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Abstract The pooling problem is an extension of the minimum cost network flow prob-
lem where the composition of the flow depends on the sources from which it originates. At
each source, the composition is known. In all other nodes, the proportion of any component
is given as a weighted average of its proportions in entering flow streams. The weights in
this average are simply the arc flow. At the terminals of the network, there are bounds on
the relative content of the various components. Such problems have strong relevance in e.g.
planning models for oil refining, and in gas transportation models with quality constraints
at the reception side. Although the pooling problem has bilinear constraints, much progress
in solving a class of instances to global optimality has recently been made. Most of the
approaches are however restricted to networks where all directed paths have length at most
three, which means that there is no connection between pools. In this work, we generalize
one of the most successful formulations of the pooling problem, and propose a multi-com-
modity flow formulation that makes no assumptions on the network topology. We prove that
our formulation has stronger linear relaxation than previously suggested formulations, and
demonstrate experimentally that it enables faster computation of the global optimum.

Keywords Pooling problem · Multi-commodity flow · Linear relaxation ·
Bilinear constraint · Convex and concave envelopes

1 Motivation

The classic blending problem, which appears in many industrial settings, involves determi-
nation of the optimal blend of raw materials to produce a certain quantity of end products.
The composition of the end products is subject to certain specifications, and the decision
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maker must determine in what proportions the raw materials should be used in the various
end products. The optimal blend means the minimum cost blend of inputs satisfying the given
specifications. Such problems can be formulated as linear programs (LP), and are therefore
very easy to solve.

A considerably more difficult problem occurs if the blended flow of raw materials is mixed
in intermediate tanks (pools) and then blended again to form end products. The nodes are
partitioned into sources, pools and terminals, and each arc goes either from a source to a pool,
from a source to a terminal, or from a pool to a terminal. The corresponding flow problem in
networks with this particular tripartite structure is referred to as the pooling problem. Tracking
the quality from the sources to the terminals leads to bilinear constraints, and consequently
the pooling problem can possibly have many local optima. Recently, it was shown (Alfaki
and Haugland 2012) that the pooling problem is strongly NP-hard.

Most mathematical programming formulations for the pooling problem belong to either
of two main classes. Belonging to the first class are formulations that, in addition to flow
variables, make use of variables representing the quality of the flow. Noteworthy among
these is the P-formulation, which was first introduced by Haverly (1978, 1979). In contrast,
Ben-Tal et al. (1994) suggested the Q-formulation, where the quality variables are replaced
by variables representing flow proportions. This model has later been shown to perform better
when fed into generic branch-and-cut algorithms. By applying the reformulation-linearization
technique (Sherali et al. 1998; Sherali and Adams 1999; Sherali 2002) to the Q-formulation,
Tawarmalani and Sahinidis (2002) managed to derive a stronger model referred to as the
PQ-formulation. The superiority in strength over the P-formulation was proved theoretically,
and experiments with the global optimizer BARON (Sahinidis 1996) showed that standard
test instances could be solved very quickly. Building on this work, Alfaki and Haugland
(2012) managed to improve the PQ-formulation even further.

Practical applications, particularly in integrated water systems in chemical processes
(Karuppiah and Grossmann 2006) and pipeline transportation of natural gas (Li et al. 2011),
frequently reveal that flow streams leaving one pool may in their turn be blended in pools
further downstream in the network. Single-period planning models based on networks with
a single layer of pools may also have this property when extended to multi-period models
with inventories. In such models, each pair of inventory and time period becomes a pool, and
constraints that define the pool qualities are necessary if the input quality cannot be assumed
constant over time. Contradicting the assumptions made in the works cited in the paragraph
above, the applications in question imply a flow network with paths intersecting more than
one pool.

The optimization problem arising when no longer assuming the tripartite network struc-
ture is referred to (Audet et al. 2004; Misener and Floudas 2009) as the generalized pooling
problem (GPP). For the purpose of a clear distinction, the pooling problem is henceforth in
the current work also referred to as the standard pooling problem.

According to Main (1993), paths of many pools tend to reduce the chance for local opti-
mization methods to end up in the global optimum. This can be overcome by extending the
P-formulation to GPP, and apply a global solver handling bilinear constraints to the resulting
model. Such an extension is straightforward. Given the theoretical and computational supe-
riority of the PQ-formulation for the standard pooling problem, it is however reasonable to
expect that an extension of the PQ-formulation will be competitive with an extended P-formu-
lation. This motivates the goal of the current work: Derive a computationally efficient model
for GPP by extending the idea of the PQ-formulation to networks with arbitrary structure.

Some attempts to generalize pooling problem formulations based on proportion variables
can be found in the literature. Audet et al. (2004) indicate a hybrid model, with both quality
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and proportion variables. Following the idea of Ben-Tal et al. (1994), they introduce propor-
tion variables at pools that receive flow only from sources, and apply quality variables in the
spirit of the P-formulation for other pools.

Recently, generalizations of the pooling problem that make no assumptions on the net-
work structure have been developed. Meyer and Floudas (2006) and Misener et al. (2010)
proposed a mixed integer nonlinear (MINLP) formulation for the design of waste-water treat-
ment. The networks may contain arcs between pools, since the flow of water may go through
several stages of refinement (reduction of contamination). Their model is based on quality
variables with constraints generalizing those of the P-formulation. This is a very natural
choice of variables, since it does not seem appropriate to model quality updates in terms of
proportion variables. Because the authors also consider a fixed charge for opening the arcs,
binary variables are introduced, and the model becomes an MINLP. To tighten the relaxa-
tion, Misener et al. (2010) also apply a novel piecewise underestimation for the nonconvex
bilinear terms (Wicaksono and Karimi 2008; Gounaris et al. 2009). Another extension of the
standard pooling problem has been proposed by Misener and Floudas (2010) to maximize
the profit of blending reformulated gasoline subject to environmental standards, involving
complex emission constraints. Other interesting applications of global optimization related
to network flow problems are given in Chapter 6 in the textbook of Horst et al. (2000) and
by Guisewite (1995).

