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Abstract We establish both necessary and sufficient optimality conditions of higher orders
for various kinds of proper solutions to nonsmooth vector optimization in terms of higher-
order radial sets and radial derivatives. These conditions are for global solutions and do not
require continuity and convexity assumptions. Examples are provided to show advantages of
the results over existing ones in a number of cases.
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1 Introduction

Optimality conditions take a central position in mathematical optimization. For nonsmooth
problems, to meet the increasing diversity of practical situations, a broad spectrum of gener-
alized derivatives has been developed to play the role of the Fréchet and Gateaux derivatives.
Each of them is suitable for several models, and none is universal. The reader is referred to
systematic and comprehensive expositions of generalized derivatives and nonsmooth opti-
mization in the well-known books [4,6,22–26]. Note that the wide range of methods in non-
smooth optimization can be roughly separated into the primal and the dual space approaches.
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Almost all notions of generalized derivatives in the primal space approach are based on cor-
responding tangency concepts and hence carry only local information. In other words, such
derivatives are local linear approximations of a considered map. Only few concepts of such
derivatives admit extensions to orders greater than two, which are naturally understood to
be inevitable for higher-order optimality conditions, such as contingent, adjacent and Clarke
derivatives (see, e.g., [5,7–10,12–14,18–21], variational sets (see [1,16,17]), etc. (The deriv-
atives constructed in the dual space approach are hardly extended to orders greater than two.)
The radial derivative, introduced in [27] and extended to higher orders in [2,3], is in the
first approach, but encompasses the idea of a conical hull and a contingent set, and hence
contains global information of a map as its conical hull, and is closed and can be extended to
higher orders as its contingent set. These properties help us to obtain higher-order optimality
conditions, without convexity assumptions. Furthermore, we can deal with global solutions.
To choose a particular kind of radial objects to use in this paper, observe that the higher-order
radial derivative defined in [2] is different from that in [3], but the latter is more natural and
has a better geometry. Recall from [3] the following.

Definition 1.1 Let X, Y be normed spaces, S ⊂ X, (u1, v1), . . . , (um−1, vm−1) ∈ X × Y ,
and F : X → 2Y .

(i) The mth-order radial set of S at x0 with respect to (shortly, wrt) u1, . . . , um−1 is

T r(m)
S (x0, u1, . . . , um−1) : = {y ∈ X | ∃tn > 0, ∃yn → y,∀n, x0 + tnu1

+ . . . + tm−1
n um−1 + tm

n yn ∈ S
}
.

(ii) The mth-order radial derivative of F at (x0, y0) wrt (u1, v1), . . . , (um−1, vm−1) is the
multimap Dm

R F(x0, y0, u1, v1, . . . , um−1, vm−1) : X → 2Y whose graph is

grDm
R F(x0, y0, u1, v1, . . . , um−1, vm−1) = T r(m)

grF (x0, y0, u1, v1, . . . , um−1, vm−1).

Remark 1.1 (i) One sees that

Dm
R F(x0, y0, u1, v1, . . . , um−1, vm−1)(x)={v ∈ Y | ∃tn > 0, ∃xn → x, ∃vn → v,∀n,

y0 + tnv1 + · · · + tm−1
n vm−1 + tm

n vn ∈ F(x0 + tnu1 + · · · + tm−1
n um−1 + tm

n xn)
}
.

Definition 1.1 corresponds to the following known definition of the contingent objects

T m
S (x0, u1, . . . , um−1) : = {

y ∈ X | ∃tn → 0+, ∃yn → y,∀n, x0 + tnu1

+ · · · + tm−1
n um−1 + tm

n yn ∈ S
}
,

grDm F(x0, y0, u1, v1, . . . , um−1, vm−1) = T m
grF (x0, y0, u1, v1, . . . , um−1, vm−1).

We also have the corresponding equivalent formulation

Dm F(x0, y0, u1, v1, . . . , um−1, vm−1)(x) := {
v ∈ Y | ∃tn →0+, ∃xn → x, ∃vn →v,∀n,

y0 + tnv1 + · · · + tm−1
n vm−1+tm

n vn ∈ F(x0 + tnu1 + · · · + tm−1
n um−1+tm

n xn)
}

.

Observe another fact, which makes the radial set and derivative different from the con-
tingent set and derivative, and hence also from other tangency notions and derivatives
in variational analysis. Let us explain this difference only between T r(2)

S (x0, u) and
T 2

S (x0, u) for simplicity. It is known that if u �∈ TS(x0), then T 2
S (x0, u) = ∅. But, the

simple example with X = R, S = {0, e1}, x0 = 0, e1 = (1, 0), e2 = (0, 1) shows that
this is not valid for radial cones: u = e1 − e2 �∈ T r

S (x0), but e2 ∈ T r(2)
S (x0, u), i.e., the

last cone is nonempty.
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(ii) In [3], the objects defined in Definition 1.1 are called upper radial sets and deriva-
tives, respectively (shortly, resp). A similar notion corresponding to the adjacent set and
derivative, obtained by replacing ∃tn > 0 by ∀tn > 0, is called a lower radial set (or
derivative). However, though being applied to establishing necessary optimality con-
ditions similarly as the upper radial concept is, this lower radial object yields weaker
results, and it is not convenient for dealing with sufficient optimality conditions. There-
fore, in this paper we develop only the upper radial concepts and thus omit the term
“upper”.

In the following example, we compute a radial derivative and a contingent derivative in
an infinite dimensional case.

Example 1.1 Let X = R and Y = l2, the Hilbert space of the numerical sequences x =
(xi )i∈N with

∑∞
i=1 x2

i being convergent. By (ei )i∈N we denote standard unit basis of l2.
Consider F : X → 2Y defined by

F(x) :=
⎧
⎨

⎩

{ 1
n (−e1 + 2en)

}
, if x = 1

n ,{
y = (yi )

∞
i=1 ∈ l2| y1 ≥ 0, y2

1 ≥ ∑∞
i=2 y2

i

}
, if x = n,

{0} , otherwise.

It is easy to see that C := {y = (yi )
∞
i=1 ∈ l2| y1 ≥ 0, y2

1 ≥ ∑∞
i=2 y2

i } is a closed, convex,

and pointed cone. For (x0, y0) = (0, 0), we compute T r(1)
grF (x0, y0). If (u, v) ∈ T r(1)

grF (x0, y0),
by definition, there exist tn > 0 and (un, vn) → (u, v) such that, for all n,

tnvn ∈ F(tnun). (1)

If tnun �∈ {1/n, n}, then from (1) a direct computation gives v = 0. Now assume that
tnun ∈ {1/n, n}. Consider the first case with tnun = 1/n. From (1), one has

tnvn = 1

n
(−e1 + 2en). (2)

We have two subcases. If u = 0, then un = 1/(ntn) → 0, and hence (2) implies that
vn = un(−e1 +2en) → 0, i.e., v = 0. In the second subcase with u > 0, we claim that there
is no v such that (u, v) ∈ T r(1)

grF (x0, y0). Suppose there exists such a (u, v) (with u > 0).

