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Abstract In this paper, a new dynamic portfolio selection model is established. Different
from original consideration that risk is defined as the variance of terminal wealth, the total
risk is defined as the average of the sum of maximum absolute deviation of all assets in all
periods. At the same time, noticing that the risk during the period is so high that the investor
may go bankrupt, a maximum risk level is given to control risk in every period. By intro-
ducing an auxiliary problem, the optimal strategy is deduced via the dynamic programming
method.
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1 Introduction

How to extend the standard portfolio selection model to the multiperiod case is always an
attractive topic in financial research. The reason for this is that contemporary financial deci-
sion making requires models which reflect an interdependent and complex reality. Since the
investment period is so long that the economic situation may change drastically, the investor
should rebalance their asset allocation according to the change of the economic situation
during the investment period. So after Markowitz (1959) gave the well-known single period
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model via the mean-variance methodology, multiperiod decision making has become an
important subject in the practical investment as well as in the academic research on finance.

One difficulty in extending Markowitz’s idea to the multiperiod or continuous-time set-
tings is that the variance of wealth involves a term which is hard to analyze due to its
nonseparability in the sense of dynamic programming. Li and Ng (2000) finally solved this
problem by using the idea of embedding the problem in a tractable auxiliary problem. Later,
Zhou and Li (2000); Li et al. (2002); Zhu et al. (2004) further extended their method to more
general case.

However there are many researchers and traders who may not be convinced that the
covariance is an appropriate risk measure. They assume that the ordinary investors consider
its distribution of risk may not be symmetric. In most cases, a little loss will make one very
sad, while the considerably high profit can make one very happy. This implies that the clas-
sical mean variance model may serve to be some approximation to the complex portfolio
problems that all investors encounter. Hence, experts in the financial area exert all possible
efforts to present some new risk models and try to meet the needs of different investors.

It is worth noticing that the use of linear programming to solve the portfolio problem
was first introduced by Van Moeseke (1965). The typical economic problem of allocating
scarce resources can be solved by homogeneous programming. The same applies to the port-
folio problem of allocating capital across risky assets. Van Moeseke developed the truncated
minimax model to solve this problem. He presented the linear programming model for the
allocation of scarce resources. After then, a number of journal articles followed, in particular,
see Van Moeseke (1971), Van Moeseke and Hohenbalken (1973), LeBlanc and Van Moeseke
(1979).

Konno and Yamazaki (1991) present another important linear risk model: Mean Absolute
Deviation (MAD) model, to construct the optimal strategy in financial market. The absolute
deviation model is defined as follows

l1(x) = E
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The main characteristic of this model is that the risk of a portfolio is measured by the
absolute deviation of the return rate of assets instead of the variance. Much attention has
been focused on this risk function because the related portfolio optimization problem can be
converted into a scalar parametric linear programming problem which can be easily imple-
mented. Simplicity and computational robustness are perceived as one of the most important
advantages of the MAD model. Till now, many excellent properties of this model have been
found and some of them are referred to here.

It is pointed out that the MAD model takes an opportunity to make a more specific model
such as a downside risk model (see Konno 1990; Feinstein and Thapa 1993).

It is known that if the return is multivariate and normally distributed, the minimization of
the MAD provides similar results as the classical Markowitz formulation, and minimization
of MAD is equivalent to maximization of the expected utility under risk aversion (Rudolf
et al. 1999).

Markowtiz model has been criticized for not being consistent with axiomatic models of
preferences for choice because it does not depend on a relation of stochastic dominance
(Whitmore and Findlay 1978; Levy 1992). In contrast, the MAD model is consistent with
the second degree stochastic dominance, provided that the trade-off coefficient between risk
and return is bounded by a certain constant (Ogryczak and Ruszczynski 1997).
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Ogryczak and Ruszczynski (1999, 2001) proved that the most optimal solutions in effi-
cient frontier of MAD model satisfy the MEU principle no matter how the return rate of
assets are distributed. At the same time, the capital asset pricing model for the l1 risk model
was derived by Konno and Yamazaki (1991). In their paper, the risk function was assumed
to be differentiable at the market portfolio. Without imposing differentiability on the l1 risk
function, equilibrium relations were given by Konno and Shirakawa (1994).

Based on MAD, other new linear risk-control models are presented recently. For example,
Cai et al. (2000) introduced the maximum absolute deviation risk model l∞ as:

l∞(x) = max
1� j�n

E
∣
∣R j x j − E(R j )x j

∣
∣ .

In this model, the investor is assumed to minimize the maximum of individual risk. The
explicit analytical solution for the model is presented and the entire efficient frontier is also
plotted. The author points out that such a risk model is very conservative and it does not
explicitly involve the covariance of the asset returns.

Later, the alternative H T∞ was proposed by Teo and Yang (2001). The characteristic of
these three models (l1, l∞, H T∞) is that the portfolio problems which are set up with them can
be finally transformed into a linear programming problem. And this means that we can use
linear programming method as a strong tool to solve finance problem (see Yu et al. 2006).
Such kind of method is easier for investor to master and is quickly solved by computer.

Although the application of MAD or those linear models based on it is successful in port-
folio theory, there is little literature about extending these linear models to multiperiod case
(see Yu et al. 2005).The difficulty is how to use these linear models to control risk of the
portfolio in mulitiperiod case.

