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Abstract Many derivative-free methods for constrained problems are not efficient for
minimizing functions on “thin” domains. Other algorithms, like those based on Augmented
Lagrangians, deal with thin constraints using penalty-like strategies. When the constraints
are computationally inexpensive but highly nonlinear, these methods spend many potentially
expensive objective function evaluations motivated by the difficulties in improving feasibility.
An algorithm that handles this case efficiently is proposed in this paper. The main iteration
is split into two steps: restoration and minimization. In the restoration step, the aim is to
decrease infeasibility without evaluating the objective function. In the minimization step, the
objective function f is minimized on a relaxed feasible set. A global minimization result will
be proved and computational experiments showing the advantages of this approach will be
presented.

Keywords Derivative-free optimization · Disconnected domains · Global convergence ·
Numerical experiments · Thin domains

1 Introduction

In many practical problems one needs to minimize functions whose derivatives are not avail-
able for several reasons. The recent book by Conn et al. [13] surveys the most relevant existing
approaches for the unconstrained case and predicts that much research should be expected
with regards to constrained problems in forthcoming years. Unconstrained techniques based
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on local explorations, line searches or quadratic models [11,14,36] can be suitably adapted
to box-constrained and linearly constrained derivative-free optimization [20–22,34]. Mesh
adaptive direct search methods [3,5] are very effective for practical problems in which a
“robust” feasible set may be efficiently explored by means of local samples that do not
involve function evaluations at infeasible points. Problems with more general constraints
were addressed by means of Augmented Lagrangian approaches in [15,32] and [18,23,25].
In [23], the Augmented Lagrangian method is based on the Lancelot approach [10], whereas
in [15] and [25] the authors use the Algencan framework [1]. (See www.ime.usp.br/~egbirgin/
tango.) In [15] two types of constraints are considered: the “difficult” ones are included in
the augmented formulation of the Lagrangian, whereas “easy” constraints remain in the sub-
problems that are solved at each outer iteration. In this way, subproblems may be effectively
solved by specific algorithms or by algorithms based on the Mads [3,24] approach. Easy
constraints may be sometimes identified with the “non-relaxable” constraints considered in
[4].

The Augmented Lagrangian approach imposes the evaluation of the objective function and
the (difficult) constraints at the same (perhaps infeasible) points. This is not convenient when
the objective function is very expensive to compute and the current point is infeasible. In this
case we would like to restore feasibility without spending objective function evaluations, a
resource that is not available in Augmented Lagrangian methods.

On the other hand, methods that maintain feasibility of all the iterates, such as Mads-like
and barrier methods, cannot work well in the presence of nonlinear equality constraints, or
nonlinear very thin domains.

This state of facts motivated us to revisit a traditional approach for derivative-free nonlin-
ear programming. In 1969, Paviani and Himmelblau [31] adapted the simplex Nelder-Mead
method [30] for constrained optimization. Their iterative method employs a decreasing tol-
erance for infeasibility that depends on the simplex size. Whenever a trial point violates
that tolerance, it is replaced by a restored point whose feasibility violation can be admitted.
Clearly, this procedure produces severe simplex deformations which impair its chances of
practical convergence. However, the idea of using decreasing infeasibility tolerances is quite
valuable and has been employed in several modern methods for constrained (not necessarily
derivative-free) optimization [7,9,17,26,27].

We will say that the feasible domain of an optimization problem is “thin” if at least one
of the following two properties hold:

1. For a considerable number of feasible points, say x , given any direction d and any scalar
α > 0, the probability that x + αd is feasible is very small (perhaps zero).

2. The domain is disconnected, which means that it can be separated at least into two
nonempty subsets, each one belonging to a different disjoint open set.

Observe that the second property is, in some sense, a limit case of the first one, since a
disconnected domain may be connected by means of a finite number of segments, which are
obviously thin.

Except in pathological cases, a single equality constraint is enough to define a thin domain.
In general, we will focus on problems in which:

1. Derivatives of the objective function are not available. Gradients of the constraints may
be available or not.

2. The evaluation of the objective function is computationally expensive, but the constraints
are easy to evaluate.

3. Although the constraints are inexpensive, they define a domain for which finding a fea-
sible point may require several (cheap) numerical computations.
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At each iteration of the algorithm introduced in this paper, we define a relaxed “fat”
domain on which we (approximately) minimize the objective function using an algorithm
that, presumably, handles efficiently these relaxed cases. Here we use “fat” as a synonym
of “not-thin”. We use a restoration procedure that does not involve the objective function
for initializing the subproblem resolution. The infeasibility tolerance for the relaxed domain
tends to zero as long as iterations advance. The combination of objective-function-free res-
torations and derivative-free relaxed minimizations produces a sequence that converges to
the solution of the original problem, under reasonable algorithmic conditions.

The main algorithm will be described in Sect. 2, where we give a global convergence
result. In Sect. 3 we describe a computer implementation. In Sect. 4 we show numerical
experiments. Section 5 is devoted to conclusions of the present work.