Then, from (2), the sequence (ntn)−1(−e1 + 2en) = un(−e1 + 2en) converges. Hence, as
une1 → ue1, the sequence dn := 2unen is also convergent and then {en} converges as well,
contradicting the fact that {en} is not a Cauchy sequence (being the standard unit basis of l2).

Now consider the second case with tnun = n. From (1) we get tnvn ∈ C . Thus, v ∈ C
since C is a closed cone. It follows from un = n/tn that u ≥ 0.

Consequently, we have proved that

T r(1)
grF (x0, y0) ⊂ ([0,+∞) × C) ∪ ((−∞, 0) × {0}).

We now show the reverse inclusion. Let (u, v) ∈ ([0,+∞) × C) ∪ ((−∞, 0) × {0}). We
prove that there exist tn > 0, un → u, and vn → v such that (1) holds for all n. Indeed,
depending on u and v, such tn, un , and vn can be chosen as follows.

• For (0, v) such that v ∈ C , we take tn = n2, un = 1/n, vn ≡ v.
• For (u, v) ∈ (0,+∞) × C , we take tn = n/u, un ≡ u, vn ≡ v.
• For (u, v) ∈ (−∞, 0) × {0}, we take tn = n/|u|, un ≡ u, vn ≡ 0.
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So,

T r(1)
grF (x0, y0) = ([0,+∞) × C) ∪ ((−∞, 0) × {0}).

Therefore,

D1
R F(x0, y0)(u) =

{
C, if u ≥ 0,

{0}, if u < 0.

By a similar way, with simpler calculations, we get T 1
grF (x0, y0) = R × {0}, and hence

D1 F(x0, y0)(u) = {0} for all u ∈ R.
Realizing advantages in some aspects of radial sets and derivatives and observing that,

among various optimality notions, [3] investigates only the weak efficiency, we aim to estab-
lish both necessary and sufficient higher-order conditions in terms of radial sets and deriv-
atives for various proper efficiency concepts in set-valued vector optimization. We choose
the Q-minimality defined in [11] to unify these concepts. Thus, we first discuss optimality
conditions for Q-minimality and then rephrase the results for the other kinds of solutions.
This arrangement shortens and simplifies considerably the arguments. The paper is organized
as follows. Section 2 contains preliminary facts we need in the paper. In Sect. 3, we discuss
properties of radial sets and derivatives, especially chain rules and sum rules, including some
simple but direct applications to optimality conditions for several particular optimization
problems. Higher-order optimality conditions for the following general set-valued vector
optimization problem are demonstrated in Sect. 4.

Let X, Y and Z be normed spaces, C ⊂ Y and D ⊂ Z pointed closed convex cones, not
the entire space, S ⊂ X nonempty, and F : S → 2Y , G : S → 2Z . Our problem is

min F(x), s.t. x ∈ S, G(x) ∩ −D �= ∅. (P)

We denote A := {x ∈ S| G(x) ∩ −D �= ∅} (the feasible set).

2 Preliminaries

Throughout the paper, if not otherwise specified, let X, Y and Z be normed spaces, C ⊂ Y and
D ⊂ Z pointed closed convex cones, different from the entire space, and F : S → 2Y , G :
S → 2Z with S ⊂ X being nonempty. BY is the closed unit ball in Y . For S ⊂ X, intS, clS
and bdS denote its interior, closure and boundary, respectively (shortly, resp). X∗ is the dual
space of X and 〈., .〉 is the canonical paring. N is the set of the natural numbers and R+ that
of the nonnegative real numbers. For S ⊂ X, C above, and u ∈ X , denote

cone+S : = {λa | λ > 0, a ∈ S}, S(u) := cone(S + u),

C∗ : = {y∗ ∈ Y ∗ | 〈y∗, c〉 ≥ 0, ∀c ∈ C}, C+i := {y∗ ∈ Y ∗ | 〈y∗, c〉 > 0,

∀c ∈ C \ {0}}.
A convex set B ⊂ Y is called a base for C if 0 �∈ clB and C = {tb| t ∈ R+, b ∈ B}. For
H : X → 2Y , the domain, range, graph and epigraph of H are defined as

domH := {x ∈ X | H(x) �= ∅}, imH := {y ∈ Y | y ∈ H(X)},
grH := {(x, y) ∈ X × Y | y ∈ H(x)}, epiH := {(x, y) ∈ X × Y | y ∈ H(x) + C}.
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The profile mapping of H is H+ defined by H+(x) := H(x) + C . The Painlevé–
Kuratowski (sequential) upper and lower limits are defined by

Limsup
x→x0

H(x) := {y ∈ Y | ∃xn ∈ domH : xn → x0, ∃yn ∈ H(xn), yn → y},
Liminf

x→x0
H(x) := {y ∈ Y | ∀xn ∈ domH : xn → x0, ∃yn ∈ H(xn), yn → y}.

In this paper we are concerned with the following concepts of proper efficiency for problem
(P) (with the feasible set A), which are stronger than the Pareto and weak efficiency.

Definition 2.1 (i) a0 ∈ A is a strong (or ideal) efficient point of A (a0 ∈ StrMinA), if
A − a0 ⊂ C .

(ii) Supposing C+i �= ∅, a0 ∈ A is a positive-proper efficient point of A (a0 ∈ PosA), if
there exists ϕ ∈ C+i such that ϕ(a) ≥ ϕ(a0) for all a ∈ A.

(iii) a0 ∈ A is a Geoffrion-proper efficient point of A (a0 ∈ GeA), if a0 ∈ MinA (i.e.,
(A − a0) ∩ −C = {0}) and there exists a constant M > 0 such that, whenever there is
λ ∈ C∗ with norm one and λ(a0 − a) > 0 for some a ∈ A, one can find μ ∈ C∗ with
norm one such that 〈λ, a0 − a〉 ≤ M 〈μ, a − a0〉 .

(iv) a0 ∈ A is a Henig-proper efficient point of A (a0 ∈ HeA), if there exists a convex
pointed cone K with C \ {0} ⊂ intK such that (A − a0) ∩ (−intK ) = ∅.

(v) Supposing C has a base B, a0 ∈ A is a strong Henig-proper efficient point of A
(a0 ∈ StrHeA), if there is ε > 0 such that clcone(A−a0)∩(−clcone(B +εBY )) = {0}.

(vi) a0 ∈ A is a super efficient point of A (a0 ∈ SuA), if there is ρ > 0 such that

cl cone(A − a0) ∩ (BY − C) ⊂ ρBY .

Note that Geoffrion originally defined the properness notion in (iii) for R
n with the order-

ing cone R
n+. The above general definition of Geoffrion properness is taken from [14].

For relations of the above properness concepts and also other kinds of efficiency see, e.g.,
[10,11,14,15,21]. Some of them are collected in the statement below as examples.

