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Abstract In this work, the problem of a company or chain (the leader) that considers the
reaction of a competitor chain (the follower) is studied. In particular, the leader wants to
set up a single new facility in a planar market where similar facilities of the follower, and
possibly of its own chain, are already present. The follower will react by locating another
single facility after the leader locates its own facility. Both the location and the quality (rep-
resenting design, quality of products, prices, etc.) of the new leader’s facility have to be
found. The aim is to maximize the profit obtained by the leader considering the future fol-
lower’s entry. The demand is supposed to be concentrated at n demand points. Each demand
point splits its buying power among the facilities proportionally to the attraction it feels
for them. The attraction of a demand point for a facility depends on both the location and
the quality of the facility. Usually, the demand is considered in the literature to be fixed or
constant regardless the conditions of the market. In this paper, the demand varies depending
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on the attraction for the facilities. Taking variable demand into consideration makes the
model more realistic. However, it increases the complexity of the problem and, therefore, the
computational effort needed to solve it. Three heuristic methods are proposed to cope with
this hard-to-solve global optimization problem, namely, a grid search procedure, a multistart
algorithm and a two-level evolutionary algorithm. The computational studies show that the
evolutionary algorithm is both the most robust algorithm and the one that provides the best
results.

Keywords Nonlinear bi-level programming problem - Centroid (or Stackelberg) problem -
Continuous location - Competition - Variable demand - Evolutionary algorithm -
Multistart heuristic - Grid search

1 Introduction

Location science deals with the location of one or more facilities in a way that optimizes a
certain objective (minimization of transportation costs, minimization of social costs, max-
imization of market share, etc.). For an introduction to the topic see [1,2]. Depending on
whether a single player or multiple players are considered in the market, we can distinguish
between non-competitive and competitive location models. In the former, it is assumed that
the decision maker, who plans the location of his facilities, faces an empty space without
any similar or competing facilities. In the latter, similar facilities already exist in the region
(as in most of the cases in reality) and the task is to add new ones in an optimal way.
The existing facilities may belong to the decision maker’s own chain or to a competitor’s
chain.

Many competitive location models are available in the literature (see for instance the sur-
vey papers [3-5]), which vary in the ingredients which form the model. For instance, we
may want to locate just a single facility or more than one new facility. The demand (usually
supposed to be concentrated in a discrete set of points, called demand points) can be either
inelastic or elastic, depending on whether the goods are essential or inessential. The patron-
izing behaviour of the customers is usually thought to be either deterministic, when the full
demand of the customer is served by the facility to which he/she is attracted most (leading
to Hotelling-type models) or probabilistic, when the customer splits his/her demand among
all the existing facilities (leading to Huff-type models). The attraction (or utility) function
of a customer towards a given facility, which usually depends on the distance between the
customer and the facility, as well as on other characteristics of the facility which determine
its quality, is also a key factor to be specified. The market share captured by the facilities
depends on all those factors.

Furthermore, when a competition takes place, it may be static, which means that the com-
petitors are already in the market, the owner of the new facility knows their characteristics
and no reaction is expected from them (see [5]), or with foresight, in which the competitors
are assumed to react after the new facility enters (see [6]). The maximization of profit for
each competing firm can then be seen as a location game, which has been studied since the
work of Hotelling [7]. If the competitors can change their decisions, then we have a dynamic
model, in which the existence of equilibrium situations is of major concern.

In this context, Hakimi [8] introduced the well known Stackelberg problems (also known
as Simpson’s problems in voting theory). The scenario considered in this kind of problems
is that of a duopoly. A chain (the leader) wants to set up p new facilities in the market,
where similar facilities of a competitor (the follower), and possibly of its own chain, are
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already present. The follower will react by locating r facilities after the leader locates its own
facilities. Hakimi introduced the terms medianoid for the follower problem, and centroid for
the leader problem. More precisely, an (r|X ) medianoid problem refers to the follower’s
problem of locating » new facilities in the presence of p leader’s facilities located at a set of
points X ,. An (r|p) centroid problem refers to the leader’s problem of locating p new facil-
ities, knowing that the follower will react positioning r new facilities by solving an (r|X )
medianoid problem.