Recently, Yu et al. (2010) constructed the dynamic portfolio model with l∞ model. We
employ a risk parameter as the maximum risk level which the investor would like to bear. By
using the dynamic programming method, the closed form of solution is derived.

In this paper, we continue this topic and set up a new mulitperiod portfolio selection.
Different with the classical MV model, we employ the l∞ function to control the risk in
every period. We assume that the investor wants to maximize the total wealth at the end of
investment period and minimize the risk which is defined as the average of the total risk in
all periods. Actually, investors are always considering the total risk during the whole invest-
ment instead of the final T th period. So we extend the model in Yu et al. (2010) to more
wider case. Moreover, considering the case of risk during the period becoming so high, the
investor can not finish the whole investment period, we employ a parameter to control the
risk in every period. That is, the risk in every period can not be above the given risk level.
Such a consideration makes the problem more complicated, but at the same time, is more
reasonable for the investor. By using dynamic programming method, we deduce the closed
form solution. Our result shows that the multiperiod model with absolute deviation can be
finally formulated as a linear programming problem which we can solve analytically. Our
model is another example of using the linear programming method as a strong tool to solve
finance problems.

The organization of this paper is as this: In Sect. 2, some important notations are introduced
and the basic model is set up for the financial market. In Sect. 3, the process of solving the
optimal strategy for the investment model is presented. We propose an auxiliary problem and
then prove how to obtain the final optimal strategy via the solution to the auxiliary problem.
In Sect. 4, the algorithm is presented. The conclusion is given in Sect. 5. The proof of main
theorems can be found in Appendix.
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2 Notations and model

We consider a capital market with n risky assets S j , j = 1, . . . , n, whose return rate is
random. An investor is assumed to allocate his initial wealth denoted by W0 among the n
risky assets at the beginning of the 1st period and get the final wealth at the end of the T th
period. It is a dynamic investment selection, i.e. the wealth can be reallocated among the n
risky assets at the beginning of each following T − 1 consecutive time periods.

Denote by Rt = (Rt1, . . . , Rtn)′ the vector of return rate of the risky securities at time
period t , where Rt j is the random return rate of asset S j at the t th stage. It is assumed
that vectors Rt , t = 1, . . . , T , are statistically independent and has a known mean value
rt = E(Rt ) = (rt1, . . . , rtn)′.

Denote by xt = (xt1, . . . , xtn)′, where xt j is the amount invested in the asset S j at the
beginning of the t th stage. It is assumed that short selling is not allowed:

xt j ≥ 0, t = 1, . . . , T, j = 1, . . . , n (2.1)

Denote by Vt the total wealth the investor obtains at the end of the t th period. Let V0 = W0.

Clearly,

Vt = Vt−1 + R′
t xt , t = 1, . . . , T . (2.2)

It is assumed that the whole investment is a self-financing process. The investor will not
increase the money or put aside some money during the whole period, i.e., the amount of
money allocated to every asset in the t th period is equal to the total wealth at the end of the
t − 1th period. That is,

n
∑

j=1

xt j = Vt−1, t = 1, . . . , T . (2.3)

In the following discussion, we focus on how to control the risk in every period. We
employ the l∞ risk function to measure the risk in t th period which is denoted by wt (xt ),
then we obtain wt (xt ) = max1≤ j≤n E(|Rt j xt j − rt j xt j |), t = 1, . . . , T .

Denote by w′
t the total risk at the end of t periods, which is defined as follows:

w′
0 = 0, w′

t = w′
t−1 + max

1≤ j≤n
E(|Rt j xt j − rt j xt j |), t = 1, . . . , T . (2.4)

We employ a risk parameter εt , t = 1, . . . , T , to control the risk in t th period. We assume
that the risk in period t can not be above εt E(Vt−1), i.e.,

max
1≤ j≤n

E(|Rt j xt j − rt j xt j |) ≤ εt E(Vt−1), t = 1, . . . , T . (2.5)

In the following discussion, we will give some analysis of (2.5).
A bankruptcy occurs when an investor’s total wealth falls bellow a predefined “disaster”

level in any intermediate or the final time period. It is assumed that when an investor is in
bankruptcy, he/she is not able to pursue further investment due to his/her high liability and
low credit. We denote by bt the disaster level at period t and label the event of a bankruptcy
as B Rt at period t .

The probability of B Rt is

P(B Rt ) = P(Vt � bt , Vi > bi , i = 1, . . . , t − 1), t = 1, . . . , T

Now we deduce how to control P(B Rt ). It is reasonable to assume that bt is less than E(Vt ).
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Let us recall the definition of l1 and l∞,

w(x) = E

⎛

⎝
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∣
∣
∣

n
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j=1

R j x j −
n

∑

j=1

r j x j

∣
∣
∣
∣
∣
∣

⎞

⎠ , w∞(x) = max
j

E(|R j x j − r j x j |).

The following two propositions have been shown in Yu et al. (2010). Here we do not
repeat it.

Proposition 1 w(x) � nw∞(x).

Proposition 2 If bt < E(Vt ) and E(|Vt − E(Vt )|)
E(Vt ) − bt

� αt , then P(B Rt ) � αt .