The contribution from this paper is a new multi-commodity flow formulation for the GPP.
Complying with the PQ-formulation, it is based uniquely on proportion variables in addi-
tion to the flow variables. In network instances where all paths intersect at most one pool,
our formulation coincides with the PQ-formulation, and we demonstrate that the favorable
theoretical and computational properties carry over to GPP.

The paper is organized as follows: In Sect. 2, we give some notations and definitions
that will be used throughout the paper. Section 3 presents the P-formulation applied to GPP,
and in Sect. 4, we propose and analyze the multi-commodity flow formulation. The analysis
includes a comparison with the P-formulation and the hybrid model of Audet et al. (2004),
both of which turn out to have weaker relaxations than our model. Section 5 presents com-
putational experiments where the said formulations are compared, and Sect. 6 concludes the
paper.

2 Notations and definitions

We consider a directed graph G = (N , A) with node set N and arc set A. For any node
i ∈ N , let N+

i = { j ∈ N : (i, j) ∈ A} and N−
i = { j ∈ N : ( j, i) ∈ A} denote the set of

out- and in-neighbors of i , respectively. We assume that G has non-empty sets S, T ⊆ N
of sources and terminals, respectively, where N−

s = ∅ ∀s ∈ S and N+
t = ∅ ∀t ∈ T . We

refer to all nodes in I = N \ (S ∪ T ) as pools. We define a finite set of quality attributes
K . With each i ∈ S ∪ T , we associate a real constant qk

i for each k ∈ K . If s ∈ S, qk
s is

referred to as the quality parameter of attribute k at that source, and if t ∈ T, qk
t is referred

to as the quality bound of attribute k at terminal t . For each i ∈ N , we define the constant
flow capacity bi , and for each arc (i, j) ∈ A, we define the constant unit cost ci j . This is
slightly more general than defining costs and revenues only at the sources and the terminals,
respectively, which is common practice in the pooling problem literature. For each i ∈ N ,
let Si be the set of sources from which there exists a path to i in G (for all s ∈ S, we have
Ss = {s}).
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Define the flow polytope F(G, b) as the set of flow vectors f ∈ R
A+ satisfying

∑

j∈N+
i

fi j ≤ bi , i ∈ N \ T, (1)

∑

j∈N−
t

f j t ≤ bt , t ∈ T, (2)

∑

j∈N+
i

fi j −
∑

j∈N−
i

f j i = 0, i ∈ I. (3)

Consider any f ∈ F(G, b). For all i ∈ N and k ∈ K , define wk
i as a product quality of

attribute k at node i corresponding to flow f . That is, wk
i = qk

i if i ∈ S, and for all i ∈ N \ S,
we have

wk
i

∑

j∈N−
i

f j i =
∑

j∈N−
i

wk
j f j i ,

for all k ∈ K .
This means that the product qualities are arbitrary at pools and terminals with zero entering

flow, and uniquely defined at all other nodes. The definition implies that we assume linear
blending at pools and terminals, and that the flow on all arcs leaving node i has the unique
quality wk

i .
In this work, we consider the following extension of the minimum cost flow problem:

Problem 1 (The generalized pooling problem) Find f ∈ F(G, b) and a corresponding
matrix of product qualities w ∈ R

N×K satisfying wk
t ≤ qk

t ∀t ∈ T, k ∈ K , such that∑
(i, j)∈A ci j fi j is minimized.

Without loss of generality, we have assumed that only upper quality bounds are imposed.
Should a lower bound wk

t ≥ �k
t apply, we introduce a new quality attribute k−, and define

qk−
s = −qk

s for all s ∈ S, and let qk−
t = −�k

t .
It follows directly from the strong NP-hardness of the standard pooling problem (Alfaki

and Haugland 2012) that also Problem 1 is strongly NP-hard. The proof of this fact relies
on a problem definition without lower bounds on the delivery to the terminals, or at least
includes zero bounds as a possibility. For the purpose of a simple model, we have assumed
the lower delivery bounds to be zero, but the main results in this work do not depend on this
assumption.

3 A formulation based on quality variables

3.1 The P-formulation for the generalized pooling problem

The P-formulation of the problem is found by extending the minimum cost flow problem
(with node capacities) in directed graphs. Its decision variables are exactly those indicated in
the problem definition, namely the flow fi j along arc (i, j), and wk

i representing the quality
in terms of attribute k of the flow leaving node i ∈ N . In addition, we introduce the decision
variable vk

i j (for all (i, j) ∈ A, k ∈ K ), which is best understood by thinking of the attribute

indexed by k as a contaminant. While the quality wk
i is the relative content of the contaminant
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in the flow along arc (i, j), vk
i j is the total amount of the contaminant in the same flow. Thus,

vk
i j = wk

i fi j is a necessary relation.

