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Abstract We develop exact algorithms for multi-objective integer programming (MIP)
problems. The algorithms iteratively generate nondominated points and exclude the regions
that are dominated by the previously-generated nondominated points. One algorithm gen-
erates new points by solving models with additional binary variables and constraints. The
other algorithm employs a search procedure and solves a number of models to find the
next point avoiding any additional binary variables. Both algorithms guarantee to find all
nondominated points for any MIP problem. We test the performance of the algorithms on
randomly-generated instances of the multi-objective knapsack, multi-objective shortest path
and multi-objective spanning tree problems. The computational results show that the algo-
rithms work well.

Keywords Multiple criteria · Combinatorial optimization · Nondominated point

1 Introduction

Multi-objective integer programming (MIP) problems are hard to solve in general. There are
special cases of MIP problems, widely referred as Multi-objective combinatorial optimiza-
tion (MOCO) problems. MOCO has been a growing research area during the last decade.
Single objective combinatorial problems have been widely studied in the past. The decision
makers (DMs) usually have to deal with multiple conflicting objectives but generalizing the
results of single objective problems to multiple objectives is not straightforward. Typically,
the computational complexity increases substantially. The number of nondominated points
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may be exponential in the problem size and identifying all nondominated points becomes
intractable in this case. Heuristic approaches have been developed to find desirable solutions
(see for example, Köksalan 1999; Ulungu et al. 1999; Phelps and Köksalan 2003; Ehrgott
and Gandibleux 2004).

Ehrgott and Gandibleux (2000) review exact and approximation methods developed for
MOCO problems. Early papers in MOCO mostly focused on finding supported nondomi-
nated points. Using weighted linear combinations of objectives, all supported nondominated
points can be generated by systematically varying the weights. Typically, finding unsup-
ported nondominated points is computationally harder for MOCO problems. These solutions
cannot be reached by using a weighted linear combination of objectives. Generating only the
supported nondominated points may also be a difficult task especially for large-sized MOCO
problems.

Some authors separate the generation of the nondominated points into two phases. In the
first phase, all supported nondominated points are generated using the weighted sum scalar-
ization. In the second phase, all unsupported nondominated points are obtained by employing
problem specific techniques. This approach has been applied to several biobjective combi-
natorial problems. Visée et al. (1998) proposed a two phase method and branch and bound
procedures for the biobjective knapsack problem. Ramos et al. (1998) and Steiner and Radzik
(2008) developed a two phase method to generate all nondominated trees for the biobjective
spanning tree problem. Przybylski et al. (2010) worked on the two-phase method for MIP
problems and experimented with three-objective assignment problems.

Mavrotas and Diakoulaki (2005) developed a branch and bound algorithm to find the
extreme nondominated points for multiple objective linear programming (MOLP) having
binary variables in addition to real-valued variables. They conducted experiments with two,
three and four-objective problems.

There exist exact algorithms, especially for the multi-objective shortest path (MOSP)
problem, adapted from the single objective methods. Martins (1984) proposed an algorithm
based on the label setting method to generate all efficient paths of MOSP problem. He tested
the performance of the algorithm on MOSP problem with two and four objectives. Tung and
Chew (1992) developed an exact algorithm for MOSP problem which is a generalization of the
label correcting method for the classical shortest path problem. They applied their algorithm
on MOSP problem with three objectives. Guerriero and Musmanno (2001) also developed
a label correcting method to generate the entire set of efficient paths and implemented the
algorithm on MOSP problem with two, three and four objectives. Corley (1985) proposed an
algorithm for the multi-objective spanning tree (MOST) problem which is a generalization
of Prim (1957)’s algorithm developed for solving the single-objective spanning tree problem.
Gomes da Silva et al. (2008) and Mavrotas et al. (2011) developed approaches for the special
case of two-objective knapsack problems. These algorithms are problem specific and cannot
be directly generalized to other problems.

Özlen and Azizoğlu (2009) developed an algorithm to generate all nondominated points for
MIPs based on the epsilon constraint method. They do not conduct computational experiments
but they demonstrate their algorithm on a three-objective assignment problem. Laumanns
et al. (2006) also developed an algorithm to generate nondominated points based on the epsi-
lon constraint method. In their experiments on multi-objective knapsack problems (MOKP),
they end up solving a very large number of models for even small problems and their compu-
tation times are excessive. They also developed, a heuristic version but this version is capable
of generating only a small percentage of the nondominated points for the same problems.

Sylva and Crema (2004) developed an exact algorithm for generating all nondominated
points for MIPs. The algorithm keeps finding new nondominated points, one at a time. After
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finding a new nondominated point, a new model is constructed by adding new constraints
and binary variables to the previous model. Then, the new model is solved to obtain the new
nondominated point. Naturally, the task becomes impractical as the number of nondominated
points increases. The algorithm of Sylva and Crema (2004) includes the full enumeration of
the set of nondominated points which may be impossible especially for large-sized problems.
Sylva and Crema (2007) developed another algorithm in order to find a well-dispersed subset
of nondominated points for mixed MIPs based on their earlier approach.

In this paper, we develop two exact algorithms to generate all nondominated points for
MIP problems efficiently. Our first algorithm finds the nondominated points iteratively by
solving a model with additional variables and constraints at each iteration. Our algorithm
improves the algorithm of Sylva and Crema (2004) by decreasing the number of additional
constraints and binary variables. However, the improved algorithm still requires substantial
computational effort as the number of nondominated points increases. Our second algorithm
tries to reduce the complexity by imposing bounds on the objectives rather than adding addi-
tional constraints or binary variables at each iteration. Different from many of the previous
exact methods, our methods are not restricted to bicriteria problems and are applicable for
any number of objectives. We conduct extensive experiments with three and four-objective
instances of several MIPs and show that the algorithms work well. To the best of our knowl-
edge, this is the first study that conducts experiments to generate all nondominated points for
four-objective MIPs.

We develop exact methods in Sect. 2, and demonstrate their performances in Sect. 3. We
present our conclusions in Sect. 4.

2 Exact algorithms to generate all nondominated points

We develop two exact algorithms to find all nondominated points of MIP problems. We first
give some background.

2.1 Definitions and some theory

A general multi-objective problem can be defined as:

(P)

“Max”
{
z1(x), z2(x), . . . , z p(x)

}

subject to
x ∈ X
where
zi (x) = i th objective function
x : decision vector
X : solution space
p : the number of objective functions

The quotation marks are used as the maximization of a vector is not a well-defined mathe-
matical operation.