Proposition 2.1 (i) StrMin(A) ⊂ Min(A), Pos(A) ⊂ He(A) ⊂ Min(A).
(ii) Su(A) ⊂ Ge(A) ⊂ Min(A), Su(A) ⊂ He(A).

(iii) Su(A) ⊂ StrHe(A), and if C has a bounded base then Su(A) = StrHe(A).

Let Q ⊂ Y be a nonempty open cone, different from Y , unless otherwise specified.

Definition 2.2 ([11]) We say that a0 is a Q-minimal point of A (a0 ∈ Qmin(A)) if

(A − a0) ∩ (−Q) = ∅.

Recall that an open cone in Y is said to be a dilating cone (or a dilation) of C , or dilating C
if it contains C \{0}. Let B be, as before, a base of C . Setting δ := inf{|||b||| b ∈ B} > 0, for
ε ∈ (0, δ), we associate to C a pointed convex cone Cε(B) := cone(B + εBY ). For ε > 0,
we also associate to C another open cone C(ε) := {y ∈ Y | dC (y) < εd−C (y)}.

Any kind of efficiency in Definition 2.1 is in fact a Q-minimal point with Q being appro-
priately chosen as follows.

Proposition 2.2 ([11])

(i) a0 ∈ StrMin(A) if and only if a0 ∈ Qmin(A) with Q = Y \ (−C).
(ii) Supposing C+i �= ∅, a0 ∈ Pos(A) if and only if a0 ∈ Qmin(A) with Q = {y ∈

Y | ϕ(y) > 0}, ϕ being some functional in C+i .

123



698 J Glob Optim (2014) 58:693–709

(iii) a0 ∈ Ge(A) if and only if a0 ∈ Qmin(A) with Q = C(ε) for some ε > 0.
(iv) a0 ∈ He(A) if and only if a0 ∈ Qmin(A) with Q being pointed, convex, and dilating C.
(v) a0 ∈ StrHe(A) if and only if a0 ∈ Qmin(A) with Q = intCε(B), ε satisfying 0 < ε < δ.

(vi) Supposing C has a bounded base, a0 ∈ Su(A) if and only if a0 ∈ Qmin(A) with
Q = intCε(B), ε satisfying 0 < ε < δ.

Proposition 2.3 Suppose that Q is any open cone given in Proposition 2.2. Then, Q+C ⊂ Q.

Proof It is easy to prove the assertion, when Q = Y \ (−C), Q = {y ∈ Y | ϕ(y) > 0} for
ϕ ∈ C+i , or Q is a pointed open convex cone dilating C .

Now let Q = C(ε) for some ε > 0, y ∈ Q and c ∈ C . We show that y + c ∈ Q. It is
easy to see that dC (y + c) ≤ dC (y) and d−C (y) ≤ d−C (y + c). Because y ∈ Q, we have
dC (y) < εd−C (y). Thus, dC (y + c) < εd−C (y + c) and hence y + c ∈ Q.

For Q = Cε(B), it is easy to see that C ⊂ Q for any ε satisfying 0 < ε < δ. So,
Q + C ⊂ Q + Q ⊂ Q. ��

3 Radial sets and radial derivatives

We develop now calculus rules and properties of radial sets and radial derivatives.

Definition 3.1 Let x0 ∈ S ⊂ X, F : X → 2Y , (x0, y0) ∈ grF , and (ui , vi ) ∈ X × Y for
i = 1, . . . , m − 1.

(i) The mth-order lower radial set of S at x0 wrt u1, . . . , um−1 is

T r�(m)
S (x0, u1, . . . , um−1) : = {y ∈ X | ∀tn > 0, ∃yn → y,∀n,

x0 + tnu1 + · · · + tm−1
n um−1 + tm

n yn ∈ S
}
.

(ii) If T r(m)
S (x0, u1, . . . , um−1) = T r�(m)

S (x0, u1, . . . , um−1), then this set is called a mth-
order proto-radial set of S at x0 wrt u1, . . . , um−1.

(iii) If Dm
R F(x0, y0, u1, v1, . . . , um−1, vm−1)(x) = {v ∈ Y | ∀tn > 0,∀xn → x, ∃vn →

v,∀n, y0 + tnv1 + · · · + tm−1
n vm−1 + tm

n vn ∈ F(x0 + tnu1 + · · · + tm−1
n um−1 + tm

n xn)}
for all x ∈ domDm

R F(x0, y0, u1, v1, . . . , um−1, vm−1), then this derivative is called a
mth-order radial semiderivative of F at (x0, y0) wrt (u1, v1), . . . , (um−1, vm−1).

Note that, following strictly Definition 1.1, we would define that Dm
R F(x0, y0, u1, v1, . . . ,

um−1, vm−1) is a mth-order radial semiderivative if

grDm
R F(x0, y0, u1, v1, . . . , um−1, vm−1) = T r�(m)

grF (x0, y0, u1, v1, . . . , um−1, vm−1).

But, this last condition is equivalent to

Dm
R F(x0, y0, u1, v1, . . . , um−1, vm−1)(x) = {v ∈ Y | ∀tn > 0, ∃xn → x, ∃vn → v,∀n,

y0 + tnv1 + · · · + tm−1
n vm−1 + tm

n vn

∈ F(x0+tnu1+· · ·+tm−1
n um−1 + tm

n xn)
}
,

which is weaker than (iii). (This weaker condition was used to define proto-contingent deriv-
atives in many papers in the literature.) Definition 3.1 (iii) is restrictive. However, it may be
satisfied as shown in the following.
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Example 3.1 Let X = Y = R, F : X → 2Y be defined by F(x) = {y ∈ Y | y ≥ x}, and
(x0, y0) = (0, 0). Then, direct calculations yield T r(1)

F(X)(y0) = T r�(1)

F(X) (y0) = R and

D1
R F(x0, y0)(x) = {v ∈ Y | ∀tn > 0,∀xn → x, ∃vn → v,∀n, y0 + tnvn ∈ F(x0 + tn xn)}

= {v ∈ Y | v ≥ x}.
So, T r(1)

F(X)(y0) is a first-order proto-radial set of F(X) at y0, and D1
R F(x0, y0) is a first-order

radial semiderivative of F at (x0, y0).
For examples of second-orders, with any v1 ∈ R, direct computations show that

T r(2)
F(X)(y0, v1) = T r�(2)

F(X) (y0, v1) = R. Thus, T r(2)
F(X)(y0, v1) is a second-order proto-radial

set of F(X) at y0 wrt v1 ∈ R.
Passing to derivatives, let (u1, v1) = (1, 1). Direct computations indicate that both

D2
R F(x0, y0, u1, v1)(x) and the set on the right-hand side of the equality in Definition 3.1

(iii) are equal to {v ∈ Y | v ≥ x}. Thus, F has a second-order radial semideriva-
tive at (x0, y0) wrt (1, 1). However, for (u1, v1) = (0,−1), the derivatives are “worse”:
D2

R F(x0, y0, u1, v1)(x) = {v ∈ Y | v ≥ x} and the other mentioned set is empty. So, F does
not have a second-order radial semiderivative at (x0, y0) wrt (0,−1).

