
J Glob Optim (2013) 55:771–799
DOI 10.1007/s10898-012-9897-0

Improving differential evolution through a unified
approach

Nikhil Padhye · Piyush Bhardawaj · Kalyanmoy Deb

Received: 20 March 2011 / Accepted: 16 March 2012 / Published online: 5 April 2012
© Springer Science+Business Media, LLC. 2012

Abstract Only a few attempts in past have been made in adopting a unified outlook towards
different paradigms in evolutionary computation (EC). The underlying motivation of these
studies was aimed at gaining better understanding of evolutionary methods, both at the level of
theory as well as application, in order to design efficient evolutionary algorithms for solving
wide-range of complex problems. However, the past descriptions have either been too general
or sometimes abstract in issuing a clear direction for improving an evolutionary paradigm
for a task-specific. This paper recollects the ‘Unified Theory of Evolutionary Computation’
from past and investigates four steps—Initialization, Selection, Generation and Replacement,
which are sufficient to describe traditional forms of Evolutionary Optimization Systems such
as Genetic Algorithms, Evolutionary Strategies, Evolutionary Programming, Particle Swarm
Optimization and differential evolution (DE). Then, a relatively new evolutionary paradigm,
DE, is chosen and studied for its performance on a set of unimodal problems. Discovering
DEs inability as an efficient solver, DE is reviewed under ‘Unified Framework’ and functional
requirements of each step are evaluated. Targeted towards enhancing the DE’s performance,
several modifications are proposed through borrowing of operations from a benchmark solver
G3-PCX. Success of this exercise is demonstrated in a step-by-step fashion via simulation
results. The Unified Approach is highly helpful in understanding the role and re-modeling
of DE steps in order to efficiently solve unimodal problems. In an avalanching-age of new
methods in EC, this study outlines a direction for advancing EC methods by undertaking a
collective outlook and an approach of concept-sharing.

N. Padhye (B)
Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge,
MA 02139, USA
e-mail: npdhye@mit.edu

P. Bhardawaj · K. Deb
Department of Mechanical Engineering, Indian Institute of Technology Kanpur, Kanpur 208016,
Uttar Pradesh, India
e-mail: bhardwaaj.piyush@gmail.com

K. Deb
e-mail: deb@iitk.ac.in

123

772 J Glob Optim (2013) 55:771–799

Keywords Evolutionary computation · Optimization · Genetic algorithms ·
Differential evolution · Computational complexity

1 Introduction

Much of the early research and development in evolutionary based computational methods
occurred independently without any interaction(s) among various groups [18]. It was around
late 1980s and early 1990s when the confluence of these paradigms began, which eventu-
ally led to the agreement on the term “Evolutionary Computation”. Succeeding interactions
among the evolutionary computation researchers led to the breeding of new algorithms,
namely, Genetic Programming (GP), messy GAs, Samuel, CHC, Genocoop, Genitor, etc.
The period afterwards marked the development of two major meta-heuristic techniques for
optimization: Particle Swarm Optimization and Ant Colony Optimization, and the adaption
of Genetic Annealing algorithm giving birth to Differential Evolution (DE)—all now being
tagged under Evolutionary Computation and collectively referred to as Evolutionary Algo-
rithms (EAs). In fact, the field of Evolutionary Computation nowadays includes and ties
closely with self-organizing systems [19], artificial life [25], Memetic and Cultural Algo-
rithms [23], Harmony Search [3], Artificial Immune Systems [5], and learn-able evolution
model [1]. It is fair to state that the frontiers of EC reach far than ever expected but the
growth in different EC areas continues without much interdependence. To educate oneself
on popular EA (and related) paradigms reader is referred to following standard resources
[6,12,18,22]. For more information on general overiew of other optimization methods the
reader is referred to [16,20,21].

In spite of advances in different EA paradigms there have been only a few attempts, if not
the lack of interest, in search for a framework which is capable of conceptualizing any given
evolutionary algorithm and explain its behavior. A plausible approach could be to think about
decomposing an EA into key standard components (where standard components assembled
together represent the EA). Then, by understanding the role of each component individu-
ally and associated interactions amongst the components; insights into an EA’s performance
can be drawn. If successful, such a strategy shall provide a generic representation for dif-
ferent evolutionary paradigms itself and we shall refer this to as Unified Approach towards
EC. Two notable attempts from the past adopting the Unified Approach have been made in
[7,18]. However, the more challenging question—How to use Unified Approach to improve
an evolutionary algorithm? or any procedural demonstration stays undressed.

This paper samples concepts from past two studies [7,18] and presents a Unified Approach
for evolutionary algorithms (like GAs, ES, EP, PSO and DE); in context to real-parameter
optimization for unimodal problems. Then the primary focus is shifted on the performance
of standard DE algorithm compared against a benchmark genetic algorithm G3-PCX [9].
After discovering inefficient DE performance, Unified Approach is adopted in analyzing and
altering key DE steps. The DE steps are modified by borrowing ideas from G3-PCX and
gradual improvement in performance is noted. Through a series of seamless modifications
DE’s performance is enhanced to an extent where it becomes comparable to the benchmark
results, and the modified DE algorithm becomes to equivalent to G3-PCX. The procedure
highlights that how using the Unified Approach frame-work the similarities and differences
between two algorithms can be understood, and based on the functional requirements how
the key algorithmic steps are modified to meet the desired performance. The study demon-
strates that as the individual steps of two algorithms become similar; the performance-gap is
lessened and when the algorithmic equivalence is achieved the performances match. It also

123

J Glob Optim (2013) 55:771–799 773

becomes evident that in order to understand and improve the performance of an EA its design
should be noted and the non-linear interactions among different operators along with their
synergistic effect should be considered.

The rest of the paper is structured as follows: Sect. 2, presents an Unified Framework
for evolutionary optimization algorithms and discusses several EA paradigms based on this
framework. Section 3, provides an introduction to unimodal test problems chosen in this paper
and description on the experimental methodology. The performance of benchmark algorithm,
G3-PCX, specifically designed to solve unimodal problems is also presented here. Sections 5
and 6, detail the performance of standard DE and its several variants oriented towards per-
formance enhancement. Details on several proposed strategies for modifications are also
provided here, along with the reasoning for their effectiveness or ineffectiveness. Section 7,
compares the performance of standard DE along with its variants and benchmark algorithms
on problems with large number of variables. Finally, Sect. 8 concludes the paper and suggests
the direction for the future work.

2 Recollection of unified framework for evolutionary algorithms: a modest description

The most notable breaking new ground attempt in adopting A Unified Approach towards
Evolutionary Computation is made in [18], serving the goal of presenting an integrated view
of Evolutionary Computation. This paper takes a step forward in demonstrating—How can
the Unified Approach be applied in better and thereby improving an EA paradigm?

The Unified Approach was introduced in [18] where the author outlined a most general
form for Evolutionary Optimization System (EOS) based on the Darwinian evolutionary sys-
tem. The key steps of such an EOS are shown in Fig. 1. The EOS has been assumed to be
constant in population size and the optimization task being that of minimization. The key steps
in EOS are: (1) Initialization—of the population randomly, (2) Selection—of the individual(s)
from the population to act as parent(s), (3) Generation—Creation of offspring(s) from the
selected parent(s), and (4) Replacement—Selection of individuals(s) to survive for the next
generation. After the Initialization; Selection, Generation and Replacement are repeated iter-
atively until a pre-specified termination criterion is met. Although detailed description on
each step are required before EOS can be simulated, but just a few steps procedure as above
is sufficient to represent major EA paradigms for optimization. It is important to guard the
reader from the fact that the description of an EOS provided here may not be suited for repre-
senting evolutionary methods which involve adaptation and self-adaptation of the parameters
etc. However, the purpose unified frame-work is not so much to represent each and every
existing evolutionary algorithm or their artifacts, but more so in identifying a common ref-
erence for different paradigms. EOS described above requires an additional elaboration on
population management i.e. how do offsprings compete for survival. Two popular ways are:
(a) Steady State—or incremental model, implying that offsprings are produced one at a time
and immediately compete for the survival i.e. if the fitness of child is better than the parent
selected, the child survives or vice-versa, or (b) Generational—or batch model, implying
that entire batch of child population is created and then there is competition for survival. The
notation adopted in this paper to represent evolutionary systems has been borrowed from
[18]—Two populations are maintained: one of size m for parents and second of size n for
offsprings (now the system being represented as EOS(m,n)). In EOS(m,n), n offsprings are
created from the parent population of size m and then each child competes for space in the
parent population. For, a special case, n = 1 we arrive at steady state model, and any value of
n > 1 symbolizes generational model. EOSs discussed in this paper are associated with real

123

774 J Glob Optim (2013) 55:771–799

Fig. 1 Evolutionary optimization system based on EV-OPT proposed by [18]

INITIALIZATION SELECTION GENERATION REPLACEMENT

Fig. 2 Four major steps in an EOS

parameter optimization where solutions are represented as vectors of real parameter decision
variables (Fig. 2).

