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Abstract In this paper, we introduce a new general iterative algorithm for finding a com-
mon element of the set of common fixed points of an infinite family of nonexpansive mappings
and the set of solutions of a general variational inequality for two inverse-strongly accretive
mappings in Banach space. We obtain some strong convergence theorems by a modified
extragradient method under suitable conditions. Our results extend the recent results
announced by many others.
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1 Introduction

Let X be a real Banach space and let J be the normalized duality mapping from X into 2% :
given by

J@y={feXx*:(x, ) =lx1>=1fI’}, xeX,

where X* denotes the dual space of X and (., .) denotes the generalized duality pairing. We
use F(T) to denote the set of fixed points of the mapping 7. It is well known [1] that if X™* is
strictly convex or X is a Banach space with a uniformly Gateaux differentiable norm, then J
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is single-valued. In what follows, we denote the single-valued normalized duality mapping
by j.
Let C be a nonempty convex subset of X, recall that 7' is a nonexpansive mapping if

Tx =Tyl <llx—=yll., Yx,yeC. (1.1)
A mapping f : C — C is a contraction if there exists a constant & € (0, 1) such that

If&x)=fOll <allx—yll, Yx,yeC. (1.2)

A mapping ¢ : C — C is a Meir-Keeler contraction if for every € > 0, there exists § > 0
such that

lx — yll < €+ 8 implies |l¢px — @yl <€, Vx,yeC. (1.3)

In a Banach space X having a single-valued normalized duality mapping j, we define an
operator A : C — C is strongly positive if there exists a constant y > 0 with the property

(Ax, j(0)) =7 IxI?, llal —bAl= sup [{(al —bA)x, j(x)], a€[0, 1], be[~1,1],

llxll<1
(1.4)
where [ is the identity mapping.
A mapping A : C — X is said to be accretive if
(Ax — Ay, j(x —y)) =0, Vx,yeC. (1.5)

A mapping A : C — X is said to be «-inverse-strongly accretive if there exists a constant
o > 0 such that

(Ax — Ay, j(x —y)) = a |[Ax — Ay|>, Vx,y€C. (1.6)

In recent years, the existence of common fixed points for a finite family of nonexpansive
mappings has been considered by many authors (see [1-10]). In this direction, several itera-
tive methods have been proposed for these problems. Recently, Marino and Xu [6] considered
the following iterative method:

Xpp1 = U — 0y A)Txp + oy f(xp), n>0, (L.7)

where A is a strongly positive bounded linear operator on a Hilbert space H. Under suitable
conditions they proved the sequence {x, } generated by (1.7) converges strongly to the unique
solution x* in H of the variational inequality

(A=yf)x*,x —x*) >0, xeH. (1.8)

Very recently, Wangkeeree et al. [11] extended Theorem of Marino and Xu [6] from Hil-
bert space to a reflexive Banach space which admits a weakly continuous duality mapping
J», more precisely, they introduced the following iterative algorithm:

xXg=x € X,
Yu = Buxn + (A = B)Tuxy, (1.9)
Xnt1 = apyfxn) + U —ayA)y,, n=>0.

On the other hand, variational inequality theory has emerged as an important tool in study-
ing a wide class of obstacle, unilateral, free, moving, equilibrium problems arising in several
branches of pure and applied sciences in a unified and general framework. This field is expe-
riencing an explosive growth in both theory and application. Several numerical methods have
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been developed for solving variational inequalities and related optimization problems, see
[12-20] and the references therein.

Let C be a nonempty closed convex subset of a real Hilbert space H. Recall that the
classical variational inequality is to find x* such that

(Ax*,x —x*) >0, VxeC, (1.10)

where A : C — H is a nonlinear mapping. The set of solutions of (1.10) is denoted by
VI(A,C).

Let A, B : C — H be two mappings. Ceng et al. [14] considered the following problem
of finding (x*, y*) € C x C such that

* k% It S
l(AAy +x y5,x—x*)>0, VxeC, (111)

(UBx*+y* —x*,x —y*) >0, VxeC,

which is called a general system of variational inequalities, where A > 0 and p > 0 are two
constants. In particular, if A = B, then problem (1.11) reduces to finding (x*, y*) € C x C
such that

* * * _ *
[(AAy +x y5,x—x*)>0, VxeC, (1.12)

(MAX™ + y* —x*,x —y*) >0, VxeC.

Further, if we add up the requirement that x* = y*, the problem (1.11) reduces to the classical
variational inequality.

In order to find the common element of the solutions of problem (1.11) and the set of
fixed points of a nonexpansive mapping 7', Ceng et al. [14] studied the following algorithm:
x;1=u € C and

[yn = Pc(xy — uBxy), (1.13)

Xn1 = Quit + BuXy + VuSPc(Yn — AAyy).