Notation We denote N = {0, 1, 2, . . .}.
We define R+ = {t ∈ R | t ≥ 0} and R++ = {t ∈ R | t > 0}.
B(x,�) denotes the closed ball with center x and radius �, with respect to a given norm

‖ · ‖.

2 Algorithms

The problem under consideration in this paper is:

Minimize f (x) subject to g(x) ≤ 0 and x ∈ �, (1)

where f : Rn → R, g : Rn → R
p and the closed set � ⊆ R

n represents the non-relaxable
constraints in the sense of [4]. Equality constraints of the form h(x) = 0 are supposed to be
replaced in (1) with the two obvious inequalities h(x) ≤ 0 and−h(x) ≤ 0. This replacement
causes an increase in the total number of constraints, but does not affect the convergence of
the algorithm. The numerical aspects remain unchanged because we suppose that the evalu-
ation of the constraints is inexpensive. In Sect. 4 we solve a set of equality-constrained test
problems and compare with algorithms that deal explicitly with the case h(x) = 0.

A high-level description of the main algorithm is given below. The lack of details in
Algorithm 1.1 allows one to use efficient methods which exploit the special structure of the
problems. An implementation of each step is fully given in Sect. 3.

In the rest of the paper, given wk ∈ R
p
+, a point x that satisfies

g(x) ≤ wk and x ∈ � (2)

will be called wk-feasible.

Algorithm 1.1 Let x0 ∈ � be an initial approximation. Let w1 ∈ R
p
+. Set k ← 1.

Step 1 (Restoration)
Compute a wk-feasible point yk (Any strategy can be used, in order to find yk).

Step 2 (Minimization)
Using Algorithm 1.2 below, compute a wk-feasible “approximate solution” xk of
the following subproblem:

Minimize f (x) subject to g(x) ≤ wk and x ∈ �. (3)

Step 3 (Updating)
Choose wk+1 ∈ R

p
+, set k ← k + 1 and go to Step 1.
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Note that the restoration step plays no role in the formal definition of the algorithm,
since we suppose that the minimization step finds a wk-feasible “approximate solution”. The
restored point yk will be used, in practice, as starting point for solving the subproblem (3).
Feasible starting points are necessary when we use derivative-free algorithms based on fea-
sible iterates. (like coordinate search, GSS [20] and standard Mads [3]) The definition of
wk+1 is not given in Algorithm 1.1. However, since wk is related to the level of allowed
infeasibility, we actually need {wk} converging to 0 in order to find feasible points.

Algorithm 1.2 describes the way in which xk is computed at Step 2 of Algorithm 1.1 and,
in fact, defines what we mean by “approximate solution” of the subproblem (3). Again, we
present a high-level description of the algorithm here. Practical details are given in Sect. 3.

At Step 2 of Algorithm 1.2 we use an operator ϕk . This operator is applied to a direction
v and evokes the projection of the point x + v on the relaxed domain. Thus, if x + v is
wk-infeasible, the point x + ϕk(v) is wk-feasible. The operator ϕk is not known in advance,
and is evaluated at Step 2.2 employing a restoration procedure similar to the restoration step
of Algorithm 1.1. In Sect. 3 we show one possible way of performing this restoration.

Algorithm 1.2 (Minimization step at Algorithm 1.1)

Assume that β ≥ 1, � > 0, ηk > 0, mk is a given positive integer and yk comes from the
restoration Step 1 of Algorithm 1.1. Define z0 = yk and set �← 0.

Step 1 (Improvement step)

Find z ∈ � such that g(z) ≤ wk and f (z) ≤ f (z�). Note that z = z� is a pos-
sible choice, but, in practice, we suggest using an heuristic or a well-established
derivative-free algorithm to solve the relaxed “fat” subproblem (3).
Set z�+1 = z and �← �+ 1.

Step 2 (Poll step)
Set Vk ← ∅, j ← 1 and choose ηk,� ∈ [ηk, βηk].

Step 2.1 Compute a “pseudo-random” direction v ∈ B(0,�).
(The more usual way is to use the infinity norm to define B, employing a pseudo-
random uniform generator, like [35], to generate points in the interval [−�,�]n).
We describe a different way in Sect. 3.

Step 2.2 If z� + v is wk-feasible, define ϕk(v) = v and go to Step 2.3. Else, try to find, by
means of restoration, a new direction ϕk(v) such that z� + ϕk(v) is wk-feasible. If
this procedure is successful, go to Step 2.3. Else, go to Step 2.4.

Step 2.3 If

f (z� + ϕk(v)) < f (z�)− ηk,� , (4)

define z�+1 = z� + ϕk(v), set �← �+ 1 and go to Step 1. Else, go to Step 2.4.

Step 2.4 Set Vk ← Vk ∪ {v}.
If j = mk , set xk = z� and return to Step 3 of Algorithm 1.1. Else, set j ← j + 1
and go to Step 2.1.