Next, we shall discuss popular EA paradigms as instances of EOS(m,n). This exercise shall
serve following two purposes (i) provide a gateway to understand and express standard evolu-
tionary methods in an E O S(m, n) form, and (ii) re-collect popular operators being employed
in different evolutionary methods. Such a collection becomes highly useful when operators
and ideas have to be borrowed and applied from one evolutionary method to another.

2.1 Real-parameter genetic algorithms as E O S(m, n)

In real-parameter genetic algorithm (rGA), the population is randomly initialized, and a set of
genetic operations (selection, recombination, mutation, and elite-preservation) are performed
to create a new population in an iterative manner. Most rGAs differ from each other in their
genetic operations and/or replacement plan. Popular operators and/or replacement plan are
summarized as follows:

Selection—Role of this operator is to prefer better solutions to worse ones. The selec-
tion operators can be divided into two basic categories: deterministic and stochastic selection
methods. With deterministic methods, each individual in the selection pool is assigned a fixed
number that corresponds to the number of times they will be selected. For e.g., each individual
can be selected exactly once for creation of an offspring, or individuals are sorted according
to their fitness values and top few are selected (truncation selection). On the other hand,
stochastic selection methods assign a probability to each individual according to which it is
selected. Common examples of such selection methods are Uniform, Fitness-proportional,
Linear ranking and binary tournament, Nonlinear ranking and tournaments with tournament
size greater than two, etc.

The purpose of the Crossover and Mutation operators is to create new and hopefully better
solutions from parent solutions. Following lists popular operators from the GA literature. For
more details on their implementation the reader is referred to [8].

123

J Glob Optim (2013) 55:771–799 775

Generation: Crossover and Mutation

Linear Crossover, Blend Crossover, Arithematic, Simulated Binary Crossover, Fuzzy Recom-
bination Operator, Unfair Average Crossover, Simplex Crossover, Unimodal Normally Dis-
tributed Crossover, Fuzzy Connectives Based Crossover, Parent Centric Crossover, etc.

Random Mutation, Polynomial Mutation, Non-Uniform Mutation, Normally Distributed
Mutation, etc.

Replacement—can be carried out based on either steady state or generational model,
though it is worthwhile to mention that standard genetic algorithms [12,17,18] utilized a
generational model in which parents survived for exactly one generation and completely
replaced by their offsprings. Thus, standard GAs can be thought of as E O S(m, m).

2.2 Evolutionary strategies as E O S(m, n)

Evolutionary strategies (ES) [26] have been fundamentally different from binary Genetic
Algorithms principally in two ways: (1) ESs used real parameter values, and (2) early ESs
did not have any crossover-like operators (i.e. non-recombanative, though later recombana-
tive ESs were also proposed). Two standard approaches in ES, (μ+λ)-ES and (μ, λ)-ES can
be represented in form of EOS(m,n) as follows:

(μ + λ)-ES as EOS(μ, λ):

Selection—Uniform selection.
Generation—Normally Distributed Mutation.
Replacement—According to the Steady State model i.e the best fitness individual from
parent and offspring is preserved. Since offsprings compete with the parents directly,
(μ + λ)-ES is an elitist algorithm.

(μ, λ)-ES as EOS(μ, λ):

Selection—Uniform selection.
Generation—Normally Distributed Mutation.
Replacement—According to the Generational model, in which batch of λ offsprings is
created from μ parents (with λ > μ), and top μ offspring in terms of best fitness values
form the parent population for next generation. (μ, λ)-ES is a non-elitist algorithm.

Recombinative Evolutionary Strategies (μ/ρ +λ)-ES and (μ/ρ, λ)-ES can also be repre-
sented in form of EOS(m,n) by modifying Selection and Generation operations in (μ+λ)-ES
and (μ, λ)-ES, respectively.

2.3 Evolutionary programing as E O S(m, m)

Evolutionary programming (EP) is a mutation driven evolutionary algorithm applicable to
real-parameter optimization [11]. EP is similar to ES in the fact that normally distributed
mutations are performed in both algorithms. In standard EV, each population member is
deterministically selected to create an offspring (whether good or bad is a different issue). If
we consider an EOS(m,n), with parent and offspring populations of equal size (m = n), then
EP can be represented as EOS(m,m) with following operations:

123

776 J Glob Optim (2013) 55:771–799

Selection—Deterministic selection i.e. each individual is selected as a parent.
Generation—Normally distributed mutation with zero mean and fitness-function depen-
dent variance.
Replacement—According to the Generational model, 2m parents and children are com-
bined and only m individuals with best fitness values are preserved for next generation.

The EP implements a much stronger elitist survival scheme in which only the top 50 %
survive (which is also often considered as a reason for its faster convergence).

2.4 Particle swarm optimization as E O S(m, m)

Particle swarm optimization algorithms consist of several particles, flying in the search space,
and have been thought to simulate the behavior of organisms like those in the bird flocks or
fish schools. Each particle in a standard PSO maintains a personal best and a global best
is maintained for the entire swarm. Particles update their locations under the influence of
their own velocities, personal best and global best. In an earlier studies [10], the authors
presented an archive-based evolutionary algorithm which was equivalent to particle swarm
optimization (PSO). Using that analogy, PSO algorithms can represented as EOS(m,n) with
m = n, as follows:

Selection—Deterministic selection i.e. each particle (or individual) is selected as a parent.
Generation—Crossover-like operation (same as particle move equation), and random
mutation (same as “turbulence” in PSO).
Replacement—According to the Generational model, entire offspring population replaces
the parent population (along with it velocity, personal best and global best are updated).

Steady State versions of standard PSO were found to perform comparatively better [10].
So far we have reviewed rGAs, ES, EP, and PSO under Unified Approach plan and it is clear

that at the level of abstraction they are “similar”. It is worth asking a fundamental question—
Why different EOSs exist and what purpose do they serve? From a practitioner’s perspective
each evolutionary optimization paradigm has features and properties which makes it more
preferred over the other. The choice of an EOS for an application is often contextual and
depends on how easily an EOS can be adapted for the given task at hand. Obviously there
is no statutory winner or looser. The goal of this study is to substantiate this very fact while
highlighting how do the properties of an EOS (i.e. the key steps) affect its performance in
a given scenario and how can appropriate modifications be introduced to achieve desired
results. We shall return to this point later, but next we provide a detail description of DE as
an EOS.

2.5 Differential evolution as E O S(m, m)

Differential evolution (DE) algorithm has emerged as a very competitive form of evolu-
tionary computing for a decade now. The main goal of this study is to develop a thorough
understanding of DE algorithm as an EOS and then systematically exploit this understanding
in improving DE’s performance. Since majority of simulations presented in this study are
based either on standard DE or its modified versions, we provide its pseudo code in Fig. 3.

The standard DE presented here is exactly same as those in “DE/best/1/exp” [22]. The
population is scanned serially and a child is created corresponding to an individual using four
parents (the individual itself which we shall refer to as the base or index parent, best fitness

123

J Glob Optim (2013) 55:771–799 777

Fig. 3 Standard differential evolution (DE/best/1/exp) and its decomposition, borrowed from [22]

Fig. 4 DE update rule

individual from the previous generation and two randomly chosen population members).
First a donor vector (Vi,t) is created (step a) and then a trial vector (Ui,t) is created (step b) by
stochastically combining elements from Xi,t and Vi,t . This combination is commonly done
using an exponential distribution with crossover factor of C R. If the newly created child Ui,t

is better compared to Xi,t then Ui,t is stored for updating Xi,t+1. It should be noted carefully
that Xi,t s are updated to Xi,t+1s after entire set of Ui,t s are created. Once the population is
updated, the generation counter is incremented and termination criteria is checked (Fig. 4).

123

778 J Glob Optim (2013) 55:771–799

Following properties of standard DE are worth noting: (i) There is ‘elitism’ at an indi-
vidual level i.e. if the newly created trial vector Ui,t is inferior compared to the individual
then individual is preserved as a child for the next generation and Vi,t is ignored. (ii) The
algorithm follows a generational model i.e. the current population is updated only after the
entire offspring population is created.

3 Test suite: unimodal problems

In this study, we have considered unimodal problems (having one optimum solution) or
problems having a few optimal solutions. Such test problems allow us to test following two
properties of an algorithm: (i) it’s ability to progress towards the optimal region, and (ii) it’s
ability to find the optimum within a specified precision after reaching the optimal basin. It
is worth emphasizing that focus of the paper is not so much to select and solve the chosen
unimodal problems. Rather, the broader goal of this study is to evaluate an algorithm’s per-
formance on a certain class of problem and identify key characteristics which are essential
for ensuring good performance. In a recent study [2] it was argued that good performance
of EAs may be explained based on certain properties and features of the function landes-
cape. However, the goal of this study is to rather demonstrate the importance of developing
effective EA operators for solving a given class of problems successfully.

