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Abstract A novel fitness sharing method for MOGA (Multi-Objective Genetic Algorithm)
is proposed by combining a new sharing function and sided degradations in the sharing pro-
cess, with preference to either of two close solutions. The modified MOGA adopting the
new sharing approach is named as MOGAS. Three different variants of MOGAS are tested;
MOGASc, MOGASp and MOGASd, favoring children over parents, parents over children
and solutions closer to the ideal point, respectively. The variants of MOGAS are compared
with MOGA and other state-of-the-art multi-objective evolutionary algorithms such as IBEA,
HypE, NSGA-II and SPEA2. The new method shows significant performance improvements
from MOGA and is very competitive against other Evolutionary Multi-objective Algorithms
(EMOAs) for the ZDT and DTLZ test functions with two and three objectives. Among the
three variants MOGASd is found to give the best results for the test problems.

Keywords Genetic algorithms · Multi-objective optimization · Niching ·
Sharing Function

1 Introduction

Multi-objective optimization methods are getting more attention as multiple conflicting objec-
tives are increasingly considered in MDO (Multi-disciplinary Design Optimization) of mod-
ern engineering problems. Unlike single objective optimization problems, a solution for a
multi-objective optimization problem (MOP) is not a single point but, in general, a set of
points known as a Pareto optimal front.
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Evolutionary Algorithms (EAs) are search algorithms inspired by genetic evolution and
natural selection. EAs are well suited to MOPs because they are based on populations rather
than a single solution and therefore can be applied to find distributed Pareto optimal solutions
in a single run.

Among approaches for EMOAs (Evolutionary Multi-Objective Algorithms), Pareto-based
EMOAs have been very popular over the last decades, in which two criteria are adopted for
selection of better solutions: a ranking procedure based on the Pareto-dominance concept and
a diversity preservation based on Euclidean distances between solutions. Examples of Pareto-
based EMOAs are MOGA (Multi-Objective Genetic Algorithm) [1], NSGA-II (Nondomi-
nated Sorting Genetic Algorithm-II) [2], SPEA2 (Strength Pareto Evolutionary Algorithm
2) [3], ε-MOEA [4].

Recently, indicator-based EMOAs have been suggested [5–7] by employing a single qual-
ity indicator for fitness calculations rather than separately considering convergence and diver-
sity as Pareto-based algorithms do. IBEA (Indicator Based Evolutionary Algorithms) [5],
HypE (Hypervolume Estimation algorithm for multi-objective optimization) [6], and SMS-
EMOA (S Metric Selection-EMOA) [7] are among those. The indicator-based algorithms
have been reported to show superior performances to those of Pareto-based algorithms,
especially for MOPs with more than two objectives [5–8]. However, a heavy computational
overhead for the calculation of a quality indicator is a major drawback for the indicator-based
algorithms [6].

One of the main issues for Pareto-based EMOAs is how to preserve diversity among Pa-
reto optimal solutions. Fonseca and Fleming [1] introduced the concept of niching among
solutions through the use of a sharing function, which was originally suggested for sin-
gle objective genetic algorithms for multi-modal functions [9]. In NSGA-II [2], the solu-
tion density is estimated by the volume of a cuboid defined by the nearest neighbors and
less crowded solutions are emphasized in the selection process. In the hyperbox approach,
the objective space is divided into uniform grid cells, and solutions in less crowded hy-
perboxes are emphasized [10] or only a single solution is taken from each grid cell
[4].

Although the sharing function approach has been widely adopted in many Pareto-based
EMOAs [11], its performance for the diversity preservation has also been pointed out as
not so significant [12]. Furthermore, a potential defect could appear with the standard shar-
ing approach when combined with elite-preserving strategies such as the best-N selection
approach, as will be discussed in Sect. 3. Basically, the weakness comes from the fact that
the standard sharing function approach makes degradations to both of two close solutions.

In this paper we propose a modified MOGA by employing a new sharing approach
that combines a novel sharing function and a sided degradation into the baseline MOGA.
The new sharing approach allows significant performance improvement when it is coupled
with a proper preference between two crowded solutions. The modified MOGA, named
hereafter as MOGAS (MOGA with a new fitness Sharing), is compared with MOGA and
several other state-of-the-art EMOAs for standard test functions with two or three objec-
tives.