In this paper, a constrained (1|1) centroid problem in the plane with Huff patronizing
behaviour, in which the quality of the facility is regarded as a third decision variable of the
model, is considered. And for the first time in the literature on centroid problems, elastic
demand is contemplated. This problem is a hard-to-solve global optimization problem, with
many local maxima and in some instances with very different objective values at quite close
feasible points. The literature on centroid problems is scarce (see [6] for a review on the
topic until 1996), and to our knowledge, among the existing papers only five of them deal
with continuous problems. This is mostly due to the complexity of that type of bi-level pro-
gramming problems. Drezner [9] solved the (1]1) centroid problem for the Hotelling model
and Euclidean distances exactly, through a geometric-based approach. Bhadury et al. [10]
also considered the (| p) centroid problem for the Hotelling model with Euclidean distances,
and gave an alternating heuristic to cope with it. Drezner and Drezner [11] considered the
Huff model, and proposed three heuristic approaches for handling the (1]1) centroid problem
(see also [12]). More recently, Redondo et al. [13] introduced four heuristics for handling
a (1|1) centroid problem with Huff patronizing behaviour and with the quality of the new
facility as a variable of the problem. In all those papers the demand was assumed to be
fixed.

In this paper, a (1|1) centroid problem similar to that in [13] is considered, but in which the
demand varies depending on the attraction for the facilities. Three procedures are introduced
for handling it, namely, a grid search procedure, a multistart heuristic and an evolutionary
algorithm. Additionally, a local search procedure, called SASS+WLMy, has been proposed
to be used in both the multistart and the evolutionary algorithms.

It is important to mention that to solve a single centroid problem, many medianoid prob-
lems have to be solved, since the evaluation of the leader’s objective function at a given point
requires the resolution of a medianoid problem. In this sense, this problem can be considered
a two-level optimization problem [14,15]. Of course, it is highly important to compute the
leader’s objective function value accurately, which means that the follower’s problem has
to be solved with precision. However, the medianoid problem is also a hard-to-solve global
optimization problem (as most competitive location problems are). Recently, in [16], the
(11X1) medianoid problem with Huff patronizing behaviour, elastic demand and considering
the quality as variable of the problem, has been studied and solved using the evolutionary
algorithm UEGO (Universal Evolutionary Global Optimizer), initially described in [17], and
an exact interval branch-and-bound method (iB&B) [18]. The computational studies showed
that the heuristic algorithm UEGO was reliable, always finding the global optimum. The
computational effort of both algorithms, in terms of computing time and memory require-
ments, varied depending on the size of the problem. For the problem at hand, both algorithms
are considered as alternatives to deal with the medianoid problems.

The paper is organized as follows: In Sect. 2, the centroid problem is introduced. The
procedures used to solve the corresponding medianoid problem are outlined in Sect. 3. It is
in Sect. 4 where we describe the procedures for solving the centroid problem. Computational
studies are presented in Sect. 5 and the paper ends with some conclusions and lines for future
research in Sect. 6.
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2 A Huff-like (1|1)-centroid problem with decisions in both location and quality
2.1 Fixed demand case

A chain, the leader, wants to locate a new single facility in a given area of the plane, where
m facilities offering the same goods or product already exist. The first k (> 0) of those m
facilities belong to the chain, and the other m — k (>0) to a competitor chain, the follower.
The leader knows that the follower, as a reaction, will subsequently position a new facility
too. The demand, supposed to be inelastic, is concentrated at n demand points, whose loca-
tions p; and purchasing power (or planed budget to buy goods) w; are known. The location
f; and quality of the existing facilities are also known.
The following notation will be used throughout this paper:

Indices
i Index of demand points, i =1, ..., n.
Jj  Index of existing facilities, j = 1, ..., m.
Variables
71 = (x1, y1) Location of the new leader’s facility.
o Quality of the new leader’s facility.

nfi = (z1,o1) Variables of the new leader’s facility.
72 = (x2, y2) Location of the new follower’s facility.

a Quality of the new follower’s facility.
nfa = (z2,2)  Variables of the new follower’s facility.
Data

Di Location of the ith demand point.