The objective vector z(x′) = (z1(x′), z2(x′), . . . , z p(x′)) is said to dominate z(x) =
(z1(x), z2(x), . . . , z p(x)) if zi (x) ≤ zi (x′) for all i = 1, 2, . . . , p and z(x′) �= z(x). If there
does not exist such an x′, then the decision vector, x, is said to be efficient and the correspond-
ing objective vector, z(x), is said to be nondominated. Efficient (nondominated) frontier is
defined as the entire set of efficient solutions (nondominated points). It is well-known that
maximizing a positive linear combination of the objectives yields an efficient solution. Such
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solutions are referred to as supported efficient solutions and their images in the objective
space are called supported nondominated points.

2.2 Background

The algorithm of Sylva and Crema (2004) starts with a positive weight vector λ > 0 and
solves:

(Pλ)

Max
p∑

j=1
λ j z j (x)

subject to
x ∈ X

After finding a new nondominated point, they revise (Pλ) by adding p binary variables and
p+ 1 constraints. If there are n previously-generated nondominated points, they solve (Pn

λ )

in order to find the (n+ 1)th nondominated point assuming that all zt j are integer valued for
all t = 1, . . . , n and j = 1, . . . , p.

(
Pn

λ

)

Max
p∑

j=1
λ j z j (x)

subject to
z j (x) ≥ (

zt j + 1
)

yt j − M
(
1− yt j

) ∀ j ∀t
p∑

j=1
yt j ≥ 1 ∀t

yt j ∈ {0, 1} j = 1, . . . , p t = 1, . . . , n
x ∈ X

In problem (Pn
λ ), zt = (zt1, zt2, . . . , ztp) denotes the t th nondominated point, M is a suf-

ficiently large positive constant used to create a lower bound for z j (x) and yt j is a binary
variable forcing z j (x) ≥ zt j + 1 when it takes a value of 1. The constraints “

∑p
j=1 yt j ≥ 1”

force the optimal solution to have an objective value larger than that of the t th nondominated
point in at least one of the objectives, guaranteeing a new nondominated point different from
any of the existing ones. The algorithm keeps adding binary variables and constraints until
no feasible solution can be found.

2.3 Development of Algorithm 1

Our first algorithm improves the algorithm of Sylva and Crema (2004) by reducing the num-
ber of binary variables and constraints. The algorithm first arbitrarily selects a criterion, m,

to be maximized throughout the solution process. Consider problem (P0
m), that yields the

nondominated point having the largest mth criterion value.
(
P0

m

)

Max zm (x)+ ε
∑

j �=m
z j (x)

subject to
x ∈ X

where ε is a sufficiently small positive constant that prevents obtaining weakly nondominated
but dominated solutions (see Steuer 1986, p. 425).
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Let the nondominated point corresponding to the optimal solution of (P0
m) be z1 =

(z11, z12, . . . , z1p). By construction, the mth component of this vector, z1m , corresponds
to the maximum value of the mth criterion among all feasible solutions. Similarly, let
zn = (zn1, zn2, . . . , znp) be the nondominated point obtained in iteration n, given that n− 1
nondominated points having mth criterion values greater than or equal to znm have already
been identified. The vectors zt t = 1, 2, . . . , n− 1 include all nondominated points having
mth criterion values strictly greater than znm but they may include only a subset of non-
dominated points having mth criterion values equal to znm . All the remaining nondominated
points having mth criterion value equal to znm will be identified in the succeeding iterations
before identifying any nondominated point that has mth criterion value strictly smaller than
znm . Eventually, all nondominated points zn n = 1, 2, . . . , N will be identified in the non-
increasing order of the mth criterion value. Let the set of the nondominated points found in
the first n iterations be Sn = {zt : 1 ≤ t ≤ n}.

By solving (P0
m), we obtain the nondominated point with the best value of the selected

criterion. Proposition 1 claims that we find the nondominated point having the (n + 1)th
best value of the selected criterion by using the nondominated points with best n values of
the selected criterion. We assume that all zt j are integer valued for all t = 1, . . . , n and
j = 1, . . . , p.

Proposition 1 For a sufficiently small ε > 0 and a sufficiently large M > 0, if all the non-
dominated points in Sn = {zt : 1 ≤ t ≤ n} are known, then the optimal solution to (Pn

m) gives
the nondominated point, zn+1 = (z(n+1)1, z(n+1)2, . . . , z(n+1)p), such that z(n+1)m ≤ ztm

for all t = 1, 2, . . . , n. If (Pn
m) is infeasible, then Sn contains all nondominated points of the

original problem (P).

(
Pn

m

)

Max zm (x)+ ε
∑

j �=m

z j (x)

subject to

z j (x) ≥ (
zt j + 1

)
yt j − M

(
1− yt j

) ∀ j �= m, ∀t (1)
∑

j �=m

yt j = 1 ∀t (2)

yt j ∈ {0, 1} t = 1, . . . , n j = 1, . . . , p j �= m

x ∈ X

Proof Let n = 1 where only the nondominated point, z1 = (z11, z12, . . . , z1p) is available.
Since

∑
j �=m y1 j = 1, exactly one of the p−1 constraints “z j (x) ≥ z1 j+1” will be active and

the others will be redundant for sufficiently large M. Therefore, at least one criterion value
of the new nondominated point will be strictly greater than the corresponding value in z1,

guaranteeing a different nondominated point. Since our aim is to maximize the mth criterion
and guarantee to obtain a different nondominated point, we will obtain the nondominated
point, z2, having the maximum mth criterion value among all feasible solutions. Since the
feasible space of (P1

m) is a subset of that of (P0
m), the optimal objective function value of (P1

m)

is less than or equal to that of (P0
m). Since ε is sufficiently small, it follows that z2m ≤ z1m .

In case of infeasibility, we conclude that there is only one nondominated point. Similarly, for
n > 1, the type (1) and type (2) constraints guarantee that the new nondominated point will
be different from all the nondominated points in set Sn . The model will find a nondominated
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point, zn+1, having maximum mth criterion value among all feasible solutions. Since the
feasible space of (Pn

m) is a subset of that of (Pn−1
m ), we have z(n+1)m ≤ znm , as was the case

for n = 1. If the problem is infeasible, then Sn = {zt : 1 ≤ t ≤ n} contains the entire set of
nondominated points. �	
The above results show that all nondominated points to problem (P) can be generated by
solving Pn

m iteratively.

Algorithm 1

Step 0. Select a criterion, m, to be maximized throughout the algorithm. Initialize n = 0.