The remainder of this paper is organized as follows: In Sect. 2, we describe the baseline
MOGA, including the Pareto ranking, the standard sharing function, evolutionary opera-
tors and an elite-preserving strategy. The new sharing approach is explained in Sect. 3.
Assessment of performance of the proposed method against other prominant methods on
standard test functions is presented in Sect. 4. Finally, concluding remarks are made in
Sect. 5.
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2 Baseline multi-objective genetic algorithms

2.1 Definition of multi-objective optimization problems

MOPs are defined in a general form with all objectives to be minimized as follows:

Minimize ( f1 (x) , f2 (x) , . . . , fM (x))

Subject to g j (x) ≥ 0, j = 1, 2, . . . , J ;
hk (x) = 0, k = 1, 2, . . . , K ;
x (L)

i ≤ xi ≤ x (U )
i , i = 1, 2, . . . , ndv,

(1)

where M, J, K and ndv are the number of objective functions, inequality constraints, equality
constraints and decision variables, respectively. In this study, unconstrained MOPs having
side constraints for decision variables are considered. The dominance relation between two
solutions of a MOP is defined by the following two conditions:

Solution a dominates solution b if

(1) f j (a) ≤ f j (b) for all j ∈ {1, . . . , M} , and
(2) fk (a) < fk(b) for at least one k ∈ {1, . . . , M} .

In other words, solution a dominates solution b if a is not worse than b in all objectives and
a is strictly better than b in at least one objective. Solutions that are not dominated by any
other solution in the population are said to be non-dominated and form the Pareto optimal
set.

2.2 Pareto ranking

The Pareto ranking is a process for ranking individuals in a population based on their dis-
tances from the Pareto optimal front: solutions that are closer to the Pareto front have higher
ranks and vice versa. The closeness to the Pareto front is determined by dominancy relations
between individuals in the population. In Fonseca and Fleming’s MOGA [1], ri , a rank of
each individual i , is assigned as:

ri = 1 + ni , (2)

where ni is the number of solutions that dominate individual i . Since ni is zero for non-
dominated solutions in the population, nondominated individuals are assigned a rank of 1.
A sample illustration of Fonseca and Fleming’s Pareto ranking is shown in Fig. 1.

Fig. 1 Fonseca and Fleming’s
Pareto ranking [1]

1

1

1
1

3

2

6

f1

f2

2

123



582 J Glob Optim (2013) 55:579–595

Based on the Pareto ranking, a fitness value is assigned to each solution so that solutions
in better ranks have larger fitness values by the following expression:

Fi = N − 0.5 (μ (ri ) − 1) −
ri −1∑

k=1

μ (k), (3)

where N is the population size, and μ(ri ) is the number of individuals in rank ri . The fitness
value in Eq. (3) varies from N to 1, depending on ri , the rank of each individual i and μ, the
number of individuals in each rank.

2.3 Standard fitness sharing

In order to impose diversity in a population, MOGA employs the sharing function approach
for each solution i . First, a normalized distance between any two individuals i and j of the
same rank is calculated as a proximity measure in the objective space as follows:

di j =
√√√√

M∑

k=1

(
f (i)
k − f ( j)

k

f max
k − f min

k

)2

, (4)

where f (i)
k and f ( j)

k are the kth objective function for solutions iand j , respectively, and f max
k

and f min
k are the maximum and minimum objective function values of the kth objective

function for all nondominated individuals in the population. The standard sharing function
suggested by Goldberg and Richardson [9] is defined as follows with a normalized niche
radius σshare:

sh(di j ) =
{

1 −
(

di j
σshare

)
if di j < σshare;

0 otherwise,
(5)

where the niche size σshare in the normalized objective space is determined by the following
expression [1] :

(1 + σshare)
M − 1 = N (σshare)

M . (6)

A niche count for individual i is calculated by summing up the sharing function for all
individuals of the same rank in the population as follows:

nci =
μ(ri )∑

j=1

sh
(
di j

)
. (7)