At Step 1 of Algorithm 1.2 one tries to improve the objective function value in the region
defined by g(x) ≤ wk, x ∈ �. The idea will be to use a well-established derivative-free
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optimization method for this purpose, trying to assure that xk is wk-feasible. Note that the
relaxed subproblem (3) is not thin-constrained and can be solved by several algorithms
described in literature [3,4,20]. This step is not essential for proving global convergence,
which is based on the procedure adopted at Step 2. At Step 2 one chooses an arbitrary “pseudo-
random” point on the ball with radius � centered on the current wk-feasible point and we
“project” this point on the wk-feasible region. If, after mk consecutive trials, the objective
function fails to decrease enough or restoration cannot be completed, the algorithm returns
with the last iterate computed by Algorithm 1.2. The following assumptions guarantee that
Algorithm 1.1, with Algorithm 1.2 at the minimization step, finds global minimizers within
a ball of radius �. If � is bounded and � is large enough, this means that global minimizers
of the original problems are found up to any arbitrary precision.

Assumption P1 The functions f and g are continuous.

Assumption P2 For all w ≥ 0 the function f is bounded below on the set defined by x ∈ �

and g(x) ≤ w.

Under Assumptions P1 and P2, it is easy to see that Algorithm 1.2 performs a finite
number of iterations. Otherwise, we would have an infinite sequence such that f (z�+1) <

f (z�) − ηk,� ≤ f (z�) − ηk for all � and, thus, lim�→∞ f (z�) = −∞. Moreover, Assump-
tion P2 is not restrictive, since it may be guaranteed by the addition of bound constraints on
the original problem.

Assumption A1 The sequences {‖wk‖} and {ηk} tend to zero.

Assumption A2 If {xk}k∈K is a convergent subsequence generated by Algorithm 1.1, the
set V , defined by

V =
⋃

k∈K

Vk,

is dense in B(0,�).

Assumption A2 resembles the density requirements of the MADS framework but makes no
use of dense directions in the unitary sphere lying in integer lattices. Our approach is closely
connected to the simple framework described in [37], where the use of sufficient decrease
and dense directions in the unitary sphere avoided the necessity of integer lattices.

Assumption A3 If {xk}k∈K is a convergent subsequence generated by Algorithm 1.1, vk ∈
Vk for all k ∈ K , and limk∈K xk + vk = z, where g(z) ≤ 0 and z ∈ �, then, for all k ∈ K
large enough, the restoration procedure that computes ϕk(v

k), at Step 2.2 of Algorithm 1.2,
is successful.

According to Step 2 of Algorithm 1.2, the directions of Vk are of two types: those asso-
ciated with a successful calculation of ϕk and those associated with a failure. When the
restoration procedure for a wk-infeasible point z� + v fails, condition (4) is not verified and,
therefore, there is no information about f (z� + ϕk(v)). If this lack of information occurred
at infinitely many iterations of Algorithm 1.1, the set Vk would contain several directions
that could not be used as poll directions, due to the wk-infeasibility. Thus, we would not be
able to guarantee optimality of limit points. Assumption A3 is necessary to ensure that the
algorithm has really polled all the directions of the sets Vk , for all sufficiently large k. To
have this property, the process that constructs ϕk cannot fail. Numerical experiments show
that Assumption A3 is usually satisfied.
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Assumption A4 If {xk}, {vk}, K , and z are as in Assumption A3, then

lim
k∈K

xk + ϕk(v
k) = z.

It is known that the orthogonal projection is a continuous function, when specific types
of sets are considered. Since we construct the operator ϕk to act as a projection operator,
what Assumption A4 says is that ϕk has to resemble the continuity property of an orthogonal
projector. In fact, if the set {x ∈ � | g(x) ≤ wk} is convex and z� + ϕk(v) is the projection
of z� + v on this set, then the distance between z� + ϕk(v) and z will not be bigger than
the distance between z� + v and z, for all feasible z. This will be enough to guarantee the
fulfillment of Assumption A4. This observation suggests that a reasonable way to compute
ϕk(v) at Step 2.2 of Algorithm 1.2, consists of minimizing the distance between z� + v and
the feasible set. When k is large and z� + v is close to the feasible set, it is reasonable to
assume that a suitable algorithm not employing functional evaluations will be able to find a
projection-like restored point that approximates z� + v to the feasible region, as required by
Assumption A3.

Theorem 2.1 Assume that {xk} is generated by Algorithm 1.1, � is closed, Assumptions
P1–P2 and A1–A4 hold, and x∗ is a limit point of the sequence {xk}. Then, x∗ is a global
solution of the problem

Minimize f (x) subject to g(x) ≤ 0, x ∈ � and ‖x − x∗‖ ≤ �.

Proof By the hypothesis, g(xk) ≤ wk and xk ∈ � for all k. Then, by Assumptions P1, A1
and the closedness of �, we have that g(x∗) ≤ 0 and x∗ ∈ �.