If X is empty, then there are no nondominated points. Stop.
Step 1. Solve model (Pn

m). If (Pn
m) is infeasible, go to Step 2. Otherwise, denote the non-

dominated point corresponding to the optimal solution as zn+1. Set n← n+ 1 and
repeat Step 1.

Step 2. Stop. Sn = {zt : 1 ≤ t ≤ n} contains the entire set of n nondominated points for
problem (P).

Algorithm 1 improves the algorithm of Sylva and Crema (2004) by decreasing the addi-
tional number of binary variables from np to n(p − 1) and additional constraints from
n(p + 1) to np in iteration n introduced to the model for finding the new nondominated
point.

2.4 Development of Algorithm 2

Although Algorithm 1 reduces the additional constraints and variables, the models still grow
and cause computational difficulties when the number of nondominated points is large. Here,
we develop a new algorithm to further improve Algorithm 1. We observe that (Pn

m) includes
np additional constraints and n(p − 1) binary variables. For any feasible solution, at most
one constraint is sufficient to characterize the region that is nondominated relative to the
available points for each of the p − 1 criteria. Based on this observation, Algorithm 2 iden-
tifies the constraints that are necessary for the optimal solution and solves a number of
models with p − 1 or fewer additional lower bound constraints to find the solution to (Pn

m).

Without loss of generality, let us set m = p in order to simplify the notation. We denote

z(Pb) = (z(Pb)
1 , z(Pb)

2 , . . . , z(Pb)
p ) as the optimal nondominated point corresponding to the

following problem:
(
Pb

)

Max z p (x)+ ε
p−1∑

j=1
z j (x)

subject to
z j (x) ≥ b j j = 1, 2, . . . , p − 1
x ∈ X

where b = (b1, b2, . . . , bp−1) defines a lower bound for each of the first p − 1 criteria. If

(Pb) is infeasible, then we assign z(Pb) = (−M,−M, . . . ,−M).

We first prove that model (Pn
p ) can be decomposed into submodels for p = 3 in Proposi-

tion 2. We then generalize it for general p in Proposition 3.
We partition (Pn

3 ) into n + 1 submodels, (Pbk,n
) k = 0, 1, 2, . . . , n, where we set dif-

ferent bounds for the first and second criteria by using available nondominated points in
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Sn = {zt : 1 ≤ t ≤ n}. bk,n = (bk,n
1 , bk,n

2 ) denotes the corresponding bound vector for

each submodel, (Pbk,n
) k = 0, 1, 2, . . . , n.

k > 0 implies that we use the kth nondominated point, zk , to define a lower bound for the
first criterion, that is bk,n

1 = zk1 + 1. Introducing this bound for the first criterion excludes
the region dominated by the available nondominated points that have first criterion values
less than bk,n

1 . Once bk,n
1 is introduced, it is sufficient to set the bound for the second criterion

considering the nondominated points that have first criterion values at least as big as bk,n
1 .

That is, if we define Sk
n = {zt : zt1 ≥ bk,n

1 zt ∈ Sn}, then we set bk,n
2 = maxzt∈Sk

n
{zt2} + 1.

If Sk
n = ∅, then there is no need to define a bound for the second criterion.

If k = 0, we do not have a lower bound for the first criterion and S0
n includes all the

available nondominated points, that is S0
n = Sn .

Proposition 2 Let p = 3, bk,n = (bk,n
1 , bk,n

2 ) and Sk
n = {zt : zt1 ≥ bk,n

1 zt ∈ Sn} k =
0, 1, 2, . . . , n, and k∗ be such that z(P bk∗,n

)
3 = max

k=0,1,...,n
{z(P bk,n

)
3 } where

bk,n
1 =

{−M if k = 0
zk1 + 1 if k > 0

}
bk,n

2 =
{−M if Sk

n = ∅
max
zt∈Sk

n

{zt2} + 1 otherwise

}

If z(P bk∗,n
)

3 = −M, then Sn = {zt : 1 ≤ t ≤ n} contains all nondominated points of the

original problem (P). Otherwise, zn+1 = z(Pbk∗,n
).

Proof Recall from Proposition 1 that zn+1 = (z(n+1)1, z(n+1)2, . . . , z(n+1)p) can be obtained
by solving problem (Pn

m). Let us rewrite model (Pn
m) for the three criteria case and m = 3 :

(
Pn

3

)

Max z3 (x)+ εz1 (x)+ εz2 (x)

subject to
z1 (x) ≥ (zt1 + 1) yt − M (1− yt ) ∀t
z2 (x) ≥ (zt2 + 1) (1− yt )− M (yt ) ∀t
yt ∈ {0, 1} t = 1, . . . , n
x ∈ X

where yt = 1 implies z1(x) ≥ zt1 + 1 while yt = 0 implies z2(x) ≥ zt2 + 1.
Depending on the value of k, one of the following two cases holds for the optimal non-

dominated point of (Pn
3 ):

Case 1 (k = 0). In this case, yt = 0 for all t = 1, 2, . . . , n. Hence, we do not have any addi-
tional lower bound for the first criterion value and so we can set bk,n

1 = −M. It also implies

that z2(x) ≥ zt2+1 for all t = 1, 2, . . . , n, hence we can define bk,n
2 = maxt=1,2,...,n{zt2}+1.

This corresponds to the case k = 0 where S0
n = Sn since zt1 ≥ bk,n

1 for all t = 1, 2, . . . , n.

Case 2 (0 < k ≤ n). In this case, yk = 1 for some k, 1 ≤ k ≤ n and yt = 0 for all t
satisfying zt1 ≥ zk1 + 1. This implies z1(x) ≥ zk1 + 1 and we can set bk

1 = zk1 + 1. For all
t satisfying zt1 ≤ zk1, we obtain zt1 + 1 ≤ zk1 + 1 ≤ z1(x) and we can also assign yt = 1.