W; Demand (or purchasing power) at p;.

fi Location of the jth existing facility.

€ Minimum distance from p; at which the new facilities can be

located.

d; j  Distance between p; and f;.

a;,j Quality of f; as perceived by p;.

gi(-) A non-negative non-decreasing function.

Ui, j Attraction that p; feels for f; (or utility of f; perceived by the
People at p;), u; j = a; j/gi(d; ;)

Vi Weight for the quality of the new facilities as perceived by
demand point p;.

S1 Location space where the leader will locate its new facility.

a‘lmn Minimum level of quality for the new leader’s facility.

o™ Maximum level of quality for the new leader’s facility.

\Y) Location space where the follower will locate its new facility.

oc'zT'i“ Minimum level of quality for the new follower’s facility.

o)™ Maximum level of quality for the new follower’s facility.
Miscellaneous

d;i 7 Distance between p; and z;,1 =1, 2.

Ui nfy Attraction that p; feels fornf;,l = 1,2,

Ui nfy = vio/gi(di ).
M (nf1,nfa) Market share obtained by the leader after the location of
the new facilities.
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M, (nf1,nf;) Market share obtained by the follower after the location
of the new facilities.

ITy(nf1,nf>)  Profit obtained by the leader after the location of the
new facilities.

IT,(nf1,nfy)  Profit obtained by the follower after the location of the
new facilities.

We assume that g; (d;, ;) > 0Vi, j, and consider that the patronizing behaviour of custom-
ers is probabilistic, that is, demand points split their buying power among all the facilities
proportionally to the attraction they feel for them. Using these assumptions, the market share
attracted by the leader’s chain after the location of the leader and the follower’s new facilities is

k
Winf, + 2 5= Wi
_ .
Winfy + Winpy + 251 Ui

Mi(nfi,nf2) = > ;
i=1

and the corresponding market share attracted by the follower’s chain is

n m
o Uinfy T 2 Ui
My (nfi,nfr) = w; )
; l Uinfy + Uinf, + Z?:l Ui, j

Given nf1, the problem for the follower is the (1|nf]) medianoid problem:

max [T (nfi.nf2) = F(Ma(nfi, nf2)) — Ga(nf)
s.t. 22€ 8
diz, >€,i=1,...,n

as € [ay™, af™

(FP(nf1))

whose objective is the maximization of the profit obtained by the follower (once the leader
has set up its new facility at nf}), to be understood as the difference between the revenues
obtained from the captured market share minus the operating costs of the new facility (see
[18]). F» is a strictly increasing function which transforms the market share into expected
sales and G is a function which gives the operating cost for the follower of a facility located
at zo with quality a).

Let us denote with nf; (nf1) an optimal solution for (F P (nf1)). The problem for the
leader is the (1]1) centroid problem:

max Ty (nfy, nfy (nf1)) = Fy(My(nfy, nf5 (nf1))) — G1(nf1)
st. 71 €81
di,zl >¢,i=1,...,n

ay € [af™", a"]

(LP)

where F and G are the corresponding expected sales and operating costs functions, respec-
tively, for the leader’s chain.
In our computational studies we made the following choices:

— Functions F;, [ = 1,2, are linear, F;(M) = s; - M, where s; is the income per unit of
goods sold.

— Usually, the operating costs of a new facility consist of the sum of the locational costs and
the costs related to reaching a given level of quality. Therefore functions G;,1 = 1,2,
are assumed to be separable, in the form G;(nf;)) = Gj(z) + Glb (7). In particular,
we have considered G9(z)) = Y, ®(d;..,), with @/ (d; ;) = Wi /((di.)" + ¢i1),
#1%, ¢! > 0and GY () = exp(a /g + &) —exp(&!), with &) > Oand &' € R as given
values.
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A more detailed explanation of the parameters and functions of the model, as well as other
possible expressions for F; and Gy, can be found in [18]. Of course, other functions might
be more suitable depending on the real problem considered, and for each real application the
most appropriate F; and G, functions should be discovered. In [19] the interested reader can
find a pseudo-real application to the case of the location of supermakets in the Autonomous
Region of Murcia, in Southern Spain. Although in that paper the demand was assumed to be
fixed and no reaction from the competitor was expected, the parameters and functions have
the same meaning as those in the present paper.