We will develop some major calculus rules for the above objects. But, first recall several
results of [3] on this theme.

Proposition 3.1 (sum rule) ([3]) Let Fi : X → 2Y , x0 ∈ � := domF1 ∩ domF2, and
yi ∈ Fi (x0) for i = 1, 2.

(i) If either F1(�) or F2(�) has a mth-order proto-radial set at y1 wrt v1,1, . . . , v1,m−1 or
at y2 wrt v2,1, . . . , v2,m−1, resp, then

T r(m)
F1(�)(y1, v1,1, . . . , v1,m−1) + T r(m)

F2(�)(y2, v2,1, . . . , v2,m−1)

⊂ T r(m)
(F1+F2)(�)(y1 + y2, v1,1 + v2,1, . . . , v1,m−1 + v2,m−1).

(ii) If F2 has a mth-order radial semiderivative at (x0, y2)wrt (u1, v2,1), . . . , (um−1, v2,m−1)

and domF1 ⊂ domF2, then, for any u ∈ X,

Dm
R F1(x0, y1, u1, v1,1, . . . , um−1, v1,m−1)(u) + Dm

R F2(x0, y2, u1, v2,1, . . . , um−1, v2,m−1)(u)

⊂ Dm
R (F1 + F2)(x0, y1 + y2, u1, v1,1 + v2,1, . . . , um−1, v1,m−1 + v2,m−1)(u).

Proposition 3.2 (chain rule) ([3]) Let G : X → 2Y , F : Y → 2Z with ImG ⊂
domF, (x0, y0) ∈ grG, (y0, z0) ∈ grF, and (u1, v1, w1), . . . , (um−1, vm−1, wm−1) ∈
X × Y × Z. Suppose that F has a mth-order radial semiderivative at (y0, z0) wrt (v1, w1),

. . . , (vm−1, wm−1). Then,

(i) Dm
R F(y0, z0, v1, w1, . . . , vm−1, wm−1)[T r(m)

G(X)(y0, v1, . . . , vm−1)] ⊂ T r(m)
(F◦G)(X)(z0, w1,

. . . , wm−1);
(ii) Dm

R F(y0, z0, v1, w1, . . . , vm−1, wm−1)[Dm
R G(x0, y0, u1, v1, . . . , um−1, vm−1)(X)]

⊂ T r(m)
(F◦G)(X)(z0, w1, . . . , wm−1).

These rules will be applied in the sequel since they are simple (at least their formulations
are). However, being a proto-radial set or radial semiderivative is a restrictive condition.
Hence, we develop now another sum rule and another chain rule for possible better applica-
tions. For a sum M + N of two multimaps M, N : X → 2Y , we express it as a composition
as follows. Define G : X → 2X×Y and F : X × Y → 2Y by, for the identity map I on X ,

G = I × M and F(x, y) = y + N (x). (3)
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Then, clearly M + N = F ◦ G. So, we will apply a chain rule. The chain rule given in
Proposition 3.2, though simple and relatively direct, is not suitable for dealing with this
composition F ◦ G, since the intermediate space (Y there and X × Y here) is little involved.
We develop another chain rule as follows. Let general multimaps G : X → 2Y and F :
Y → 2Z be considered. The so-called resultant multimap C : X × Z → 2Y is defined by
C(x, z) := G(x) ∩ F−1(z). Then, domC = gr(F ◦ G).

We can obtain a general chain rule suitable for dealing with a sum expressed as a compo-
sition as above, and without assumption about radial semiderivatives, as follows.

Proposition 3.3 Let (x0, z0) ∈ gr(F ◦ G), y0 ∈ C(x0, z0), and (ui , vi , wi ) ∈ X × Y × Z.

(i) If, for all w ∈ Z, one has

T r(m)
G(X)(y0, v1, . . . , vm−1) ∩ Dm

R F−1(z0, y0, w1, v1, . . . , wm−1, vm−1)(w)

⊂ Dm
R CX (z0, y0, w1, v1, · · · , wm−1, vm−1)(w), (4)

where CX : Z → 2Y be defined by CX (z) := C(X, z), then

Dm
R F(y0, z0, v1, w1 . . . , vm−1, wm−1)[T r(m)

G(X)(y0, v1, . . . , vm−1)]
⊂ T r(m)

(F◦G)(X)(z0, w1, . . . , wm−1).

(ii) If, for all (u, w) ∈ X × Z, one has

Dm
R G(x0, y0, u1, v1, . . . , um−1, vm−1)(u) ∩ Dm

R F−1(z0, y0, w1, v1, . . . , wm−1, vm−1)(w)

⊂ Dm
R C((x0, z0), y0, (u1, w1), v1, . . . , (um−1, wm−1), vm−1)(u, w), (5)

then

Dm
R F(y0, z0, v1, w1 . . . , vm−1, wm−1)[Dm

R G(x0, y0, u1, v1, . . . , um−1, vm−1)(u)]
⊂ Dm

R (F ◦ G)(x0, z0, u1, w1, . . . , um−1, wm−1)(u).

Proof By the similarity, we prove only (i). Let w ∈ Dm
R F(y0, z0, v1, w1 . . . , vm−1, wm−1)

[T r(m)
G(X)(y0, v1, . . . , vm−1)], i.e., there exists some y ∈ T r(m)

G(X)(y0, v1, . . . , vm−1) such

that y ∈ Dm
R F−1(z0, y0, w1, v1, . . . , wm−1, vm−1)(w). Then, (4) ensures that y ∈

Dm
R CX (y0, z0, w1, v1, · · · , wm−1, vm−1)(w). This means the existence of tn > 0 and

(yn, wn) → (y, w) such that, for all n ∈ N,

y0 + tnv1 + · · · + tm−1
n vm−1 + tm

n yn ∈ C(X, z0 + tnw1 + · · · + tm−1
n wm−1 + tm

n wn).

From the definition of C , we get z0 + tnw1 + · · · + tm−1
n wm−1 + tm

n wn ∈ (F ◦ G)(X). So,

w ∈ T r(m)
(F◦G)(X)(z0, w1, . . . , wm−1) and we are done. ��

In the sequel, we will apply both the chain rules given in Propositions 3.2 and 3.3 in almost
each results. But first, we show the essentialness of assumption (5) in Proposition 3.3 (it is
similar for (4)) by the following.

Example 3.2 Let X = Y = Z = R, G : X → 2Y and F : Y → 2Z be defined by

G(x) =
{ {1, 2}, if x = 1,

{0}, if x = 0,
F(y) =

{ {0}, if y = 1,

{1}, if y = 0.
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Then,

(F ◦ G)(x) =
{ {0}, if x = 1,

{1}, if x = 0,
F−1(z) =

{ {0}, if z = 1,

{1}, if z = 0,

C(x, z) = G(x) ∩ F−1(z) =
{ {1}, if (x, z) = (1, 0),

{0}, if (x, z) = (0, 1).