For notational convenience, define the constants wk
s = qk

s for all s ∈ S, k ∈ K . Problem
1 is then formulated as (recall that N−

s = ∅ ∀s ∈ S and N+
t = ∅ ∀t ∈ T ):

[P] min
f,w,v

∑

(i, j)∈A

ci j fi j (4)

s.t. f ∈ F(G, b), (5)
∑

j∈N−
i

vk
ji −

∑

j∈N+
i

vk
i j = 0, i ∈ I, k ∈ K , (6)

∑

j∈N−
t

vk
j t − qk

t

∑

j∈N−
t

f j t ≤ 0, t ∈ T, k ∈ K , (7)

vk
i j − wk

i fi j = 0, (i, j) ∈ A, k ∈ K . (8)

Constraints (6) state that the amounts of contaminant k entering and leaving pool i are equal,
and constraints (7) say that if any flow enters terminal t , then the relative content of k resulting

from blending,

∑
j∈N−

t
vk

j t∑
j∈N−

t
f j t

, must be below qk
t .

The bilinear program (4)–(8) is referred to as the P-formulation for Problem 1. Alternative
variants of the P-formulation can be derived, e.g. by substituting some or all occurrences of
vk

i j by wk
i fi j . We have introduced the v-variables for the sole purpose of collecting all bilinear

terms in one set of constraints (8).

3.2 Linear relaxations of bilinear terms

For all formulations considered in this work, we apply a well established technique for
relaxing bilinear constraints. It is illustrated here in the case of the P-formulation.

For all k ∈ K and (i, j) ∈ A, let
[
wk

i , w
k
i

]
and

[
f

i j
, f i j

]
be some intervals enclosing

the feasible values of variables wk
i and fi j , respectively. Conservative, but quickly computed

bounds are given as e.g. mins∈Si qk
s ≤ wk

i ≤ maxs∈Si qk
s and 0 ≤ fi j ≤ min

{
bi , b j

}
.

It is well known (McCormick 1976; Al-Khayyal and Falk 1983) that since (8) is bilinear,vk
i j

can be bounded between the convex and concave envelopes of wk
i fi j on

[
wk

i , w
k
i

]×
[

f
i j

, f i j

]

by imposing four linear inequalities, henceforth referred to as the McCormick inequalities:

vk
i j ≥ wk

i fi j + f
i j

wk
i − wk

i f
i j

, (9)

vk
i j ≥ wk

i fi j + f i jw
k
i − wk

i f i j , (10)

vk
i j ≤ wk

i fi j + f i jw
k
i − wk

i f i j , (11)

vk
i j ≤ wk

i fi j + f
i j

wk
i − wk

i f
i j

. (12)

A linear relaxation of the P-formulation is thus obtained by replacing (8) by (9)–(12). The
tightness of the relaxation obviously depends on the tightness of the variable bounds.

More generally, let F be any bilinear formulation for Problem 1 and C a rectangular subset
defined in the space of the bilinear variables such that it contains all their feasible values. We
denote by L P F [C] the linear program obtained by replacing each bilinear term by a new
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variable constrained by the McCormick inequalities corresponding to C . Let zF [C] denote
the optimal objective function value of L P F [C].

4 A multi-commodity flow formulation based on proportion variables

Tawarmalani and Sahinidis (2002) suggested the so-called PQ-formulation for the standard
pooling problem, and proved that it is stronger than the P-formulation. In this section, we
generalize these results to GPP.

4.1 The PQ-formulation for the standard pooling problem

Assume now that A ⊆ (S × I ) ∪ (I × T ) ∪ (S × T ). Define the proportion variables ys
i

(s ∈ S, i ∈ I ) as the fraction of the flow through pool i that originates from source s. Com-
bining the new variables with flow variables, the PQ-formulation for the standard pooling
problem can in our notation be written as

[PQ] min
f,y

∑

s∈S

∑

i∈I∩N+
s

csi ys
i

∑

t∈N+
i

fi t +
∑

t∈T

∑

j∈N−
t

c j t f j t (13)

s.t.
∑

i∈I∩N+
s

ys
i

∑

t∈N+
i

fi t +
∑

t∈T ∩N+
s

fst ≤ bs, s ∈ S, (14)

∑

t∈N+
i

fi t ≤ bi , i ∈ I, (15)

∑

j∈N−
t

f j t ≤ bt , t ∈ T, (16)

∑

i∈I∩N−
t

fi t

∑

s∈Si

qk
s ys

i +
∑

s∈S∩N−
t

qk
s fst − qk

t

∑

j∈N−
t

f j t ≤ 0, t ∈ T, k ∈ K , (17)

∑

s∈Si

ys
i = 1, i ∈ I, (18)

fi t −
∑

s∈Si

ys
i fi t = 0, i ∈ I, t ∈ N+

i , (19)

∑

t∈N+
i

ys
i fi t − bi ys

i ≤ 0, i ∈ I, s ∈ Si , (20)

f j t ≥ 0, t ∈ T, j ∈ N−
t ,

0 ≤ ys
i ≤ 1, i ∈ I, s ∈ Si .

The model makes use of flow variables fi t only along arcs entering terminals. In contrast,
the flow along arc (s, i) ∈ A∩ (S × I ) is represented by ys

i

∑
t∈N+

i
fi t . Multiplying ys

i by the
total flow through i gives the flow along (s, i), justifying the suggested flow representation.

Consequently, the first sum in the objective function covers cost of flow from sources
to pools. Constraints (14)–(16) represent flow capacities at sources, pools and terminals,
respectively, and (17) gives the quality constraint at the terminals. Constraint (18) follows
directly from the definition of the proportion variables. Multiplying (18) by fi t yields (19),
which hence is redundant. Similarly, (20) is obtained by multiplying (15) by ys

i . Sahinidis
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and Tawarmalani (2005) have shown that adding the redundant inequalities largely improves
the linear relaxation and accelerates search algorithms.