If Vl is already known, l = 1, . . . , t − 1, then

E(|Vt − E(Vt )|) = E

⎛

⎝
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∣
∣
∣
∣
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Rt j xt j −
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rt j xt j

∣
∣
∣
∣
∣
∣

⎞

⎠ � n max
j

E(|Rt j xt j − rt j xt j |),

and

E(|Vt − E(Vt )|)
E(Vt ) − bt

�
n max j E(|Rt j xt j − rt j xt j |)

E(Vt ) − bt
≡ At .

Hence, if we give a bound αt for At , then we can control the risk in period t .
In this paper, we assume that the bankruptcy will happen when bt = 0. Notice that

E(Vt ) ≥ E(Vt−1); hence,

P(Vt ≤ 0, Vi > 0, i = 1, . . . , t − 1) ≤ n max j E |Rt j xt j − rt j xt j |
E(Vt−1)

≤ αt := nεt ,

i.e., max1≤ j≤n E |Rt j xt j −rt j xt j | ≤ εt E(Vt−1). Thus, the risk in period t is finally controlled.
Based on the above discussion, we set up the dynamic portfolio model in the following

way. We assume that the investor is risk averse. He/she wants to maximize the terminal wealth
in the final period, i.e., E(VT ). On the other hand, he/she wants to minimize the average value
of total risk in T periods, i.e. 1

T w′
T . Thus, our portfolio selection problem can be formulated

as the following programming problem, which is denoted by P1:

P1

{

min λ
T w′

T − (1 − λ)E(VT )

s.t. (2.1) − (2.5)

Here λ ∈ (0, 1) can be considered as the risk preference of the investor. The greater λ is,
the more conservative the investor is.

3 Optimal strategy for the portfolio model

In this section, we will derive the analytical solution to P1 via dynamic programming method.
Define zt ∈ R, w1

t ∈ R, t = 1, . . . , T . Let w1
0 = 0, w1

T = ∑T
t=1 zt . First, let’s introduce

the following problem.
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Define P2 as follows:
⎧

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

min λ
T w1

T − (1 − λ)E(VT )

s.t. Vt = Vt−1 + R′
t xt

w1
t = w1

t−1 + zt , t = 1, . . . , T
E |Rt j xt j − rt j xt j | ≤ zt , j = 1, . . . , n, t = 1, . . . , T
E |Rt j xt j − rt j xt j | ≤ εt E(Vt−1), j = 1, . . . , n, t = 1, . . . , T

n∑

j=1
xt j = Vt−1, t = 1, . . . , T

xt j � 0, j = 1, . . . , n, t = 1, . . . , T

where V0 = W0.
The following theorem sets up the relationship between P1 and P2. We have already

proved this result (see Yu et al. 2005).

Theorem 1 (1) If X = (x1, . . . , xT )′ is an optimal solution to P1, then (X, Z) is an optimal
solution to P2, where Z = (z1, . . . , zT )′, zt = max1≤ j≤n E |Rt j xt j − rt j xt j |.

(2) If (X, Z) is an optimal solution to P2, then X is an optimal solution to P1, where
X = (x1, . . . , xT )′.

Now we use the dynamic programming method to solve the problem P2. Denote by

fT (VT , w1
T ) = λ

T
w1

T − (1 − λ)E(VT ),

and define the set

Bt = {(x, z) ∈ (Rn,R+)

∣
∣
∣
∣
∣
∣

qt j x j ≤ z, qt j x j ≤ εt E(Vt−1),

n
∑

j=1

x j = E(Vt−1) ,

x j ≥ 0, j = 1, . . . , n}
Define

fT −1(VT −1, w
1
T −1) = min

(xT ,zT )∈BT
[ fT (VT , wT )|(VT −1, w

1
T −1)].

First we consider the T − 1th period by assuming that (VT −1, w
1
T −1) is known. Then

fT −1(VT −1, w
1
T −1) = min

(xT ,zT )∈BT

⎧

⎨

⎩

λ

T
(w1

T −1 + zT ) − (1 − λ)

⎛

⎝E(VT −1) +
n

∑

j=1

rT j xT j

⎞

⎠

⎫

⎬

⎭

We will solve the following problem denoted by PT

PT

⎧

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

min

{

λ
T (w1

T −1 + zT ) − (1 − λ)

(

E(VT −1) +
n∑

j=1
rT j xT j

)}

s.t qT j xT j ≤ zT , j = 1, . . . , n
qT j xT j ≤ εT E(VT −1), j = 1, . . . , n

n∑

j=1
xT j = VT −1

xT j ≥ 0, j = 1, . . . , n

where qT j = E |RT j − rT j |, j = 1, . . . , n.
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To solve this problem, first let us introduce an auxiliary problem P ′
T as follows:

P ′
T

⎧

⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

min

{

λ
T (w1

T −1 + zT ) − (1 − λ)

(

E(VT −1) +
n∑

j=1
rT j xT j

)}

s.t qT j xT j ≤ zT , j = 1, . . . , n
n∑

j=1
xT j = VT −1

xT j ≥ 0, j = 1, . . . , n

The difference between PT and P ′
T is that constraints qT j xT j ≤ εT E(VT −1) is omitted

in P ′
T , for j = 1, . . . , n. The optimal solution to this problem has been obtained in Cai et al.

