii 0 7.54 (0.31)

19c GA 0 3.10 (0.17)

SO-I 0 3.15 (0.20)

local-SO-I 0 2.07 (0.22)

SO-MI 0 3.82 (0.13)

NOMAD 0 0.89 (0.06)

VNS-i 26 1.74 (0.39)

VNS-ii 0 2.52 (0.20)

20ac GA 0 735.34 (6.75)

SO-I 0 758.25 (0.00)

local-SO-I 0 681.38 (10.25)

SO-MI 0 754.38 (0.88)

NOMAD 0 744.00 (0.96)

VNS-i 0 753.83 (1.54)

VNS-ii 0 755.04 (1.12)

20bc GA 0 2,008.83 (4.68)

SO-I 0 2,020.67 (1.33)

local-SO-I 0 1,835.14 (24.94)

SO-MI 0 2,015.46 (1.51)

NOMAD 0 2,003.83 (5.01)

VNS-i 0 2,010.83 (3.81)

VNS-ii 0 2,006.46 (6.91)

20cc GA 0 4,108.84 (4.49)

SO-I 0 4,114.63 (2.50)

local-SO-I 0 3,890.61 (20.74)

SO-MI 0 4,117.98 (2.58)

NOMAD 0 4,125.75 (12.06)

VNS-i 0 4,075.42 (10.44)

VNS-ii 0 4,099.17 (6.69)

21ac GA 0 1,560.36 (25.96)

SO-I 0 1,677.17 (2.10)

local-SO-I 0 1,443.12 (46.42)

SO-MI 0 1,657.08 (3.75)

NOMAD 0 1,626.18 (19.64)

VNS-i 4 1,653.65 (13.92)

VNS-ii 0 1,671.50 (2.92)
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Table 4 continued

Mean objective function values
and standard errors of means over
30 trials after 400 function
evaluations. Best result of all
algorithms is marked in bold font.
All problems are maximization
problems.
c denotes constrained problems

ID Algorithm #NF Mean (SEM)

21bc GA 0 4,016.17 (23.14)

SO-I 0 4,097.40 (11.86)

local-SO-I 0 3,668.60 (50.60)

SO-MI 0 4,095.50 (6.96)

NOMAD 0 3,899.40 (25.57)

VNS-i 2 4,000.93 (28.66)

VNS-ii 0 4,070.83 (16.29)

21cc GA 0 8,220.67 (22.22)

SO-I 0 8,299.00 (12.84)

local-SO-I 0 7,550.17 (73.20)

SO-MI 0 8,253.17 (9.62)

NOMAD 0 8,122.33 (32.05)

VNS-i 0 8,055.83 (49.83)

VNS-ii 0 7,996.33 (64.34)

The numerical results show that SO-I attains the best mean objective function values for six
out of nine constrained problems and for six out of eight unconstrained and application prob-
lems, respectively. Significance test for differences in means (see see Tables 1–3 in the Online
Supplement) show that SO-I performs significantly better than all other algorithms especially
for the application problems. For the constrained problems SO-I is outperformed only for test
problems 11 and 14. For the unconstrained problems SO-I is outperformed only for problems
2 and 10. For the remaining test problems SO-I performs either significantly better than all
other algorithms with a significance level 0.05, or the differences in means are not significant.

Data and performance profiles [46]4 are used in the following to illustrate the numer-
ical results. The profiles are based on the feasible objective function value averaged over
successful trials. The following summary of data and performance profiles is adapted from
[46]. Denote P the set of problems (here the 25 test problems) and A the set of algorithms
(GA, SO-I, local-SO-I, SO-MI, NOMAD, VNS-i, VNS-ii) in the comparison. Let lγ,a , where
γ ∈ P and a ∈ A, be the used performance measure. Then the performance ratio is defined as

rγ,a = lγ,a

min
{
lγ,a : a ∈ A} . (10)

The performance profile of algorithm a ∈ A is then the fraction of problems where the
performance ratio is at most α:

ρa(α) = 1

|P| size
{
γ ∈ P : rγ,a ≤ α

}
. (11)