As we can see, the leader problem (L P) is much more difficult to solve than the follower
problem (F P (nf1)). Notice, for instance, that to evaluate its objective function [T at a given
point nf], we have to first solve the corresponding medianoid problem (F P (nf)) to obtain
nfy (nf1). Furthermore, in order to compute the objective value of IT; at nf; accurately, the
follower problem (F P(nf1)) has to be precisely solved since otherwise, the error of the
approximate value can be considerable.

2.2 Variable demand case

In the previous model the demands w; at the demand points are assumed to be fixed. Now,
let us make the more realistic assumption that the demand at p; is affected by the perceived
utility of the facilities, given by the vector u; = (u; nf;, Ui nf,, Ui,1, - - -, Ui m). Making the
simplifying assumption that the utility is additive, then U; = u; , + u;np, + z;-"zl uj
represents the total utility perceived by a customer at p; provided by all the facilities. Hence,
it is natural to assume that the actual demand at p; is a function of U;.

If we denote by w"* the maximum possible demand at p;, and by w;ni“ the minimum pos-
sible demand at p;, then the actual demand w; at p; is a function of the utility vector u; only
through the total utility U;, i.e., w; (U;) = w;“i“ +incr;-e; (U;), where incr; = w™ — w}“i“.
Here, ¢; (U;) is a non-negative and non-decreasing function of U; that cannot exceed 1 (notice
that w; cannot exceed w;"®). Function e; (U;) can be interpreted as the share of the maxi-
mum possible increment that a customer decides to expend under a given location scenario.
Although there are different possible expressions for this function (see [16]), for the current
study a linear expenditures case is considered. In this model, w;“i“ = 0,sothatincr; = w™*,
and e; (U;) = c;U;, with ¢; a given constant such that ¢; < 1/U™, where U™ is the max-
imum utility that can be possibly perceived by a customer at i, see [20].

The corresponding Huff-like (1|1)-centroid problem with elastic demand and decisions
in both location and quality to be solved is analogous to (L P), but with the following modi-
fications:

1. Infunctions M;, | = 1,2, w; is changed to w; (U;).

In the cost functions G;(nfi) = G{(z1) + Glb (o), | = 1,2, for w; a mean value
Aver 4, (w; (U;)) is used (in the sense of the first mean value theorem for integration, see
[16]). Notice that we do not replace w; by w; (U;) in functions G;. As pointed out in
[16], this means that we assume, on the one hand, that the cost to obtain a given level of
quality, as given by Gf’ , does not depend on the level of demand in the market. This can
be realistic in many cases, especially when incr; is not too high. On the other hand, it
also implies that the location cost does not depend on the level of demand either. This is
especially true if the cost of buying or renting the place for the location is paid in advance,
before opening the new facility. In this way, the scenario which determines the cost of
the location is not affected by the ‘variation’ in the demand produced by the location of
the new facility, but just by the average demand.
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As shown in [16], the objective function of the follower’s problem with fixed demand is
multimodal, but it tends to be smoother than the objective function of the follower’s problem
with variable demand, which has many more local optima and whose landscape is much
steeper. Of course, the complexity of the centroid problem is more greatly affected due to
the variable demand assumption.

2.3 Examples

In order to show the difficulty of the problem at hand, and its differences with the fixed
demand case, in this section, we solve a quasi-real example dealing with the location of
supermarkets in an area around the city of Murcia, in the southeast of Spain. In particular,
a working radius of 25km around the city of Murcia was considered. In all, 632,558 people
live in that area, and they form our set of customers. Although they are distributed over 71
population centers, with populations varying between 1,138 and 178,013, in this example,
we have considered an aggregated version, in which only population centers with a city hall
are taken into account. The 21 towns with a city hall form our reduced set of demand points,
with the population obtained by aggregating all population centres in the town which they
administratively depend on. The mean purchasing power of a town was considered propor-
tional to its population. The position and population of the towns can be seen in Fig. 1, where
grey circles represent the forbidden areas around the existing demand points, which are at the
center of those circles (the greater the circle, the greater the purchasing power at the demand
point). The location space S1 = S, was taken as the smallest rectangle containing all demand
points.