The niche count nci is always greater than 1 because sh(di j ) = 1 holds for i = j , and sh(di j )

varies from 0 to 1 otherwise. Finally, the assigned fitness is reduced by dividing the fitness
Fi given in Eq. (3) by the niche count as follows:

F ′
i = Fi

nci
. (8)

With the degradation made to each individual in the population, the shared fitness values of
solutions in each rank are now re-scaled so that the averaged fitness value before degradation
in each rank is restored.
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2.4 Selection of mating pairs

After completing the fitness sharing, a pool of N individuals with assigned rankings is avail-
able for selection and mating process. The Roulette Wheel Selection (RWS) [12] is the
simplest proportionate selection approach, which is analogous to a roulette wheel with the
size of each slice being proportional to the fitness of an individual in the population. The
N individuals are mapped onto contiguous segments of a straight line. The length of each
segment is same as the fitness of the individual. Therefore, the total length of the line equals
to the summation‘ of N fitness values, SU MF . For the shared fitness values in Eq. (8),SU
can be calculated as SU MF = ∑N

i=1 F ′
i .

For the selection of N mating individuals, RWS requires N random numbers to be gener-
ated in the range of [0, SU MF ]. RWS provides a zero bias between an individual’s normal-
ized fitness and its expected probability of reproduction. Minimum spread of the number of
offspring of an individual, however, is not guaranteed [13].

In the present study, for the proportionate selection the Stochastic Universal Sampling
(SUS) [13] is adopted, which also works on the same mapping onto a straight line with a
total length of SU MF as RWS does, but requires only one random number generation and
provides zero bias and minimum spread. In SUS, N mating solutions are selected by the
following formula:

li = l0 + (i − 1) × (SU MF/N ) , for i = 1, 2, 3, . . . , N , (9)

where l0 is a random number generated in [0, SU MF/N ]. N individuals in the line seg-
ment corresponding to li ’s are selected for the mating population. N /2 mating pairs are then
randomly selected from the N mating solutions without any mating restriction.

2.5 Evolutionary operators

MOGA can be coupled with general evolutionary operators such as crossover and mutation
operators for the evolution of population. Since all the test functions in this study have real-
valued decision variables, we employ real-parameter operators such as the simulated binary
crossover (SBX) [14] for the crossover and the polynomial mutation [15] for the mutation.

The SBX operator mimics the operation of the single point crossover of binary-coded
genetic algorithms by using a probability density function. The crossover operator is applied
to each decision variable of all mating pairs with a crossover probability of pc. Two children
solutions are obtained from two parents as follows:

C (1)
i = 0.5[(1 + βqi

)
P(1)

i + (
1 − βqi

)
P(2)

i ],
C (2)

i = 0.5[(1 − βqi
)

P(1)
i + (

1 + βqi
)

P(2)
i ], for i = 1, 2, 3, . . . , ndv, (10)

where C (1)
i and C (2)

i are the i th component of solution vectors of the two children solutions.

Similarly, P(1)
i and P(2)

i are the i th component of solution vectors of the parents. A spread
factor βqi in Eq. (10) is determined by a uniform random number ui ∈ [0, 1]:

βqi =
⎧
⎨

⎩
(2ui )

1
ηp+1 , if ui ≤ 0.5;

(
1

2(1−ui )

) 1
ηp+1

, otherwise.
(11)

If ui ≤ 0.5, then βqi ≤ 1 from Eq. (10), which means that Eq. (10) provides an interpola-
tion so that the offspring are generated in between the two parents. If ui > 0.5, βq is greater
than 1, and Eq. (10) conducts an extrapolation of the two parent values. The distribution
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parameter ηpis a nonnegative real number. A larger value of ηpgives a higher probability
of creating offspring near the parents; a smaller value of ηp generates children farther away
from the parents.