Let (x0, z0) = (0, 1) and y0 = 0 ∈ C(x0, z0). Direct calculations give

D1
RG(x0, y0)(1/2) = {1/2, 1}, D1

R F(y0, z0)(1) = {−1},
D1

R F(y0, z0)(1/2) = {−1/2}, D1
R(F ◦ G)(x0, z0)(1/2) = {−1/2}.

So, the conclusion of Proposition 3.3 (ii) does not hold. The reason is the violence of (5):
for (u, w) = (1/2,−1), D1

R(F−1)(z0, y0)(−1) = {1}, D1
RC((x0, z0), y0)(u, w) = ∅, and

hence

D1
RG(x0, y0)(u) ∩ D1

R(F−1)(z0, y0)(w) �⊂ D1
RC((x0, z0), y0)(u, w).

Now we apply the preceding composition rule to establish a sum rule for M, N : X → 2Y .
For this purpose, we use G : X → 2X×Y and F : X × Y → 2Y defined in (3). For
(x, z) ∈ X × Y , we set H(x, z) := M(x) ∩ (z − N (x)). Then, the resultant multimap
C : X × Y → 2X×Y associated to these F and G is C(x, z) = {x} × H(x, z).

Proposition 3.4 Let (x0, z0) ∈ gr(M + N ), y0 ∈ H(x0, z0) and (ui , vi , wi ) ∈ X × Y × Y .

(i) If, for all w ∈ Y , one has

T r(m)
M(X)(y0, v1, . . . , vm−1) ∩ [w − T r(m)

N (X)(z0 − y0, w1, . . . , wm−1)]
⊂ Dm

R HX (z0, y0, v1 + w1, v1, · · · , vm−1 + wm−1, vm−1)(w), (6)

where HX : Y → 2Y be defined by HX (y) := H(X, y), then

T r(m)
M(X)(y0, v1, . . . , vm−1) + T r(m)

N (X)(z0 − y0, w1, . . . , wm−1)

⊂ T r(m)
(M+N )(X)(z0, v1 + w1, · · · , vm−1 + wm−1).

(ii) If, for all (u, w) ∈ X × Y , one has

Dm
R M(x0, y0, u1, v1, . . . , um−1, vm−1)(u) ∩ [w − Dm

R N (x0, z0 − y0, u1, w1, . . . , um−1, wm−1)(u)

⊂ Dm
R H((x0, z0), y0, (u1, v1 + w1), v1, . . . , (um−1, vm−1 + wm−1), vm−1)(u, w), (7)

then

Dm
R M(x0, y0, u1, v1, . . . , um−1, vm−1)(u) + Dm

R N (x0, z0 − y0, u1, w1, . . . , um−1, wm−1)(u)

⊂ Dm
R (M + N )(x0, z0, u1, v1 + w1, . . . , um−1, vm−1 + wm−1)(u).

Proof By the similarity, we prove only (ii). Let w ∈ Dm
R M(x0, y0, u1, v1, . . . ,

um−1, vm−1)(u) + Dm
R N (x0, z0 − y0, u1, w1, . . . , um−1, wm−1)(u), i.e., there exists y ∈

Dm
R M(x0, y0, u1, v1, . . . , um−1, vm−1)(u) such that y ∈ w − Dm

R N (x0, z0 − y0, u1, w1,

. . . , um−1, wm−1)(u). Then, (7) ensures that y ∈ Dm
R H((x0, z0), y0, (u1, v1 + w1), v1,

. . . , (um−1, vm−1 + wm−1), vm−1)(u, w). This means the existence of tn > 0 and
(un, yn, wn) → (u, y, w) such that, for all n ∈ N,

y0 + tnv1 + · · · + tm−1
n vm−1 + tm

n yn ∈ H
(
x0 + tnu1 + · · · + tm−1

n um−1 + tm
n un, z0

+tn(v1 + w1) + · · · + tm−1
n (vm−1 + wm−1) + tm

n wn
)
.
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From the definition of H , we get

z0 + tn(v1 + w1) + · · · + tm−1
n (vm−1 + wm−1) + tm

n wn

∈ (M + N )(x0 + tnu1 + · · · + tm−1
n um−1 + tm

n un).

So, w ∈ Dm
R (M + N )(x0, z0, u1, v1 + w1, . . . , um−1, vm−1 + wm−1)(u) and we are done. ��

The following example shows that assumptions (6) and (7) cannot be dispensed and are
not difficult to check.

Example 3.3 Let X = Y = R and M, N : X → 2Y be given by

M(x) =
{ {1}, if x = 1

n , n ∈ N,

{0}, if x = 0,
N (x) =

{ {0}, if x = 1
n , n ∈ N,

{1}, if x = 0.

Then,

H(x, z) = M(x) ∩ (z − N (x)) =
⎧
⎨

⎩

{0}, if (x, z) = (0, 1),

{1}, if (x, z) = ( 1
n , 1), n ∈ N,

∅, otherwise,

(M + N )(x) =
{ {1}, if x = 1

n , n ∈ N,

{1}, if x = 0.

Choose x0 = 0, z0 = 1, y0 = 0 ∈ clH(x0, z0) and u = w = 0. Then, one can easily show

T r(1)
M(X)(y0) = R+, T r(1)

N (X)(z0 − y0) = R−, D1
R HX (z0, y0)(w) = {0},

D1
R M(x0, y0)(u) = R+, D1

R N (x0, z0 − y0)(u) = R−, D1
R H((x0, z0), y0)(u, w) = {0}.

Thus, (6) and (7) are violated:

T r(1)
M(X)(y0) ∩ [w − T r(1)

N (X)(z0 − y0)] �⊂ D1
R HX (z0, y0)(w),

D1
R M(x0, y0)(u) ∩ [w − D1

R N (x0, z0 − y0)(u)] �⊂ D1
R H((x0, z0), y0)(u, w).

Direct computations show that conclusions of Proposition 3.4 do not hold:

T r(1)
M(X)(y0) + T r(1)

N (X)(z0 − y0) �⊂ T r(1)
(M+N )(X)(z0),

D1
R M(x0, y0)(u) + D1

R N (x0, z0 − y0)(u) �⊂ D1
R(M + N )(x0, z0)(u),

since T r(1)
(M+N )(X)(z0) = {0} and D1

R(M + N )(x0, z0)(u) = {0}.
To illustrate the results in Propositions 3.1–3.4, we use them directly to get necessary

optimality conditions for some kinds of proper efficient solutions to several particular opti-
mization problems. Let F : X → 2Y and G : X → 2X . Consider

(P1) min F(x ′) s.t. x ∈ X and x ′ ∈ G(x).