There are five supermarkets in the area: three from a first chain, ‘E’, and two from another
chain, ‘C’. Figure 1 shows the location of each supermarket as viewed from chain E’s point
of view: firms belonging to chain E are marked by a black triangle, and firms from the other
chain are shown by a black square on the map. We set the quality parameters a; ; within
the interval [3,4]. The optimization of quality for the new facilities was carried out in the
interval [a,mi“, o] = [0.5,5],] = 1, 2. The income per unit of goods sold has been set
to s; = 32, [ = 1, 2. Due to the lack of real data from the chains (they consider those data
sensitive for them and are not willing to make them public), the other parameters have been
validated in an ad hoc way to obtain ‘reasonable’ results. The interested reader is referred to
[19] for more details about the case study and the value of the parameters.

In Fig. 1a, we can see the optimal location and quality for the new leader’s facility (repre-
sented by ) and the new follower’s facility (represented by +), when chain E is the leader,
assuming that the demand is fixed (as obtained by algorithm UEGO_cent.SASS [13]). The
corresponding solutions when the demand is variable are shown in Fig. 1b (as obtained using
TLUEGO_UE, see Sect. 4.3). In those figures, we have added two windows on the right and
bottom of the map, allowing us to view all three 2-dimensional projections of the 3-dimen-
sional solution set: the map itself shows the 2-dimensional spatial part, without the quality,
the right pane shows the quality and vertical space part (quality increases from left (0.5) to
right (5)), the bottom pane shows the quality and horizontal space part (quality increases
from top (0.5) to bottom (5)). The numerical results are shown in Table 1.

As we can see, in the fixed demand case, the optimal location for the leader is near the
city of Alcantarilla, with a quality of 0.5. At that point, the market share captured by the new
leader’s facility is m; = 2.112, which is 5.94 % of the total market share. Considering all its
facilities, chain E gets 53.22 % of the market, and a profit I7; = 593.352. The location for
the follower’s facility is near the city of Molina, with a quality of 3.696, where it captures
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Fig. 1 Optimal location and quality for both leader and follower when chain E is the leader. a Fixed demand.
b Variable demand. Leader’s facility stzar (blue) and follower’s facility plus sign (red). (Color figure online)
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20.04 % of the total market share. However, the leader’s optimal location in the variable
demand case is in the suburb of Puente Tocinos, in Murcia city, with a quality of 0.961. The
market share captured by the facility is 0.419, which is 5.94 % of the total market share.
The whole chain gets 43.68 % of the market and a profit [7; = 73.454. The location for the
follower’s facility is near the suburb of San Benito, in Murcia city, with a quality of 0.571,
where it captures 3.875 % of the total market share.

If we now assume that chain C is the leader, then, in the fixed demand case, the optimal
location for the leader is near the city of Orihuela, with a quality of 3.277, where the facility
captures 17.57% of the total market share. The location for the follower’s facility is near
the city of Alcantarilla, with a quality of 0.5, where it captures 6.15 % of the total market
share. The corresponding total market share captured by the chains and their profits can be
seen in Table 1. However, the leader’s optimal location in the variable demand case is near
the suburb of San Benito, in Murcia city, with a quality of 1.042, and the location for the
follower’s facility is near the suburb of San Benito too, with a quality of 0.571.

These two examples show how important it is to take variable demand into consideration.
As can be seen, the maximum profit for the chain is obtained at different locations and
with different qualities, depending on whether variable (elastic) demand or fixed (inelastic)
demand is considered. Also, the percentage of market share captured by the chains may
change to the point that the chain getting more profit may be the opposite one.