Under appropriate conditions they obtained a strong convergence theorem.
Very recently, in a Banach space, Yao et al. [15] considered the following variational
inequality of finding (x*, y*) € C x C such that

(1.14)

(Ay* +x* — y*, j(x —x™)) >0, VxeC,
(Bx* 4+ y* —x*, j(x —y%)) >0, VxeC.

For solving the problem (1.14), Yao et al. [15] introduced the following iterative algorithm:
u,xo € C and

‘yn = Qc(xn — an), (115)

Xnt1 = put + BuXn + ¥u Qc(Yn — Ayn), n =0.

They proved a strong convergence theorem under suitable conditions.

Let C be a nonempty closed convex subset of a real Banach space X. For given two oper-
ators A, B : C — X, we consider the following variational inequality problem of finding
(x*, y*) € C x C such that

[(AAy +x*—y* j(x —x%) >0, VxeC, (1.16)

(UBx* +y* —x*, j(x —y")) >0, VxeC,

which is called the system of general variational inequalities in a real Banach space. The
set of solutions of (1.16) is denoted by Q. If A = p = 1, the problem (1.16) becomes the
variational inequality problem (1.14).
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In this paper, motivated by the above facts, we introduce a new general iterative algo-
rithm for finding a common element of the set of common fixed points of an infinite family
of nonexpansive mappings and the set of solutions of a general variational inequality for
two inverse-strongly accretive mappings in a Banach space. Then we prove some strong
convergence theorems under some suitable conditions. The results obtained in this paper
improve and extend the recent ones announced by Wangkeeree et al. [11], Ceng et al. [14],
Yao et al. [15] and many others.

2 Preliminaries

Let S(X) = {x € X : ||x|| = 1}. Then the norm of X is said to be Gateaux differentiable if

.l eyl = llx ]l
lim ———
t—0 t

(A)

exists for each x, y € S(X). In this case, X is said to be smooth. The norm of X is said to
be uniformly Gateaux differentiable, if for each y € S(X), the limit(A)is attained uniformly
for x € S(X). The norm of the X is said to be Frechet differentiable, if for each x € S(X),
the limit(A)is attained uniformly for y € S(X). The norm of X is called uniformly Frechet
differentiable(or X is said to be uniformly smooth), if the limit(A)is attained uniformly for
x,y € S(X).

A Banach space X is said to be strictly convex if w < lfor x| =yl =1,x #y;
uniformly convex if for all € € [0, 2], 35¢ > O such that w <l—=4for|x||=yll=1
and [[x — y|l > €.

Let px : [0, 00) —> [0, 00) be the modulus of smoothness of X defined by

1
px(t) = Sup{i(lliryll +lx =yl —=1:xe€8X), lyll < t}.

t
px () — O ast — 0. A Banach

A Banach space X is said to be uniformly smooth if

space X is said to be g-uniformly smooth, if there exists a fixed constant ¢ > 0 such that
px () < ct?. It is well known that each uniformly convex Banach space X is reflexive and
strictly convex and every uniformly smooth Banach space X is a reflexive Banach space with
uniformly Gateaux differentiable norm.

Recall that, if C and D are nonempty subsets of a Banach space X such that C is nonempty
closed convex and D C C, then a mapping P : C — D is sunny [21] provided

P(x+1t(x — P(x))) = P(x) forallx € Candr >0,

whenever x + t(x — P(x)) € C. A mapping P : C — D is called a retraction if Px = x
for all x € D. Furthermore, P is a sunny nonexpansive retraction from C onto D if P is
retraction from C onto D which is also sunny and nonexpansive.

A subset D of C is called a sunny nonexpansive retraction of C if there exists a sunny
nonexpansive retraction from C onto D. The following propositions concern the sunny non-
expansive retraction.

Proposition 2.1 [21] Let C be a closed convex subset of a smooth Banach space X. Let D
be a nonempty subset of C. Let P : C — D be a retraction and let J be the normalized
duality mapping on X. Then the following are equivalent:
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(a) P is sunny and nonexpansive.
(b) [[Px—Py|* < (x—y,J(Px—Py)., Vx,yeC.
(c) (x—Px,J(y—Px)) <0, VxeC,yeD.

Proposition 2.2 [22] If X is strictly convex and uniformly smooth and T : C — C is a
nonexpansive mapping having a nonempty fixed point set F (T), then the set F(T) is a sunny
nonexpansive retraction of C.