This problem can be restated as the unconstrained problem: min(F ◦ G)(x). Recall that
(x0, y0) is called a Q-minimal solution if y0 ∈ (F◦G)(x0) and ((F◦G)(X)−y0)∩(−Q) = ∅.

Proposition 3.5 Assume for (P1) that imG ⊂ domF, (x0, z0) ∈ grG, (z0, y0) ∈ grF, and
(u1, v1, w1), . . . , (um−1, vm−1, wm−1) ∈ X × X × (−C). Assume that an open cone Q
satisfies Q + C ⊂ Q and (x0, y0) is a Q-minimal solution of (P1).
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(i) If either F+ has a mth-order radial semiderivative at (z0, y0) wrt (v1, w1),

. . . , (vm−1, wm−1) or (4) holds for F+ and G, then

Dm
R F+(z0, y0, v1, w1, . . . , vm−1, wm−1)[T r(m)

G(X)(z0, v1, . . . , vm−1)] ∩ (−Q) = ∅.

(ii) If either F+ has a mth-order radial semiderivative at (z0, y0) wrt (v1, w1), . . . ,

(vm−1, wm−1) or (5) holds for F+ and G, then

Dm
R F+(z0, y0, v1, w1, . . . , vm−1, wm−1)[Dm

R G(x0, z0, u1, v1, . . . , um−1, vm−1)(X)]
∩(−Q) = ∅.

Proof We prove (i). By Proposition 4.1 below (which is proved independently from this
proposition), T r(m)

(F◦G)+(X)(y0, w1, . . . , wm−1)∩ (−Q) = ∅. Propositions 3.2(i) and 3.3(i) say
that

Dm
R F+(z0, y0, v1, w1, . . . , vm−1, wm−1)[T r(m)

G(X)(z0, v1, . . . , vm−1)]
⊂ T r(m)

(F◦G)+(X)(y0, w1, . . . , wm−1).

��
From Propositions 3.5 and 2.2, we obtain immediately the following result for (P1).

Theorem 3.6 Assume for (P1) that imG ⊂ domF, (x0, z0) ∈ grG, (z0, y0) ∈ grF, and
(u1, v1, w1), . . . , (um−1, vm−1, wm−1) ∈ X × X × (−C). Then, assertions (i) and (ii) in
Proposition 3.5 hold in each of the following cases

(i) (x0, y0) is a strong efficient solution of (P1) and Q = Y \ −C;
(ii) (x0, y0) is a positive-proper efficient solution of (P1) and Q = {y| ϕ(y) > 0} for some

functional ϕ ∈ C+i ;
(iii) (x0, y0) is a Geoffrion-proper efficient solution of (P1) and Q = C(ε) for ε > 0;
(iv) (x0, y0) is a Henig-proper efficient solution of (P1) and Q = K for some pointed open

convex cone K dilating C;
(v) (x0, y0) is a strong Henig-proper efficient solution of (P1) and Q = intCε(B) for ε

satisfying 0 < ε < δ;
(vi) (x0, y0) is a super efficient solution of (P1) and Q = intCε(B) for ε ∈ (0, δ).

Our sum rule can be applied directly to the following problem

(P2) min F(x) s.t. g(x) ≤ 0,

where X, Y are as for problem (P1), F : X → 2Y and g : X → Y . Denote A := {x ∈
X | g(x) ≤ 0} (the feasible set). Define G : X → 2Y by G(x) := {0} if x ∈ A and
G(x) := {g(x)} otherwise. Consider the following unconstrained set-valued optimization
problem, for arbitrary s > 0,

(P3) min(F + sG)(x).

In the particular case, when Y = R and F is single-valued, (P3) is used to approximate
(P2) in penalty methods (see [25]). We will apply our calculus rules for radial sets to get the
following necessary condition for a Q-minimal solution of (P3).

Proposition 3.7 Let y0 ∈ F(x0), x0 ∈ � = domF ∩ domG, and (u1, vi,1), . . . , (um−1,

vi,m−1) ∈ X × (−C) for i = 1, 2. Suppose that an open cone Q satisfies Q + C ⊂ Q and
(x0, y0) is a Q-minimal solution of (P3). Then,
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(i) if either F+(�) (or sG+(�)) has a mth-order proto-radial set at y0 wrt v1,1, . . . , v1,m−1

(or at 0 wrt v2,1, . . . , v2,m−1) or (6) holds for F+ and sG+, then

(T r(m)
F+(�)(y0, v1,1, . . . , v1,m−1)

+sT r(m)
G+(�)(0, v2,1/s, . . . , v2,m−1/s)) ∩ (−Q) = ∅;

(ii) if either sG+ has a mth-order radial semiderivative at (x0, 0) wrt (u1, v2,1), . . . ,

(um−1, v2,m−1) and domF ⊂ domG or (7) holds for F+ and sG+, then, for any u ∈ X,

(Dm
R F+(x0, y0, u1, v1,1, . . . , um−1, v1,m−1)(u)

+s Dm
R G+(x0, 0, u1, v2,1/s, . . . , um−1, v2,m−1/s)(u)) ∩ (−Q) = ∅.

Proof We prove (i). It follows from Propositions 3.1(i) and 3.4(i) that

T r(m)
F+(�)(y0, v1,1, . . . , v1,m−1) + T r(m)

sG+(�)(0, v2,1, . . . , v2,m−1)

⊂ T r(m)
(F+sG)+(�)(y0, v1,1 + v2,1, . . . , v1,m−1 + v2,m−1).

It is easy to see that

T r(m)
sG+(�)(0, v2,1, . . . , v2,m−1) = sT r(m)

G+(�)(0, v2,1/s, . . . , v2,m−1/s),

T r(m)
F+(�)(y0, v1,1, . . . , v1,m−1) + sT r(m)

G+(�)(0, v2,1/s, . . . , v2,m−1/s)

⊂ T r(m)
(F+sG)+(�)(y0, v1,1 + v2,1, . . . , v1,m−1 + v2,m−1).

By Proposition 4.1 (which is proved independently from this proposition), one gets

T r(m)
(F+sG)+(�)(y0, v1,1 + v2,1, . . . , v1,m−1 + v2,m−1) ∩ (−Q) = ∅,

and hence the proof is complete. ��

From Propositions 3.7 and 2.2, we obtain immediately the following statement for (P3).

Theorem 3.8 Let y0 ∈ F(x0), x0 ∈ � = domF∩domG, and (u1, vi,1), . . . , (um−1, vi,m−1)

∈ X × (−C) for i = 1, 2. Then, assertions (i) and (ii) in Proposition 3.7 hold in each of the
cases like (i)–(vi) of Theorem 3.6, but for problem (P3).

4 Optimality conditions

In this section, both necessary and sufficient optimality conditions for the mentioned proper
solutions of problem (P), stated in Sect. 2, are established.