Assume now that limk∈K xk = x∗. Let z ∈ � be such that

‖z − x∗‖ ≤ �

and g(z) ≤ 0. Since z−x∗ ∈ B(0,�), by Assumption A2 and the finiteness of Vk , there exists
an infinite set of indices K1 ⊆ K and a sequence {vk}k∈K1 such that limk∈K1 vk = z − x∗
and vk ∈ Vk for all k ∈ K1. Thus, limk∈K1 xk + vk = z. By Assumption A3, ϕk(v

k) is well
defined if k is large enough. By Assumption A4, this implies that limk∈K1 xk + ϕk(v

k) = z.
By Assumption A2, Algorithm 1.2 returns with the point xk and, for all v ∈ Vk , xk is such

that condition (4) does not hold. Then, for vk ∈ Vk , k ∈ K1 large enough,

f (xk + ϕk(v
k)) ≥ f (xk)− ηk,� ≥ f (xk)− βηk .

Taking limits, by the continuity of f we have that f (z) ≥ f (x∗). �
Remarks Since the famous anonymous paper [2], we know that one should be cautious
about the interpretation of convergence results that use “density arguments”. These results
could be insufficient to explain efficiency and robustness of the methods to which they are
applied. Moreover, the rigorous implementations of algorithms that can be guaranteed to
satisfy density requirements could be unacceptably expensive, since full generation of dense
sets demands a computational work that grows exponentially with the number of variables.
However, in the global optimization framework, if one does not use specific information about
the problem, only dense-set arguments can guarantee theoretical convergence to global opti-
mizers. For similar reasons, dense-set arguments became popular for analyzing convergence
of constrained derivative-free methods in the last few years. In general, density arguments
have been used for proving convergence to different types of stationary points in this context
[4,5,13].
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In this section we proved that the Algorithm 1.1 obtains local minimizers within a fixed
neighborhood of arbitrary radius � > 0. If � is large enough and the feasible set is bounded,
this means that the algorithm finds global optimizers of the original problem. In spite of the
drawbacks pointed out above, the proof of Theorem 2.1, as many other density-based proofs,
sheds some light on the characteristics that a practical algorithm should exhibit in order to
be reasonably efficient.

Assume that x∗ is a limit point of a sequence generated by Algorithm 1.1 and that z is
a feasible point such that ‖z − x∗‖ ≤ �. The proof of Theorem 2.1 shows that, in order
to obtain the desired property f (z) ≥ f (x∗) it is necessary to guarantee that, for k large
enough, wk-feasible points arbitrarily close to z are tested by the algorithm used to solve the
subproblems. This property is guaranteed by the assumptions of the theorem, but, in practical
terms, we want to satisfy it spending a moderate amount of computer work. This practical
requirement prescribes that, at least for k large enough (‖wk‖ small enough), f (xk) should
be smaller than f (x) for all x in a “not very small” set of wk-feasible points in the ball
B(xk,�). As a consequence of being “not very small”, the probability that points in this
set approximate any arbitrary feasible point z such that ‖z − x∗‖ ≤ �, may be significant
as k grows (although, obviously, this probability decreases dramatically with n). Now, when
‖wk‖ is small, the probability of generating feasible points using, say, random generation or
grids, may be very small. However, one of the assumptions of our problem is that constraints
are cheap and only the objective function is expensive. Therefore, given possibly infeasible
(random or grid) generated points, cheap restoration procedures may be used to generate
close feasible ones.

Algorithm 1.2 may be implemented without the improvement step (equivalently, taking
z = z� at Step 1). However, we wish to take advantage of the fact that several existing algo-
rithms are efficient for solving (3) if ‖wk‖ is not excessively small. In our implementation,
we will use DFO [11,12] for finding z at the first step of Algorithm 1.2.

3 Implementation

This section discusses implementation details regarding the algorithms of Sect. 2. Algo-
rithm 1.1 has been implemented using Algorithm 1.2 at the minimization step (Step 2).

3.1 Restoration step

In the restoration step (Step 1 of Algorithm 1.1), in order to find the point yk we consider the
following auxiliary problem

Minimize ‖y − xk‖22 subject to g(y) ≤ τwk and y ∈ �, (5)

where τ ∈ [0, 1] is a given algorithmic parameter that controls the restoration effort. The
point yk is an approximate solution of (5). For solving this subproblem we use Algencan [1]
with its default parameters, if constraint derivatives are available. The standard coordinate
search algorithm is used when derivatives of g are not available. In both cases, we assume
that the non-relaxable constraints define a box. If one fails to find an wk-feasible point in
the process of solving (5), we continue the execution of Algorithm 1.1 at Step 2 taking the
(perhaps infeasible) output of (5) as initial approximation. Since the restored point yk plays
no role in the formal definition of the algorithm, as mentioned in Sect. 2, this does not affect
the convergence proof.
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3.2 Improvement step

In the improvement step (Step 1 of Algorithm 1.2) we use DFO [11], a derivative-free trust-
region algorithm for unconstrained problems which is also able to handle general smooth
constraints. When dealing with constraints, DFO acts as an heuristic method that computes
only feasible points and, at each iteration, minimizes a quadratic model of the objective
function subject to the problem’s constraints and a suitable trust region [12]. For solving the
smooth constrained trust-region subproblems required in DFO, we use Algencan. Note that
DFO can be applied to the original problem (1). In fact, we will apply DFO directly to (1)
for numerical comparisons in Sect. 4.