3 Solving the medianoid problem

The medianoid problem associated with our centroid problem was studied in [16]. In that
work, an exact interval branch-and-bound method (iB&B) and an evolutionary algorithm
(UEGO), were proposed to deal with the problem.

The iB&B method considered in that work is described in [21]. Such a method is based
on Interval Analysis. It uses boxes to define the search region and its branches, and inclu-
sion functions to bound the objective function over a given box. Furthermore, it includes
several new accelerating devices in order to solve difficult, highly nonlinear problems more
efficiently. As a result, it determines an enclosure of all the globally optimal solutions within
a pre-specified precision (for the medianoid problem with variable demand, a tolerance
€ = 0.0001 was considered in [16]). For practical purposes, iB&B is competitive for small
sized problems. However, the computational time needed to solve a problem increases by a
factor of 5 as the size of the problem increases by a factor of 2. The memory requirements
increase accordingly. In fact, in [16], iB&B could only manage instances with, at most, 200
demand points.

UEGO is a general evolutionary algorithm designed to solve many kinds of multimodal
global optimization problems (see [17] for a detailed description of the UEGO algorithm).
It promotes the formation and maintenance of subpopulations (or individuals). The maxi-
mum number of subpopulations is given by the input parameter M (maximum population
size). In this scenario, a subpopulation is a sphere defined by its center and a radius. The
center is a solution, and the radius indicates its attraction area, which covers a region of
the search space and hence, multiple solutions. The radius of the subpopulations is neither
constant along the execution of UEGO nor the same for each subpopulation. This radius is
a monotonous function that decreases as the index level (or cycles or generations) increases.
The parameter L indicates the maximum number of levels in the algorithm. The radius of
a subpopulation created at level i (with i € [1, L]), is given by a decreasing exponential
function which depends on the initial domain landscape (the radius at the first level, r;) and
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the radius of the smallest subpopulation, r7 . Besides M, L and rz, UEGO has another input
parameter, N, which refers to the maximum number of function evaluations allowed for the
whole optimization process. However, it is important to mention that UEGO may terminate
simply because it has executed all of its levels. The final number of function evaluations
depends on the complexity of the problem.

UEGQO could also be identified as a memetic algorithm [22] in the sense that it uses local
optimization in the evolution process. UEGO performs a local maximization on each subpop-
ulation at every generation, and the local maxima replace the caller individuals. For dealing
with the medianoid problem, a Weiszfeld-like algorithm was used in [16]. We will call it
WLMy in what follows. The WLMyv algorithm is a simple steepest-descent type method
which takes discrete steps along the search paths. The method sets the derivatives of the
objective function to zero and the next iteration is obtained by implicitly solving the result-
ing equations. The method is stopped when either two consecutive iterations are closer than a
given tolerance (¢ = 0.0001), or the maximum number of iterations is reached (rmax = 400).
This local optimizer allows the evolutionary algorithm UEGO to find the global optimum
with reliability. In what follows, we will refer to UEGO_medy as the algorithm UEGO exe-
cuted with WLMyv for solving the medianoid problems. In [16] it was found that a good
parameter setting for UEGO_medv was N = 10°, M = 350, L = 30 and r, = 0.05.

UEGO_medv proved to be reliable when solving the medianoid problem with elastic
demand in [16]. It always found the optimal solution in all the problems with up to n = 200
demand points, for which the optimal solution was known. Furthermore, it was faster than the
interval B&B method (it needs, in average, from 28.43 % less time when n = 50-80.32 %
when n = 200), and it had much less memory requirements than iB&B.

It is notheworthy that many medianoid instances have to be solved when dealing with
a single centroid problem. Then, a trade-off between guarantee in the quality of the final
solution and required computing time has to be found. Looking for this equilibrium, both
alternatives, i.e. iB&B and UEGO_medyv, are considered and analyzed when solving the
medianoid problems.

4 Solving the centroid problem

In this section, three heuristics devised to cope with the centroid problem are described.
More precisely, a grid search procedure, a multistart method named MSH, and an evolution-
ary algorithm called TLUEGO, are presented. In the last two, a local optimizer is needed.
A subsection will be dedicated to briefly explain such a local technique. Two variants have
been designed for the local optimizer, which derive two versions for MSH and TLUEGO
algorithms.