(2000). We denote it as (x∗
T , z∗

T ), where x∗
T = (x∗

T 1, . . . , x∗
T n)′. Then we will prove that

the optimal solution to PT denoted by (x∗∗
T , z∗∗

T ) can be obtained by (x∗
T , z∗

T ) under some
assumptions.

Lemma 3 The solution to P ′
T is as follows:

x∗
T j =

⎧

⎪⎨

⎪⎩

VT −1
qT j

(

∑

i∈AT (λ)

1
qT i

)−1

, j ∈ AT (λ)

0, j 	∈ AT (λ)

, z∗
T = VT −1

⎛

⎝
∑

i∈AT (λ)

1

qT i

⎞

⎠

−1

(3.1)

where AT (λ) is determined by:
If there exists an integer pT ∈ [0, n − 2] such that

n
∑

i=n−pT +1

rT i −rT n−pT

qT i
<

λ

T (1−λ)
and

n
∑

i=n−pT

rT i −rT n−pT −1

qT i
�

λ

T (1 − λ)
(3.2)

then

AT (λ) = {n, n − 1, . . . , n − pT },
and otherwise, if the above condition is not satisfied by any integer pT ∈ [0, n − 2], then

AT (λ) = {n, n − 1, . . . , 1}.

Here, in order to make the following description simplified, we denote AT (λ) =
{1, . . . , kT }, kT ≤ n. It is necessary to notice that the rank in AT (λ) now is converse to
the original one. That is, for i, j ∈ {n, n − 1, . . . , n − pT } or {n, n − 1, . . . , 1}, with i < j ,
we have ri ≤ r j . For i, j ∈ {1, . . . , kT }, with i < j , we have ri ≥ r j .

The following theorem give the optimal solution to PT .

Theorem 2 The optimal solution to PT is as follows:

(1) If z∗
T ≤ εT VT −1, then (x∗

T , z∗
T ) is also an optimal solution to PT ;

(2) If z∗
T > εT VT −1, then the optimal solution to PT is as follows:

If there exists n ≥ lT > kT , such that

∑kT
j=1

1
qT j

∑lT −1
j=1

1
qT j

>
εT VT −1

z∗
T

≥
∑kT

j=1
1

qT j
∑lT

j=1
1

qT j

, (3.3)
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then the optimal solution to PT , denoted by (x∗∗
T , z∗∗

T ), where x∗∗
T = (x∗∗

T 1, . . . , x∗∗
T n)′ is as

follows:

z∗∗
T = εT VT −1, x∗∗

T j =

⎧

⎪⎪⎪⎨

⎪⎪⎪⎩

εT
qT j

VT −1, j = 1, . . . , lT − 1

z∗
T

kT∑

j=1

1
qT j

− εT VT −1

lT −1∑

j=1

1
qT j

, j = lT

0 j = lT + 1, . . . , n

The proof of this theorem can be found in Appendix.
Now, we substitute (x∗∗

T , z∗∗
T ) to fT −1.

If z∗
T ≤ εT VT −1, then by Lemma 3, we have

f ∗
T −1(VT −1, w

1
T −1) = λ

T
w1

T −1 − cT E(VT −1) (3.4)

where

cT = (1 − λ)(1 + aT bT ) − λ

T
aT , aT =

⎛

⎝

kT∑

j=1

1

qT j

⎞

⎠

−1

, bT =
kT∑

j=1

rT j

qT j
(3.5)

If z∗
T > εT VT −1, then

f ∗
T −1(VT −1, w

1
T −1) = λ

T
w1

T −1 − αT E(VT −1) (3.6)

where

αT = −λεT

T
+ (1 − λ)

⎡

⎣1 + rT lT + εT

lT −1
∑

j=1

rT j − rT lT

qT j

⎤

⎦ (3.7)

We summarize the two cases as the following:

f ∗
T −1(VT −1, w

1
T −1) = λ

T
w1

T −1 − βT E(VT −1) (3.8)

where

βT =

⎧

⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

cT

(
kT∑

l=1

1
qT l

)−1

� εT

αT

(
kT∑

l=1

1
qT l

)−1

> εT

(3.9)

Suppose that at any stage t , t ∈ {1, . . . , T − 1},

f ∗
t (Vt , w

1
t ) = λ

T
w1

t − βt+1 E(Vt ) (3.10)

where

βt+1 =

⎧

⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

ct+1

(
kt+1∑

l=1

1
qt+1l

)−1

� εt+1

αt+1

(
kt+1∑

l=1

1
qt+1l

)−1

> εt+1

123



J Glob Optim (2012) 53:363–380 371

and

at+1 =
⎛

⎝

kt+1∑

j=1

1

qt+1 j

⎞

⎠

−1

, bt+1 =
kt+1∑

j=1

rt+1 j

qt+1 j
, ct+1 = βt+2(1 + at+1bt+1) − λ

T
at+1,

αt+1 =

⎧

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

− λεt+1
T + βt+2

[

1 + rt+1lt+1 + εt+1

lt+1−1∑

j=1

rt+1 j −rt+1lt+1
qt+1 j

]

if βt+2 > 0

− λεt+1
T + βt+2

[

1 + rt+1lt+1 + εt+1

n∑

j=lt+1+1

rt+1 j −rt+1lt+1
qt+1 j

]

if βt+2 < 0

− λ
T

n∑

j=1

(
1

qt+1 j

)−1
if βt+2 = 0

with boundary condition (3.9). Notice that this induction assumption holds for stage T − 1.
We will show

f ∗
t−1(Vt−1, w

1
t−1) = λ

T
w1

t−1 − βt E(Vt−1)