3.3 Pseudo-random directions

At Step 2 of Algorithm 1.2, we compute the direction v as a pseudo-random vector with
uniform distribution in B(0,�). For this purpose we use the method of Muller [29] to gener-
ate a pseudo-random vector v′ ∈ R

n uniformly distributed in the unitary hypersphere. Then,
we choose a pseudo-random number ρ ∈ [0, 1] by means of Schrage’s algorithm [35]. The
vector v = (ρ1/n�)v′ turns out to be a pseudo-random vector uniformly distributed in the
Euclidean ball B(0,�) [6].

3.4 Computation of ϕk

Similarly to (5), we compute ṽ = ϕk(v) as an approximate solution of

Minimize ‖ṽ − v‖22 subject to g(z� + ṽ) ≤ wk and z� + ṽ ∈ �. (6)

In this way, z�+ϕk(v) has the flavor of a projection of z�+ v on the feasible set, as required
by the theoretical Assumption A4.

For solving (6) we proceed as in the subproblem (5). The case in which restoration is not
successful is covered by Step 2.2 of Algorithm 1.2.

3.5 Further implementation features

Tolerances, stopping criteria and other implementation details are given below. We employ
the usual norms: ‖ · ‖∞ (the infinity norm) and ‖ · ‖2 (the Euclidean norm).

1. At Algencan executions for solving (5) and (6) we use xk and v as initial points, respec-
tively. We employ the default parameters of Algencan, using 10−8 as stopping criteria
both for feasibility and optimality.

2. The rule for updating the tolerances wk is as follows. Initially, we define

w1
i = max{10, ‖g(x0)‖∞}, ∀i = 1, . . . , p. (7)

At the end of each iteration of Algorithm 1.1 we force the point xk , that comes from the
minimization step, to be wk+1-infeasible, taking:

wk+1
i = max{10−8, θ min{wk

i , ‖g(xk)‖∞}}, ∀i = 1, . . . , p, (8)

where θ ∈ (0, 1). In the experiments reported in this paper we used θ = 0.1.
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3. The objective function used in the improvement step by DFO has a fixed penalization of
the infeasibility:

f̄ (x) = f (x)+ ρ‖g(x)+‖22,
where g(x)+ = max{0, g(x)} (in vector form) and

ρ = max{1, | f (x0)|}/ max{1, ‖g(x0)‖∞} (9)

is the penalty parameter.
Note that the parameter ρ is fixed and that the problem of minimizing f̄ (x) subject to
g(x) ≤ 0 and x ∈ � is equivalent to the original problem (1), so, there is no loss of
generality when we consider f̄ (x) instead of the original f (x) in the algorithm. Since
we assume that the constraints are cheap and ρ is fixed, there is no loss of stability and
no significative increase of computer time can be attributed to this replacement.

4. We employ the default parameters of DFO in the improvement step. The modified
stopping criteria were: trust region radius smaller than min{10−1, max{10−3, ‖wk‖2∞}},
maximum of 1, 000n function evaluations and maximum of 1, 000 iterations. In the
constrained trust-region subproblems solved by Algencan in the context of DFO, we use
10−8 as stopping criteria for both optimality and feasibility.

5. The objective function used in the poll step is the extreme barrier function [3] with fixed
penalization of the infeasibility:

f̃ (x) =
{

f (x)+ ρ‖g(x)+‖22, if x is wk-feasible

1099, otherwise,
(10)

where the parameter ρ is defined by Eq. (9).
6. The sufficient decrease parameter ηk is defined as ηk = 10−8/k, for k = 1, 2, . . . The

parameter β is set to 1016. For each � = 1, 2, . . . , in Algorithm 1.2 we use

ηk,� = max{ηk, min{‖g(z�)‖∞, η′k, βηk}}, (11)

where η′k is defined as follows:

η′k =
{

0.01 max{1, | f (x0)|}, if k = 1

min{0.5η′k−1, ‖wk‖∞}, if k > 1.

Equation (11) guarantees that ηk,� ∈ [ηk, βηk], as required by Algorithm 1.2, and the
definition of ηk guarantees that ηk → 0. So, we ask for a substantial decrease in the poll
step, unless we already have a feasible point. The term η′k adds information about the
parameter wk in ηk,�. The idea is that we are leaving the main work to the improvement
step (DFO) at the first iterations and when xk becomes almost feasible, the poll step
really acts.