A previous study [9] considered a number of evolutionary algorithms like generalized
generation gap (G3) model using a parent-centric crossover (PCX) operator, differential
evolution, evolution strategies (ESs), CMA-ES and a classical method on following three
unimodal problems (which we have also adopted in this paper):

Felp =
n∑

i=1

i x2
i (Ellipsoidal function) (1)

Fsch =
n∑

i=1

⎛

⎝
i∑

j=1

x j

⎞

⎠
2

(Schwefel’s function) (2)

Fros =
n−1∑

i=1

(
100(x2

i − xi+1)
2 + (xi − 1)2) (Generalized Rosenbrock’s function) (3)

The first two problems described above have a minimum at x∗
i = 0 with F∗ = 0 and the

third problem has a minimum at x∗
i = 1 with F∗ = 0. For all three problems the number of

variables (n) was chosen to be 20.
In order to study the algorithm’s ability to progress towards the optimal region, for all the

problems the population is initialized away from the optima such that xi ∈ [−10,−5] for all
i . However, in subsequent generations solutions are not confined in this region. Initialization
of population around the known optimum does not test an algorithm’s ability to approach
the optimal region, rather in most cases it tests the algorithm’s ability to converge precisely
within the optimal solution.

An efficient algorithm, starting from an initial guess solution must first approach an opti-
mal region and then concentrate in the region to find the optimal solution within a desired
precision. In this study, we investigate both aspects of an algorithm by considering two eval-
uation criteria: First, after randomly initializing the population away from the optimal region,
we count the number of function evaluations needed for the algorithm to find a solution close
to the optimal solution and we call this our first evaluation criterion S1. We arbitrarily choose

123

J Glob Optim (2013) 55:771–799 779

a function value of 0.1 for this purpose. This criterion will denote how fast an algorithm is
able to reach the optimal region. The second evaluation criterion (S2) involves the overall
number of function evaluations needed to find a solution having a function value very close
to the optimal function value. We choose f = 10−20 for this purpose.

An optimization algorithm must perform well in both the aspects. In particular, the second
criterion (S2 for which f ≤ 10−20) provides an overall performance measure. In case none
of several algorithm runs achieved the target accuracy, we represent these cases with a ‘DNC’
label.

In the previous study [9] G3-PCX algorithm was found to be an overall winner on the set
of unimodal problems described here. Therefore, we review the properties of this algorithm
next and subsequently borrow them for enhancing the DE’s performance.

4 Generalized generation gap based genetic algorithm (G3-PCX): key features
and functions

The study in [9] proposed a steady-state genetic algorithm which solved the earlier described
test problems in a computationally fastest manner. The G3-PCX algorithm was designed to
solve unimodal problems and utilized a real-parameter based parent-centric recombination
(PCX) operator [9]. One iteration of algorithm is described as follows:

Selection—From the population P , select the best solution as a parent and choose μ − 1
other parents randomly.
Generation—Generate λ offspring from the chosen μ parents using the PCX recombina-
tion scheme.
Replacement—Choose two parents pa and pb at random from the population P . From
a combined subpopulation of two chosen parents (pa and pb) and λ created offspring,
choose the best two solutions and replace the chosen two parents (pa and pb).

Summarily, the G3-PCX algorithm has following properties:

– It is a steady-state algorithm. In each iteration, at most two new solutions are updated in
the population. The newly created child solutions don’t have to wait (unlike generational
models) and can become parents as quickly as after two function evaluations. For solving
unimodal problems, this property provides a selection pressure for good solutions.

– It uses an elite-preservation operator, since children are compared against parents before
getting accepted into the population.

– It uses a recombination operator that creates child solutions around the globally best
solution. For solving unimodal problems in a computationally fast manner, this opera-
tion helps the current best solution to move towards the optimum location.

The earlier extensive study on G3-PCX algorithm reported the best, median and worst
number of function evaluations needed based on 50 different runs on the three problems with
the S2 criterion. Table 1 presents those results. In a comparison with a CMA-ES [13,14], a
couple of self-adaptive evolution strategies [4,27], differential evolution [28] and a quasi-
Newton classical method [24], the number of function evaluations reported in the above table
were found to be minimum. In following sections sections, we shall present the simulation
results and show comparisons based on S1 and S2 metrics. The target goal would be to match
the performance as shown in Table 1.

123

780 J Glob Optim (2013) 55:771–799

Table 1 Benchmark performance of G3-PCX, results as reported in [9]

Felp Fsch Fros

Best Median Worst Best Median Worst Best Median Worst

S2 5,744 6,624 7,372 14,643 16,326 17,712 14,847 (38) 22,368 25,797

5 Performers from the DE family

Storn and Price proposed a total of ten different schemes for DE [22]. These schemes differed
only in their Generation step. Guidelines for choosing DE parameters, F and C R, were also
provided for these schemes. In particular, there were 5 different ways of creating the trial
vector (Step a, Fig. 3), and 2 ways of combining the elements from donor vector and trial
Vector (Step b, Fig. 3), thereby leading to a total of 10 ways of generating a new solution. No
single generation scheme described in family turned out to be best for all kinds of problems.

While selecting the Generation scheme in this paper, we tested all 10 DE schemes (with
their recommended parameter settings) on three test problems, and noted their performances
w.r.t. S1 and S2 metrics. The results for different generation schemes (tagged as ‘strategy
number’) are shown in Table 2. Strategy 1 and Strategy 6 turn out to be best performers.
Strategy 6 clearly beats Strategy 1 on Felp (w.r.t. S1 and S2) and Fros (w.r.t. S2). Arguably
the performance of Strategy 1 is competitive (or marginally inferior) compared to Strategy 6.
It is worth mentioning that for Strategy 1 the solutions are generated around the best fitness
individual of the previous iteration. This bears similarity with G3-PCX algorithm where the
current best is always involved in creation of a new solution, and leads us to investigate
further.

We performed a parametric study on M , C R and F for Strategy 1 and found an overall
improved performance, as shown in Table 3. M = 50, C R = 0.95 and F = 0.7 were found
as optimal values with respect to all the three test problems. Under same optimal parameter
settings startegy 6 did not perform well on Fsch and Fros functions, as shown in Table 4.
Therefore in remainder of this paper, DE with Strategy 1 is employed for simulations and
shall be referred to as standard DE.

6 Functional analysis of DE components and modifications

The goal of this section is to understand and then modify the key DE steps. First, we con-
sider standard DE algorithm and analyze its key features. Then, we modify the key DE steps
(Selection, Generation and Replacement) one-by-one and note a variation in the performance.
In particular, key steps are altered with operations such as Parent–Child Comparison, Best
Update, Steady State Update, Random and Tournament Selection, Random or Serial Par-
ent Replacement and Mutation. Most of the modifications introduced in standard DE are
motivated from G3-PCX and show a gradual trend of improving performance. Taking hints
from these set of modifications, an efficient Elitist DE based on a generational model is also
proposed. When the best of DE results are unable to compete with the benchmark G3-PCX
results, we invoke PCX operation in DE and name the algorithm as DE-PCX. After fine
tuning of parameters, DE-PCX performs as good as G3-PCX and ultimate goal of this study
is achieved.

123

J Glob Optim (2013) 55:771–799 781

Ta
bl

e
2

“D
E

/b
es

t/1
/e

xp
”

[2
2]

,w
ith

di
ff

er
en

tD
E

st
ra

te
gi

es

F
el

p
F

sc
h

F
ro

s

B
es

t
M

ed
ia

n
W

or
st

B
es

t
M

ed
ia

n
W

or
st

B
es

t
M

ed
ia

n
W

or
st

St
ra

te
gy

1,
F

=
0.

7,
C

r
=

0.
5,

N
P

=
50

S 1
10

,6
00

11
,4

50
12

,2
00

61
,8

50
76

,7
00

90
,3

50
57

7,
60

0(
49

)
76

0,
55

0
88

6,
70

0

w
ith

10
−1

S 2
53

,5
50

55
,0

50
56

,0
00

49
4,

25
0

52
2,

00
0

54
1,

45
0

3.
3e

−0
9

7.
1e

−0
6

2.
5e

-0
1

w
ith

10
−2

0
D

N
C

D
N

C
D

N
C

St
ra

te
gy

2,
F

=
0.

7,
C

r
=

0.
5,

N
P

=
50

S 1
13

,6
00

15
,0

50
15

,9
00

99
,1

00
12

0,
05

0
13

5,
95

0
65

6,
85

0
68

1,
25

0
77

8,
75

0

w
ith

10
−1

S 2
70

,1
50

72
,1

00
73

,4
00

84
4,

25
0

88
8,

10
0

91
7,

50
0

3.
7e

−1
1

6.
5e

−0
9

6.
5e

−0
7

w
ith

10
−2

0
D

N
C

D
N

C
D

N
C

St
ra

te
gy

3,
F

=
0.