4.1 GS: a grid search procedure

The first method is a simple Grid Search procedure (GS) as in [13]. A grid of points that cover
the leader’s 3-dimensional searching region is generated. For each point of the grid we first
check its feasibility. If it is feasible, then we evaluate the objective function for the leader,
which implies that we first have to solve the corresponding medianoid problem to obtain an
optimal solution for the follower. To this aim, the algorithm UEGO_medyv is used. When
all the feasible points of the grid have been evaluated, a second finer grid is constructed in
the vicinity of the point of the first grid having the best objective value. In our first grid, the
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length of the step between two adjacent points was 0.1 unit in each coordinate, and in the
second grid, 0.02 unit.

4.2 The local optimizer SASS+WLMyv

As mentioned above, to solve the centroid problem, both the multistart and the evolutionary
algorithms make use of a local procedure. Local optimizers usually assume that the config-
uration of the problem during the optimization process does not change. However, this is
not the case for the centroid problem, since every time the leader’s facility changes, so does
the follower’s facility. Thus, the value of the objective function of the leader’s problem may
change if the new configuration is taken into account. This means that the new follower’s
facility should be computed every time the leader’s facility changes. However, since the
number of function evaluations in any local optimizer is usually large, obtaining the exact
new follower’s facility at each new location of the leader’s facility will make the process very
time-consuming.

To deal with our counterpart, the centroid problem with fixed demand, a local procedure
called SASS+WLM was introduced in [13]. The idea of such an algorithm is to apply the
stochastic hill climber SASS (see [23]) to improve the leader’s facility, and a Weiszfeld-like
algorithm WLM to approximate the follower’s. The leader optimization is focused on a sphere
whose radius is determined by the input parameter o,;. The algorithm stops when a maxi-
mum number of iterations (icmax) 1S reached, or when a maximum number of consecutive
failures at improving the objective function (Max fcnt) occurs.

For the problem at hand, and after trying different strategies, a local procedure similar
to SASS+WLM in [13] is proposed. The pseudocode of this new method is given in Algo-
rithm 1. The main differences between the local algorithm used in this paper (that we will
call SASS+WLMyv) and the one in [13] are:

— The Weiszfeld-like algorithm used now for updating the follower’s facility is WLMv
(described in [16]), instead of WLM. Similar to what was considered for UEGO_medv
(see Sect. 3), WLMv stops when either two consecutive iterations are closer than the
tolerance € = (0.0001, or when a maximum number of ry,,x = 400 iterations is reached.

— The WLMyv algorithm is not as reliable as the corresponding method WLM for the fixed
demand case. Then, a large maximum number of iterations icpmax in SASS could direct
the leader towards overestimated solutions. To deal with this drawback, the parameter
icmax in SASS+WLMy is reduced to 15. Additionally, once the maximum number of
iterations icmax 1S reached, the medianoid problem is solved optimally. Otherwise the
objective value for the leader could be completely wrong, overestimated. This can even
happen if the solutions are very close to optimality in objective function value but are
in significantly different locations, and even if the leader’s problem is solved optimally
given the non-optimal follower’s solution. For the centroid problem with fixed demand,
the medianoid problem was computed with UEGO_med so as to have a reliable approx-
imation of the follower’s facility. For the problem at hand, two alternatives have been
taken into account to do so: iB&B or UEGO_medyv, giving place to two versions of the
local optimizer.

Notice that the algorithm iB&B gives as a solution a list of small 3-dimensional intervals

where any optimizer point must lie. Then, when selecting this method in Step 9 of Algorithm 1
the solution nf,” " considered will be the best point evaluated by the algorithm iB&B.
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Algorithm 1 Algorithm SASS+WLMvV(1f1, nf, i cmax (= 15), Oup)

1: Initialize SASS parameters. Setic = 1, nflopt = nfy, Hi)pt = II | (nf1, nfr).

2: while ic < icmax
3:  Update SASS parameters considering the previous successes at improving the
objective function value of the leader.

Generate a location for the leader fl(ic) within the updated radius.