7. We choose mk = 2n for all k and also set � ≡ 1. The parameter � controls the radius of
the search in the poll step and has to be chosen according to the local optimality desired
for x∗. Our choice showed a good trade-off between optimality and computational effort.

8. We use τ = 0.1 in (5).
9. The algorithm declares success when, at the end of the minimization step, it finds xk

satisfying g(xk) ≤ 10−8. It declares failure when ‖wk‖ becomes smaller than 10−8 and
the current point xk is not wk-feasible or when the algorithm reaches the maximum of
103 iterations or the maximum of 106 functional evaluations.
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Table 1 Description of the test problems

Prob. Var. Ineq. Eq. Prob. Var. Ineq. Eq. Prob. Var. Ineq. Eq.

6 2 0 1 49 5 0 2 74 4 2 3

7 2 0 1 50 5 0 3 75 4 2 3

8 2 0 2 51 5 0 3 77 5 0 2

9 2 0 1 52 5 0 3 78 5 0 3

14 2 1 1 53 5 0 3 79 5 0 3

26 3 0 1 54 6 0 1 80 5 0 3

27 3 0 1 55 6 0 6 81 5 0 3

28 3 0 1 56 7 0 4 87 6 0 4

32 3 1 1 60 3 0 1 99 7 0 2

39 4 0 2 61 3 0 2 107 9 0 6

40 4 0 3 62 3 0 1 109 9 4 6

41 4 0 1 63 3 0 2 111 10 0 3

42 4 0 2 68 4 0 2 112 10 0 3

46 5 0 2 69 4 0 2 114 10 8 3

47 5 0 3 71 4 1 1 119 16 0 8

48 5 0 2 73 4 2 1

4 Numerical experiments

We compared our algorithm against the C++ implementation of an Augmented Lagrang-
ian derivative-free algorithm [25], called HOPSPACK [33], and the Fortran implementation
of DFO. From now on, Algorithm 1.1, with the implementation described in the previous
section, will be called Skinny.

We employed 47 problems from the Hock and Schittkowski collection [19] in our tests.
This test set is a well-known collection of 116 small problems commonly used to test deriv-
ative-free algorithms. We selected only the problems that exhibit thin domains (i.e. having
at least one equality constraint), since Skinny was designed to handle this case.

The derivatives of the constraints were used by DFO and by Algencan in the restoration
problems (5) and (6). Skinny was implemented in Fortran 90 and DFO in Fortran 77. Both
were compiled with gfortran-4.2 and ran on a computer with 8GB of RAM, two Intel
Core i7 2.67GHz processors and 64bit Linux (Ubuntu) operational system. The problems
considered in this study are reported in Table 1, using their numbers in [19]. In this table, Var
denotes the number of variables, Ineq represents the number of inequality constraints, and
Eq represents the number of equality constraints.

For algorithmic comparisons we used data and performance profiles as described in
[16,28]. We will consider that an algorithm has successfully converged if the obtained solu-
tion x̄ is feasible and:

| f (x̄)− fL|
max{1, | f (x̄)|, | fL|} ≤ 10−1, (12)

where fL is the best value of f among the feasible solutions found by the compared algo-
rithms. The number of function evaluations was used as performance measure.

For the numerical comparisons, we required a feasibility tolerance of 10−8 in the three
algorithms. In Algencan we employed the default algorithmic parameters. Table 2 shows the
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Table 2 Comparison between Skinny, HOPSPACK and DFO in 47 problems having thin domains