After the crossover operator is conducted, the polynomial mutation operator is applied
to each decision variable of all children solutions obtained by the crossover operator with a
mutation probability of pm . A component of a child solution vector is perturbed as follows:

C perturbed
i = Ci + δi (xU

i − x L
i ) for i = 1, 2, 3, . . . , ndv, (12)

where δ is calculated by the following formula with a uniform random number r ∈ [0,1]:

δi =
{

(2ri )
1

ηm − 1, if ri ≤ 0.5,

1 − (2 (1 − ri ))
1

ηm +1 , otherwise,
for i = 1, 2, 3, . . . , ndv. (13)

The probability distributions of the crossover and mutation operators are modified so that no
child solution is created outside of the allowed range [xL, xU]. The implementation details
of the evolutionary operators follow those given in PISA [16].

2.6 Elite preservation: best-N strategy

The Best-N strategy can also be referred to as the (μ + λ)-selection, in which μ and λ stand
for the number of parents and children respectively, and parents compete with their children
to be selected for the next generation [17]. In the present study, μ and λ are all equals to N .
The procedure for the Best-N strategy is as follows.

(1) After performing the evolutionary operators, N parents and N children solutions are
combined to build a solution set of size 2N .

(2) The combined set goes through the Pareto ranking. Top-ranked solutions in the set
are preserved in an external archive, which contains all nondominated solutions found
in the evolution history, under the condition that the best ranked solutions are still
nondominated in the archive.

(3) Crowded solutions in the 2N set are degraded by a fitness sharing approach and then
sorted in a descending order for the shared fitness.

(4) The first half of the sorted 2N solutions are taken as the best-N solutions which become
parents for the next generation.

All the nondominated solutions are stored without any restriction on the size of the exter-
nal archive. In general cases, there might be a need to limit the upper bound of the archive
size. The evolutionary procedure of generating a new solution set is shown in Fig. 2a. And
the overall procedure of the elite-preserving MOGA is shown in Fig. 2b. A similar approach
of the elite-preserving MOGA has been successfully applied to various engineering MDO
problems [18,19]. However, no explicit performance comparisons have been made with other
state-of-the-art EMOAs.

Recently, a research work focusing on archival strategies dealing with potential drawbacks
of the chosen archiving strategy was presented [20].

3 New fitness sharing method

When the distance between two solutions of the same rank is less than a specified niche size,
the standard fitness sharing approach degrades both individuals, as described in Sect. 2.3 to
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Random generation of initial 2N solutions

Select N mating solutions from parents by SUS

N children by evolutionary operators

Set best-N among 2N solutions as parents

Pareto-ranking & fitness sharing

Combine N children + N parents

External archive of
non-dominated solutions

(b) Overall procedure  

N parents N children

Best-N New N parents

N parents

Pareto ranking
Fitness sharing

Combined set

SUS
crossover, mutation

(a) Procedure of generating a solution set  

Fig. 2 Elite-preserving MOGA

preserve diversity. The degradation is made in such a way that fitness values of the two indi-
viduals having the same objective vector become half of the original fitness value. Therefore,
the sum of the degraded fitness values of the two coinciding individuals is the same as the
fitness of one solution before the degradation. This is reasonable in a sense because for a
proportionate selection operator, the sum of probabilities for the two degraded solutions to be
picked up in the selection process is same as that of a single individual before the degradation.

However, if an elite preserving strategy, the best-N approach for instance, is adopted,
the standard sharing method may become problematic because neither of the degraded non-
dominated solutions may survive in the reduction process. A degraded shared fitness for a
crowded individual may become smaller than the median of fitness values of the combined
set of 2N solutions while only the best N solutions survive in the reduction process and
undergo the selection process by a proportionate operator.

Some illustrative examples of the potential weakness are shown in Fig. 3. In Fig. 3a, the
combined 2N solutions are assumed to be evenly distributed to five ranks with a population
size N = 50. If solutions A and B in rank 1 have the same objective vector, they will be
degraded to be half of the assigned fitness values, from 90 to 45 for instance. Then it is
likely that the two solutions will have little chance to be included in the best N solutions. In
Fig. 3b, a converged case is illustrated with all the 2N solutions being of rank 1, where even
a very little degradation can result in losing both solutions. This is the reason why a sided
degradation is desirable, its details will be discussed in what follows.
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Fig. 3 Illustration of potential defect of the standard sharing function approach. Population size N = 50, and
the graphs show combined 2N solutions