Since yt = 0 only for all t satisfying zt1 ≥ zk1 + 1, z2(x) ≥ zt2 + 1 for all t sat-
isfying zt1 ≥ bk,n

1 (i.e., zt ∈ Sk
n ). If Sk

n �= ∅, the imposed lower bound for z2 will be

bk,n
2 = maxzt∈Sk

n
{zt2} + 1. If Sk

n = ∅, then bk,n
2 = −M.
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We find z(P bk,n
) for k = 0, 1, . . . , n by solving the corresponding models where all pos-

sible cases for the new solution are considered one by one. Since the aim is to maximize
the third criterion, the submodel k∗ that has the optimal solution with the largest third cri-

terion value, z(P bk∗,n
)

3 = maxk=0,1,...,n {z(P bk,n
)

3 }, will give the next nondominated point.

z(P bk∗,n
)

3 = −M corresponds to the case for which all submodels are infeasible and thus
implies that (Pn

3 ) is infeasible and Sn = {zt : 1 ≤ t ≤ n} contains the entire set of nondom-
inated points. Otherwise, the corresponding submodel gives the next nondominated point,

zn+1 = z(Pbk∗,n
). �	

As in the case for p = 3, it is also possible to decompose (Pn
p ) into submodels,

(Pbk,n
) k = (k1, k2, . . . , kp−2), for any p. We use the available nondominated points

to define the bounds for each criterion j = 1, . . . , p − 1. We denote the index of the non-
dominated point that we use to set a lower bound for the j th criterion as k j , and k j = 0
represents the special case of setting no lower bound for criterion j.

We first set a lower bound bk,n
1 = zk11 + 1 to the first criterion when 0 < k1 ≤ n and

bk,n
1 = −M for k1 = 0. Similar to the three-criteria case, we now consider only the non-

dominated points that have the first criterion values greater than or equal to bk,n
1 to set the

bound for the other criteria since the region dominated by the remaining solutions are already
excluded with bk,n

1 . That is, the solution, zk2 , that will be used to set a lower bound for the
second criterion will have the first criterion value zk21 ≥ zk11 + 1 when k1, k2 �= 0.

We continue defining bounds for each criterion j = 1, 2, . . . , p − 2 depending on the
value of k j by only considering the nondominated points, the dominated regions of which
have not been excluded yet. That is, we have zki i + 1 ≤ zk j i for all ki , k j �= 0 i < j.

In order to set a lower bound for criterion p − 1, we define a subset
Sk

n = {zt : zt j ≥ bk,n
j j = 1, . . . , p − 2, zt ∈ Sn} that contains the available nondom-

inated points such that the regions that are dominated by them have not been excluded
yet. That is, we should impose z p−1(x) ≥ zt (p−1) + 1 for each zt ∈ Sk

n . Then, we have

bk,n
p−1 = maxzt∈Sk

n
{zt (p−1)} + 1.

We next give the proof in Proposition 3.

Proposition 3 (Generalization of Proposition 2) Let K denote the set of all possible combi-
nations of k = (k1, k2, . . . , kp−2) satisfying ki = 0, 1, . . . , n and

zki i + 1 ≤ zk j i for all ki , k j �= 0 i < j . Given bk,n = (bk,n
1 , bk,n

2 , . . . , bk,n
p−1)

and Sk
n = {zt : zt j ≥ bk,n

j j = 1, . . . , p − 2, zt ∈ Sn}, let k∗ be such that z(P bk∗,n
)

p =
maxk∈K {z(P bk,n

)
p } where

bk,n
j =

{−M if k j = 0
zk j j + 1 otherwise

j = 1, . . . , p − 2

bk,n
p−1 =

{−M if Sk
n = ∅

max
zt∈Sk

n

{
zt(p−1)

}+ 1 otherwise

If z(P bk∗,n
)

p = −M, then Sn = {zt : 1 ≤ t ≤ n} contains all nondominated points of the

original problem (P). Otherwise, zn+1 = z(Pbk∗,n
).
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Proof Recall from Proposition 1 that zn+1 = (z(n+1)1, z(n+1)2, . . . , z(n+1)p) can be obtained
by solving problem (Pn

p ).

(
Pn

p

)

Max z p (x)+ ε
p−1∑

j=1
z j (x)

subject to
z j (x) ≥ (

zt j + 1
)

yt j − M
(
1− yt j

) ∀ j ∀t
p−1∑

j=1
yt j = 1 ∀t

yt j ∈ {0, 1} t = 1, . . . , n j = 1, . . . , p − 1
x ∈ X

For the optimal nondominated point to the problem, we can write the following constraints:
If yt1 = 0 for all t = 1, . . . , n, then there is no lower bound imposed for the first criterion,

bk,n
1 = −M(corresponds to the case k1 = 0). Otherwise, consider the case yk11 = 1 for

some k1, 1 ≤ k1 ≤ n and yt1 = 0 for all t satisfying zt1 ≥ zk11 + 1 . Then, it implies
zk11+1 ≤ z1(x), so we can define bk,n

1 = zk11+1. For all t satisfying zt1 ≤ zk11, we obtain
zt1 + 1 ≤ zk11 + 1 ≤ z1(x) and we can assign yt1 = 1.

For the second criterion, we know yt2 = 0 for all t satisfying zt1 < bk,n
1 (zt1 ≤ zk11if k1

�= 0) since yt1 = 1. If yt2 = 0 for all t = 1, . . . , n, then there is no lower bound imposed,
bk,n

2 = −M(corresponds to the case k2 = 0). If yk22 = 1 for some k2 satisfying zk21 ≥
bk,n

1 (zk21 ≥ zk11 + 1if k1, k2 �= 0) and yt2 = 0 for all t satisfying zt2 ≥ zk22 + 1, then

bk,n
2 = zk22 + 1.

In the same way, for each j = 1, 2, . . . , p−2, the previous lower bound constraints imply
that yt j = 0 for all t satisfying zti < bk,n

i (zti ≤ zki i if ki �= 0) for at least one criterion

i < j since yti = 1. If yt j = 0 for all t = 1, . . . , n (k j = 0), we will have bk,n
j = −M .

If yk j j = 1 for some k j satisfying zk j i ≥ bk,n
i (zk j i ≥ zki i + 1 if ki , k j �= 0) for all i < j

and yt j = 0 for all t satisfying zt j ≥ zk j j + 1, then:

bk,n
j =

{−M if k j = 0
zk j j + 1 otherwise

j = 1, . . . , p − 2.

For all t = 1, 2, . . . , n, if zt j < bk,n
j for at least one of the criteria j = 1, 2, . . . , p − 2

(implying Sk
n = ∅), then it implies yt j = 1 for one such criteria j = 1, 2, . . . , p − 2, hence

yt (p−1) = 0. That is, there is no lower bound imposed for criterion p − 1, bk,n
p−1 = −M .