4.2 The MCF-formulation for general network instances

In order to generalize the PQ-formulation to arbitrary networks, we apply the set of variables
defined for the multi-commodity network flow problem. We associate a flow commodity
with each source s ∈ S, where at most bs units of the commodity can enter the network. The
commodity can leave the network at any t ∈ T , whereas at all other nodes, the commodity
neither enters nor leaves the network. Since there is a bijection between the sets of commod-
ities and sources, we will whenever appropriate refer to the commodity that enters at source
s as commodity s. Hence, for all (i, j) ∈ A and all s ∈ S, we let variable xs

i j denote the flow
of commodity s along arc (i, j).

We keep the variable fi j denoting total flow of all commodities along arc (i, j) ∈ A, and
let the variable ys

i denote the proportion of the total flow leaving node i ∈ S ∪ I constituted
by commodity s (define the constants ys

i = 0 for s 
∈ Si and ys
s = 1). To make the f -, y-,

and x-variables consistent, we impose xs
i j = ys

i fi j .
This results in the following formulation of the generalized pooling problem.

[MCF] min
f,y,x

∑

(i, j)∈A

ci j fi j (21)

s.t. (1)–(2),∑

j∈N−
i

xs
ji −

∑

j∈N+
i

xs
i j = 0, i ∈ I, s ∈ Si , (22)

∑

j∈N−
t

∑

s∈S j

(
qk

s − qk
t

)
xs

jt ≤ 0, t ∈ T, k ∈ K , (23)

∑

s∈Si

ys
i = 1, i ∈ I, (24)

∑

s∈Si

xs
i j − fi j = 0, (i, j) ∈ A, i ∈ I, (25)

∑

j∈N+
i

xs
i j − ys

i bi ≤ 0, i ∈ I, s ∈ Si , (26)

xs
i j − ys

i fi j = 0, (i, j) ∈ A, s ∈ Si , (27)

fi j ≥ 0, (i, j) ∈ A, (28)

0 ≤ ys
i ≤ 1, i ∈ I, s ∈ Si . (29)

This is recognized as the multi-commodity minimum cost flow problem with the additional
constraints (23) on the quality at the terminals, and the constraints (27) imposing the flow
proportions ys

i on all arcs with start node i . Bilinear terms occur exclusively in (27). Analo-
gous to (19)–(20), constraints (25)–(26) are redundant, but are added for the same reason as
(19)–(20) were added to the PQ-formulation.

We define two bilinear formulations to be equivalent if they have identical sets of bilinear
terms, and, for all hyper-rectangles C, zF1 [C] = zF2 [C]. In the sense of this definition, the
following result shows that the MCF-formulation generalizes the PQ-formulation.
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Proposition 1 If A ⊆ (S × I ) ∪ (I × T ) ∪ (S × T ), then the PQ- and MCF-formulations
are equivalent.

Proof Because of the assumed network structure, (27) introduces a bilinear term ys
i fi t if and

only if (s, i, t) ∈ S × I × T such that (s, i), (i, t) ∈ A. It is easily verified that these are
exactly the bilinear terms occurring in (13), (14), (17), (19) and (20). Hence, both formulations
associate a bilinear term ys

i fi t with each path (s, i, t) in G.

The relaxations L PPQ [C] and L PMCF [C] are now obtained by replacing all occur-
rences of ys

i fi t by some new variable x̂ s
i t , and by adding the corresponding McCormick

inequalities. Hence, (27) becomes x̂ s
i t = xs

it , and because of (25), we can substitute fi t by
∑

s∈Si
x̂ s

i t everywhere in L PMCF [C] except from the McCormick inequalities. Likewise,
(19) is transformed to fi t = ∑

s∈Si
x̂ s

i t , which allows the substitution of fi t everywhere but

the McCormick inequalities in L PPQ [C]. We observe that the two relaxations this way
become identical, and zPQ [C] = zMCF [C] follows. ��

4.3 Strength of the MCF-formulation

In the remainder of the paper, we turn the attention to the general version of Problem 1, i.e.
the assumption made in Proposition 1 will no longer be considered.

When comparing the strength of the P- and MCF-formulations, we face the challenge
that the two formulations share only the f -variables. The assumptions about the bounds on
respectively the w-variables (in [P]) and the y-variables (in [MCF]) must be consistent. To this
end, we apply the bounds wk

i = mins∈Si qk
s ≤ wk

i ≤ wk
i = maxs∈Si qk

s (i ∈ I, k ∈ K ), and
0 ≤ ys

i ≤ 1 (i ∈ I, s ∈ Si ), respectively. The bounds on the flow variables are identical in the
formulations: f

i j
≤ fi j ≤ f i j ((i, j) ∈ A). We denote the corresponding hyper-rectangles

CP and CMCF, respectively.
Proposition 2 below shows that the MCF-formulation is stronger than the P-formulation

also in GPP. The result is a corollary of Proposition 9.1 in the book by Tawarmalani and
Sahinidis (2002).

Proposition 2 z P [CP ] ≤ zMCF [
CMCF

]
.