Although nondominated solutions in the evolution history are saved in the external archive,
losing two very close good solutions in the reduction process is clearly not desirable from a
convergence or diversity aspect of MOGA. Therefore, we propose applying a sided degra-
dation to mitigate this deficiency: by keeping the shared fitness of one individual the same
and degrading the other individual, so that one solution has a better chance to survive than
the other. For this purpose, we define a new sharing function as follows:

shnew
(
di j

) = min

((
di j

σshare

)0.1

, 1

)
, (14)

where di j is the normalized distance between two solutions calculated by Eq. (4), and the
exponent 0.1 is found to give good performance in numerical experiments. It is noted that
this definition of the new sharing function gives an opposite trend to the conventional sharing
function in Eq. (5). The new sharing function diminishes as two solutions i and j of the same
rank cluster together and becomes unity as the distance gets larger than the niche size σshare.

With the new sharing function, the fitness degradation is applied to either of the two
solutions, depending on a practitioner’s preference strategies. Three different preferences
are tested in this study: favoring children over parents, favoring parents over children, and
favoring solutions closer to the ideal point. A niche count nc is defined for each solution to
accumulate the information of preference. The initial value of nc is set to be 1.

3.1 Favoring children over parents

The combined set of 2N solutions is formed in such a way that N children are put in the first
half (i = 1, 2, 3, . . . , N ) and N parents are put in the second half (i = N +1, N +2, . . . , 2N )
of the combined set as shown in Fig. 2a. Then, favoring children over parents can be simply
conducted by degrading individuals with larger indices among the two crowded solutions.
For individuals i and j in a population such that i < j and rank(i) = rank(j), only individual
j is degraded as follows while individual i is not altered:

nc j := nc j · shnew(di j ). (15)
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Fig. 4 Distance-based priority
for fitness sharing: c is the best
corner for solutions a and b. The
solution closer to the best corner
is b in this case assuming each
objective function coordinate is
normalized by the difference
between the maximum and
minimum objective function
values of the Pareto solutions. a
is degraded while b is kept
unchanged following Eq. (18) f1

f2 a

b

shareσ

Best corner 
for a and b 

c

3.2 Favoring parents over children

Similarly, favoring parents can be made by degrading individuals of smaller indices. For
individuals i and j in a population such that i < j and rank(i) = rank(j), only individual i
is degraded as follows while individual j is kept as the same:

nci := nci · shnew
(
di j

)
. (16)

3.3 Favoring solutions closer to the ideal point

Another option is to favor individuals having a smaller distance to the ideal point, which is an
M dimensional objective vector composed of best feasible objective values. As a reference
value for the distance-based degradation, we introduce a normalized composite objective
function:

Z (xi ) =
M∑

m=1

fm (xi ) − f min
m

f max
m − f min

m
, (17)

where fm(xi ) is the mth objective function for the solution xi , and f max
m and f min

m are the
maximum and minimum values of the mth objective function for all nondominated solutions.

For individuals i and j in a population such that i < j and rank(i) = rank( j), we
degrade a niche count nc as follows:

nci := nci · shnew
(
di j

)
if Z (xi ) ≥ Z

(
x j

) ;
nc j := nc j · shnew

(
di j

)
otherwise.

(18)

Favoring the smaller value of the composite objective Z is equivalent to favoring the closer
solution to the best corner formed by the two solutions i and j under consideration as illus-
trated in Fig. 4. Similarly, in ε-MOEA [4], among solutions in a hypercube, the closest to the
best corner of the hypercube was selected as a representative solution of the hypercube.

Finally, the assigned fitness Fi given in Eq. (3) is reduced to a shared fitness by multiplying
the fitness value and the niche count, nc, calculated by one of Eqs. (15), (16) and (17) as
follows:

F̃i = nci · Fi . (19)

Unlike the standard sharing approach in Sect. 2.3, no scaling is made on the shared fitness
after the degradation in Eq. (19) so that the relative magnitudes of fitness of non-degraded
solutions of different ranks remain the same. After the fitness sharing is finished, extreme
solutions having the minimum function value for each objective function among the best
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ranked solutions in the population are given the maximum shared fitness value so that they
have the biggest chance to be selected as parents of the next generation.