Prob. Skinny HOPSPACK DFO

f #FE f #FE f #FE

6 8.8304E−08 97 4.8400E+00∗ 151 2.2009E−23 14

7 −1.7321E+00 150 6.9315E−01 325 −1.7321E+00 10

8 −1.0000E+00 56 −1.0000E+00∗ 187 −1.0000E+00 3

9 −5.0000E−01 109 −5.0000E−01 26 −5.0000E−01 12

14 1.3935E+00 142 1.3941E+00 202 1.3935E+00 9

26 2.1160E+01 33 2.1160E+01 585 1.2942E−06 40

27 4.0000E+00 269 4.0006E+00∗ 1,358 4.0000E+00 33

28 3.6892E−27 43 7.7034E−08 264 2.3039E−18 25

32 1.0000E+00 209 1.0000E+00 51 1.0000E+00 11

39 −1.0000E+00 302 −1.0000E+00 830 −1.0000E+00 23

40 −2.5000E−01 215 −2.5056E−01∗ 897 −2.5000E−01 14

41 1.9259E+00 348 1.9259E+00 292 1.9259E+00 34

42 1.3858E+01 254 1.4000E+01 779 1.3858E+01 14

46 2.1090E−02 501 3.3376E+00 777 2.9829E−07 77

47 1.4548E−08 302 1.2495E+01 901 1.8714E−06 50

48 1.4969E−16 76 1.1174E−06 497 1.2711E−18 29

49 3.7388E−05 261 1.4294E−04 1,002 2.7801E−05 72

50 7.7030E−06 246 5.2937E−07 290 2.1369E−07 46

51 8.4671E−17 88 1.2537E−06 142 1.1025E−18 16

52 5.3267E+00 337 5.3267E+00∗ 311 5.3266E+00 20

53 4.0930E+00 295 4.0930E+00 216 4.0930E+00 18

54 −1.5581E−01 335 – − −1.5399E−01 20

55 6.3333E+00 223 6.0000E+00∗ 1 6.6667E+00 9

56 −1.0000E+00 93 −1.0000E+00 2,075 −3.4560E+00 45

60 3.2570E−02 236 5.4709E−02∗ 465 3.2571E−02 29

61 −1.4365E+02 196 −1.4300E+02 621 0.0000E+00∗ 1

62 −2.5698E+04 33 −2.6272E+04 233 −2.6273E+04 32

63 9.6172E+02 159 9.6261E+02∗ 317 9.6172E+02 10

68 −9.2041E−01 439 −8.4354E−01∗ 1,316 −9.2042E−01 106

69 −9.5671E+02 581 −9.5665E+02∗ 2,471 −9.5107E+02 73

71 1.7014E+01 398 1.7031E+01∗ 1939 1.6000E+01∗ 1

73 2.9894E+01 305 3.0160E+01 223 2.9894E+01 16

74 5.1265E+03 279 5.1447E+03∗ 46,145 0.0000E+00∗ 1

75 5.1744E+03 2453 5.2331E+03∗ 22,678 0.0000E+00∗ 1

77 2.4151E−01 598 4.6807E+00∗ 1,904 2.4151E−01 85

78 −2.9197E+00 368 −2.8917E+00∗ 869 −2.9197E+00 27

79 7.8777E−02 495 2.4186E−01∗ 1,054 7.8777E−02 40

80 5.3950E−02 458 1.0000E+00∗ 557 5.3950E−02 23

81 5.3950E−02 481 9.9999E−01∗ 557 5.3950E−02 23

87 8.9276E+03 493 9.3254E+03∗ 16,244 4.2090E+04∗ 1

99 −8.3108E+08 777 −7.4573E+08∗ 729 −8.3108E+08 82
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Table 2 Continued

Prob. Skinny HOPSPACK DFO

f #FE f #FE f #FE

107 5.0550E+03 858 5.0628E+03∗ 7,232 5.0550E+03 23

109 5.3621E+03 775 5.5010E+03∗ 57,551 0.0000E+00∗ 1

111 −4.7761E+01 4,607 – − −4.7760E+01 561

112 −4.7761E+01 1,815 −4.7761E+01 730 −4.7760E+01 85

114 −1.7688E+03 1,359 – − −1.7688E+03 276

119 2.4490E+02 1,331 2.4493E+02 944 2.4490E+02 90

The function values marked with ‘∗’ are infeasible solutions

numerical results, where the first column is the problem’s number and, for each algorithm, f
is the functional value and #FE is the number of objective function evaluations. A maximum
of 1 hour of CPU time was allowed for each problem and ‘−’ indicates that the algorithm
has exceeded the maximum CPU time without returning information about the last iterate.
The symbol ‘∗’ indicates that a feasible point could not be obtained.

Table 2 shows that Skinny was always able to find a feasible point. DFO failed to find
feasible points in 6 problems because it started with an infeasible point and was unable to
find two feasible points to construct the linear model. HOPSPACK failed to find feasible
points in 22 problems.

The comparisons between Skinny and HOPSPACK show the advantages of separating the
minimization from the feasibility process when the latter is computationally easier. The data
profile in Fig. 1a shows that Skinny converged in 45 problems while HOPSPACK converged
only in 16. Moreover, using the same number of function evaluations, Skinny solved approx-
imately twice the number of problems that HOPSPACK solved. The number of infeasible
points found by HOPSPACK can be decreased if we strengthen its stopping criteria, at the
cost of an enormous increase in the number of function evaluations.

The comparison of Skinny and DFO in Fig. 1b shows that the first one solves 4 more
problems. On the other hand, DFO is more efficient in the sense that, when both algorithms
solve a problem, DFO spends less functional evaluations. Both features were expected since
both the constraint-relaxing strategy and the poll step of Skinny aim to improve robustness,
and may be unnecessarily conservative when the problems are easy.

In order to show how � controls the local optimality achieved by Skinny, we try to mini-
mize f (x) = x2 cos(x/3) subject to x ∈ [−30, 30]. This problem has 5 minimizers: 0,±3π ,
and ±9π , the last two being global minimizers. Using x0 = 0 as starting point, with � = 1
Skinny finds the point x∗ = 0. If � = 10 is used, the point x∗ = 3π is found and if � = 30
is used, then the global minimizer x∗ = 9π is found. In practice, we also have to increase
mk when increasing �, since the number of iterations is finite and a sufficient number of poll
directions have to be used in order to fulfill Assumption A2.