Here |P| denotes the cardinality of P . High values for ρa(α) are better. The performance
profile reflects how well an algorithm performs relative to the other algorithms. Data profiles
illustrate the percentage of problems solved for a given tolerance τ within a given number of
function evaluations. If lγ,a denotes the number of function evaluations needed to satisfy a
convergence test with tolerance τ , then the percentage of problems that can be solved within
κ function evaluations is defined as

4 The Matlab codes provided on http://www.mcs.anl.gov/~more/dfo/ have been used for creating the plots.
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Fig. 1 Data profiles: percentage of problems solved vesus number of function evaluations for accuracy
levels τ = 10−1 and τ = 10−7. Both figures share the same legend. See Eq. (12) for δa(κ)

δa(κ) = 1

|P| size
{
γ ∈ P : lγ,a ≤ κ

}
. (12)

Note that performance profiles compare the different algorithms whereas data profiles show
the raw data.

The data profiles in Fig. 1 show the percentage of problems that could be solved by each
algorithm within a given number of function evaluations for accuracy levels τ = 10−1 and
τ = 10−7. Figure 1a shows, for example, that SO-I is able to solve more than 60 % of the
problems within 100 evaluations with an accuracy level of τ = 10−1 whereas NOMAD
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Fig. 2 Performance profiles with logarithmic scale for accuracy levels τ = 10−1 and τ = 10−7. Both figures
share the same legend. See Eq. (11) for ρa(α)

solves only about 28 % of the problems. Similarly, Fig. 1b shows that SO-I is able to solve
about 32 % of the problems after 150 evaluations with an accuracy level of τ = 10−7 and
NOMAD solves about 12 % of the problems.

The data profiles show that the surrogate model based algorithms, in particular SO-I and
SO-MI, perform in general best. SO-I performs for the accuracy τ = 10−1 only slightly
better than SO-MI. The performance difference increases, however, with decreasing τ (see
also Fig. 2), which can be attributed to the different ways for generating candidate points and
the weight adjustment for the scoring criteria (see explanation after the proof of Theorem 1).
SO-I outperforms all other algorithms especially as τ decreases, indicating that SO-I is able
to find accurate solutions more often than the other algorithms. SO-I is only initially (for
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fewer than 100 function evaluations) outperformed by local-SO-I. The reason for this is that
local-SO-I searches only close to the best point found so far for improvements, and therefore
it is possible to find improvements faster than SO-I. The figures show, however, also that
the data profile of local-SO-I does not improve for many consecutive function evaluations
(the steps are longer than for SO-I), which may be due to the algorithm having difficulties
escaping from local optima. SO-I, on the other hand, uses also candidate points that are
uniformly selected from the whole variable domain and is thus able to escape from local
optima. Hence, if the total number of allowed function evaluations is restricted to 100 or
fewer, local-SO-I may be the better choice because in this case converging fast to a local
optimum may be more important than the global exploration of the variable domain.

Using only a local search may, however, depending on the size of the variable domain,
have an influence on the algorithm’s ability of finding feasible solutions. Local-SO-I fails for
fewer problems than SO-I for the binary problem 8, and it fails for more problems than SO-I
for problem 1, which has a comparatively large variable domain. Thus, local-SO-I may not
be very efficient for constrained problems with large Ωb.

GA’s performance is better when τ is larger (Fig. 1a), and its performance decreases
significantly as τ decreases, which indicates that GA has difficulties finding high-accuracy
solutions. VNS-i performs in general worse than VNS-ii. VNS-i not only fails more often
than VNS-ii to find feasible solutions, but also when feasible points were found, the solution
quality is worse. Hence, using SO-I for finding a first feasible solution and applying thereafter
MEIGO’s VNS (as done in VNS-ii) improves its performance for constrained problems.
VNS-ii and NOMAD perform very similarly.