Otherwise, for each t satisfying zt j ≥ bk,n
j for all j = 1, 2, . . . , p − 2 (i.e., zt ∈ Sk

n ), we
can write yt j = 0 for all j = 1, 2, . . . , p − 2 and so yt (p−1) = 1. Then, we can write
z p−1(x) ≥ zt (p−1) + 1 for each zt ∈ Sk

n and define:

bk,n
p−1 =

{−M if Sk
n = ∅

max
zt∈Sk

n

{
zt(p−1)

}+ 1 otherwise

We find z(Pbk,n
) for all k ∈ K by solving the corresponding models where all possible cases

for the new solution are considered one by one. Since the aim is to maximize pth criterion
value, the submodel k∗ that has the optimal solution with the largest pth criterion value,
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z(P bk∗,n
)

p = max
k∈K

{z(P bk,n
)

p }, will give the next nondominated point. z(P bk∗,n
)

p = −M repre-

sents the special case for which all submodels are infeasible implying (Pn
p ) is infeasible and

hence Sn = {zt : 1 ≤ t ≤ n} contains the entire set of nondominated points. Otherwise, the

corresponding submodel gives the next nondominated point, zn+1 = z(Pbk∗,n
). �	

We next present a basic algorithm that implements the above findings to generate all
nondominated points setting m = p. We will later introduce improvements over the basic
algorithm.

Step 0. Initialize n = 0. If (P0
p ) is infeasible, then X is empty and hence there are no

nondominated points. Stop.

Step 1. Find z(P bk,n
) for all k ∈ K. Determine k∗ for which z(P bk∗,n

)
p = maxk∈K {z(P bk,n

)
p }

is satisfied. If z(P bk∗,n
)

p = −M (all models are infeasible), go to Step 2.

Otherwise, the new nondominated point is zn+1 = z(Pbk∗,n
). Set n ← n + 1 and

repeat Step 1.
Step 2. Stop. Sn = {zt : 1 ≤ t ≤ n} contains the entire set of n nondominated points for

problem (P).

We demonstrate the algorithm on the following three-objective knapsack problem with 10
items:

“Max” {Px}
subject to
Wx ≤ q
x ∈ {0, 1}10

where

P =
⎡

⎣
54 64 46 37 31 62 52 33 87 35
52 65 58 63 46 66 72 95 42 29
56 90 34 13 71 33 66 74 88 71

⎤

⎦

W =
⎡

⎣
52 52 28 23 95 69 13 61 32 68
88 98 49 28 43 98 53 52 84 66
57 30 86 50 97 96 59 94 67 14

⎤

⎦

q = [
246 329 325

]T

x = [
x1 x2 x3 x4 x5 x6 x7 x8 x9 x10

]T

We first demonstrate how we decompose (Pn
3 ) into submodels. Let us consider the case

n = 4. Table 1 shows that S4 = {z1, z2, z3, z4} where z1 = (256, 294, 336), z2 = (230,

319, 335), z3 = (253, 296, 333), and z4 = (273, 337, 331). Proposition 1 shows that (P4
3 )

will give the next nondominated point, z5. Instead of solving (P4
3 ), we partition it into sub-

models (Pbk,4
) k = 0, 1, . . . , 4 where:

Submodel 0(k = 0): We do not impose a lower bound for the first criterion, b0,4
1 = −M.

Then, we should have z2(x) ≥ zt2 + 1 for all t = 1, 2, 3, 4 that corresponds to the case
S0

4 = S4. We set b0,4
2 = maxt=1,2,3,4{zt2} + 1 = 338. The submodel gives the solution

z(Pb0,4
) = (240, 347, 299).

Submodel 1(k = 1) : We use z1 to set a lower bound for z1(x), b1,4
1 = 257. Then, we

consider only set S1
4 = {z4} since the region that is dominated by z4 is not excluded by
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Table 1 Demonstration of the Algorithm on a 10-item, 3-objective knapsack problem

n k bk,n = (bk,n
1 , bk,n

2 ) z(Pbk,n
) Need to solve (Pbn,k

)? Number
of model
solved

k∗ zn+1

0 0 (−M,−M) (256, 294, 336)
√

1 0 (256, 294, 336)

1 0 (−M , 295) (230, 319, 335)
√

2 0 (230, 319, 335)

1 (257, −M) (273, 337, 331)
√

2 0 (−M , 320) (273, 337, 331)
√

2 2 (253, 296, 333)

2 (231, 295) (253, 296, 333)
√

1 (257, −M) (273, 337, 331) Identical to (Pb1,1
)

3 0 (−M , 320) (273, 337, 331) Identical to (Pb0,2
) 2 1 (273, 337, 331)

2 (231, 297) (273, 337, 331)
√

3 (254, 295) (273, 337, 331)
√

1 (257, −M) (273, 337, 331) Identical to (Pb1,1
)

4 0 (−M , 338) (240, 347, 299)
√

3 4 (275, 271, 328)

2 (231, 338) (240, 347, 299) Identical to (Pb0,4
)

3 (254, 338) Infeasible
√

1 (257, 338) Infeasible Identical to (Pb3,4
)

4 (274, −M) (275, 271, 328)
√

5 0 (−M , 338) (240, 347, 299) Identical to (Pb0,4
) 2 2 (240, 347, 299)

2 (231, 338) (240, 347, 299) Identical to (Pb0,4
)

3 (254, 338) Infeasible Identical to (Pb3,4
)

1 (257, 338) Infeasible Identical to (Pb3,4
)

4 (274, 272) (286, 300, 291)
√

5 (276,−M) (286, 300, 291)
√

6 0 (−M ,348) (232, 353, 277)
√

2 5 (286, 300, 291)

2 (231, 348) (232, 353, 277) Identical to (Pb0,6
)

6 (241, 338) Infeasible
√

3 (254, 338) Infeasible Identical to (Pb3,4
)

1 (257, 338) Infeasible Identical to (Pb3,4
)

4 (274, 272) (286, 300, 291) Identical to (Pb4,5
)

5 (276, −M) (286, 300, 291) Identical to (Pb5,5
)

7 0 (−M , 348) (232, 353, 277) Identical to (Pb0,6
) 2 2 (232, 353, 277)

2 (231, 348) (232, 353, 277) Identical to (Pb0,6
)

6 (241, 338) Infeasible Identical to (Pb6,6
)

3 (254, 338) Infeasible Identical to (Pb3,4
)

1 (257, 338) Infeasible Identical to (Pb3,4
)

4 (274, 301) Infeasible
√

5 (276, 301) Infeasible Identical to (Pb4,7
)

7 (287, −M) Infeasible
√
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Table 1 continued

n k bk,n = (bk,n
1 , bk,n

2 ) z(Pbk,n
) Need to solve (Pbn,k

)? Number
of model
solved

k∗ zn+1

8 0 (−M , 354) Infeasible
√

2 Stop. All nondominated
points are found

2 (231, 354) Infeasible Identical to (Pb0,8
)

8 (233, 348) Infeasible
√

6 (241, 338) Infeasible Identical to (Pb6,6
)

3 (254, 338) Infeasible Identical to (Pb3,4
)

1 (257, 338) Infeasible Identical to (Pb3,4
)

4 (274, 301) Infeasible Identical to (Pb4,7
)

5 (276,301) Infeasible Identical to (Pb4,7
)

7 (287, −M) Infeasible Identical to (Pb7,7
)

introducing b1,4
1 . We set b1,4

2 = 338. The submodel is infeasible and thus we assign z(Pb1,4
) =

(−M,−M,−M).