85
,C

r
=

1.
0,

N
P

=
50

S 1
44

8
1,

46
0

4,
61

0
37

.9
25

8
81

3
25

,6
00

37
2,

00
0

2,
28

0,
00

0

w
ith

10
−1

D
N

C
D

N
C

D
N

C
D

N
C

D
N

C
D

N
C

D
N

C
D

N
C

D
N

C

St
ra

te
gy

4,
F

=
0.

7,
C

r
=

0.
5,

N
P

=
50

S 1
15

,3
50

16
,6

50
17

,6
50

14
6,

90
0

16
4,

10
0

18
4,

90
0

2.
99

5.
87

8.
12

w
ith

10
−1

D
N

C
D

N
C

D
N

C

S 2
81

,5
00

83
,7

50
85

,4
00

3.
75

e−
20

2.
48

e−
19

1.
48

e−
18

2.
99

5.
87

8.
12

w
ith

10
−2

0
D

N
C

D
N

C
D

N
C

St
ra

te
gy

5,
F

=
0.

7,
C

r
=

0.
5,

N
P

=
50

S 1
18

,7
50

19
,7

50
20

,6
00

19
0,

30
0

21
5,

55
0

23
9,

15
0

54
6,

05
0(

18
)

93
0,

80
0

99
9,

15
0

w
ith

10
−1

123

782 J Glob Optim (2013) 55:771–799

Ta
bl

e
2

co
nt

in
ue

d

F
el

p
F

sc
h

F
ro

s

B
es

t
M

ed
ia

n
W

or
st

B
es

t
M

ed
ia

n
W

or
st

B
es

t
M

ed
ia

n
W

or
st

S 2
97

,2
00

99
,0

50
10

0,
85

0
2.

97
e−

14
1.

22
e−

13
6.

9e
−1

3
4.

3e
−0

3
0.

25
4.

59

w
ith

10
−2

0
D

N
C

D
N

C
D

N
C

D
N

C
D

N
C

D
N

C

St
ra

te
gy

6,
F

=
0.

7,
C

r
=

0.
5,

N
P

=
50

S 1
6,

40
0

7,
15

0
7,

70
0

62
,7

00
76

,4
00

96
,2

50
54

,1
50

(4
7)

12
7,

00
0

14
9,

95
0

w
ith

10
−1

S 2
35

,7
50

37
,5

50
39

,2
50

48
5,

40
0

52
7,

30
0

58
1,

75
0

24
5,

85
0(

47
)

34
0,

85
0

37
7,

30
0

w
ith

10
−2

0

St
ra

te
gy

7,
F

=
0.

7,
C

r
=

0.
5,

N
P

=
50

S 1
20

,3
00

21
,5

50
23

,0
50

52
7,

30
0

64
3,

30
0

72
6,

60
0

29
4,

60
0

30
9,

45
0

32
4,

70
0

w
ith

10
−1

S 2
10

7,
85

0
11

1,
15

0
11

4,
75

0
1.

40
e−

04
6.

87
e−

04
3.

65
e−

03
1.

18
e−

16
6.

97
e−

16
2.

43
e−

14

w
ith

10
−2

0
D

N
C

D
N

C
D

N
C

D
N

C
D

N
C

D
N

C

St
ra

te
gy

8,
F

=
0.

85
,C

r
=

1.
0,

N
P

=
50

S 1
44

8
1,

46
0

4,
61

0
37

.9
25

6
81

4
25

,7
00

37
2,

00
0

2,
28

0,
00

0

w
ith

10
−1

D
N

C
D

N
C

D
N

C
D

N
C

D
N

C
D

N
C

D
N

C
D

N
C

D
N

C

St
ra

te
gy

9,
F

=
0.

7,
C

r
=

0.
5,

N
P

=
50

S 1
32

,9
50

36
,0

00
38

,6
00

1.
54

e−
01

6.
57

e−
01

1.
99

46
0,

40
0

52
1,

70
0

66
3,

15
0

w
ith

10
−1

D
N

C
D

N
C

D
N

C

S 2
18

0,
50

0
18

8,
60

0
19

5,
25

0
1.

54
e−

01
6.

57
e−

01
1.

99
6.

26
e−

08
5.

72
e−

07
9.

14
e−

06

w
ith

10
−2

0
D

N
C

D
N

C
D

N
C

D
N

C
D

N
C

D
N

C

123

J Glob Optim (2013) 55:771–799 783

Ta
bl

e
2

co
nt

in
ue

d

F
el

p
F

sc
h

F
ro

s

B
es

t
M

ed
ia

n
W

or
st

B
es

t
M

ed
ia

n
W

or
st

B
es

t
M

ed
ia

n
W

or
st

St
ra

te
gy

10
,

F
=

0.
7,

C
r

=
0.

5,
N

P
=

50

S 1
72

,6
00

76
,7

50
82

,8
50

6.
31

e+
01

1.
46

e+
02

2.
81

e+
02

1.
06

e−
01

2.
10

e−
01

6.
42

e−
01

w
ith

10
−1

D
N

C
D

N
C

D
N

C
D

N
C

D
N

C
D

N
C

S 2
38

6,
30

0
39

7,
80

0
40

8,
45

0
63

.1
14

6
28

1
0.

10
0.

21
0

0.
64

2

w
ith

10
−2

0
D

N
C

D
N

C
D

N
C

D
N

C
D

N
C

D
N

C

T
he

bo
ld

va
lu

es
re

pr
es

en
tt

he
be

st
pe

rf
or

m
an

ce
in

te
rm

s
of

fu
nc

tio
n

ev
al

ut
io

n

123

784 J Glob Optim (2013) 55:771–799

Table 3 Standard DE with Strategy 1, “DE/best/1/exp” [22], with optimal parameter settings of F = 0.7,
C R = 0.95, M = 50

Felp Fsch Fros

Best Median Worst Best Median Worst Best Median Worst

S1 6,100 6,600 7,200 7,600 9,000 11,200 21,050 (43) 29,500 33,850

with 10−1

S2 31,700 33,550 35,100 48,050 51,100 55,200 55,400 (43) 63,350 69,350

with 10−20

Table 4 Standard DE with Strategy 6, “DE/best/1/bin” [22], with parameter settings of F = 0.7, C R = 0.95,
M = 50

Felp Fsch Fros

Best Median Worst Best Median Worst Best Median Worst

S1 4,400 5,900 9,600 8,800 11,500 15,700 32,550 (43) 113,400 255,600

with 10−1

S2 25,750 28,950 35,950 57,000 70,400 79,000 81,000(35) 172,950 319,700

with 10−20

The bold values represent the best performance in terms of function evalution

6.1 Anatomy of standard DE

‘Elitism’, or preservation of good individuals in an EA procedure is usually a part of Replace-
ment step and often results in a performance improvement. One of the most noticeable features
of standard DE is that it employs elitism at an individual level i.e. a child individual is com-
pared with its base parent (the parent at the index corresponding to which child was created)
and only the better of the two is retained in the next generation. The operation of standard
DE is shown in Fig. 5a, where parent population Pt is scanned serially from the top and
corresponding to each index parent a child is created and stored in the offspring population
Qt . The parent population for next generation (t + 1) is created by comparing same index
individuals from Pt and Qt and placing the better of the two at corresponding index in Qt+1.
We shall refer to this comparison as Parent–Child Comparison.

Before proceeding further we draw a comparison between standard DE and G3-PCX and
introduce following concepts to characterize the key steps in DE:

Best Update—The Generation scheme (Step a) in standard DE involves creation of a
child around Xbest,t−1. This approach of creating solutions around the best is particularly
useful in solving unimodal problems. The benchmark algorithm G3-PCX successfully
exploits this property. But, a major difference in the Generation step of G3-PCX and the
standard DE lies in the fact that former uses the current best location in the population,
whereas DE utilizes the previous generation’s best. We shall incorporate this feature in
standard DE by using Xbest instead of using Xbest,t−1, where Xbest indicates the best
known location so far. This is achieved by checking and updating Xbest after every new
child creation. Since Xbest represents the globally known best location, we shall refer to
this strategy as Best Update.

123

J Glob Optim (2013) 55:771–799 785

P_t

Q_t

P_t+1

(a)

Q_tP_t P_t+1

(b)

Fig. 5 a Population management in standard DE based on a generational model. Corresponding to each
individual in parent population Pt a child is created and stored in child population Qt . Parent population for
next generation Pt+1 is formed by selecting a better individual from corresponding indexes in Pt and Qt .
b Steady State Update (Serial Parent Replacement) in DE. As a child is created corresponding to an index
parent it becomes a potential candidate for replacing the index parent (if the Parent–Child Comparison is not
carried out then child always replaces the index parent; however if Parent–Child Comparison is carried out
then only the better of the two is retained at the index)

Steady State Update—Another basic difference between the benchmark algorithm
G3-PCX and standard DE lies in their steady state and generational models, respectively
i.e. the Replacement step. In standard DE, firstly all the offsprings are created and stored
separately. Then, at the end of the current cycle the parent population is compared and
replaced with child population. Thus, each offspring has to wait till next generation before
it can be selected as the index parent. We propose the steady state version of standard DE
(and call this technique as Steady State Update) in which as soon as a child is created it is
compared with its index parent and checked for replacement. Figure 5b shows this process.