Figure 2 shows performance profiles with logarithmic scales for accuracy levels τ = 10−1

and τ = 10−7. The figures show that SO-I is the fastest solver for more than 50 % of the
problems while all other algorithms are the fastest for less than 20 % of all problems for
τ ≤ 10−7. Figure 2a shows, for example, that for a performance ratio of α = 2 SO-I and
NOMAD have a performance difference of about 40 % which implies that for 40 % of the
problems NOMAD needs twice the number of function evaluations to reach the accuracy
level τ = 10−1. Note that NOMAD failed to find feasible solutions for more than twice
the number of trials than the surrogate model based algorithms and therefore NOMAD’s
performance graph is not very accurate. However, NOMAD’s performance is regardless
of this fact worse than SO-I and SO-MI. The performance profiles also show that the VNS
methods are outperformed by the surrogate model based algorithms and that VNS-ii performs
better than VNS-i.

The reason for the bad performance of GA can be associated to the number of function
evaluations that is generally required for finding good solutions because the number of indi-
viduals and generations have to be large. If fewer individuals are used, the diversity within
the generation is reduced, whereas reducing the number of generations has a negative effect
on the evolutionary character of the algorithm. This algorithm is therefore not suitable for
computationally expensive black-box functions.

7 Conclusions

In this paper the algorithm SO-I for computationally expensive integer black-box global opti-
mization problems that may have computationally expensive constraints has been introduced.
For constrained problems SO-I generates a feasible point in a first optimization phase that
minimizes a constraint violation function. Once a feasible point has been found, a penalty-
augmented objective function is minimized in the second optimization phase. Candidates for
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the next expensive function evaluation are generated by randomly perturbing the best feasi-
ble point found so far and by uniformly selecting points from the box-constrained variable
domain. A radial basis function surrogate model is used to select the best candidate for doing
the next expensive function evaluation.

The performance of SO-I was numerically compared to a genetic algorithm, NOMAD, a
slightly altered version of SO-MI [48], local-SO-I, which is a version of SO-I that uses only
a local search for determining sample points, and two VNS implementations. While genetic
algorithms and VNS have been widely used in the literature to solve discrete optimization
problems, a study that examines the performance of NOMAD and surrogate model based
algorithms such as SO-I has not been conducted.

The algorithms were compared on 17 generic test problems. Since there is no “widely
used” test bench for discrete global optimization algorithms, problems with different charac-
teristics have been examined. Thus, problems where the continuous relaxation is multimodal
or unimodal, problems with linear and nonlinear objective and constraint functions as well as
binary problems and problems where the integer variables may take on a large range of val-
ues have been included in the comparison. Furthermore, the algorithms were applied to eight
realizations of application problems arising from throughput maximization and hydropower
generation maximization.

Numerical experiments showed that the surrogate model based algorithms (SO-I and SO-
MI) outperformed all other algorithms. The numerical results indicate that using surrogate
models is a computationally efficient and promising approach for solving integer optimization
problems in general. The convergence of SO-I follows from a simple counting argument.
Moreover, as opposed to SO-MI, SO-I is able to find feasible solutions itself and does not
require a user-supplied feasible point. SO-I’s first optimization phase may thus be linked with
various other algorithms to efficiently find a first feasible point. Once such a point has been
encountered, another search routine may be applied as shown in the numerical experiments
by first using SO-I and subsequently using SO-MI or VNS.

It is important to remind the reader that because the focus is on computationally expensive
functions, the computational effort is measured in the number of objective function evalua-
tions. For expensive functions that need, for example, several minutes or more per function
evaluation, the objective function evaluation requires at least an order of magnitude more
CPU time than the remaining calculations of the optimization algorithm steps. Hence in this
situation, the number of objective function evaluations is the dominant issue. However, for
problems with very inexpensively computed objective function values, the SO-I algorithm
would not necessarily perform as well as GA or VNS, for example, comparatively because the
reduction in evaluations might be outweighed by the extra computation cost for the surrogate
model construction.

As more and more engineering and management problems are based on computationally
expensive black-box objective and constraint functions, it is necessary to use as few costly
evaluations as possible for obtaining accurate solutions within an acceptable time frame.
The SO-I algorithm shows great promise to achieve this goal, and thus substantial savings in
computation times are possible. An extension of SO-I for better handling constraints will be
considered in the future.
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