Submodel 2(k = 2): By using z2, we define b2,4
1 = 231. By considering only the solu-

tions that have first criterion values greater than or equal to b2,4
1 , that is S2

4 = {z1, z3, z4},
we set b2,4

2 = max
zt∈S2

4

{zt2} + 1 = 338. The optimal solution of the submodel is z(Pb2,4
) =

(240, 347, 299).

Submodel 3(k = 3): We set b3,4
1 = 254 by using z3 and b3,4

2 = max
zt∈S3

4

{zt2} + 1 = 338 by

using set S3
4 = {z1, z4}. We assign z(Pb3,4

) = (−M,−M,−M) since the submodel turns out
to be infeasible.

Submodel 4(k = 4): We set b4,4
1 = 274 using z4. Since we have zt1 < b4,4

1 for all t =
1, 2, 3, 4, (i.e., S4

4 = ∅), we do not need to define a lower bound for the second criterion.

We set b4,4
2 = −M. The optimal solution turns out to be z(Pb4,4

) = (275, 271, 328).

Since we are searching for the nondominated point having the largest third criterion value

and z(P b4,4
)

3 = maxk=0,1,...,n {z(P bk,4
)

3 } = max{299,−M, 299,−M, 328} = 328, we set

k∗ = 4. Hence, z5 = z(Pb4,4
) = (275, 271, 328) as shown in Table 1.

The number of models to be solved to find the (n + 1)th solution by using the existing
n solutions is

∑
k∈K 1 in the worst case. If N is the total number of nondominated points of

(P), the number of models to be solved to find all N of them will be
∑N

n=0
∑

k∈K 1 in the
worst case, which is O(N p−1). For three criteria case, if there are n previously generated
nondominated points, we may need to solve

∑n
k=0 1 = n + 1 models, in the worst case, in

order to find the next nondominated point, zn+1. Therefore, we may need to solve a total of∑N
n=0 (n + 1) = (N+1)(N+2)

2 models to find all N points in the worst case, which is O(N 2).
The number of models to be solved can be improved by keeping some information in the
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memory. Many of the models yield the same solution since we have only N nondominated
points whereas we solve much more than N models each of which gives a nondominated point.
We can detect if the optimal solution will be identical to any of the previous solutions by keep-
ing the lower bound vector, b, and the corresponding solution z(Pb) as shown by Proposition 4.

Proposition 4 Given b1 = (b1
1, . . . , b1

p−1) and b2 = (b2
1, . . . , b2

p−1), if b1
j ≤ b2

j ≤ z(P b1 )
j

for all j = 1, 2, . . . , p − 1, then z(Pb2 ) = z(Pb1 ).

Proof Since b2
j ≤ z(P b1 )

j for all j = 1, 2, . . . , p − 1, then the nondominated point z(Pb1 )

is also feasible for the problem (Pb2). Assume that problem (Pb2) has an optimal solution
z(Pb2 ) �= z(Pb1 ). Since z(Pb1 ) is not an optimal solution to problem (Pb2) and both prob-

lems try to maximize pth criterion value, then z(P b1 )
p < z(P b2 )

p . Furthermore, we can write

b2
j ≤ z(P b2 )

j for all j = 1, 2, . . . , p − 1, in order to provide the feasibility. Since we also

know b1
j ≤ b2

j for all j = 1, 2, . . . , p− 1, we obtain b1
j ≤ z(P b2 )

j for all j = 1, 2, . . . , p− 1

which implies z(Pb2 ) is also a feasible solution for problem (Pb1). However, z(P b1 )
p < z(P b2 )

p

implies that z(Pb2 ) has a better objective function value. Then, z(Pb1 ) cannot be an optimal
solution to problem (Pb1),which is a contradiction. Therefore, z(Pb2 ) = z(Pb1 ). �	

In a similar manner, we can store the lower bounds that create infeasibility and utilize
this information. Corollary 1 formalizes detecting infeasibility in future iterations without
solving a model.

Corollary 1 Given b1 = (b1
1, . . . , b1

p−1) and b2 = (b2
1, . . . , b2

p−1), if (Pb1) is infeasible

and b1
j ≤ b2

j for all j = 1, 2, . . . , p − 1, then (Pb2)is also infeasible.

Proof Assume that problem (Pb2) is feasible with an optimal solution, z(Pb2 ). Then,
z(Pb2 )will also be feasible to problem (Pb1) since b1

j ≤ b2
j for all j = 1, 2, . . . , p − 1

which contradicts that problem (Pb1) is infeasible. �	
Using all these results, the algorithm is modified to store and utilize the lower bounds and

corresponding candidate nondominated points. We store the lower bounds even if the prob-
lem is infeasible in order to detect infeasibility in future iterations. By using the information
kept in the archives, we first check whether the solution of (Pb) is identical to any previous
solution and then solve if necessary. We also modify the order of solving submodels based
on the bounds derived from the existing nondominated points. Rather than discussing these
in detail, we illustrate them on the example problem in Table 1.

Although we need to consider n+1 models at each iteration, we can avoid solving many of
them. By solving submodels in the nondecreasing order of bk,n

1 and keeping some information
in the memory, we end up solving only 2 models in most iterations as seen in Table 1. While
the number of models to be solved could be as high as (N+1)(N+2)

2 = (8+1)(8+2)
2 = 45, in the

worst case, we solve only 18 (= 2(N + 1)) due to the improvements we made. The number
of models solved in all three-objective experiments we report in the next section also shows
a similar result of solving approximately two models for finding each nondominated point.