Now, we make the first attempt in understanding the importance of elitism through Parent–
Child Comparison. The Replacement step of standard DE is modified by always accepting
the newly created child (unlike before where the child is accepted only if it was better). The
DE without the Parent–Child Comparison resulted in a degraded performance in all three
test problems with respect to both the metrics, indicating that elitism in DE by Parent–Child
Comparison is a key feature for its better performance. Further, in absence of Parent–Child
Comparison, we test Best Update and Steady State Update. Although Best Update shows
a minor improvement in few cases but overall results reveal that compared to the standard
DE all the variants are worse in performance as much as an order of magnitude in terms
of number of function evaluations. Table 5 systematically compares the effects of removing
Parent–Child Comparison, adding Best Update, and testing the Steady State Update. Thus,
we conclude that Parent–Child Comparison is an important feature in the DE algorithm and
in its absence other operations such as Best Update or Steady State Update are ineffective in
making-up for the loss of ‘elitism’ which is brought by Parent–Child Comparison as part of
the Replacement step.

123

786 J Glob Optim (2013) 55:771–799

Ta
bl

e
5

C
om

pa
ri

ng
st

an
da

rd
D

E
w

ith
an

d
w

ith
ou

tP
ar

en
t–

C
hi

ld
C

om
pa

ri
so

n,
B

es
t

U
pd

at
e

an
d

St
ea

d
y

St
at

e
op

er
at

io
ns

.
F

=
0.

7,
C

R
=

0.
95

,
M

=
50

F
el

p
F

sc
h

F
ro

s

B
es

t
M

ed
ia

n
W

or
st

B
es

t
M

ed
ia

n
W

or
st

B
es

t
M

ed
ia

n
W

or
st

St
an

da
rd

D
E

w
it

ho
ut

Pa
re

nt
–C

hi
ld

C
om

pa
ri

so
n

S 1
31

,
45

0
66

,
45

0
15

2,
05

0
70

,3
00

14
8,

55
0

29
7,

05
0

25
3,

00
0

(3
5)

66
0,

75
0

86
1,

75
0

w
ith

10
−1

S 2
32

9,
45

0
40

3,
35

0
54

0,
85

0
86

2,
50

0
(1

1)
92

18
50

99
0,

60
0

5.
12

e−
10

1.
55

e−
03

3.
99

w
ith

10
−2

0

St
an

da
rd

D
E

w
it

ho
ut

Pa
re

nt
–C

hi
ld

C
om

pa
ri

so
n

+
B

es
t

U
pd

at
e

S 1
46

,
20

0
68

,
55

0
11

9,
20

0
70

,9
00

14
7,

35
0

36
,5

50
17

2,
55

0
(3

4)
52

7,
35

0
86

7,
05

0

w
ith

10
−1

S 2
28

8,
35

0
40

7,
30

0
51

7,
80

0
74

6,
70

0
(1

0)
89

1,
10

0
98

7,
70

0
1.

40
e−

10
1.

40
e−

05
3.

99

w
ith

10
−2

0

St
an

da
rd

D
E

w
it

ho
ut

Pa
re

nt
–C

hi
ld

C
om

pa
ri

so
n

+
B

es
t

U
pd

at
e+

St
ea

dy
St

at
e

U
pd

at
e

S 1
30

,
85

0
58

,
30

0
13

6,
30

0
94

,3
50

17
2,

60
0

40
1,

40
0

31
3,

40
0

(3
8)

70
0,

45
0

98
7,

35
0

w
ith

10
−1

S 2
24

9,
65

0
37

9,
85

0
57

2,
15

0
82

3,
75

0
(1

5)
92

5,
80

0
99

5,
80

0
3.

90
e−

07
5.

47
e−

03
4.

09
7

w
ith

10
−2

0
D

N
C

D
N

C
D

N
C

123

J Glob Optim (2013) 55:771–799 787

Table 6 Standard DE with Random and T ournament selection, C R = 0.95, F = 0.7, M = 50

Felp Fsch Fros

Best Median Worst Best Median Worst Best Median Worst

Random selection

S1 14,250 16,700 20,050 15,950 20,400 24,600 50,800 (38) 56,900 64,500

with 10−1

S2 58,350 64,900 72,100 116,000 122,000 132,700 136,750 (38) 147,050 158,900

with 10−20

Tournament selection

S1 14,600 16,850 19,400 17,700 21,250 25,300 39,500 (44) 52,950 66,650

with 10−1

S2 86,350 92,950 97,650 114,800 124,700 134,900 100,050 (44) 114,850 132,300

with 10−20

Next, we investigate the role of Selection step and try following two selection schemes
with standard DE: Random and Tournament (instead of the usual deterministic serial parent
selection). Random selection probabilistically assigns equal opportunities to all members
whereas Tournament selection allows greater opportunities to individuals with better fitness.
It should be noted that here we are referring to selection of base parent; the other two mem-
bers needed for child creation are still selected randomly. The results with alternate selection
schemes are shown in Table 6 and indicate that the alternate selection schemes perform poorly
compared to serial selection (Table 3). Poor performance of Random selection arises from
too much variability in the parent selection (given the fact that other two parents in creation
of the donor vector are also selected randomly, Fig. 3), whereas Tournament selection leads
to too high selection pressure on good individuals. Therefore, we conclude that deterministic
serial selection finds a right balance in selecting parents for child creation. This also leads to
an important realization that there is universally good Selection (or for that matter any other)
operator for an evolutionary algorithm. The effectiveness of any operator is largely contex-
tual and relies on the overall genetic make-up of the algorithm, decomposing an algorithm
into key standard components is a promising strategy to better understand its behavior and
suggest improvements.

It is worthwhile pausing for a moment and reflecting upon the path being followed here.
We set out by decomposing the DE into standard EOS steps. Then, the Replacement step
is considered and its features are investigated. It is found that the effectiveness of DE lies
in the Parent–Child Comparison of Replacement step. We also found that by resorting to
the alternate Generation step i.e. (by creating solutions around Xbest instead of Xbest−1), no
improvement was obtained. The Steady State Update instead of generational model was also
ineffective without the Parent–Child Comparison. This leads to the conclusion that Parent–
Child Comparison of the Replacement step working in conjunction with the serial Selection
scheme has a dominant effect on DE’s performance. Thus, the Unified Approach plan is
helpful in understanding the role of each component individually and also their associated
interactions. It is recommended that reader bears this thought in mind for remainder of the
paper.

From Table 5 we recall that Best Update-standard DE-without-Parent–Child Comparison
showed an improvement compared to standard DE-without-Parent–Child Comparison in a

123

788 J Glob Optim (2013) 55:771–799

Table 7 Standard DE + Best Update, F = 0.7, C R = 0.95, M = 50

Felp Fsch Fros

Best Median Worst Best Median Worst Best Median Worst

S1 5,500 6,250 6,900 7,450 8,800 10,800 18,550 (44) 24,350 29,000

with 10−1

S2 31,400 32,650 34,500 43,600 48,600 52,100 51,400 (44) 56,750 62,400

with 10−20

Fig. 6 Steady state update
(Serial Parent Replacement) in
DE. As soon as a child is created
corresponding an index parent it
compared with the parent
individual and replaces the parent
if child is better

Q_tP_t P_t+1

few cases. Therefore, here we only alter the Generation step of standard DE by invoking
Best Update (while keeping the Parent–Child Comparison. The results are shown in Table
7 and an improved performance is obtained in all cases. It is obviously clear that creating
the solutions around the current best individual i.e. Xbest (instead of Xbest,t−1) is a helpful
strategy while solving unimodal problems.

Since Best Update showed an improved performance, we also test for Steady State Update
with standard DE. According to Steady State Update with standard DE, as soon as an off-
spring is created it is compared with a parent individual, and then if the offspring is better
in terms of fitness it replaces the parent. An obvious choice for selecting a parent is to pick
the index parent itself (referred to as Steady State (Serial Parent Replacement) strategy),
shown in Fig. 6. Alternately, an individual could be selected randomly from the parent pop-
ulation (referred to as Steady State (Random Parent Replacement) strategy) and compared
for replacement. Results for both the steady state update strategies are shown in Table 8 and
indicate an improvement even over the standard DE with Best Update (Table 7) in some
cases.

Between the two steady state strategies, the Random Parent Replacement performed better
compared to the Serial Parent Replacement. Thus, we conclude that the steady state model
is useful over the generational model, and in particular Random Parent Replacement is a
preferred strategy. The Steady State Updates allow newly created good solutions to act as
parents in the same generation, and thereby speeding the progress towards the optima.