The new sharing method can be applied to either the phenotypic or genotypic space. If
one is interested in obtaining a diverse distribution in the Pareto front, a phenotypic sharing
should be used. If one is more interested in different designs that might have similar vector
positions in the objective space, a genotype sharing would be preferable. In this study, we
have more interest in the phenotypic space because our main purpose is to validate the per-
formance of proposed algorithms, which is measured in the objective space. The modified
MOGA utilizing the new sharing function approach is called hereafter MOGAS (MOGA
with a new fitness Sharing).

4 Experimental results

In this section, we shall show performances of the new algorithm MOGAS in three variant
forms; MOGASc represents preferring children in the fitness degradation procedure, MO-
GASp represents favoring parents over children, and MOGASd represents favoring solutions
with the smaller scalarized objective functions. The results will also be compared with those
by the state-of-the-art EMOAs such as IBEA, HypE, NSGA-II, and SPEA2 available in PISA
[16,23] as well as MOGA.

PISA is a platform and programming language independent interface for search algo-
rithms. It splits an optimization problem into two modules. One module contains all parts
for the optimization problem such as problem representation and function evaluation. The
other module includes the selection process that is independent of the optimization prob-
lem. These two modules are implemented as separate programs and communicate through
a text-based interface. PISA includes a library of modules for many optimization problems,
selection modules of multi-objective optimizers and performance assessment modules. It is
very convenient and useful for performance evaluation and comparison of state-of-the-art
EMOAs.

As test functions for validation of the proposed algorithm, ZDT (Zitzler-Deb-Thiele’s)
functions with real decision variables [21] and DTLZ functions [22] with two and three
objectives are adopted. The test functions have been widely used in the literature for per-
formance evaluation of EMOAs. The number of design variables, ndv is 10 for the ZDT4
function and 100 for all other test functions for clear performance comparisons among the
tested EMOAs.

For evolutionary operators, as mentioned earlier in Sect. 2.5, we use the SBX recombina-
tion [14] with ηc = 15 and pc = 1, and the polynomial mutation operator [15] with ηm = 20
and pm = 1/ndv . The population size and number of generations are set as 100 and 200,
respectively. Therefore, the total number of function evaluations is 20,000.

There are many performance metrics available for measuring convergence and diversity
of Pareto-front solutions by multi-objective optimization algorithms. The hypervolume indi-
cator [24] measures the hypervolume in the objective space that is weakly dominated by an
approximate set, hence the larger the indicator, the better the performance. The hypervolume
indicator has recently become a popular performance measure because it is the only indi-
cator known to be consistent with the Pareto-dominance. Here we use the hyp_ind program
contained in the performance assessment tools of PISA [16,23]. hyp_ind calculates the dif-
ference in hypervolumes between a reference set and an approximate set under consideration,
thus the smaller the difference, the better the performance. The reference set is defined here
as a combined set of nondominated solutions by all the algorithms under comparison. Using
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Fig. 5 Comparison of non-dominated solutions in a population of the 200th generation for the ZDT1 and
ZDT2 functions between MOGA and MOGASc

the difference between the reference set and a solution set allows clear comparisons among
different EMOAs.

In order to evaluate performances of the stochastic algorithms, each algorithm is run 30
times. For statistical tests, we are adopting the Kruskal Wallis test [25], which is a nonpara-
metric test for differences among multiple independent samples without assuming a normal
distribution of data. A confidence level was set as 95%; in other words, the null hypothesis
is rejected when the p value is less than or equal to the significance level of 0.05. We use a
program for the Kruskal Wallis test included in PISA [16,23].