3 Computational experiments

We tested the performance of the algorithms on MOKP, MOST and MOSP problems. We
conducted experiments on the same randomly generated problems used by

123



360 J Glob Optim (2013) 57:347–365

Table 2 Comparison of Algorithms on MOKP for p = 3

Number Problem Number of Solution time (CPU time in seconds)
of items nondominated

points (N )

Sylva and Crema Algorithm 1 Algorithm 2

20 1 35 14.24 6.75 3.62

2 43 38.47 15.18 5.41

3 61 102.40 39.29 8.80

4 67 121.82 31.34 8.31

5 77 259.51 48.76 10.59

25 1 57 118.13 40.73 9.65

2 76 314.61 54.80 10.70

3 103 818.26 53.35 15.08

4 108 2,043.33 192.63 25.15

5 132 5,291.38 193.52 20.67

6 157 5,285.43 276.52 33.27

7 163 5,253.49 245.59 25.56

8 168 12,406.04 551.48 38.16

9 182 14,740.24 407.65 30.23

10 470 Could not be solved in 15 h 1,619.32 44.75

Köksalan and Lokman (2009). We formulate the minimum spanning tree problem as a multi-
commodity flow problem [see Lokman (2007) for details] in order to convert it into a math-
ematical program to be solved by our algorithm. However, we should note that any other
integer program formulation can be used for this algorithm.

We code all algorithms on Microsoft Visual Studio 2010 and use the callable library of
CPLEX 12.3 on an Intel (R) Core (TM) i5-2410M CPU @ 2.30 GHz computer with 4.00 GB
RAM and Microsoft Windows 7 Professional.

We compare our two exact algorithms with the algorithm developed by Sylva and Crema
(2004) on MOKP. As the number of nondominated points increases, the complexity of the
algorithm proposed by Sylva and Crema increases considerably as seen in Table 2. Therefore,
we only solved small-sized knapsack problems with three objectives (p = 3).

The three algorithms in Table 2 are all exact algorithms generating all nondominated
points. Therefore, we employ corresponding solution times as the performance measure.
Algorithm 1 outperforms the algorithm developed by Sylva and Crema as seen in the com-
putational times. This is expected since we decrease the number of binary variables and
constraints. The computational times depend on N because we keep adding new binary
variables and constraints until all nondominated points are obtained and this increases the
computational complexity at each iteration. Table 2 also indicates that there is a significant
increase in the difference in the computational times even when N increases slightly.

The additional constraints and variables cause computational difficulty in Algorithm 1 for
larger problems. Algorithm 2 requires a sorting and searching mechanism and performs much
better than Algorithm 1. We solve more models with Algorithm 2 but each model has the
same number of constraints and variables regardless of the solutions on hand. Furthermore,
we do not require any additional binary variables in Algorithm 2. While the computational
times of Algorithm 1 and Algorithm 2 for the knapsack problem with 20 items are not much
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Table 3 Comparison of Algorithms 1 and 2 on MOKP for p = 3

Number Problem Number of Solution time (CPU time in seconds)
of items nondominated

points (N )

Algorithm 1 Algorithm 2

50 1 280 4,823.95 121.82

2 356 5,173.84 139.63

3 519 12,082.91 186.40

4 784 33,699.41 360.54

5 912 35,557.58 383.64

different in Table 2, we observe that the performance of Algorithm 2 gets much better as the
problem size increases as seen in Table 3.

We also compared the performance of Algorithm 2 with that of the algorithm of Özlen
and Azizoğlu (2009) on the three-criteria knapsack problems we present in Table 4. Özlen
and Azizoğlu (2009) do not report any computational results. Therefore, we implemented
their algorithm ourselves. Their average solution time for the 25-item knapsack problem
turned out to be 90.16 s as opposed to 29.88 s of Algorithm 2. On the knapsack problem
with 50 items, the algorithm of Özlen and Azizoğlu (2009) had an average solution time of
1,128.70 s while Algorithm 2 required 238.41 s on average. Özlen and Azizoğlu (2009)’s
algorithm could not solve four of the five instances of the 100-item knapsack problem
within a 15-h time limit that we set. In the remaining problem, their algorithm required
15,440.22 s, as opposed to the 3,061.91 s of our algorithm to generate all 2,790 nondominat-
ed points.

We conducted further experiments with Algorithm 2 on randomly generated instances of
MOKP, MOST and MOSP problems with three and four objectives. The summary of the
results are presented in Table 4.

If we consider the problems where p = 3, we solve N + 1 increasing-sized models
where we insert three new constraints and two binary variables at each step of Algorithm
1. On the other hand, we may need to solve (N + 1)(N + 2)/2 problems in the worst case
of Algorithm 2 if we cannot predict the optimal solution of any problem without solving
the model by using the information kept in our archive. On the other hand, we may end up
solving N + 1 models in the best case where we always have the opportunity to determine
the next nondominated point by using the solutions kept in the archive after we solve N + 1
models. Then, the number of models solved, M S, to find all N nondominated points will
be in the interval N + 1 ≤ M S ≤ (N + 1)(N + 2)/2. Since all these M S problems are
equal-sized in terms of the variables and constraints, we use the average number of models
solved per nondominated point, M S/N , as a performance measure. Based on the data in
Table 5, we observe that M S/N is in the interval [1.80, 2.36] with an average of 2.13 when
p = 3. That is, we roughly solve 2 models for each nondominated point on average. This
indicates the importance of the information obtained from the archives of Algorithm 2 since
M S � (N + 1)(N + 2)/2 especially for large N values. The value of M S decreases up to
0.01 % of (N + 1)(N + 2)/2 as demonstrated in Table 5. Furthermore, the ratio, M S/N ,

is not very sensitive to the value of Nwhich implies that we solve approximately the same
number of models for each nondominated point. We should also note that all models include
only two additional constraints and no additional variables regardless of the value of N .