It is worth re-stating that Best Update and Steady State Update failed to give any improve-
ment with standard DE-without-Parent–Child Comparison. However, in presence of Parent–
Child Comparison a definite performance boost is achieved. These observations indicate the
importance of each operation individually and how their interactions synchronize to affect
the overall performance.

As a natural extension, we combine Best Update and Steady State (Random Parent
Replacement) with standard DE. The results are shown in Table 9. The performance of

123

J Glob Optim (2013) 55:771–799 789

Table 8 Standard DE +Steady State V ersions, C R = 0.95, F = 0.7, M = 50

Felp Fsch Fros

Best Median Worst Best Median Worst Best Median Worst

Standard DE + Steady State (Serial Parent Replacement)

S1 5,300 6,000 6,850 7,200 9,050 12,600 23,600(36) 28,950 35,850

with 10−1

S2 28,750 29,650 32,200 46,300 50,100 55,250 54,550(36) 60,950 70,850

with 10−20

Standard DE + Steady State (Random Parent Replacement)

S1 4,000 5,200 6,850 6,050 8,500 11,450 20,750(40) 29,750 37,200

with 10−1

S2 23,150 25,200 27,150 42,100 47,700 54,350 53,050(40) 66,300 76,900

with 10−20

The bold values represent the best performance in terms of function evalution

Table 9 Standard DE + Best Update + Steady State(RPR), F = 0.7, C R = 0.95, M = 50

Felp Fsch Fros

Best Median Worst Best Median Worst Best Median Worst

S1 3,800 4,350 5,150 5,500 7,150 9,600 15,050 (38) 20,050 24,800

with 10−1

S2 20,350 21,700 24,200 36,350 40,550 44,350 40,850 (38) 46,600 51,500

with 10−20

this modified DE turns out to be best so far; indicating that introduced operations act con-
structively all-together.

Till now we have been successful in improving the performance of standard DE by bor-
rowing ideas from G3-PCX algorithm and modifying the key steps, particularly by including
Steady State (Random Parent Replacement) and Best Update. This emphasizes the fact that
a better understanding of EOSs at the level of operators can be highly useful in developing
and enhancing other EOSs.

At this stage, we identify a mutation operator proposed by [10] in context to development
of efficient PSO for solving unimodal problems and introduce it as an additional step in the
Generation sequence. The mutation operator is described in Fig. 7. The goal of this mutation
operator is to probabilistically (Pm indicating the mutation probability) perturb a newly cre-
ated child around the Best solution. The mutation operator serves following two purposes:
(a) It explicitly promotes diversity in the population, and (b) It aids the search around the
Best region. The motivation of employing this mutation operator arises from the observation
that PSO and DE have a similar working principle in a sense that a new solution is created
by adding a weighted sum of vectors to a given base solution. Therefore, a mutation operator
having worked well for PSO in context to unimodal problems is a natural candidate to be
extended for DE. The mutation operator is combined with the best DE so far and results
are shown in Table 10. Pm is chosen as 0.25 as done in [10]. The results show a definitive
improvement on Felp and a mixed improvement on Fsch and Fros. Such trends reconcile with

123

790 J Glob Optim (2013) 55:771–799

Fig. 7 Mutation/Perturbation
Operator, borrowed from [10],
randomly places a solution
around the best location

Table 10 Standard DE + Best Update + Steady State(RPR) + Mutation, C R = 0.95, F = 0.7, Pm = 0.25

Felp Fsch Fros

Best Median Worst Best Median Worst Best Median Worst

S1 2,450 3,050 3,850 5,350 7,400 9,300 11,550 (39) 19,450 24,600

with 10−1

S2 13,200 14,700 15,700 37,250 41,700 46,250 43,300 (39) 52,900 61,150

with 10−20

The bold values represent the best performance in terms of function evalution

those presented in [10]. The possible explanation for the improved performance on Felp lies
in the variable-separable and unimodal characteristics of this problem.

Figure 8, summarizes several ideas tested on standard DE in this section. The unsuccessful
ideas are shown by arrows pointed downwards, whereas arrows upwards show successful
modifications. In next section we propose a variant of standard DE, Elitist DE, which is based
on a generational model and employs elitism.

6.2 Elitist DE

The DE algorithms tested so far have used Parent–Child Comparison (Serial or Random)
strategy for elite preservation, and discovered that Random Parent Replacement performed
better compared to Serial Parent Replacement. Even though Random Parent Replacement
gives the newly created child an opportunity to survive against a randomly chosen individual
(even if it is not superior compared to its base parent) it is still too restrictive in terms of
child preservation. There seems scope to further modify the Replacement plan. To achieve
this we introduce a new way to preserve elites; by combining the parent and child popula-
tions and then recovering 50 % individuals from the combined population as parents for the
next generation based on their fitness values. We shall refer to this as Elitist DE. Figure 9
depicts population management in Eli tist-DE . It should be noted that all the components

123

J Glob Optim (2013) 55:771–799 791

Fig. 8 Elitist DE

Standard

Differential Evolution

elite−Steady State Update

Best Update

Serial Parent Replacement

Mutation

Selection
Random

Tournament
Selection

Steady State

(Without Elitism)
 Update

No Parent−Child
Comparison

Random Parent Replacement

Fig. 9 Eli tist-DE based on a
generational model. The child
population Qt is created from Pt
and a combined pool Rt is
formed. From the combined pool
50 % of members are retained
according to the fitness values

P_t+1

P_t

Q_t

R_t

+

of Elitist-DE are same as standard DE except for elite preservation and that it still follows a
generational model.

Table 11 shows that the performance of Elitist-DE is superior than standard DE, with
respect to both the metrics, on Felp and Fsch, and worse on Fros. Since there is a performance

123

792 J Glob Optim (2013) 55:771–799

Table 11 Elitist-DE, C R = 0.95, F = 0.7, M = 50

Felp Fsch Fros

Best Median Worst Best Median Worst Best Median Worst

S1 4,550 5,100 6,400 5,900 7,650 11,950 24,900 (39) 615,500 800,300

with 10−1

S2 22,000 24,150 27,950 39,200 46,300 55,050 4.51e−08 1.42e−03 3.99

with 10−20 DNC DNC DNC

Table 12 Elitist-DE + Best Update, C R = 0.95, F = 0.7, M = 50

Felp Fsch Fros

Best Median Worst Best Median Worst Best Median Worst

S1 3,200 4,200 5,050 4,700 6,250 8,300 15,400 (38) 19,350 23,200

with 10−1

S2 19,250 20,850 22,000 31,000 34,550 38,850 37,550 (38) 42,850 46,550

with 10−20

Table 13 Elitist DE + Best Update + Mutation, C R = 0.95, F = 0.7, M = 50

Felp Fsch Fros

Best Median Worst Best Median Worst Best Median Worst

Pm = 0.05

S1 2,900 3,800 4,250 5,350 6,100 8,450 9,800 (40) 19,050 24,650

with 10−1

S2 17,450 18,800 20,350 32,450 35,450 39,500 33,400 (40) 43,950 49,800

with 10−20

Pm = 0.25

S1 2,300 2,700 3,450 4,900 6,400 8,050 10,650 (37) 19,500 24,900

with 10−1

S2 12,500 13,550 15,250 32,750 36,350 38,950 39,100 (37) 51,540 57,000

with 10−20

The bold values represent the best performance in terms of function evalution

enhancement on two test problems we Best Update and Mutation ideas in the Generation
step, and present results in Tables 12 and 13.

Eli tist-DE with Best Update performs better in all cases than without Best Update, and
also shows convergence with S2 criteria. On comparing Eli tist-DE with Best Update and
standard DE with Best Update (Table 7), we find Eli tist-DE to be the clear winner in all
cases.

The results after including mutation with Eli tist-DE along with Best Update, for Pm

equal to 0.05 and 0.25, are shown in Table 13. On Felp, both the Pm values yield an improved

123

J Glob Optim (2013) 55:771–799 793

Table 14 Elitist DE + Best Update + Mutation + Random or Tournament Selection, C R = 0.95, F = 0.7,
M = 50, Pm = 0.05

Felp Fsch Fros

Best Median Worst Best Median Worst Best Median Worst

Random selection of parents
S1 3,200 3,750 4,300 4,500 6,300 9,250 9,900 (38) 19,550 27,700

with 10−1

S2 17,400 18,800 20,350 30,900 35,550 39,150 34,400 (38) 44,250 51,250

with 10−20

Tournament selection of parents

S1 2,950 3,250 3,950 3,900 5,550 7,050 12,550 (33) 18,100 21,800

with 10−1

S2 15,550 16,300 17,550 28,750 31,800 37,050 34,550 (33) 41,750 47,100

with 10−20

The bold values represent the best performance in terms of function evalution

Table 15 G3-PCX and DE’s best-so-far performance

Felp Fsch Fros

Best Median Worst Best Median Worst Best Median Worst

G3-PCX
S2 5,744 6,624 7,372 14,643 16,326 17,712 14,847 (38) 22,368 25,797

with 10−20

Best so far in DE
S2 12,500 13,550 15,250 31,000 34,550 38,850 33,400 (40) 43,950 49,800

with 10−20

performance. However for Fsch and Fros, results with mutation are mixed in nature, but argu-
ably Pm = 0.05 yields slightly better performance compared to Pm = 0.25 (Table 14).