At stage t − 1, the optimization for a given (Vt−1, w
1
t−1) is as follows:

ft−1(Vt−1, w
1
t−1) = min

(xt ,zt )∈Bt
E[ ft (Vt , w

1
t )|(Vt−1, w

1
t−1)]

= min
(xt ,zt )∈Bt

⎧

⎨

⎩

λ

T
(w1

t−1 + zt ) − βt+1

⎛

⎝E(Vt−1) +
n

∑

j=1

rt j xt j

⎞

⎠

⎫

⎬

⎭

We need to get the optimal solution to the following problem:

(Pt )

⎧

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

min λ
T (w1

t−1 + zt ) − βt+1

(

E(Vt−1) +
n∑

j=1
rt j xt j

)

s.t. qt j xt j ≤ zt , j = 1, . . . , n
qt j xt j ≤ εt E(Vt−1), j = 1, . . . , n
xt j ≥ 0, j = 1, . . . , n

n∑

j=1
xt j = Vt−1

where qt j = E |Rt j − rt j |, j = 1, . . . , n.
The method of solving this problem is similar to that of PT . First, we employ the following

auxiliary problem:

(P ′
t )

⎧

⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

min λ
T (w1

t−1 + zt ) − βt+1

(

E(Vt−1) +
n∑

j=1
rt j xt j

)

s.t. qt j xt j ≤ zt , j = 1, . . . , n
xt j ≥ 0, j = 1, . . . , n

n∑

j=1
xt j = Vt−1

The following lemma has already been proved in Yu et al. (2005).

123



372 J Glob Optim (2012) 53:363–380

Lemma 4 The optimal solution to P ′
t is as follows:

x∗
t j =

⎧

⎪⎨

⎪⎩

Vt−1

(

∑

l∈At (λ)

1
qtl

)−1

· 1
qt j

, j ∈ At (λ)

0, j 	∈ At (λ)

z∗
t = Vt−1

⎛

⎝
∑

l∈At (λ)

1

qtl

⎞

⎠

−1

where At (λ) is determined by:

(1) If βt+1 = 0, then At (λ) = {1, . . . , n}.
(2) If βt+1 > 0, if there exists an integer k ∈ [0, n − 2] such that

n
∑

i=n−k+1

rti − rtn−k

qti
<

λ

Tβt+1
and

n
∑

i=n−k

rti − rtn−k−1

qti
�

λ

Tβt+1

then

At (λ) = {n, n − 1, . . . , n − k},
and otherwise, if the above condition is not satisfied by any integer k ∈ [0, n − 2], then

At (λ) = {n, n − 1, . . . , 1}.
(3) If βt+1 < 0. If there exists an integer k ∈ [0, n − 2] such that

n−k−2
∑

i=1

rti − rtn−k−1

qti
>

λ

Tβt+1
and

n−k−1
∑

i=1

rti − rtn−k−1

qti
�

λ

Tβt+1

then

At (λ) = {1, 2, . . . , n − k − 1},
and otherwise, if the above condition is not satisfied by any integer k ∈ [0, n − 2], then

At (λ) = {1, 2, . . . , n}.

Here, in order to make the following description simplified, we denote At (λ) =
{1, . . . , kt }, kt ≤ n. For i, j ∈ {1, . . . , kt }, if i ≤ j , ri ≥ r j .

Theorem 3 The optimal solution to Pt denoted by (x∗∗
t , z∗∗

t ) is as follows:

(1) If z∗
t ≤ εt Vt−1, then (x∗

t , z∗
t ) is also an optimal solution to Pt ;

(2) If z∗
t > εt Vt−1, then the optimal solution to Pt is as follows:

Case 1, if βt+1 > 0, then if there exists n ≥ lt > kt , such that

∑kt
j=1

1
q j

∑lt −1
j=1

1
qt j

>
εt

z∗
t

Vt−1 ≥
∑kt

j=1
1

qt j
∑lt

j=1
1

qt j
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then the optimal solution to Pt is as follows:

z∗∗
t = εt Vt−1,

x∗∗
t j =

⎧

⎪⎪⎪⎨

⎪⎪⎪⎩

εt
qt j

Vt−1, j = 1, . . . , lt − 1

z∗
t

kt∑

j=1

1
qt j

− εt Vt−1

lt −1∑

j=1

1
qt j

, j = lt

0 j = lt + 1, . . . , n

Case 2, if βt+1 < 0, then if there exists n ≥ lt > kt , such that

∑kt
j=1

1
qt j

∑n
j=lt +1

1
qt j

>
εt

z∗
t

Vt−1 ≥
∑kt

j=1
1

qt j
∑n

j=lt
1

qt j

then the optimal solution to Pt is as follows:

z∗∗
t = εt Vt−1,

x∗∗
t j =

⎧

⎪⎪⎪⎨

⎪⎪⎪⎩

εt
qt j

Vt−1, j = lt + 1, . . . , n

z∗
t

kt∑

j=1

1
qt j

− εt Vt−1

n∑

j=lt +1

1
qt j

, j = lt

0 j = 1, . . . , lt − 1

Case 3 If βt+1 = 0, then if Pt has the optimal solution, then x∗∗
t j = 1

qt j
(
∑n

j=1
1

qt j
)−1,

j = 1, . . . , n.