Proposition 4.1 Let (x0, y0) ∈ grF be a Q-minimal solution of (P), (ui , vi , wi ) ∈ X ×
(−C) × (−D), i = 1, . . . , m − 1, and z0 ∈ G(x0) ∩ −D. Suppose that the open cone Q
satisfies Q + C ⊂ Q. Then, the following separations hold

T r(m)
(F,G)+(S)(y0, z0, (v1, w1), . . . , (vm−1, wm−1)) ∩ (−Q × −intD) = ∅, (8)

Dm
R (F, G)+(x0, y0, z0, (u1, v1, w1), . . . , (um−1, vm−1, wm−1))(X)

∩(−Q × −intD) = ∅. (9)
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Proof Suppose (8) does not hold. Then, there exists (y, z) such that

(y, z) ∈ T r(m)
(F,G)+(S)(y0, z0, (v1, w1), . . . , (vm−1, wm−1)), (10)

(y, z) ∈ (−Q × −intD). (11)

It follows from (10) and the definition of mth-order radial sets that there exist sequences
tn > 0, xn ∈ S, and (yn, zn) ∈ (F, G)(xn) + C × D such that

(yn, zn) − (y0, z0) − tn(v1, w1) − · · · − tm−1
n (vm−1, wm−1)

tm
n

→ (y, z). (12)

From (11) and (12), one has, for large n,

yn − y0 − tnv1 − · · · − tm−1
n vm−1 ∈ −Q, zn ∈ −intD. (13)

As v1, . . . , vm−1 ∈ −C , (13) implies that, for large n,

yn − y0 ∈ −Q. (14)

Because zn ∈ G(xn) + D, there exist zn ∈ G(xn) and dn ∈ D such that zn = zn + dn . (13)
implies also that zn ∈ G(xn)∩ (−D) for large n, and then xn ∈ A. Because yn ∈ F(xn)+C ,
there exist yn ∈ F(xn) and cn ∈ C such that yn = yn + cn . Then, (14) implies that
yn − y0 ∈ −Q for large n. Therefore, yn − y0 ∈ (F(A) − y0) ∩ (−Q), which contradicts
the Q-minimality of (x0, y0). Thus, (8) holds. (9) follows from (8) and the evident fact that

Dm
R F(x0, y0, u1, v1, . . . , um−1, vm−1)(X) ⊂ T r(m)

F(X)(y0, v1, . . . , vm−1). ��

Propositions 4.1 and 2.2 together yield the following result.

Theorem 4.2 Let (x0, y0) ∈ grF, (ui , vi , wi ) ∈ X × (−C) × (−D), i = 1, . . . , m − 1, and
z0 ∈ G(x0) ∩ −D. Then, (8) and (9) hold in each of the cases like (i)–(vi) of Theorem 3.6,
but for problem (P).

The next example illustrates Theorem 4.2(v).

Example 4.1 Let X = Y = Z = R, S = X, C = D = R+, G(x) ≡ R, and F(x) =
{y ∈ Y | y ≥ |x |}. Choose the base B = {1}. Then, δ = 1 and Cε(B) = R+ for all ε ∈ (0, δ).
Let (x0, y0) = (0, 0) and z0 = 0. It is easy to see that (x0, y0) is a strong Henig-proper
efficient solution. For any (v1, w1) ∈ −(C × D), direct computations give

T r(1)
(F,G)+(S)(y0, z0) = R+ × R, T r(2)

(F,G)+(S)(y0, z0, v1, w1) = R+ × R,

and hence
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T r(1)
(F,G)+(S)(y0, z0) ∩ −int(Cε(B) × D) = ∅, T r(2)

(F,G)+(S)(y0, z0, v1, w1)

∩ − int(Cε(B) × D) = ∅,

i.e., the necessary optimality condition of Theorem 4.2 (v) holds.

To compare Theorem 4.2 with some known results, let us recall the following notions.

Definition 4.1 ([16]) Let F : X → 2Y , (x0, y0) ∈ grF , and v1, . . . , vm−1 ∈ Y .

(i) The mth-order variational set of type 1 of F at (x0, y0) wrt v1, . . . , vm−1 is defined as

V m(F, x0, y0, v1, . . . , vm−1) := Limsup
x

F→x0, t→0+

1

tm
(F(x) − y0 − tv1 − · · · − tm−1vm−1).

(ii) The mth-order variational set of type 2 of F at (x0, y0) wrt v1, . . . , vm−1 is defined as

W m(F, x0, y0, v1, . . . , vm−1) := Limsup
x

F→x0 t→0+

1

tm−1

(cone+(F(x) − y0) − v1 − · · · − tm−2vm−1).

Here x
F→ x0 means that x ∈ domF and x → x0.

In [1,16,17], these sets played the role of generalized derivatives as tools for obtaining
optimality conditions in nonsmooth optimization. Some of their useful properties are

V m(F, x0, y0, v1, . . . , vm−1) = {v ∈ Y | ∃tn → 0+, ∃xn
F→ x0, ∃vn → v,∀n, y0 + tnv1

+ · · · + tm−1
n vm−1 + tm

n vn ∈ F(xn)},
W m(F, x0, y0, v1, . . . , vm−1) = {v ∈ Y | ∃tn → 0+, ∃xn

F→ x0, ∃vn → v,∀n, v1

+ · · · + tm−2vm−1 + tm−1
n vn ∈ cone+(F(xn) − y0)}.

Because the variational sets are bigger than the image of X through most of kinds of
generalized derivatives (see Remark 2.1 and Proposition 4.1 in [16]), optimality conditions
(obtained by separating sets as usual) in terms of these variational sets are strong. However,
these sets are incomparable with radial sets, and hence the latter may be more advantageous
in cases as ensured by the following.

Example 4.2 Let X = Y = Z = R, S = {0, 1}, C = D = R+, (x0, y0) = (0, 0), G and F

be G(x) = F(x) =
⎧
⎨

⎩

{0}, if x = 0,

{−1}, if x = 1,

∅, otherwise.

Choose the base B = {1}. Then, δ = 1 and Cε(B) = R+ for all ε ∈
(0, δ). Let z0 = 0. Let us try to use optimality conditions given in [17] in terms
of variational sets to eliminate (x0, y0) as a candidate for a strong Henig-proper effi-
cient solution. We can compute directly that V 1((F, G)+, x0, y0, z0) = R+ × R+.

Let (v1, w1) ∈ V 1((F, G)+, x0, y0, z0) ∩ −bd(Cε(B) × D(z0)),…, (vm−1, wm−1) ∈
V m−1((F, G)+, x0, y0, z0, v1, w1, . . . , vm−2, wm−2) ∩ −bd(Cε(B) × D(z0)), for m ≥ 2. It
is easy to check that (v1, w1) = · · · = (vm−1, wm−1) = (0, 0) and

V m((F, G)+, x0, y0, z0, v1, w1, . . . , vm−1, wm−1) = R+ × R+.

Thus, for all m ≥ 1, we get

V m((F, G)+, x0, y0, z0, v1, w1, . . . , vm−1, wm−1) ∩ −int(Cε(B) × D(z0)) = ∅.
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For variational sets of type 2, by direct calculating we get

W 1((F, G)+, x0, y0, z0) = R+ × R+,

W 1((F, G)+, x0, y0, z0) ∩ −int(Cε(B) × D) = ∅.