Proof Assume ( f, y, x) is a feasible solution to L PMCF [
C MCF

]
. Following the idea of

the proof of Proposition 9.1 by Tawarmalani and Sahinidis (2002), we show that letting
wk

i = ∑
s∈Si

qk
s ys

i for all i ∈ N , k ∈ K , and vk
i j = ∑

s∈Si
qk

s xs
i j for all (i, j) ∈ A, k ∈ K ,

implies that ( f, w, v) is feasible in L P P [CP ].
Obviously, (1)–(2) and f ≥ 0 are satisfied. Further, (3) follows from (22) and (25),

(6) follows by summing (22) multiplied by qk
s over all s ∈ Si , and (7) follows from (23)

and (25). To show that the McCormick inequalities (9)–(12) hold, we first observe that
xs

i j ≥ f
i j

ys
i + fi j ys

i
− f

i j
ys

i
≥ f

i j
ys

i . Since wk
i ≤ qk

s for all s ∈ Si and k ∈ K , and
∑

s∈Si
ys

i = 1, we have

wk
i fi j + wk

i f
i j

− wk
i f

i j
= wk

i

(
fi j − f

i j

)
+ wk

i f
i j

= wk
i

∑

s∈Si

(
xs

i j − ys
i f

i j

)
+ f

i j

∑

s∈Si

qk
s ys

i ≤
∑

s∈Si

qk
s

(
xs

i j − ys
i f

i j

)
+ f

i j

∑

s∈Si

qk
s ys

i = vk
i j .

123



J Glob Optim (2013) 56:917–937 925

In an analogous manner, (10) follows from xs
i j ≤ f i j ys

i , wk
i ≥ qk

s , and (24), (11) follows

from xs
i j ≤ f i j ys

i , wk
i ≤ qk

s , and (24), and finally, (12) follows from xs
i j ≥ f

i j
ys

i , wk
i ≥ qk

s ,
and (24).

The proof is complete by observing that the objective functions (4) and (21) are
identical. ��
4.4 A hybrid model

Audet et al. (2004) suggested a model combining quality and proportion variables. In order
to avoid terms where proportion variables are squared, which will be the result of a straight-
forward generalization of the PQ-formulation, they introduce proportion variables for pools
that only have sources as in-neighbors, and quality variables for the remaining pools. Denote
the former subset of pools I1 = {

i ∈ I : N−
i = Si

}
.

The authors formulate their model in terms of the instance depicted in Fig. 1, where both
pools (nodes 4 and 5) have capacity 20. In agreement with the PQ-formulation, there is no
explicit flow variable for arcs linking S to I1, which in the given instance amounts to arcs
(1,4) and (2,4), since respectively y1

4 ( f45 + f47) and y2
4 ( f45 + f47) represent flow along these

arcs. For the purpose of keeping the number of bilinear terms low, Audet et al. (2004) also
exploit the constraints (18) at node 4 in order to substitute one proportion variable. In our
notation, without the suggested variable substitution, their formulation reads:

min
f,w,y

−3 f16 + 6y1
4 ( f45 + f47)

+16y2
4 ( f45 + f47) − 3 f37

+10 f35 − 9 f56 − 13 f47 − 14 f58 + 0 f45,

supply at 1: f16 + y1
4 ( f45 + f47) ≤ 18,

supply at 2: y2
4 ( f45 + f47) ≤ 18,

supply at 3: f35 + f37 ≤ 18,

capacity at 4: f45 + f47 ≤ 20,

capacity at 5: f56 + f58 ≤ 20,

demand at 6: f16 + f56 ≤ 10,

demand at 7: f37 + f47 ≤ 15,

demand at 8: f58 ≤ 20,

quality balance at 5: 2 f35 + (3y1
4 + y2

4 ) f45 = w1
5( f56 + f58)

quality bound at 6: 3 f16 + w1
5 f56 ≤ 2.5( f16 + f56),

quality bound at 7: 2 f37 + (3y1
4 + y2

4 ) f47 ≤ 1.75( f37 + f47),

quality bound at 8: w1
5 ≤ 1.5,

sum of proportions at 4: y1
4 + y2

4 = 1,

y1
4 , y2

4 , f16, f35, f37, f45, f47, f56, f58 ≥ 0.

Unfortunately, the constraint representing the quality bound at terminal 8 is too strict, and
renders the formulation slightly incorrect. Although terminal 8 has pool 5 as its unique
in-neighbor, it is not correct to transfer the quality bound to the pool. By doing so, all feasible
solutions with zero flow along arc (5,8) and w1

5 > 1.5 are incorrectly excluded. The error
is corrected by replacing w1

5 ≤ 1.5 by w1
5 f58 ≤ 1.5 f58. Such complementarity constraints
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(1.5,20)

Fig. 1 Instance studied by Audet et al. (2004)

illustrate the binary nature of arcs linking terminals with only one neighbor: Either the arc
must be closed or the quality at the pool must satisfy the bound at the terminal.

With the given data, it is however optimal to assign positive flow to arc (5,8), and the
suggested formulation finds the optimal flow pattern f16 = 20/3, f35 = 84/11, f37 =
114/11, f45 = 136/11, f47 = 51/11, f56 = 10/3, f58 = 50/3, y1

4 = 13/136, y2
4 =

123/136, and w1
5 = 3/2 (all other variables are zero at optimum). The corresponding cost is

−5621/132 ≈ −42.58, whereas Audet et al. (2004) incorrectly report the minimum cost to
be −60.5.

The flaw (quality bound at 8) in the formulation of Audet et al. (2004) becomes active
after a slight modification of the input data. If the supplies at sources 1 and 3 are increased
to 30, the demands at terminals 6 and 7 are increased to 50 and 45, respectively, and the
costs at arcs (1,6) and (5,6) are decreased to −6 and −12, respectively, we have w1

5 = 7/4
and f58 = 0 in the optimal solution. The minimum cost is −220, whereas the formulation
suggested by Audet et al. (2004) concludes with a solution of cost −210.