Substitute the result in Theorem 3 back to ft−1, we have:
If z∗

t ≤ εt Vt−1, then

f ∗
t−1(Vt−1, w

1
t−1) = λ

T
w1

t−1 − ct E(Vt−1)

where

ct = βt+1(1 + at bt ) − λ

T
at , at =

⎛

⎝

kt∑

j=1

1

qt j

⎞

⎠

−1

.bt =
kt∑

j=1

rt j

qt j

If z∗
t > εt Vt−1, then

f ∗
t−1(Vt−1, w

1
t−1) = λ

T
w1

t−1 − αt E(Vt−1)

where

αt =

⎧

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

− λεt
T + βt+1

[

1 + rtlt + εt

lt −1∑

j=1

rt j −rtlt
qt j

]

if βt+1 > 0

− λεt
T + βt+1

[

1 + rtlt + εt

n∑

j=lt +1

rt j −rtlt
qt j

]

if βt+1 < 0

− λ
T

(
n∑

j=1

1
qt j

)−1

if βt+1 = 0
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We can summarize the above two cases into the following formula:

ft−1(Vt−1, w
1
t−1) = λ

T
w1

t−1 − βt E(Vt−1)

where

βt =

⎧

⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

ct

(
kt∑

l=1

1
qtl

)−1

� εt

αt

(
kt∑

l=1

1
qtl

)−1

> εt

Based on the above result, we can get the expected total wealth at the end of the T periods:

E(VT ) = (1 + ξT )(1 + ξT −1) . . . (1 + ξ1)V0

where for t = 1, . . . , T ,

ξt =

⎧

⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

at bt

(
kt∑

l=1

1
qtl

)−1

� εt

ζt

(
kt∑

l=1

1
qtl

)−1

> εt

where

ζt =

⎧

⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

rtlt + εt

lt −1∑

j=1

rt j −rtlt
qt j

βt > 0

rtlt + εt

n∑

j=lt +1

rt j −rtlt
qt j

βt < 0

n∑

j=1

rt j
qt j

(
n∑

j=1

1
qt j

)−1

βt = 0

4 Algorithm

In this section, we give the algorithm of solving the multi-period model and one example is
presented at the end of this section.

Define

B1
t =

⎧

⎨

⎩
(x, z) ∈ (Rn,R+)

∣
∣
∣
∣
∣
∣

qt j x j ≤ z,
n

∑

j=1

x j = E(Vt−1), x j ≥ 0, j = 1, . . . , n

⎫

⎬

⎭

B2
t =

⎧

⎨

⎩
x ∈ Rn

∣
∣
∣
∣
∣
∣

qt j x j ≤ εt E(Vt−1),

n
∑

j=1

x j = E(Vt−1), x j ≥ 0, j = 1, . . . , n

⎫

⎬

⎭

The algorithm is presented as follows. Many types of software can be used to solve this
problem. In our paper, we use Matlab 7.0.
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Algorithm
Step 0: Given V0, rti , qti . i = 1, . . . , n, t = 1, . . . , T . Let E(V0) = V0, w0 = 0.

Step 1: t = 1.

Step 2: Given εt > 0.

Step 3: solve the following problem P(t),

P(t) min
(xt ,zt )∈B1

t

⎧

⎨

⎩

λ

T
(wt−1 + zt ) − (1 − λ)

⎛

⎝E(Vt−1) +
n

∑

j=1

rt j xt j

⎞

⎠

⎫

⎬

⎭

The optimal solution is denoted by (x∗
t , z∗

t ).

Step 4: Let E(Vt ) = E(Vt−1) + ∑n
j=1 rt j x∗

t j , wt = wt−1 + z∗
t .

Step 5: If z∗
t < εt E(Vt ), then x∗∗

t = x∗
t , z∗∗

t = z∗
t . If z∗

t ≥ εt E(Vt ), Goto Step 7.

Step 6: let t = t + 1. If t ≤ T , then goto Step 2. If t = T + 1, goto Step 10.

Step 7: Solve the following problem:

P ′(t) min
xt ∈B2

t

⎧

⎨

⎩

λ

T
wt−1 − (1 − λ)

⎛

⎝E(Vt−1) +
n

∑

j=1

rt j xt j

⎞

⎠

⎫

⎬

⎭

Denote the solution to P ′(t) is (̂x∗
t , ẑ∗

t ). Then x∗∗
t = x̂∗

t , z∗∗
t = ẑ∗

t .

Step 8: Let E(Vt ) = E(Vt−1) + ∑n
j=1 rt j x̂

∗
t j , wt = wt−1 + ẑ∗

t j . And t = t + 1.
Step 9: If t ≤ T , then goto Step 2.
Step 10: stop: the optimal solution is (x∗∗

t , z∗∗
t ).

Finally, we give an example to demonstrate the adoption of the above model.