4.1 Results for the ZDT functions

Figure 5 reveals the defect of the standard sharing approach in MOGA, where nondominat-
ed solutions in the combined 2N solutions of the final (200th) generation are presented for
the ZDT1 and ZDT2 functions. A nonuniform distribution of the Pareto-front solutions by
MOGA is evident, while on the other hand MOGASc gives a much more even distribution of
solutions. Similar trends are also observed for other functions. Although actual performance
evaluations are made for all the nondominated solutions kept in the external archive, the trend
of the solution distributions in the last generation supports our arguments made in Sect. 3 about
the potential defect of the standard sharing approach when combined with the best-N strategy.
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Fig. 6 Box plots of hypervolume indicator for the ZDT functions (smaller value is better). A dot in the box
represents the median value

Table 1 The number of dominating algorithms for each algorithm in statistically significant way on various
ZDT functions (smaller value is better)

HypE IBEA MOGASc MOGASp MOGASd MOGA NSGA-II SPEA2

ZDT1 5 0 2 4 0 3 6 7

ZDT2 0 7 0 1 0 0 3 5

ZDT3 5 4 0 2 1 2 6 7

ZDT4 7 4 0 0 0 0 5 5

ZDT6 0 5 1 1 1 4 5 7

Average 3.2 4.0 0.6 1.6 0.4 1.8 5.0 6.2

The box plots of the hypervolume indicator are depicted in Fig. 6 for the ZDT test func-
tions, representing respectively the minimum, first quartile, third quartile and maximum
values. A dot in the box indicates the second quartile or the median value of multiple runs.

Table 1 shows the number of algorithms that are better than each algorithm in a statisti-
cally significant way according to the Kruskal Wallis test. The ranks shown in Table 1 can
also be used to compare two specific algorithms: an algorithm with a better (smaller) rank
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outperforms an algorithm with a poorer (larger) rank in a statistically significant way. Algo-
rithms with the same rank do not outperform each other in terms of the statistical test.

For ZDT3 and ZDT4, MOGA and all the three variants of MOGAS give similar perfor-
mances and outperform other EMOAs as shown in Fig. 6. For ZDT6, HypE performs the best,
followed by the MOGAS algorithms. Overall, variants of MOGAS and MOGA are ranked
from the 1st to 4th for the ZDT functions in terms of the averaged number of dominating
algorithms in Table 1. The best algorithm for the ZDT functions is MOGASd. The second
best algorithm is MOGASc. MOGASp is not superior to MOGASd and MOGASc in any test
function. MOGA is inferior or similar to MOGASd and MOGASc for all the ZDT functions
and superior or similar to MOGASp for all the ZDT functions except ZDT6. Indicator-based
algorithms such as IBEA and HypE perform worse than MOGAS and MOGA, but better
than NSGA-II and SPEA2.

4.2 Results for the DTLZ functions with two objectives

Box plots are depicted in Fig. 7 for the two-objective DTLZ functions. Table 2 shows the num-
ber of algorithms that are significantly better than each algorithm according to the Kruskal
Wallis test.
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Fig. 7 Box plots of hypervolume indicator for the DTLZ functions with two objectives (smaller value is
better)

Table 2 Ranking of algorithms: the number of dominating algorithms for each algorithm on the two-objective
DTLZ functions (smaller value is better)

HypE IBEA MOGASc MOGASp MOGASd MOGA NSGA-II SPEA2

DTLZ1 0 5 1 1 1 1 6 6

DTLZ2 5 4 1 3 0 2 6 7

DTLZ3 0 5 1 1 1 1 6 7

DTLZ4 4 4 0 2 0 1 6 6

Average 2.3 4.5 0.8 1.8 0.5 1.3 6.0 6.5
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Fig. 8 Box plots of hypervolume indicator for the three-objective DTLZ functions (smaller value is better)

Table 3 Ranking of algorithms: number of dominating algorithms for each algorithm on the three-objective
DTLZ functions (smaller value is better)