Let (v1, w1) ∈ W 1((F, G)+, x0, y0, z0) ∩ −bd(Cε(B) × D), (v2, w2) ∈ W 2((F, G)+,

x0, y0, z0, v1, w1) ∩ −bd(Cε(B) × D(w1)),…, (vm−1, wm−1) ∈ W m−1((F, G)+, x0, y0,

z0, v1, w1, . . . , vm−2, wm−2) ∩ −bd(Cε(B) × D(w1)), m ≥ 3. We have (v1, w1) = · · · =
(vm−1, wm−1) = (0, 0) and

W m((F, G)+, x0, y0, z0, v1, w1, . . . , vm−1, wm−1) = R+ × R+.

Thus, for all m ≥ 2, we get

W m((F, G)+, x0, y0, z0, v1, w1, . . . , vm−1, wm−1) ∩ −int(Cε(B) × D(w1)) = ∅.

So, Theorems 3.4 and 3.5 in [17] say nothing about (x0, y0) being strong Henig-proper
efficient or not. By virtue of Remark 3.3 in [17] and Proposition 2.2 in [17], we can see that
Theorems 4.1, 4.2, 5.1, and 5.2 in [19], Theorem 3.1, Proposition 3.1 in [9] and Theorem 1 in
[20] cannot be in use to reject (x0, y0) either. On the other hand, since T r(1)

(F,G)+(S)(y0, z0) =
R × R, Theorem 4.2(v) rejects the candidate (x0, y0).

Finally we discuss sufficient conditions for proper efficient solutions of problem (P). We
need the following properties of our radial objects.

Proposition 4.3 ([3]) Let F : X → 2Y , (x0, y0) ∈ grF, and x ∈ domF. Then,

(i) F(x) − y0 ⊂ D1
R F(x0, y0)(x − x0), in particular, 0 ∈ D1

R F(x0, y0)(0);

(ii) F(x) − y0 ⊂ T r(1)
F(S)(y0), in particular, 0 ∈ T r(1)

F(S)(y0).

Note that these assertions say, in particular, that radial sets and derivatives possess
global properties without any (relaxed) convexity assumption. To make this clear, recall that
F : X → 2Y is termed pseudoconvex at (x0, y0) ∈ grF if epiF − (x0, y0) ⊂
TepiF (x0, y0). Furthermore, if F is pseudoconvex at (x0, y0), then, ∀x ∈ domF, F(x)− y0 ⊂
V 1(F+, x0, y0) (see Proposition 2.1 in [16]). Roughly speaking, that is why, in the following
sufficient condition, no convexity assumption is needed.

Proposition 4.4 Let (x0, y0) ∈ grF and x0 ∈ A, the feasible set. Suppose that there exists
z0 ∈ G(x0) ∩ (−D) such that, for (ui , vi , wi ) ∈ X × (−C) × (−D), i = 1, . . . , m − 1, and
x ∈ S, either of the following separations holds

T r(m)
(F,G)+(S)((y0, z0), (v1, w1), . . . , (vm−1, wm−1)) ∩ −(Q × D(z0)) = ∅, (15)

Dm
R (F, G)+(x0, y0, z0, u1, v1, w1, . . . , um−1, vm−1, wm−1)(x−x0)

∩− (Q × D(z0)) = ∅. (16)

Then, (x0, y0) is a Q-minimal solution of (P), for any nonempty open cone Q.

Proof By the similarity, we prove only (15). Note that (15) is required to be satisfied also for
vi = 0 ∈ −C and wi = 0 ∈ −D, i = 1, . . . , m − 1. Therefore, T r(1)

(F,G)+(S)(y0, z0) ∩ −(Q ×
D(z0)) = ∅. It follows from Proposition 4.3 that (y − y0, z − z0) ∈ T r(1)

(F,G)+(S)(y0, z0) for
all y ∈ F(S), z ∈ G(S). Then,

(F, G)(S) − (y0, z0) ∩ −(Q × D(z0)) = ∅.

Suppose the existence of x ∈ A and y ∈ F(x) such that y − y0 ∈ −Q. Then, there exists
z ∈ G(x) ∩ −D such that (y, z) − (y0, z0) ∈ −(Q × D(z0)), a contradiction. ��
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From Propositions 4.4 and 2.2, we obtain immediately the following result.

Theorem 4.5 Let (x0, y0) ∈ grF and x0 ∈ A. Suppose that there exists z0 ∈ G(x0) ∩ (−D)

such that, for (ui , vi , wi ) ∈ X × (−C) × (−D), i = 1, . . . , m − 1, and x ∈ S, either of (15)
or (16) holds. Then, one has assertions (i)–(vi) of Theorem 4.2.

In the following example, Theorems 4.5(v) works, while several existing results do not.

Example 4.3 Let X = Y = Z = R, C = D = R+, G(x) ≡ {0}, and

F(x) =
⎧
⎨

⎩

{0}, if x = 0,

{ 1
n2 }, if x = n, n ∈ N,

∅, otherwise.

Choose the base B = {1}. Then, δ = 1 and Cε(B) = R+ for all ε ∈ (0, δ). Let (x0, y0) =
(0, 0) and z0 = 0. It is easy to see that A = N ∪ {0}. Then, T r(1)

(F,G)+(A)(y0, z0) = R+ × R+.

It follows from Theorem 4.5(v) that (x0, y0) is a strong Henig-proper efficient solution. It is
easy to see that domF = N ∪ {0} is not convex and F is not pseudoconvex at (x0, y0). So,
Theorem 3.6 in [17], Theorems 5.3, 5.4 in [19], and Theorem 2 in [20] cannot be applied.

Remark 4.1 From Proposition 4.3, for problem (P) we always have (0, 0) ∈ T r(1)
(F,G)+(A)(y0, z0)

and (0, 0) ∈ D1
R(F, G)+(x0, y0, z0)(A − x0). On the other hand, it is clear that

T r(m)
A (x0, 0X , . . . , 0X ) = T r(1)

A (x0) and Dm
R F(x0, y0, 0X , 0Y , . . . , 0X , 0Y ) = D1

R F(x0, y0).
(Accordingly, observe that in the empty intersections involved in Proposition 4.1, we have
the expression −Q × −intD.) Consequently, if it is convenient to write dual forms of suffi-
cient optimality conditions (i.e., in the form of Lagrange multiplier rules) as in case of weak
efficiency considered in [3], we require the strict positivity of Lagrangians only for nonzero
points in these radial sets and radial derivatives. Observe that our Theorems 4.5 and 4.6 in [3]
about such dual forms (stated, without proof, as immediate consequences of the preceding
theorem about a primal form like Proposition 4.1 here) were stated not enough clearly, when
not eliminating explicitly zero in these radial objects.
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