We need the following lemmas for the proof of our main results.
Lemma 2.3 [7] Assume {a,} is a sequence of nonnegative real numbers such that
an1 = (L= yu)an +8,, n =0,
where {y,} is a sequence in (0, 1) and {5,} is a sequence in R such that

1) ZZO:() Yn = O0;
(i) limsup, . o j— <00r 32218, < oo.
Then lim,_,  a, = 0.

Lemma 2.4 [23] Let {x,} and {z,} be bounded sequences in a Banach space X
and let {B,} be a sequence in [0, 1] which satisfies the following condition: 0 <
liminf, o By < limsup,_, o, Bn < 1. Suppose x,41 = Bpxp + (1 — Bp)zy, n > 0 and
lim sup,, , oo (1zn+1 = znll = [Xn41 — X 1) < 0. Then lim;, o |2 — xull = 0.

Lemma 2.5 [24] Let X be a real q-uniformly smooth Banach space, then there exists a
constant Cy > 0 such that

x4+ y119 < 1x119 + g {y, jgx) + Cq I¥II7,

forall x,y € X. In particular, if X is real 2-uniformly smooth Banach space, then there
exists a best smooth constant K > 0 such that

x4+ ylI> < Ixl> 42 (v, jx) +2 1Ky,
forallx,y e X.

Lemma 2.6 [25] Let X be a real smooth and uniformly convex Banach space and let r > 0.
Then there exists a strictly increasing, continuous and convex function g : [0,2r] — R
such that g(0) = 0 and g(||lx — y||) < lxl? = 2 (x, Jjy) + ||y||2, forall x,y € B,,where
B ={zeX:|z|l £r}

Lemma 2.7 ([26], Lemma 2.1) In a Banach space X, the following inequality holds:
e+ yI1* < el +2(y, jr + ), xyeX,
where j(x +y) € J(x + y).

Lemma 2.8 [27] Let C be a closed convex subset of a strictly convex Banach space X. Let
T1 and T, be two nonexpansive mappings from C into itself with F (T1) N F(Ty) # @. Define
a mapping S by

Sx =AT\x+ ({1 —=-MTx, VxeC,

where X is a constant in (0, 1). Then S is nonexpansive and F(S) = F(T1) N F(T3).
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Lemma 2.9 Let C be a nonempty closed convex subset of a real 2-uniformly smooth Banach
space X. Let the mapping A : C — X be a a-inverse-strongly accretive. Then the following
inequality holds:

(7 = 2A)x = (I = 2A)YI? < llx = yIIP = 24 — K23) | Ax — Ay (2.D)

o

In particular, if 0 < A < 5,

then I — LA is nonexpansive.
Proof Indeed, for all x, y € C, it follows from Lemma 2.5 that
(7 = 2A)x — (I = 2A)y]
= ll(x = y) = A(Ax — Ap)|?
< e = yI? = 24 (Ax = Ay, j(x = y)) +2K°2% | Ax — Ay|)?
< llx = yI? = 2ar | Ax — Ay|* +2K?22 | Ax — Ayl
= llx = yI> = 2h(@ — K*2) [ Ax — Ay|*.
Itis clear thatif 0 < A < %, then I — LA is nonexpansive. This completes the proof. O
Lemma 2.10 Let C be anonempty closed convex subset of a real 2-uniformly smooth Banach
space X. Let Pc be the sunny nonexpansive retraction from X onto C. Let the mapping
A : C — X be a-inverse-strongly accretive and let B : C — X be B-inverse-strongly
accretive. Let G : C — C be a mapping defined by
G(x) = Pc[Pc(x — uBx) — XAAPc(x — uBx)], VxeC.
Ifo<i < % and 0 < pu < %, then G : C — C is nonexpansive.
Proof Forall x,y € C, by Lemma 2.9, we have
16 =GO
= | Pc[Pc(x — uBx) — LAPc(y—uBy)] — Pc [Pc(y — uBy)—ArAPc(y — uBy)]|
=Id =ArA)Pc(I — uB)x — (I —AA)Pc(I — uB)yll
< IPc( — uB)x — Pc(I — uB)y|
I —uB)x — U —uB)yll
< lx=yl,
which implies that G is nonexpansive. This completes the proof. O
Lemma 2.11 Let C be anonempty closed convex subset of a real 2-uniformly smooth Banach
space X. Let Pc be the sunny nonexpansive retraction from X onto C. Let A, B : C — X
be two nonlinear mappings. For given x*, y* € C, (x*, y*) is a solution of problem (1.16) if

and only if x* = Pc(y* — AAy™) where y* = Pc(x* — uBx™), that is x* = Gx*, where G
is defined by Lemma 2.10.