Example 1 We choose 7 assets in the Tokyo Stock market. These are T4523(eisai),
T4063(Shin-Etsu Chemical),T4503(astellas), T4901(Fuji film),T4452(Kao), T4543(terumo),
T4502(takeda). We consider the historical data of these seven companies’ stock from 1995.1
to 1999.7. We use the data from 1995.1 to 1998.12 to calculate the expected return rate for
these 7 stocks. The expected return rate for these seven assets are:

rt = (0.0093, 0.0141, 0.0155, 0.0190, 0.0213, 0.0308, 0.0337).

We assume that there are two investors who start their investment from the beginning of
1999.1 and end in 1999.7. We assume that these two investors employ the model mentioned
above to find their optimal strategies. For simplicity, we assume that λ = 1/2 for both two
investors. It is assumed that every month is one period. We assume that these two investors
have different risk preference in each period: for t = 1, . . . , 7,

εA = (0.0045, 0.005, 0.0015, 0.003, 0.005, 0.01, 0.003).

εB = (0.005, 0.0055, 0.0017, 0.0032, 0.01, 0.1, 0.006).
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Table 1 Optimal strategy for investor A

Month S1 S2 S3 S4 S5 S6 S7

1999.1 0 0.0205 0.2278 0.5562 0.0584 0.0835 0.0536

1999.2 0.0457 0.0273 0.6749 0.0943 0.0404 0.0798 0.0572

1999.3 0.1883 0.0412 0.0138 0.0310 0.0245 0.0257 0.7224

1999.4 0.0660 0.0439 0.0552 0.0950 0.3792 0.0371 0.3994

1999.5 0.1995 0.4396 0.0457 0.0977 0.0653 0.1835 0.0800

1999.6 0.3364 0.2040 0.1132 0.0970 0.2421 0.0668 0.0721

1999.7 0 0.1847 0.5105 0.0312 0.0639 0.0372 0.3236

Table 2 Optimal strategy for investor B

Month S1 S2 S3 S4 S5 S6 S7

1999.1 0 0 0.1648 0.6180 0.0649 0.0928 0.0595

1999.2 0.0504 0.0301 0.7427 0.0017 0.0445 0.0879 0.0630

1999.3 0.0740 0.0468 0.0157 0.0353 0.0278 0.0293 0.8214

1999.4 0.0708 0.0470 0.0592 0.0298 0.4067 0.0398 0.4284

1999.5 0 0.1681 0.0922 0.1969 0.1316 0.3701 0.1613

1999.6 0 0 0 0.2328 0.5812 0.1604 0.1732

1999.7 0 0 0.2442 0.0637 0.1305 0.0760 0.6609

Then by using the model presented above, we find the expected wealth is E(VA) = 1.1758
and E(VB) = 1.2080. It is easy to see that the investor A got less final expected wealth than
investor B because he/she requires lower risk level in each period. The optimal strategies are
given in Tables 1 and 2, respectively.

5 Conclusion

In this paper, we present a new multiperiod portfolio model with a mean absolute devia-
tion risk model. The investor is assumed to seek an investment strategy to maximize his/her
final wealth and minimize risk. The optimal portfolio strategy is obtained via the dynamic
programming method.

In the future, we will study the risk free assets involved in the portfolio selection. More-
over, how to set up the dynamic portfolio model when bt > 0 is another meaningful and
challengeable work which will be further studied.
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Appendix

We give the proof of Theorem 2. Theorem 3 can be proved by a similar method and we omit
it in this appendix.
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First we simplify the problem PT as the following problem:

PI

⎧

⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

min λ
T y − (1 − λ)

n∑

j=1
r j x j

s.t.
n∑

j=1
x j = U

a j x j ≤ y, j = 1, . . . , n
a j x j ≤ εU, j = 1, . . . , n
x j ≥ 0, j = 1, . . . , n

where r1 ≤ r2 ≤ . . . ≤ rn ≤ 0, a j > 0, j = 1, . . . , n and U > 0.
To solve this problem, we can introduce the following auxiliary problem:

PI I

⎧

⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

min λ
T y − (1 − λ)

n∑

j=1
r j x j

s.t.
n∑

j=1
x j = U

a j x j ≤ y, j = 1, . . . , n;
x j ≥ 0, j = 1, . . . , n;

We can get an optimal solution to PI by solving PI I . Noticing that an optimal solution to
PI I is known (see Cai et al. 2000), we denote the solution as (x∗, y∗).

Lemma A.1 The solution to PI denoted by (x∗, z∗), where x∗ = (x∗
1 , . . . , x∗

n )′, is as follows:

x∗
j =

⎧

⎨

⎩

U
a j

(
∑

i∈A

1
ai

)−1

, j ∈ A,

0, j 	∈ A,

y∗ = U

⎛

⎝
∑

j∈A

1

a j

⎞

⎠

−1

where A is determined by:
(1) If there exists an integer p ∈ [0, n − 2] such that

n
∑

i=n−p+1

ri − rn−p

ai
<

λ

T (1 − λ)
and

n
∑

i=n−p

ri − rn−p−1

ai
≥ λ

T (1 − λ)

then

A = {n, n − 1, . . . , n − p}.
(2) Otherwise, if the above condition is not satisfied by any integer p ∈ [0, n − 2], then

A = {n, n − 1, . . . , 1}.
Obviously, x∗

j satisfies that a j x∗
j = y∗, j ∈ A, a j x∗

j = 0 for j 	∈ A. Here, A =
{n, n − 1, . . . , n − p} or {n, n − 1, . . . , 1}. In the following discussion, for convenience of
notation, we denote A = {1, . . . , k}, k ≤ n. It is worth noticing that the rank of assets in A
is converse to the original one. That is for i, j ∈ {1, . . . , k}, if i < j , then ri ≥ r j .