Solve the corresponding medianoid problem using WLMv and let n fz(ic) denote the solution obtained.
it myof O oy ) >
set nflo‘m = nfl(w) and 1710’” =11 (nf](lc), nfz(w)).
:odc=ic+ 1.
9: Compute the corresponding follower n fzo P! for nflo Pt using either iB&B or UEGO_medv.

100 i 17 (" nfy?') > Ty (nfy, nf)

11:  return (nflOpt, nf;pt)

12: else
13:  Return (nfy, nf?).

A A

4.3 TLUEGO: a two-level evolutionary global optimization algorithm

The more robust algorithm designed to cope with the centroid problem has been the evolution-
ary algorithm called TLUEGO. This algorithm is similar to the algorithm UEGO_cent.SASS
introduced in [13], which deals with the corresponding centroid problem with fixed demand.
TLUEGQO, as well as UEGO_cent.SASS, shares some concepts and ideas with UEGO_medv
(see Sect. 3). In particular, the concept of subpopulation (including attraction radius), the use
of a local optimizer and the set of input paramaters have been either adopted or adapted to
cope with the centroid problems. The values of the input parameters used for UEGO_medv
(see Sect. 3) have also been adopted for TLUEGO.

In the following, the general structure of TLUEGO is provided (see Algorithm 2). At the
beginning, a single subpopulation (the root) exists, and as the algorithm evolves and applies
genetic operators, new subpopulations can be created. For TLUEGO to work properly, it is
very important to correctly evaluate the fitness of the new subpopulations after the creation
procedure. To this aim, a reliable follower solution has to be computed, and to do so, two
alternative algorithms are possible: iB&B or UEGO_medyv, as was suggested in Sect. 3. At
every generation, TLUEGO performs a local optimizer operation on each subpopulation.
For the problem at hand, the algorithm SASS+WLMy is used. Notice that it is executed
twice in order to have more chances for obtaining a better point. The value of o, passed
to SASS+WLMy is always (the two times it is called) the radius associated to the calling
subpopulation. In this way, the scope of the local optimizer is exactly the area covered by
the subpopulation. Notice that a subpopulation involves a ’cooling’ technique which enables
the search to focus on the promising regions of the space, starting off with a relatively large
radius that decreases as the search proceeds. Then, exploration and exploitation of the search
space are guaranteed. TLUEGO has been executed with the two variants of the local opti-
mizer, i.e. considering iB&B and UEGO_medv when computing a reliable solution for the
follower (Step 9 in Algorithm 1). It is important to highlight that TLUEGO performs two
selection procedures during the optimization process. The first one is carried out after the
new offspring is generated. It consists of the ‘Fuse subpopulations’ and the ‘Shorten subpop-
ulation list’ procedures. The second one takes place after the optimization procedure, and
only considers the Fuse subpopulations procedure. The reader is referred to [13] for a more
detailed description of these procedures.
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The inclusion of iB&B or UEGO_medv in TLUEGO derives two algorithms for solving
the centroid problem, TLUEGO_BB and TLUEGO_UE, respectively.

Algorithm 2 Algorithm TLUEGO(N, M, L, rr)

1: Set iteration counter i = 1. )

2: Initialize a random leader location (center of initial subpopulation) n, fl(’) and compute the corresponding
follower n, fz(l) using either iB&B or UEGO_medyv.

30 (uf {7, nfy"") = SASS + WLMVGif{"”, nfs" icmax (= 15), 0 (= ).

4 7" nfgP"y = SASS + WLMv(if (%, nfi0*, icmax (= 15), oy (= 17).

5: for i =2 until L

6: Create new subpopulations

7:  Compute the corresponding follower for the new subpopulations using either iB&B or UEGO_medy,

and evaluate the leaders’ fitness values.
Fuse subpopulations, and Shorten the subpopulation list.

: for each existing subpopulation n fl(i) (with radius r;) and its corresponding follower n, fz(i)
100 (% nfy%) = SASS + WLMv(nf () nfy?) icmax (= 15), 0up (= ri)).

1 fP nfP") 