Proof We rewrite (1.16) as

(v = 2Ay") —x*", j(x —=x*) <0, VxeC, 02
((x* —uBx™) —y*, j(x —y*)) <0, VxeC. ’
From Proposition 2.1, we deduce that (2.2) is equivalent to
x* = Pc(y* — AAy"),
V¥ = Po(x* — uBx®).
This completes the proof. O
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Lemma 2.12 Let X be a Banach space having a single-valued normalized duality mapping
Jj, assume that A : C — C is a strongly positive linear bounded operator with coefficient
7 >0and0 < p < |A|I"Y. Then |I — pAll < 1 — p¥.

Proof From(1.4), weknow that|A| = SUpP|x|<1 [(Ax, j(x))].Nowforx € C with ||x|| = 1,
we see that

(I =pA)x, j(x)) =1=p(Ax, j(x)) = 1 - pllAll = 0.
(i.e., I — pA is positive). It follows that
11— pAll =sup{((I — pA)x, j(x)) : x € C, |lx]| =1}
sup {1 — p (Ax, j(x)) : x € C, x| = 1)
1—py.
This completes the proof. O

IA

Lemma 2.13 Let C be a closed convex subset of a uniformly smooth Banach space X, let
T,S : C — C be two nonexpansive mappings with F(T) # ). Let A : C — C be a
strongly positive linear bounded operator with efficient y > 0. Assume that C = C C C
and O < y < y. Then the sequence {x;} defined by x;, = tySx; + (I — tA)T x; converges
strongly to z € F(T) as t — 0 which solves the following variational inequality

(A=y8)z, jz—p)) =0, VpeFT). 23)

Proof First, we show the uniqueness of the solution of the variational inequality (2.3). Sup-
pose both z; € F(T) and x, € F(T) are solutions of (2.3), we have

((A=ySz1, jz1 —22)) =0,

and

((A—y8)z, jza —z1)) <0.
Adding up the above two inequalities gets
(A=yS9z —(A—ySz, j(z1 —22)) < 0.
Noting that
(A=ySz1 —(A=ySz, j(z1 —22)) = (A(z1 — 22), j (21 — 22))
-y (Sz1 — S22, j(z1 — 22))
>y llz—z20* =yl -zl
=@ -y lza—zl*=0.

Consequently we have z; = z, and the uniqueness is proved. We use 7 to denote the unique
solution of (2.3).

Next, we prove that {x,} is bounded. Indeed, we may assume, without loss of generality,
t <||A|7", for p € F(T), it follows from Lemma 2.12 that

lx: = pll = llt(y Sx; — Ap) + (I —1A)(Tx; — p)l
= =ty)lxe = pl+tllySx —ySpl+tlySp — Apll
= A =ty)llxe = pl+ 1y llx = pll + 2 llySp — Apll
=A -1 —=y)lx—pl+rilySp — Apl,

which implies ||x; — p|| < W. This shows that {x,} is bounded.

@ Springer



444 J Glob Optim (2013) 55:437-457

Assume f, — 0 asn — oo. Set x,, := x;, and define u : C — R by
pu(x) =LIM |x, — x|, x€C,

where LIM is a Banach limit on [*°. Let
K = [x € C: u(x) = minLIM | x, —xllz} .
xeC

We see easily that K is a nonempty closed convex subset of X. Note
lxn — Txyll =ty lySx, — AT x| > Oasn — oo.
It follows that
p(Tx) = LIM [y — Tx|[* = LIM | Tx, — Tx[|* < LIM [lxy — x||* = e (x),

which implies that 7(K) C K, thatis, K is invariant under 7. Since a uniformly smooth
space has the fixed point property for nonexpansive mapping, 7" has a fixed point, say z € K.
Letr € (0,1)and x € C, then z 4+t (x — Az) € C by the assumption C £+ C C C. Since z is
also a minimizer of u over C, we have

LIM [lx, — z|> < LIM |lx, — z — t(x — Az)||%.
‘We observe

ln =2 = 1(x = ADI* = Con = 2, j (@ — 2 = 1(x = A2))
— = Az, j (o =2~ 1 = A2))
ltn = 2l lln = 2 = 1(x = A2)]
—t{x — Az, j(x, —z—t(x — A2)))
_ =2l Al — 2 — 1@ = Ag)|)?
- 2

—t{(x — Az, j(x, —z—t(x — A2))),

IA

which implies
lxn — 2 = £(x — AD> < llxy — 2l = 21 {x — Az, j(xa — 2 — t(x — A2))).
Taking the Banach limit over n > 1, we have
LIM [|lx, —z — 1(x — Az)[|* < LIM ||x,, — z||* — 2¢LIM (x — Az, j(x, — z—1(x — A2))),
which implies
21LIM (x — Az, j (tn—2—1(x — A2))) <LIM ||xp — 2]I> —LIM [lxp —z — £ (x — Az) ||> <O.
Hence we obtain
LIM (x — Az, j(x, —z —t(x — Az))) < 0.