Below, we formulate the hybrid model in more general terms. For each pool which in
the sense defined above is close to the sources, the hybrid model makes use of a proportion
variable ys

i for each neighboring source s. For other pools, a quality variable wk
i for each

attribute k ∈ K is used. We repeat the principle of isolating the bilinear terms in dedicated
constraints, which requires the introduction of variables vk

i j = wk
i fi j for all k ∈ K and arcs

(i, j) where i ∈ I \ I1, and xs
i j = ys

i fi j for all s ∈ Si and arcs (i, j) where i ∈ I1.

[HYB] min
f,y,w,x,v

∑

s∈S

⎛

⎜⎝
∑

j∈N+
s \I1

cs j fs j +
∑

i∈N+
s ∩I1

∑

j∈N+
i

csi xs
i j

⎞

⎟⎠ +
∑

i∈I

∑

j∈N+
i

ci j fi j (30)

s.t.
∑

j∈N+
s \I1

fs j +
∑

i∈N+
s ∩I1

∑

j∈N+
i

xs
i j ≤ bs, s ∈ S, (31)

∑

j∈N+
i

fi j ≤ bi , i ∈ I, (32)

∑

i∈N−
t

fi t ≤ bt , t ∈ T, (33)

∑

j∈N+
i

fi j −
∑

j∈N−
i

f j i = 0, i ∈ I \ I1, (34)
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∑

s∈N−
i ∩Si

qk
s fsi +

∑

j∈N−
i ∩I1

∑

s∈S j

qk
s xs

ji +
∑

j∈N−
i ∩(I\I1)

vk
ji

−
∑

j∈N+
i

vk
i j = 0, i ∈ I \ I1, k ∈ K , (35)

∑

s∈N−
t ∩St

qk
s fst +

∑

j∈N−
t ∩I1

∑

s∈S j

qk
s xs

j t +
∑

j∈N−
t ∩(I\I1)

vk
j t

−qk
t

∑

j∈N−
t

f j t ≤ 0, t ∈ T, k ∈ K , (36)

∑

s∈Si

ys
i = 1, i ∈ I1, (37)

∑

s∈Si

xs
i j − fi j = 0, (i, j) ∈ A, i ∈ I1, (38)

∑

j∈N+
i

xs
i j − ys

i bi ≤ 0, i ∈ I1, s ∈ Si , (39)

xs
i j − ys

i fi j = 0, (i, j) ∈ A, i ∈ I1, s ∈ Si , (40)

vk
i j − wk

i fi j = 0, (i, j) ∈ A, i ∈ I \ I1, k ∈ K , (41)

fi j ≥ 0, (i, j) ∈ A, j ∈ N \ I1, (42)

0 ≤ ys
i ≤ 1, i ∈ I1, s ∈ Si . (43)

Let CHYB be the hyper-rectangle defined by the bounds on all bilinear variables in (30)–(43)
as defined in Proposition 2.

Proposition 3 z P [CP ] ≤ zHYB [
CHYB

] ≤ zMCF [
CMCF

]
.

Proof The proof is analogous to the proof of Proposition 2. ��

5 Computational comparisons

The theoretical part of this work demonstrates that the MCF-formulation is stronger than
the HYB-formulation, which in its turn is stronger than the P-formulation. Computational
experiments are needed to quantify the differences between the strengths. Experiments are
also useful when evaluating whether, and to what extent, stronger formulations lead to faster
computation of a narrow interval enclosing the global optimum. To this end, we report in this
section the lower bounds obtained by solving the linear relaxations of all three formulations
applied to a number of instances. For a comparison of the global optimization capabilities,
we have applied BARON 9.3.1 (Sahinidis 1996) as a global solver to the same set of formu-
lations and instances. All experiments reported in this work were conducted on a computer
equipped with quad-core 3.00 GHz processors, where each group of four cores share 8 GB
of memory.

5.1 Instances

We have tested the formulations in question on 40 instances divided into two sets. The first set
consists of standard pooling problem instances from the literature, which have been extended
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Table 1 Characteristics of
extended instances from the
literature

Instance Number of nodes, arcs and attributes

|S| |I| |T| |A| |K|

L1 3 2 3 9 1

L2 5 2 4 15 4

L3 5 2 4 15 6

L4 8 3 4 26 6

L5 8 2 5 20 4

L6 4 2 2 10 1

L7 5 3 5 38 2

L8 6 2 4 22 1

L9 11 8 16 216 1

L10 11 8 16 216 1

L11 11 4 16 108 1

L12 3 2 2 9 1

L13 3 2 2 9 1

L14 3 2 2 9 1

L15 3 2 3 18 8

such that all networks contain directed paths intersecting more than one pool. The instances
in the second set are generated randomly.

5.1.1 Extended instances from the literature

The instance depicted in Fig. 1, henceforth denoted L1, already has an arc between pools,
and is therefore not extended. In addition to L1, the first instance set consists of extensions
of Examples 1–4 introduced by Adhya et al. (1999) (denoted L2–5), extensions of Problems
4–5 introduced by Ben-Tal et al. (1994) (denoted L6–7), extensions of Examples 2–5 intro-
duced by Foulds et al. (1992) (denoted L8–11), extensions of the instances introduced by
Haverly (1978) (denoted L12–14), and an extension of RT2 introduced by Audet et al. (2004)
(denoted L15).

The extensions are made as follows. For each pair of pools {i, j} ⊆ I , where i 
= j ,
we add the arcs (i, j) and ( j, i). This does however not produce any extension of instances
with only one pool, that is, the instances of Haverly (1978) and Problem 4 (Ben-Tal et al.
1994). In such instances, we therefore first add a new pool is for each source s from which
there is an arc to some terminal. We then add the arc (s, is), and each arc (s, t) ∈ A where
t ∈ T is replaced by (is, t). Finally, a directed clique in the new set of pools is constructed
as explained above. Table 1 reports the resulting node set cardinalities, the number of arcs,
and the number of quality attributes in each new instance.