HypE IBEA MOGASc MOGASp MOGASd MOGA NSGA-II SPEA2

DTLZ1 0 1 3 5 2 4 7 6

DTLZ2 5 0 2 4 1 3 7 5

DTLZ3 0 1 3 5 3 2 6 6

DTLZ4 2 0 2 5 1 4 6 6

Average 1.8 0.5 2.5 4.8 1.8 3.3 6.5 5.8

As in the ZDT functions, the indicator-based algorithms such as IBEA and HypE perform
better than the Pareto-based algorithms such as NSGA-II and SPEA2 in the two-objective
DTLZ functions. HypE shows the best performance for multimodal problems (DTLZ1 and
DTLZ3) but performs worse for unimodal problems (DTLZ2 and DTLZ4) than MOGA and
MOGAS, which outperform other algorithms in terms of the average number of dominating
algorithms, as shown in Table 2. The best algorithm is MOGASd, and the second best is MO-
GASc as was for the ZDT functions. MOGASc is not superior to MOGASd, and MOGASp is
inferior or similar to MOGASd, MOGASc and MOGA in any two-objective DTLZ function.

4.3 Results for the DTLZ functions with three objectives

Box plots for the three-objective DTLZ test functions are depicted in Fig. 8. Table 3 shows
the number of algorithms that are significantly better than each algorithm. Similar to the
two-objective DTLZ functions, HypE is the best scheme again for the multimodal problems
(DTLZ1 and DTLZ3) but not as good for the unimodal problems (DTLZ2 and DTLZ4).
IBEA is the best algorithm for the unimodal problems and second best for the multimodal
problems. Therefore, in overall, the best algorithm for the three-objective DTLZ functions is
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IBEA. The current results are consistent with those reported in the literature in that the indi-
cator-based algorithms have better performance than the Pareto-based algorithms for MOPs
with more than two objective functions [5–8].

MOGASp again is inferior to MOGASd, MOGASc and MOGA in all the three-objective
DTLZ functions.

MOGASd is found to be the best among the Pareto-based algorithms and shows very close
performances to IBEA.

5 Concluding remarks

The fitness sharing method has been widely used in EMOAs for diversity preservation among
solutions. In the standard sharing approach two close solutions that share a niche in the objec-
tive space are evenly degraded in their fitness to a shared fitness. When this standard sharing
is combined with the best-N elite preserving strategy, a drawback of losing both solutions
is discovered in the reduction process. To cope with this problem, we have suggested an
improved approach, MOGAS, in which a new sharing function and sided fitness degrada-
tions are employed. Three variants of the new approach have been tested with regard to the
preference in the fitness sharing to children (MOGASc), to parents (MOGASp), or to the
ones closer to the ideal point in the objective space (MOGASd).

Standard multi-objective test functions, ZDT with two objectives and DTLZ with two and
three objectives, were used to validate the effectiveness of the proposed method. Experimental
results were compared to those of MOGA and other state-of-the-art EMOAs such as HypE,
IBEA, NSGA-II and SPEA2. Some conclusions from the experiments can be summarized
as follows:

• For all the test problems considered, MOGA and MOGAS show better performances
than NSGA-II and SPEA2.

• Among MOGA and variants of MOGAS, MOGASd gives the best performance.
MOGASc is superior or similar to MOGASp for all test functions considered. Hence,
MOGASd and MOGASc are preferred over MOGASp for the test cases.

• MOGA is outperformed by MOGASd and MOGAScfor almost all test functions except
the three-objective DTLZ3 function.

• For multimodal DTLZ functions with two or three objectives, the best algorithm among
the considered ones was HypE, which, however, shows relatively poor performances for
unimodal DTLZ problems.

• On the other hand, IBEA is showing relatively poor performances for test functions with
two objectives, but is outstanding for three objective problems; the best for unimodal
DTLZ functions and the second best for multimodal DTLZ functions.

• Relative performance behaviors among Pareto-based algorithms such as MOGA, MO-
GAS, NSGA-II and SPEA2 show little change for the number of objectives of the DTLZ
functions compared to the indicator-based methods such as IBEA and HypE.

Through the experiments, the proposed fitness sharing method was shown to have signifi-
cantly improved performances over the standard sharing method, especially when an effective
preference is chosen, such as MOGASd or MOGASc. Also, the elite preserving MOGA was
shown to still be very competitive to other state-of-the-art EMOAs.

The new sharing method would be enhanced further if a more effective preference could
be found other than the three variants of MOGAS tested in this study. Our future work will
also focus on applications of the proposed method to real world engineering problems.
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