Since X is uniformly smooth, we have that the duality mapping j is norm-to-norm uniformly
continuous on bounded set of X. Letting t — 0, we have

(x — Ax, j(xpn —2)) — (x — Az, j(x, — z — t(x — Az))) — 0 uniformly.
Therefore, for all € > 0, there exists § > 0 such that V¢ € (0, ) and foralln > 1,

(x = Ax, j(xn —2)) < (x = Az, j(xn — 2 —1(x — A2))) t €.
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Consequently,
LIM (x — Ax, j (¥, —2)) < LIM (x — Az, j(ty — 2 — 1 (x — A2))) + € <e.
Since € is arbitrary, then
LIM (x — Az, j(x, —2)) <0, xeC. 24
On the other hand, we have
Xp — 2=t (ySx, — A7)+ U —t,A)(Tx, — 2).
It follows that

lxn — 2l% =ty (¥ Sxn — Az, j(xn — 2)) + (I — 1, A)(Txy — 2), j (X — 2))
<1 <VSXn — Az, j(xn -2+ 1 - tn)7) llxn, — Z”z ,

which implies

—_

e — zlI* < = (¥ Sxy — Az, j(xn — 2))

il = =

(y S — %, jCim — D) + % (= Az jm—2). (25

Combining (2.4) and (2.5), we have

1 1
LIM [x, — 2] < SLIM {y Sxy —x. jixn =) + SLIM {x = Az, j (0 —2))
1
< ELIM (ySxp —x, j(xp —2))
1
< ?LIM lySxn, — x|l lxn — zll .

In particular,
PLIM [lx, — z[|*> < LIM |y Sx, — ¥ Szl lx — zll < yLIM [lx, — z||>.
Hence
(7 — y)LIM |lx, — z||* < 0.

Since y > y, we have LIM ||x,, — z||2 = 0, and hence there exists a subsequence which is
still denoted {x,} such that x,, — z.
Next we prove that z solves the variational inequality (2.3). Since

xp=tySx; + U —tA)Tx,.
We have
(A—ySx = —%(1 —tAY — T)x,.
On the other hand, note for all x, y € C,

(I =T)x —(I =Ty, j(x —y) = llx = ylI> = (Tx = Ty, j(x — )
> lx = yI? = ITx = Tyl x — yll
> x —yI? = llx = yl*=0.
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For p € F(T), we have
1
((A=yS)x, joxy — p)) = —7 (I —1A)YU — T)x;, j(x; — p))

1
=— U =Dx = =T)p, jx: = p))
+ (AU = T)xs, j(xr — p))
< (AU =T)x1, j(xt = p)).

Replacing ¢ with £, and letting n — oo, note (I — T)x;, — (I — T)z = 0, we have that

(A=y8z, j(z—p)) 0.

That is, z € F(T) is a solution of (2.3). Then z = Z. In a summary, we have that each cluster
point of {x, } converges strongly to z as t, — 0. This completes the proof. O

Lemma 2.14 Let C be a nonempty closed convex subset of a real Banach space X which
has uniformly Gateaux norm, and T,S : C — C be two nonexpansive mappings with
F(T) # 0. Let A : C — C be a strongly positive linear bounded operator with coefficient
y > 0. Assume that C = C C C and {x;} converges strongly to z € F(T) ast — 0, where
X; is defined by x; = ty Sx; + (I — tA)T x;, where y > 0 is a constant. Suppose {x,} C C
is bounded and lim,_,  ||x, — Tx,|| = 0. Then

lim sup (y Sz — Az, j(x, —2)) <0.

n—oo

Proof We note that
Xt —xp =ty Sx; +Tx; —tATx; — xp
=1t(ySx; — Axy) + (Tx; — xp) —t(ATx; — Axy)
=t(ySx; — Axs) + (Tx; — x) + tzA(ny, — AT xy).
It follows that

llxe — Xl
=t{ySx; — Axy, j(x; — xp)) + (T xp — xn, j(Xp — X))
+ 12 (A(y Sx; — ATx;), j(x; — X))
=1 (ySx; — Axs, j (= x0)) + (Txp — T, j (0 — %)) + (T — X, j (¢ — xn))
+ 12 (A(y Sx; — ATx,), j(x; — X))
<t (ySx; — Axy, j O — X)) + v — X012 4 1T — Xl e — x|
+ 12 Ay Sx; — ATx)| 1x — xal

which implies

. 1720 =Xl X2 — Xl
(ySxi—Ax:, j(xn — X)) < ; + 1 I1A(y Sx; — AT x|l lxe — Xull -

2.6)