5.1.2 Random instances

The set of randomly generated instances is divided into 5 groups (denoted A, B, C, D and E,
respectively), consisting of 5 instances each. All instances within each group have identical
number of sources, pools, terminals, and quality attributes.

123



J Glob Optim (2013) 56:917–937 929

Table 2 Characteristics of randomly generated instances

Group #instances Number of nodes and attributes Range of expected density

|S| |I| |T| |K|

A 5 3 2 3 2 0.70–0.90

B 5 5 4 3 3 0.70–0.90

C 5 8 6 6 4 0.50–0.70

D 5 12 10 8 5 0.40–0.60

E 5 10 10 15 12 0.40–0.60

Arcs are introduced randomly in all instances in groups A–D in such a way that the
network becomes acyclic. To this end, the pools are ordered i1, . . . , i|I |, and arcs from ik

(k = 2, . . . , |I |) to any of i1, . . . , ik−1 are avoided. For all other pairs of nodes (i, j), an arc
from node i to node j may be introduced if i ∈ S ∪ I and j ∈ I ∪ T . The probability of doing
so is given by an instance specific parameter referred to as the expected network density. In
the instances in group E, arcs are introduced in an analogous way, with the only difference
that directed cycles of pools are allowed.

The arc costs are defined as ci j = di − d j for all (i, j) ∈ A, where di = 0 for all pools
i ∈ I . For sources and terminals, we let di be a randomly generated integer in the domains
{0, . . . , 5} and {5, . . . , 14}, respectively. All outcomes in a domain have equal probabilities.
Similarly, the flow capacities, source qualities and quality bounds, are generated randomly
from the domains {20, . . . , 59}, {0, . . . , 9}, and {2, . . . , 6}, respectively. Table 2 reports the
node set cardinalities, the number of quality attributes and the range of the expected network
densities for each group of instances.

5.2 Comparing the strength of the relaxations

Since the extension procedure suggested in Sect. 5.1.1 implies that every pool gets another
pool as its in-neighbor, we get I1 = ∅ in all extended instances. It then follows from (30)–
(43) that no proportion variables are defined in the HYB-formulation, and that the HYB-for-
mulation thus degenerates to the P-formulation. Consequently, we report results for these
formulations jointly for instances L2–15 and separately for all other instances.

In Tables 3 and 4, where the first column contains instance identifiers, we report the size
of each test instance with the P-, HYB-, and MCF-formulations. The size is measured in
terms of the number of variables (vars), the number of distinct bilinear terms (nlts), and the
number of linear constraints (lcs). We have not provided the number of nonlinear constraints,
because in all formulations in question, we have replaced each occurrence of a bilinear term
by a new variable, and added a constraint equating the variable with the bilinear term. Hence,
the number of nonlinear constraints equals the number of distinct bilinear terms.

For each formulation F , Tables 3 and 4 also report the optimal objective function value
zF [CF ] of the relaxation referred to in Proposition 3. This number is given in bold if it is
superior to the corresponding values obtained by the other formulations.

It is easily verified that when |I ||K | <
∑

i∈I |Si |, which is the case in L1–2, L4–14 and
all instances in groups A–D, the number of bilinear terms is larger in model [MCF] than in its
two competitors. When |I ||K | >

∑
i∈I |Si |, which is true for L3, L15 and in all instances in

group E, the MCF-formulation introduces fewer bilinear terms than the formulations involv-
ing quality variables.
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Table 3 Instance size and relaxed optimal objective function value of the P-, HYB-, and MCF-formulations
for extended instances from the literature

Instance P- and HYB-formulations MCF-formulation

vars nlts lcs z P /zHY B vars nlts lcs zMC F

L2 63 40 37 −999.32 75 50 59 −853.47

L3 87 60 49 −854.10 75 50 67 −574.78

L4 152 108 60 −882.84 194 144 108 −574.78

L5 76 48 45 −1032.50 132 96 81 −972.44

L6 18 6 14 −650.00 42 24 34 −550.00

L7 86 42 32 −3500.00 134 84 71 −3500.00

L8 34 10 20 −1200.00 70 40 44 −1100.00

L9 408 184 67 −8.00 2328 2024 419 −8.00

L10 408 184 67 −8.00 2328 2024 419 −8.00

L11 188 76 55 −8.00 988 836 215 −8.00

L12 17 6 13 −600.00 33 18 29 −500.00

L13 17 6 13 −1200.00 33 18 29 −1000.00

L14 17 6 13 −875.00 33 18 29 −875.00

L15 98 64 53 −6331.73 48 24 57 −6034.87

All the test instances and the models studied in this paper are available in GAMS-format
at http://www.ii.uib.no/~mohammeda/gpooling.

The columns of Tables 3 and 4 labeled zF show that the MCF-relaxation dominates the
P- and HYB-relaxations in 26 out of 40 instances. In all other instances, it gives the same
lower bound as provided by the other two formulations. The results do not only confirm the
theoretical results of Propositions 2 and 3, but also prove the existence of an instance (C1)
in which both inequalities of Proposition 3 are strict. Furthermore, in some test instances

(A5, D4, E1–3 and E5),
∣∣∣zMCF

∣∣∣ is less than the half of both
∣∣∣zP

∣∣∣ and
∣∣∣zHYB

∣∣∣.

5.3 Global optimization performance

In order to compare the capabilities of the P-, HYB-, and MCF-formulations to solve the test
instances to optimality, we have implemented them in the modeling language GAMS and
used the optimizer BARON as global solver. We set the time limit for all formulations to one
CPU-hour, and set both the relative and absolute optimality tolerances to 10−3.