123



362 J Glob Optim (2013) 57:347–365

Table 4 Performance of Algorithm-2 on random problems

Problem Number of
nondominated
points (N )

Number of
models solved
(M S)

Sol. time (CPU
time in
seconds) (ST )

Avg. sol. time
(ST /N )

M S/N

Avg. SD Avg. SD Avg. SD Avg. SD Avg. SD

MOKP 25
items p = 3

211.8 150.2 450.2 273.4 29.9 13.0 0.16 0.05 2.21 0.16

MOKP 50
items p = 3

570.2 271.7 1,218.0 534.8 238.4 124.6 0.41 0.04 2.17 0.09

MOKP 100
items p = 3

6786.2 2,954.6 12,495.2 5,197.0 23,204.8 19,549.9 2.91 1.48 1.86 0.06

MOKP 25
items p = 4

425.2 152.4 3,709.6 1,723.2 357.1 195.7 0.80 0.16 8.46 1.09

MOST problem
10 nodes p = 3

625.4 104.8 1,311.0 192.6 241.9 50.7 0.39 0.03 2.11 0.11

MOSP problem
25 nodes p = 3

86.4 55.9 195.4 129.7 6.0 4.8 0.07 0.01 2.24 0.09

MOSP problem
50 nodes p = 3

266.2 38.9 602.0 90.5 49.5 12.1 0.19 0.03 2.26 0.02

MOSP problem
100 nodes p = 3

469.8 98.5 1,010.6 203.5 212.7 34.9 0.46 0.03 2.15 0.04

MOSP problem
150 nodes p = 3

731.6 187.4 1,525.6 373.8 545.1 135.9 0.75 0.08 2.09 0.03

MOSP problem
200 nodes p = 3

778.2 180.9 1612.2 350.8 1066.3 234.2 1.38 0.12 2.08 0.06

MOSP problem
25 nodes p = 4

211.2 83.9 1,668.6 920.8 54.2 29.2 0.25 0.04 7.65 1.40

MOSP problem
50 nodes p = 4

1349.0 451.3 13,058.2 5125.6 1,498.2 691.8 1.07 0.20 9.49 1.03

Averages and SD of 5 problems per cell
The input and output files of all instances are available at: http://www.ie.metu.edu.tr/~koksalan/DataFiles.htm

If we consider the instances with p = 4, then M S/N again does not seem to be sensitive
to the value of N where the ratio is within the interval [5.67,10.14] with an average value of
8.53. The value of M S/N is larger compared to the case of p = 3 for all instances indicating
that it increases with the number of objectives. We should also note that the number of models
to be solved in the worst case is

∑N
n=0 (n + 1)(n + 2)/2 (i.e. O(N 3)) for p = 4, which is

much larger than the corresponding worst case of p = 3, (N + 1)(N + 2)/2. We can write
N + 1 ≤ M S ≤ ∑N

n=0 (n + 1)(n + 2)/2 since the number of models to be solved in the
best case is equal to N + 1. As we discuss for p = 3, if we consider the random instances
demonstrated in Table 6, we observe M S �∑N

n=0 (n + 1)(n + 2)/2 especially for large N
values. The value of M S decreases up to 0.001 % of

∑N
n=0 (n + 1)(n + 2)/2.

In order to have an idea about the performance of our algorithm on integer programs,
we also solved the three-objective knapsack problems replacing the binary restrictions on
the variables with integer restrictions. We observed that both the averages and the standard
deviations of the number of nondominated points increased in this case. For the 25-item knap-
sack problem, the average number of nondominated points increased from 211.80 to 560.80
while the standard deviation increased from 150.25 to 486.05. Similarly, the average num-
ber of nondominated points and standard deviation turned out to be 2,107.20 and 2,092.54,
respectively, for the 50-item multi-objective integer knapsack problem while these values
were 570.20 and 271.69, respectively, for the corresponding problems with 0–1 decision
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Table 5 Percentage of models solved when p = 3 for all problem types

Number of
nondominated
points (N )

M S
(N+1)(N+2)/2 × 100 (%) Number of

nondominated
points (N )

M S
(N+1)(N+2)/2 × 100 (%)

32 2.702 549 0.171

56 1.653 554 0.172

76 1.130 594 0.155

81 1.087 599 0.161

84 0.995 617 0.152

163 0.543 655 0.142

168 0.509 665 0.143

179 0.485 693 0.136

182 0.481 704 0.148

206 0.427 721 0.132

249 0.357 733 0.128

280 0.317 784 0.121

283 0.312 799 0.123

295 0.300 843 0.117

298 0.291 912 0.106

356 0.246 1,022 0.094

375 0.243 1,056 0.092

392 0.231 2,790 0.037

434 0.216 5,652 0.019

470 0.219 6,500 0.016

486 0.186 8,288 0.013

519 0.177 10,701 0.010

534 0.173

variables. In our experiments on 100-item multi-objective integer knapsack problem, the
average number of nondominated points increased to 9,361.00 from 6,786.20 and the stan-
dard deviation increased to 14,756.72 from 2,954.61.

Our experiments on the three-objective integer knapsack problem also showed that we
solve approximately the same number of models for each nondominated point on average.
We observe that M S/N is in the interval [1.80, 2.32] with an average of 2.08 for the three-
objective 0–1 knapsack problem while this ratio is in the interval [1.78, 2.43]with an average
value of 2.18 for the three-objective integer knapsack problem. We also observed that the
average solution time per nondominated point improved from 1.16 to 0.24 s, and the stan-
dard deviation of the solution time per nondominated point decreased to 0.22 from 1.51,
for the multi-objective integer knapsack problem, considering all three objective knapsack
problems.

Although we develop two exact algorithms, Algorithm 1 and Algorithm 2, to generate
all nondominated points and Algorithm 2 provides substantial decrease in the computational
times, determining all nondominated points may still not be very practical especially for large-
sized MOCO problems. The total number of nondominated points could be prohibitively
large. The solution times may be substantially reduced if problem specific algorithms that
exploit the structures of the problems can be used.
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Table 6 Percentage of models
solved when p = 4 for all
problem types

Number of
nondominated
points (N )

M S∑N
n=0 (n+1)(n+2)/2

× 100 (%)

110 0.345

169 0.147

211 0.095

212 0.074

228 0.097

337 0.048

396 0.034

401 0.028

489 0.021

629 0.015

794 0.007

1,228 0.004

1,297 0.004

1,378 0.003

2,048 0.001

4 Conclusions

We developed two exact algorithms to generate all nondominated points for MOCO prob-
lems. We compared the performance of our algorithm with the algorithms proposed by Sylva
and Crema (2004) and Özlen and Azizoğlu (2009). Although we showed that our algorithm
works much better on selected test problems including MOKP, MOST and MOSP problems,
computational times increase considerably as the problem size and the number of conflict-
ing objectives increase. This is natural since the number of nondominated points increases
substantially with the problem size.

As a future work, it may be useful to identify and focus on preferred regions incorporating
decision maker’s preferences. Our exact algorithms may be modified to accomplish this task
by concentrating at the identified regions of the nondominated frontier. Currently, we are
working on such variations of our algorithm.

We may also modify the algorithms by using some smart start techniques for solving the
integer programs since we solve a number of closely related models at each iteration. For
example, the solutions of previous iterations can be introduced as the starting solution of the
current iteration. Furthermore, it may be useful to employ problem-specific information to
customize the algorithms to certain MOCO problems. This and other potential improvements
await future research.
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