Since {x;}, {x,} and {T x, } are bounded and x,, — T x,, — O, taking the upper limitas n — oo
in (2.6), we get that

lim sup (y Sx; — Axy, j(xp — x1)) <1 |A(y Sx; — AT x;) | limsup [lx; — x|l . (2.7)

n—o0 n—o00o

@ Springer



J Glob Optim (2013) 55:437-457 447

Taking the upper limit as t — 0 in (2.7), we obtain

lim sup lim sup (y Sx; — Ax;, j(xp, — x7)) <O0. (2.8)

t—0 n—oo

Since X has a uniformly Gateaux norm, we obtain that j is single-valued and strong-weak*
uniformly continuous on bounded set of X. We get that

(ySz— Az, j(xn — 2)) — (¥ Sxr — Axy, j(xn — 1))
=[ySz— Az, j(xn —2) — j(xn —x)) +{¥y Sz — ¥ Sx; + Axy — Az, j(xn — x1))]
<K ySz— Az, jlon —2) — jln —x )+ (ly Sz — vy Sxell + 1Axr — AzID) [lxn — x|l
— Qast — 0.
Hence, Ve > 0,385 > Osuchthat V¢ € (0, §), for all n, we have
(ySz— Az, j(xn — 2)) <y Sxi — Axy, j(xn — X1)) + €.
By (2.8), we get that
limsup (y Sz — Az, j(xp — 2))

n—oo

= lim sup lim sup (y Sz — Az, j (x, — 2))

t—0 n— 00

< limsup lim sup (y Sx; — Ax;, j(x, — x;)) + €.
t—0 n— 00
<e€.

Since € is arbitrary, we get that

limsup (y Sz — Az, j(x, —2)) <0.

n—oo

This proof is complete. O

Lemma 2.15 (see [28], Lemma 3.1) Let C be a nonempty subset of a Banach space X, and
{T,} a sequence of mappings from C into X. Suppose that for any bounded subset B of C
there exists a continuous increasing function hg from R™ into RY such that h(0) = 0 and
limg o0 pf = 0, where pf := sup {hp(|Tez — Tizll) : z € B} < oo, for all k,1 € N. Then

lim sup{hp(||Tz— Tyzl) :z € B} =0.

n—00
Remark 2.16 (see [28], Remark 3.2) If ZZOZI sup{||Th+1z2 — Tuzll : z € B} < coand hp :
RT — R is a continuous, increasing function such that 4 (0) = 0, then

lim sup{hp(lTkz — Tizl) : z € B} = 0.
k,l— o0

3 Main results

Theorem 3.1 Let C be a nonempty closed convex subset of a 2-uniformly smooth and uni-
formly convex Banach space such that C = C C C. Let Pc be the sunny nonexpansive
retraction from X to C. Let the mappings A, B : C — X be a-inverse-strongly accretive
and B-inverse-strongly accretive, respectively. Let {T; : C — C}72, be an infinite family of
nonexpansive mappings with F := N2 F(T;) N Q2 # (. Let S : C — C be a nonexpansive
mapping and D : C — C be a strongly positive linear bounded operator with the coefficient
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y such that 0 < y < y. For arbitrarily given xo € C, let the sequence {x,} be generated
iteratively by

zn = Pc(xy — uBxy),

kn = Pc(zn — AAZy),

yn = (1 = Bu)xn + Bukn,

Xpa1 = Ap ¥ Syn + VuXn + [(1 — ) — 0, D], yp,
where 0 < A < % and 0 < pn < % Assume that {a,}, {B,} and {y,} are three sequences
in [0, 1] satisfying the following conditions:

3.1

(1) limyeoay, =0, ZZO:O oy = 00,
(i) 0 <liminf,— oo ¥ <limsup,_, o ¥n < 1,
(1) limp—oo |Bnt1 — Bnl =0, liminf, o B, > 0.

Suppose that for any bounded subset D' of C there exists an increasing, continuous and convex
function hpr from R into R such that hpy (0) = 0 and limg ;o0 sup {hp (| Tz — Tiz)) :
Z€ D/} = 0. Let T be amapping from C into C defined by T x = lim,_, , Tyx forallx € C
and suppose that F(T) = N2 F(T;). Then {x,} converges strongly to z € F, which also

solves the following variational inequality:
(ySz—Dz,j(p—2)) =0, VpeF. (3.2)

Proof We divide the proof into four steps.

Step 1 We show that {x,} is bounded. By condition (i), we may assume, without loss of
generality, that o, < (1 — y,) | D]

Since D : C — C is a strongly positive linear bounded operator, by (1.4), we have

DIl = sup {|(Du, j))| : u € C, |lull = 1}.