For each formulation, Tables 5 and 6 report in the first column (#nodes) the size of the
search tree. The second column (lb (time)) gives the lower bound if BARON failed to solve
the instance within the time limit, and the CPU-time in parentheses, otherwise. The third
column (ub) within each formulation shows the best upper bound found by BARON.

The tables reveal that the MCF-formulation solves all but 2 (L4 and D1) out of 40 instances
within the time limit, whereas both the P- and HYB-formulations are successful in this respect
in only 22 instances (L1–2, L5–15, A1–5, B1–2 and B4–5). Among these, instances L1,
L6–8, L12–14, A1–3, B1–2 and B4–5 could also be solved by all of the formulations in
virtually no time (less than a second). This was accomplished without branching in instances
L1, L7, A1–3, B1–2 and B4–5. In addition to the instances solved without branching by all
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Table 5 Computational results from BARON applied to the P/HYB-, and MCF-formulations for extended
instances from the literature

Instance P/HYB-formulation MCF-formulation

#nodes lb (time) ub #nodes lb (time) ub

L2 172163 (1489.88) −549.80 15157 (176.30) −549.80

L3 189998 −556.38 −549.80 15805 (165.71) −549.80

L4 56409 −882.84 −561.04 31270 −572.19 −561.04

L5 4320 (61.83) −877.65 195 (5.04) −877.65

L6 45 (0.07) −450.00 25 (0.13) −450.00

L7 1 (0.05) −3500.00 1 (0.58) −3500.00

L8 71 (0.11) −1100.00 9 (0.10) −1100.00

L9 0 (1.94) −8.00 0 (28.41) −8.00

L10 0 (0.74) −8.00 11 (157.96) −8.00

L11 0 (0.60) −8.00 316 (738.62) −8.00

L12 73 (0.08) −400.00 19 (0.06) −400.00

L13 101 (0.10) −600.00 21 (0.11) −600.00

L14 79 (0.08) −750.00 47 (0.19) −750.00

L15 2693 (41.46) −4391.83 11 (0.14) −4391.83

formulations, the MCF-formulation solved A4–5, B3 and C1–2 without branching in less
than one CPU-second. It also solved instances L9, E1, E3 and E5 without branching in less
than one CPU-minute.

Three of the instances (L9–11), all of which are extensions of those provided by
Foulds et al. (1992), are solved significantly faster if the P-formulation rather than the
MCF-formulation is used. For all formulations, the initial LP-bound is tight in these instances,
and therefore optimality can be proved by any heuristic method that happens to output the
global optimum. It seems as if the heuristic search provided by BARON is more efficient
in the case of the P-formulation, at least in instances L10–11. Here, the optimal solution
was hit early in the search, whereas the MCF-formulation required branching and several
CPU-minutes in order to conclude.

Among instances solved by all formulations, L2, L5, L15, and A4–5 are solved signifi-
cantly faster by the MCF-formulation. Only in instances L11 and D5 did it need more than
3 CPU-minutes, but the running time was close to 39 CPU-minutes in instance D5. A com-
parison between the P- and the HYB-formulations shows only small differences. They could
solve exactly the same set of instances, and only in instances A4–5 a significantly faster con-
vergence can be achieved by application of the HYB-formulation. Concerning the unsolved
instances, the HYB-formulation provides better lower bounds in C1–2, and otherwise the
bounds are identical.

Instances L4 and D1 could not be solved by any formulation. The superior lower bound-
ing capabilities of the MCF-formulation (Proposition 3) are illustrated in both of these. In
instance D1, we are left with an optimality gap less than 1.1 %, while the gap in instance L4
is close to 2.0 %. Owing to weaker lower bounds, the gaps are significantly larger for the
other two formulations.

We have also compared the results in the last column of Table 5 to the results reported
in e.g. Adhya et al. (1999). In all of L2–15, the best solution found turns out to have the
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same cost as the minimum cost in the instances from which they are extended. Note that for
L4, the comparison is based upon the solution giving the sharpest upper bound, of which
optimality is not proved. The observation shows that the extension described in Sect. 5.1.1 in
none of the reported instances, possibly with the exception of L4, introduced arcs that enable
cost reductions. The computational burden is nevertheless increased (L2–5, L9–11), as the
PQ-formulation solves the original instances in virtually no time.

The experiments reported in this section indicate that in comparison with the two alterna-
tive formulations, the MCF-formulation represents a significantly stronger tool for locating
the global optimal solution to instances of the pooling problem with multiple layers of pools.
Tighter variable bounds provided in the branching process seem to have modest effect when
weaker formulations are applied, whereas our formulation translates this into tighter lower
bounds on the optimal objective function value, resulting in faster convergence to optimum.

6 Conclusions

In this paper, we have developed a multi-commodity flow formulation for the generalized
pooling problem. The proposed model is an extension of the PQ-formulation for the standard
pooling problem, which applies only to networks where all directed paths intersect at most
one pool.

We have proved that our multi-commodity flow formulation has stronger relaxation than
two other formulations from the literature on the generalized pooling problem. We have
presented computational experiments with the proposed formulation and its two competi-
tors applied to 15 extensions of instances from the literature and to 25 randomly generated
instances with up to 35 nodes and 12 quality attributes. Experiments confirm that the sug-
gested formulation performs better. By submitting our formulation to the global optimizer
BARON, all but two instances could be solved to optimality within one CPU hour, whereas
in the case of the other formulations, BARON missed the global optimum in 18 instances.
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