An optimal solution to PI can be found by the following steps:
Step 1: If there exists l with n ≥ l > k such that

∑k
j=1

1
a j

∑l−1
j=1

1
a j

>
εU

y∗ ≥
∑k

j=1
1

a j
∑l

j=1
1

a j
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Step 2: An optimal solution to PI is:

x∗∗
j = εU

a j
, j = 1, . . . , l − 1

x∗∗
l = y∗

k
∑

j=1

1

a j
− εU

l−1
∑

j=1

1

a j

x∗∗
j = 0, j = l + 1, . . . , n

y∗∗ = εU

The following discussion will show that the solution in Steps 1 and 2 is an optimal solution
to PI . We separate the proof into three theorems. First, we will show that a solution which
satisfy Steps 1 and 2 is a feasible solution to the problem PI . And then we will prove that if
we can not find l which satisfy Steps 1 and 2, then the problem PI has no feasible solution.
Third, we will show that the solution in Steps 1 and 2 is the optimal solution to PI .

Theorem A.1 The solution in Step 2 is a feasible solution to PI .

Proof Since j = 1, . . . , k,

x∗∗
j = εU

a j
= x∗

j − y∗ − εU

a j

We have

n
∑

j=1

x∗∗
j = U −

k
∑

j=1

y∗ − εU

a j
+

l−1
∑

j=k+1

εU

a j
+ x∗∗

l

= U − y∗
k

∑

j=1

1

a j
+

l−1
∑

j=1

εU

a j
+ x∗∗

l

= U

Obviously, x∗∗
l ≥ 0, and al x∗∗

l ≤ εU . Hence, the solution in Step 2 is a feasible solution
to PI . 
�
Theorem A.2 If we can not find l satisfy Step 1, then the feasible solution to PI is empty.

Proof If there is no l satisfy Step 1, then

y∗
k

∑

j=1

1

a j
> εU

n
∑

j=1

1

a j

Noticing that a j x∗
j = y∗, j = 1, . . . , k and

∑k
j=1 x∗

j = y∗ ∑k
j=1

1
a j

= U .
If x j is a feasible solution to PI , then a j x j ≤ εU , j = 1, . . . , n.
Noticing that U = ∑n

j=1 x j ≤ εU
∑n

j=1
1

a j
, we have

y∗
k

∑

j=1

1

a j
≤ εU

n
∑

j=1

1

a j

which is a contradiction. Hence, PI has no feasible solution. 
�
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Theorem A.3 Feasible solution in Steps 1 and 2 is an optimal solution to PI .

Proof For problem PI I , we have

k
∑

j=1

r j − rk+1

a j
≥ λ

T (1 − λ)

Considering that l > k, rl ≤ rk+1, we have

l
∑

j=1

r j − rl

a j
>

k
∑

j=1

r j − rl

a j
≥

k
∑

j=1

r j − rk+1

a j
≥ λ

T (1 − λ)

The Lagrangian function of problem PI I is

L f (x j , y, μ j , p j , s) = λ

T
y − (1 − λ)

n
∑

j=1

r j x j +
n

∑

j=1

μ j (a j x j − y) +
n

∑

j=1

l j (a j x j − εU )

−
n

∑

j=1

p j x j + s

⎛

⎝

n
∑

j=1

x j − U

⎞

⎠

The Kuhn-Tucker condition is as follows:

∂L

∂y
= λ

T
−

n
∑

j=1

μ j = 0,
∂L

∂x j
= −(1 − λ)r j + a jμ j + l j a j + s − p j = 0

n
∑

j=1

x j = U, μ j (a j x j − y) = 0, l j (a j x j − εU ) = 0,

p j x j = 0, μ j ≥ 0, l j ≥ 0, p j ≥ 0, x j ≥ 0 j = 1, . . . , n

Since PI I is a linear program, the Kuhn-Tucker point is an optimal solution.
According to Steps 1 and 2, we have y∗∗ = εU , a j x∗∗

j = εU , for j = 1, . . . , l − 1 and
al x∗∗

l ≤ εU , x∗∗
j = 0 for j > l and

∑n
j=1 x∗∗

j = U .
It is easy to verify that the following Lagrange multipliers and KT point satisfy the Kuhn-

Tucker condition as follows:

p j = 0, j = 1, . . . , l

p j = (1 − λ)(rl − r j ) ≥ 0, j = l + 1, . . . , n

s = (1 − λ)rl

μ j = λ

T

r j −rl−1
a j

l−1∑

j=1

r j −rl−1
a j

, j = 1, . . . , l − 1

μ j = 0, j = l, . . . , n

l j = (1 − λ)
r j − rl

a j
− λ

T

r j −rl−1
a j

∑l−1
j=1

r j −rl−1
a j

, j = 1, . . . , l − 1

l j = 0, j = l, . . . , n

Hence the proof is completed. 
�
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