Observe that

(I =y —ayD)u, ju)) I — vy — oy (Du, j(u))
L —yy— oD

0.

v

v

It follows that

(1 =) —apD|| = sup {{((1 = yu)I — anDyu, j()) :u € C, |lul| =1}
= sup{l —yp — o (Du, j@w)) :u € C, |ul| =1}

< 1—yn—any.

Take x* € F, From Lemma 2.11, we have
x* = Po(Pc(x* — uBx*) — MAPc(x* — wBx™)).

Put y* = Pc(x* — uBx™), then x* = Pc(y* — AAy™). By Lemma 2.9, we obtain

lkn = x*| = || Pc(zn — AAzn) — Pc(y* — LAYH) ||
< || = rA)z, — (I = 2A)Y¥|
< [z =7

= ” Pc(xn — Man) - PC(X* - /’LBX*)H
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<[ = uB)xy — (1 — uB)x¥||
< [l =¥ (3.3)
It follows that

[yn —x*| = [(1 = Bu) G — x) + Bulhn — x|
< (1= Bo) |xn = x*| + Ba [|kn — x*|
< (1= Bo) [on = x| + B on — 27
= [oon =" (3.4)

From (3.4), we have

[nr = x|
= ||0tn(7/5yn — Dx*) + v (xp —x) + (1 = y) I — y DY (Tyyn — x*)”
<A =vu=n?) | Tuyn—x*| 4+ v | X0 —x* | +an | ¥ Syn—v Sx* |+ | ¥ Sx*—Dx*|
<=y =) on = x| + v [0 = x*|| +any |yn — x*|| + an |y Sx* — Dx*|
= (= va =) |0 =2 + v [ron = 27| + @ny [ = 2" + o |y Sx™ = Dx|
lly Sx* — Dx*||
— .

= -y —y) ”xn _x*” +on(y —v)

By induction, we have

[ max[on _x,

Yy =V
Consequently {x,} is bounded. From (3.3) and (3.4), we know that {y,}, {k,} and {z,,} are
also bounded.

Step 2 We show that lim,,, oo [|X44+1 — X1l = 0.

We observe that

S*_D*
M] V1.

lknr1 — knll = 1Pc(zn+1 — AAzZus1) — Po(zn — AAzy)||
<N =2A)zp41 — (I = AA)zal
< llznt1 — zall
= [|Pc(xXn+1 — uBxp+1) — Pc(xy — Bxy)||
< = puB)xp+1 — (I — uB)xnll
< lIxXnt1 — xull - (3.5)

It follows from (3.5) that

Iyns1 = yull = (L = Bug)Xnt1 + Butiknp1 — (1 = Bu)xn — Buknll
=1 = But D Cnt1 — xn) + Bat1 k1 — kn) + (Bat1 — Bn) k. — xn) |l
< (I = But1) IXnt1 — Xull + Bat1 lknt1 — knll + 1Bn1 — Bul lkn — xnl
< (I = But1) IXnt1 — Xnll + Bat1 1xn41 — Xnll + [But1 — Bl lkn — xnl
= xXn41 = xnll + 1Bns1 — Bul llkn — xpll - (3.6)
Put x,,+1 = yuxn + (1 — y)1,. Then we obtain
lnt1 — In
_ Xn42 = Vn+1Xn+1 Xntl — VanXn
B I = ¥as1 Y
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An+1Y SYn+1 + (1 = Ve DI — a1 D) Ty 1 Y1

1 — ¥Yut+1
_anVSYn + (I =y —ayD)T,y,
1- Vn
On+1 ap
= ———WSYu+1 — DTht1yn+1) — (¥ Syn — DTy yn)
- Vn+1 11— Yn

+T+1Yn+1 — Tnt1Yn + Tat1Yn — Tayn-

It follows that
Up+1

(0%
st = Inll < Iy Syns1 — DTor1ynsill + ——— lly Syn — DTy yall
— Vn+1 I =
Fyn+1 = Yl + 1 Tar1yn — Taynll - (3.7)
Substituting (3.6) into (3.7), we have that
Mln+1 = Inll = llXn41 — Xall
U1 Un
< —— lySyn+1 — DTht1yn+1ll + ly Syn — DT, ynll
1- Yn+1 1- n

+1Bnt1 = Bul lkn — xull + 1 Tn1yn — Taynll - (3.8)

Let D’ be a subset of C containing {y,} and {x,}, since k%im sup {hp (|| Tez — Tizll) :
=00
Z € D/} = 0, we have

hy (1Tt 1yn = Tuyall) < sup {hp (I Thp1x — Toxl)) : x € D'}
— Qasn — oo.