4.1 The case wk = 0

The good performance of the stand-alone DFO and the fact that the convergence theory of
Skinny does not depend on wk > 0 raised the question as to the possible advantages of
working with the original domains (wk = 0) instead of wk-feasible sets.
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Fig. 1 Data (a) and performance (b) profiles for the comparison among Skinny, DFO and HOPSPACK

Table 3 Skinny with wk = 0 performed better than Skinny using wk -feasible sets and had a behavior similar
to DFO

Feas. Conv. Eff. Function evaluations

[0, 102] (102, 103] (103, 104]
DFO 41 41 34 38/41 3/41 0/41

Skinny wk = 0 47 46 13 42/47 3/47 2/47

Skinny 47 45 1 8/47 34/47 5/47

We compared the “wk = 0” version of Skinny against its standard version and against
DFO, in the same set of 47 problems described in Table 1. For each algorithm in Table 3,
Feas represents the number of problems for which the solver has found a feasible solution,
Conv represents the number of problems where there was convergence to a point with the
best functional value, in the sense of (12), and Eff represents the number of problems for
which the solver was the fastest. In the last three columns we show the number of problems in
which each algorithm has spent up to 102, between 102 and 103 and more than 103 function
evaluations, respectively. We can see that Skinny with wk = 0 performs very similarly to
DFO in terms of function evaluations and also inherits the good convergence properties of
the theory presented here, converging in 46 problems.

The naive conclusion could be that it is better to use wk = 0 instead of wk > 0. However,
the reason for the observed behavior is that, in these tests, it is not harder to work with the
true domains than with their relaxations.

To show the advantages of working with a strictly positive wk , suppose now that the fea-
sible domain of the problem is thin and also disconnected. As an example, we present the
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Fig. 2 A sufficiently positive value for wk connects disconnected domains

integer programming problem of minimizing f (x) = x2 subject to x ∈ {1, 2, 3, 4, 5}. The
integrality constraint can be written as the differentiable equality constraint

∏5
i=1(x− i) = 0

and the global minimizer is x∗ = 1. Suppose that the starting point is x0 = 10.
Using wk = 0, Skinny first finds y1 = 5 as a feasible point in the restoration step. There is

nothing to be done by DFO, since this point is a local minimizer, and then, after the poll step,
Skinny declares convergence to x̄ = 5. Now, using a sufficiently large wk , all the discon-
nections in the domain disappear and the initial wk-feasible set is an interval containing the
points {1, 2, 3, 4, 5}. DFO is able to converge to the global unconstrained minimizer x1 = 0
and, in the steps that follow, the global solution of the problem is found. Fig. 2 outlines the
general idea of connection in disconnected domains when wk > 0.

Another advantage of working with wk > 0 is when a direct search method is more
indicated for a problem than DFO. In the same way as DFO cannot deal with disconnected
domains, direct search methods are not able to find feasible points on thin domains. As a
consequence, if wk = 0, Skinny would rely solely on the poll step, which could cause a
decrease in the performance.

5 Final remarks

We presented a new algorithm for derivative-free constrained optimization which, under
suitable assumptions, converges to local minimizers associated with a neighborhood of fixed
size �. Convergence to global minimizers takes place if the feasible domain is bounded and
� is large enough.

The new algorithm is based on successive minimizations on relaxed feasible sets. Con-
vergence proofs follow even without feasibility relaxation, but, in this case, assumptions are
harder to satisfy. We are especially interested in problems in which the main computational
cost is associated with objective function evaluations, whereas the feasible set may exhibit
high nonlinearity that could complicate the process of getting feasible points.

Handling thin feasible regions (and, in the limit, disconnected domains) may be partic-
ularly hard for algorithms based on direct search or Augmented Lagrangian approaches.
Direct search methods have severe difficulties in preserving feasibility whereas penalty-like
methods may spend many unnecessary functional evaluations motivated by the necessity of
achieving feasibility.

We compared the new method against two well-established derivative-free algorithms:
the first one is based on Augmented Lagrangians [25,33] and the second one is supported
on trust-region ideas [11,12]. In principle, these algorithms are able to handle thin feasi-
ble regions. Moreover, the Augmented Lagrangian method may be implemented in such a
way that convergence to global minimizers holds [8]. The numerical results show that our
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algorithm spends less function evaluations than the Augmented Lagrangian method and
always finds a feasible solution. Moreover, we showed the advantages of working with wk-
feasible sets (wk > 0) in problems having disconnected thin domains. The new algorithm
was shown to be able to solve more problems than the trust-region method DFO.

The flexibility of the new algorithm allows one to use different derivative-free methods
both in the restoration phase and in the minimization phase.

The source code of the algorithm and the complete tables with the numerical results are
available in www.ime.unicamp.br/~ra079963/skinny.
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