6.3 Last modifier: introducing PCX in DE

The overall best performance from all the modified DEs is compared against G3-PCX in
Table 15, and the DE performances are unable to match-up with those of G3-PCX. This
leads to debate whether standard DE and its variants are inferior compared to G3-PCX, at
least on the class of given problems? The EC literature is flooded with studies favoring supe-
riority of one algorithm or paradigm over another. However, authors favor not to side with
any particular paradigm, at least at the onset of any task. In our opinion, a modest approach
would be to look for features and properties of an algorithm which are needed and make
an algorithm effective for a given task. If the algorithm is ineffective then the basic steps
should be modified accordingly. Rich EC literature serves as a good source for this purpose
in borrowing ideas and operators which have worked successfully in a related context. This
is attempted and presented next.

While facing a similar predicament with PSO for solving unimodal problems [10] authors
successfully introduced a parent-centric Generation mechanism based on PCX operator and

123

794 J Glob Optim (2013) 55:771–799

enhanced the PSOs performance. To achieve this, step a of Generation, shown in Fig. 3, is
replaced by PCX operation in which child is created around the current best solution in the
population.

6.4 PCX based generation: description

The PCX operator requires three or more parent solutions and uses a parent centric recombi-
nation operator in which the probability distribution is computed from the vector differences
of the parents utilized in creation of child solutions [9]. The probability distribution is cen-
tered around the currently best parent solution. The mean vector g of the chosen μ (=3 is
used here) parents is first computed. For each child solution, one parent x(p) (pg is used) is

chosen. The direction vector d(p) = x(p) − g is then calculated. Thereafter, from each of the
other (μ − 1) parents, perpendicular distances Di to the line d(p) are computed and their
average D̄ is computed. The child solution is then created as follows:

y = x(p) + wζ ‖d(p)‖e(p) +
n∑

i=1, i �=p

wη D̄e(i), (4)

where e(i) are the (n − 1) orthonormal bases that span the subspace perpendicular to d(p).
The parameters wζ and wη are zero-mean normally distributed variables with variance σ 2

ζ

and σ 2
η , respectively. To make the PCX child-creation operation similar in principle to a DE

approach, we use the globally best known solution Xbest , and two randomly chosen parents
for any given index parent. The child is created from these three parents, and index parent
still acts as the donor parent for the child created. In short, Generation plan of the DE pro-
ceeds exactly the same except for the fact that now a parent-centric operation is carried out
on 3 parents in place of step (a) in Fig. 3. The two parameters, σζ and ση, required in PCX
operation are chosen as 0.1 [9].

6.5 Post PCX performance

The PCX operation with standard DE (referred to as PCX-DE) failed to give any satisfactory
results. Following which we introduced Best Update strategy i.e. as soon as a new child was
created Xbest (location around which solutions are being created) was checked for upda-
tion. The performance of ‘PCX-DE with Best Update’ was studied and it was found that
a population size of M = 100 and higher values of C R (taken here as 0.95) yielded an
overall better performance. The obtained results were better than the best-so-far DE results.
We also tried mutation operator in conjunction with DE-PCX and discovered a degradation
in performance. Degradation in performance was explained based on the fact that mutation
brings undesirable randomness in the child creation and destroys the ellipsoidal distribution
generated from PCX operation.

Next, we introduced the Steady State (Random Parent Replacement) in DE-PCX with
Best Update and observed a slight improvement in few cases, Table 16.

As a next step, the index parent was selected randomly as opposed to being selected seri-
ally. Random selection of index parent further improved the performance but did not take the
performance closer to G3-PCX. It should be noted that at this stage, we have modified all the
three steps of standard DE (Selection, Generation and Replacement) by corresponding steps
of G3-PCX algorithm. The only difference lies in the child solution retaining 5 % traits of
the base parent (since C R = 0.95). By increasing the value of C R equal to 1.0 i.e. retaining

123

J Glob Optim (2013) 55:771–799 795

Table 16 Stages in development of DE-PCX

Felp Fsch Fros

Best Median Worst Best Median Worst Best Median Worst

PCX-DE + Best Update, F = 0.7, C R = 0.95, N P = 100

S1 1,800 2,300 3,000 4,500 5,300 6,900 19,600(36) 23,300 27,000

with 10−1

S2 10,200 11,300 12,100 30,300 33,400 38,600 43,900(36) 50,700 57,800

with 10−20

PCX-DE + Best Update + Steady State (RPR), F = 0.7, C R = 0.95, N P = 100

S1 1,800 2,300 2,900 3,900 5,200 6,600 21,500(39) 24,500 31,100

with 10−1

S2 9,300 10,200 11,600 28,000 32,500 35,000 45,500(39) 55,300 66,500

with 10−20

PCX-DE, Random Parent Selection, Best Update, Steady State RPR with F = 0.7, C R = 0.95, N P = 100

S1 1,700 2,200 2,700 3,900 5,500 6,700 16,200(39) 25,300 30,700

with 10−1

S2 8,900 10,300 11,400 28,100 32,300 36,300 42,900(39) 55,700 67,700

with 10−20

The bold values represent the best performance in terms of function evalution

Table 17 {PCX-DE + Random Parent Selection + Best Update + Steady State (RPR), F = 0.7, C R = 1.0,
N P = 100} = {G3-PCX }

Felp Fsch Fros

Best Median Worst Best Median Worst Best Median Worst

S1 1,000 1,400 1,900 2,300 2,800 3,300 8,800 (42) 11,700 14,400

with 10−1

S2 5,700 6,300 6,900 13,700 15,200 16,500 19,500 (42) 23,800 27,800

with 10−20

no parent traits, we achieve a performance similar to that of G3-PCX, Table 17. At this point
it should be noted that the modified DE and G3-PCX bear algorithmic congruence.

Since components of DE have been modified bit-by-bit till DE becomes same as G3-PCX,
a similarity in performance should not be surprising. The path followed to reach this algo-
rithmic similarity can be summarized in two points: (i) Breaking down DE into standard
components and studying them under the Unified Approach plan, and (ii) Replacing and
modifying standard steps by operations which have proven to work successfully elsewhere.
The procedure appears to be simple but this paper has made an attempt to amply demonstrate
it through several experimentation, which is the main contribution in this paper.

7 Scale-up performances

Many real-world optimization problems involve large number of variables. So far the uni-
modal problems with 20 variables were considered. Since the test problems chosen in this

123

796 J Glob Optim (2013) 55:771–799

 0

 100000

 200000

 300000

 400000

 500000

 600000

 700000

 800000

0 100 200 300 400 500 600

F
un

ct
io

n
E

va
lu

at
io

ns

Number of Variables

Standard DE
Modified DE

G3-PCX
CMAES

Fig. 10 Scale-up performance for Felp up to 500 variables

paper are scalable, it is interesting to see how do several algorithms discussed in this paper
perform. For scale-up study we select following four algorithms: standard DE, modified
DE (standard DE with Best Update and Steady State (RPR)), G3-PCX, and a well known
evolutionary strategy CMA-ES [15].

Each of the three function is tested for n = 10, 20, 50, 100, 150 and 200. For Felp, which
is a relatively simple test problem, n = 500 is also tested. For each experiment median
and worst number of function evaluations are evaluated over 20 runs. A termination criteria
dependent on the problem size (n) is chosen as n

20 10−10 (i.e. a run is terminated when the
best fitness in the population falls below the criteria).

Based on preliminary experimentation, standard and modified DE used following param-
eter settings: F = 0.7, C R = 0.95, N P = 30. As the number of variables were increased,
DE algorithms did not require any scaling of population.

For G3-PCX, an increase in the population size (N P) was required [9]. For Felp, Fsch and
Fros, N P was varied as 3n, 4n and 6n, respectively. Values of wζ and wη were decreased
accordingly. CMA-ES from [15] was employed with default values of population size (N P)
and σ .

The median number of function evaluations along with the error bars are plotted in log-log
scale, Figs. 10, 11 and 12 for Felp, Fsch & Fros, respectively.

The scale-up plots lead to following observations:

1. The trends clearly indicate that the number of function evaluations rise with increasing
problem size for all the algorithms. We investigated the results on log-log plots and
found a linear trend indicating polynomial complexity for different algorithms (except
for piece-wise linear behavior of CMA-ES on Felp).

2. The number of function evaluations for standard DE are always greater than the modi-
fied DE for all the problems, and the gap decreases as the problem size increases. This
implies that the Steady State Update and Best Update become less effective on problems
with increasing size.

123

J Glob Optim (2013) 55:771–799 797

 0

 500000

 1e+06

 1.5e+06

 2e+06

 2.5e+06

 0 50 100 150 200 250

F
un

ct
io

n
E

va
lu

at
io

ns

Number of Variables

Standard DE
Modified DE

G3-PCX
CMAES

Fig. 11 Scale-up performance for Fsch up to 200 variables

 0

 200000

 400000

 600000

 800000

 1e+06

 1.2e+06

 1.4e+06

 0 50 100 150 200 250

F
un

ct
io

n
E

va
lu

at
io

ns

Number of Variables

Standard DE
Modified DE

G3-PCX
CMAES

Fig. 12 Scale-up performance for Fros up to 200 variables

3. G3-PCX is the best performer for Fsch and Fros, however for Felp the performance
degrades with increase in problem size. This might attributed simplicity of the Felp

problem (where variables have no linkages) and PCX operation is unable to show its
effectiveness in a simple case.

4. CMA-ES shows a fluctuating performance, and is highly efficient on Felp and compa-
rably worst on Fros.

123

798 J Glob Optim (2013) 55:771–799

Overall it can be concluded that efficiently designed algorithm (G3-PCX and CMA-ES)
have a definite advantage on problems with smaller number of variables. As the problem size
increases the behavior of these algorithms becomes unpredictable. The possible reason for
unpredictable performance of these algorithms largely lies on the choice of correct parameter
settings; which is a challenging task to achieve for long and time consuming simulations.
Since the fine-tuning for a given application is a one time investment, it’s worth and usefulness
is justified.

8 Conclusion and looking ahead

Drawing concepts from existing literature, this paper makes a novel attempt in developing
a Unified Approach towards Evolutionary Optimization Systems such as GAs, ES, PSO, DE
and EP. An EOS was described in four basic steps: Initialization, Selection, Generation and
Replacement. A four step decomposition of an EOS is shown to be useful in understanding the
role and modification of each step within the embodiment of an EOS. This was demonstrated
by evaluating the performance of DE, in context to unimodal problems, compared to a bench-
mark algorithm G3-PCX. The key steps of DE Selection, Generation and Replacement were
modified one-by-one while drawing concepts from G3-PCX. By incorporating features of
G3-PCX within the standard DE (such as Best Update, Steady State Update, mutation, etc.),
a certain degree of improvement was obtained at each step. Even after several modifications,
DE variants failed to perform as efficiently as G3-PCX. At this stage a final modification in
the Generation step was made by introducing PCX operation. Along with other alterations
and parameter tuning the modified DE was found to be algorithmically equivalent to G3-PCX
and showed similar performance. The exercise shows that by employing Unified Approach
plan two seemingly different algorithms, DE and G3-PCX, can be converted from one into
another by modifying the key steps systematically.

The questions such as What to borrow? and What to modify? cannot be answered unless
a systematic plan is put in place. The Unified Approach should guide the modification pro-
cedure as opposed to a trial and error approach of infinitely many alterations possible in an
algorithm. It is expected that illustrations made in this paper should facilitate any such attempt
and enable researchers in Evolutionary Computation to adopt unified approach towards evo-
lutionary algorithms and work towards identifying the properties of key steps, useful in order
to develop efficient EAs for any given task.

References

1. Abbas, H.: The self-adaptive pareto differential evolution algorithm. In: Proceedings of the 2002 congress
on evolutionary computation, pp. 831–836 (2002)

2. Ahrari, A., Ahrari, R.: On the utility of randomly generated functions for performance evaluation of
evolutionary algorithms. Optim. Lett. 4(4), 531–541 (2010)

3. Ali, M.M., Törn, A.: Population set based global optimization algorithms: some modifications and numer-
ical studies. Comput. Oper. Res. 31, 1703–1725 (2004)

4. Beyer, H.-G., Department of Computer Science: Toward a theory of evolution strategies: self-adaptation.
Evol. Comput. 3(3), 311–347 (1995)

5. Brest, J., Greiner, S., Boskovic, B., Mernik, M., Zumer, V.: Self-adapting control parameters in differential
evolution: a comparative study on numerical benchmark problems. IEEE Trans. Evol. Comput. 6, 646–
657 (2006)

6. Clerc, M.: Particle swarm optimization. ISTE Ltd, UK/USA (2006)

123

J Glob Optim (2013) 55:771–799 799

7. Deb, K.: A population-based algorithm-generator for real-parameter optimization. KanGAL Report Num-
ber 2003003

8. Deb, K.: Multi-objective Optimization Using Evolutionary Algorithms. Wiley, Dordrecht (2001)
9. Deb, K., Annand, A., Joshi, D.: A computationally efficient evolutionary algorithm for real-parameter

optimization. Evol. Comput. 10(4), 371–395 (2002)
10. Deb, K., Padhye, N.: Development of efficient particle swarm optimizers by using concepts from evolution-

ary algorithms. In: Proceedings of the 2010 GECCO conference companion on Genetic and evolutionary
computation, New York, NY, USA, ACM, pp. 55–62 (2010)

11. Fogel, D.B.: An evolutionary approach to the traveling salesman problem. Biol. Cybernet. 60 (1988)
12. Goldberg, D.: Genetic Algorithms in Search, Optimization, and Machine Learning. Addison-Wesley,

New York (1989)
13. Hansen N., Ostermeier A.: Adapting arbitrary normal mutation distributions in evolution strategies: the

covariance matrix adaptation. Morgan Kaufmann, pp. 312–317 (1996)
14. Hansen, N., Ostermeier, A.: Completely derandomized self-adaptation in evolution strategies. Evol. Com-

put. 9, 159–195 (2001)
15. Hansen, N., Ostermeier, A.: Cma-es source code. http://www.lri.fr/~hansen/cmaes_inmatlab.html (2009)
16. Hirsch, M.J., Meneses, C.N., Pardalos, P.M., Resende, M.G.C.: Global optimization by continuous

grasp. Optim. Lett. 1(2), 201–212 (2007)
17. Holland, J.:Adaption in Natural and Artificial Systems. University of Michigan Press, MI (1975)
18. Kenneth, A.D.: Evolutionary Computation: A Unified Approach. MIT Press, Cambridge (2006)
19. Liu, J., Lampinen, J.: A fuzzy adaptive differential evolution algorithm. Soft Comput. Fusion Found.

Methodol. Appl. 9(6), 448–462 (2005)
20. Pardalos, P.M., Resende, M.G.C.: Handbook of Applied Optimization. Oxford University Press,

Oxford (2002)
21. Pardalos, P.M., Romeijn, E.: Handbook of Global Optimization—Vol 2: Hueristic Approaches. Klu-

wer, Dordrecht (2002)
22. Price, K.V., Storn, R.M., Lampinen, J.A.: Differential Evolution: A Practical Approach to Global Opti-

mization. Springer, Hiedelberg (2005)
23. Qin, A.K., Huang, V.L., Suganthan, P.N.: Differential evolution algorithm with strategy adaptation for

globalnumerical optimization. IEEE Trans. Evol. Comput. 13(2), 398–417 (2009)
24. Reklaitis, G.V., Ravindran, A., Ragsdell, K.M.: Engineering Optimization Methods and Applications. Wil-

ley, New York (1983)
25. Rönkkönen J., Lampinen J.: On using normally distributed mutation step length for the differential evolu-

tion algorithm. In: 9th International Conference on Soft Computing (MENDEL 2003), pp. 11–18 (2002)
26. Schwefel H.-P.: Projekt MHD-Staustrahlrohr: Experimentelle optimierung einer zweiphasenduese, TTeil

I. Technical Report 11.034/68, 35, AEG Forschungsinstitut, Berlin
27. Schwefel, H.-P.P.: Evolution and Optimum Seeking: The Sixth Generation. Wiley, New York (1993)
28. Storn, R., Price, K.: Differential evolution—a simple and efficient heuristic for global optimization over

continuous spaces. J. Glob. Optim. 11(4), 341–359 (1997)

123

http://www.lri.fr/~hansen/cmaes_inmatlab.html

	Improving differential evolution through a unified approach
	Abstract
	1 Introduction
	2 Recollection of unified framework for evolutionary algorithms: a modest description
	2.1 Real-parameter genetic algorithms as EOS(m,n)
	2.2 Evolutionary strategies as EOS(m,n)
	2.3 Evolutionary programing as EOS(m,m)
	2.4 Particle swarm optimization as EOS(m,m)
	2.5 Differential evolution as EOS(m,m)

	3 Test suite: unimodal problems
	4 Generalized generation gap based genetic algorithm (G3-PCX): key features and functions
	5 Performers from the DE family
	6 Functional analysis of DE components and modifications
	6.1 Anatomy of standard DE
	6.2 Elitist DE
	6.3 Last modifier: introducing PCX in DE
	6.4 PCX based generation: description
	6.5 Post PCX performance

	7 Scale-up performances
	8 Conclusion and looking ahead
	References