It follows from the property of 4 p/, we have
lim (| Ty41yn — Tuyall = 0.
n—oo
From (3.8) and conditions (i), (ii) and (iii), we obtain

lim sup([[lp+1 — Inll = llxp41 — xnll) < 0.
n—00

By Lemma 2.4, we have lim,,_, ||/, — x,,|| = 0. Consequently, we obtain
lim |lxp41 —xll = lim (1 — ) Il — x|l = 0. (3.9
n—00 n—0o0
‘We observe that
Xp1 — Xp = Ay (YSyn — DT yn) + (1 = v) (T yn — Xn).
It follows that

lxn41 — xnll = oy (¥ Syn — DTy yn) + (1 — v) (T yn — x0)l
> (1= v) 1 Thyn — xull — an Iy Syn — DTyyull

which implies that

1 Tyn — xull < 1 (Ixp1 = xull +an 1y Syn — DTy D).

—Vn

Noticing conditions (i) and (ii) and (3.9), we have

lim || Ty, — xull = 0. (3.10)
n—00
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Step 3 We prove that lim,,_, o [, — T, x|l = 0.
From Lemma 2.9, we have

len = y*|* = | Pcin — Bxa) — P — uBx*)|

< ||xn —x* — w(Bx, — B)c”‘)”2
< o — x| = 28 — K*w) | Bx, — Bx* |, G.11)
and
[kn = x*|* = | Pe(zn — AAza) — Pe(y* — AAYS)|)?
< [lzn = ¥* = MAzy — A9
< Jzn = * 7 = 206 — K20 | Az — AY*|. (3.12)

Substituting (3.11) into (3.12), we have
[ —*||* < 20 — x*||* —20(B— K2 10) | Bxy— Bx*|> =20(a— K1) | Az, — A
(3.13)
It follows that
v —x*|®
= (1 = Bu) Con = x*) + Buln —x)|°
< (1= B) | = x*|* + Bu | kn — x*|?
< (=B n =27 + Bu (= x*|* = 20(8 — K2) || By — Bx*[*)
—2Buile — K20 | Azy — Ay* |
= [n—x* = 2But(B—K*) | Bxn — Bx* | = 2Bu0(a — K22) | Azy — Ay*|.
(3.14)
By the convexity of ||. |I> and Lemma 2.7, we obtain
e —x*]®
= Jlota Sy — DTuyn) + yuCin — ) + (1 = 7)) (Tay — x|
< [yn @ = ) + (1= y) Ty — )| + 2000 (¥ Syu — DTy, j Congt — x))
< [ =27+ A= y) [Ty = x*| + 200 1 Syn = DTyl [ — x*]) -
< ¥ [ =22+ =) [y = x*|* + 200 M1 (3.15)

where My = sup,~o {1y Syn — DTyl Ixn1 — x*[I}.
Substituting (3.14) into (3.15), we have

et =]

< on = 2+ (= y) [ — 2> = 200 = y)Bupe (B — K2) | Bxy — Bx*|
—2(1 = y)Bar(@ — K2) | Azy — AY*[* + 20 M,

=l —x* |7 =201 = y)Bunn(B — K*w) | By — Bx*|’
—2(1 = y)Bur(e — K23) | Azy — AY*|)* + 20, M),
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which implies that

201 = y) Bt (B — K20) | Bxn — Bx*|)* +2(1 — ) k(e — K22) | Azy — Ay*|
< v =27 = s — %[> + 20 M
< low = Xt | (xn = x| + %01 — x*|) + 200, M1

Since 0 < A < 5.0 < pu < L liminf, o By > 0.1iminf, oo(l — 3,) = 1 —
limsup,_, o, ¥n > 0, lim, o @, = 0, and (3.9), we have

lim |Bx, — Bx*| =0, lim [|Az, — Ay*| = 0. (3.16)
n—oo

n—oo

Let ry = sup,>q {llzn — ¥*II . [lx, — x*||}. By Proposition 2.1 and Lemma 2.6, we have

ln =y
= | Pcn — nBxy) = Pex* — uBx™)|?
< (xn — uBx, — (x* — uBx*), j(za — ¥))
(on —x*, j(zn = yO)) 4+ 1 (Bx* — Bxy, j(zn — y¥))

1
< 5(||xn — P+ [z = v = &1 (|50 — 20 — & = )|
+ u(Bx* = Bxy, j(za — ¥9),

where g1 : [0, c0) — [0, 00) is a continuous, strictly increasing and convex function such
that g1 (0) = 0. Hence we have

lzn = 37 < [0 = x*° = g1(|0 — 20 — &% = y5)|) + 21 (Bx* = Bx,y, j(z0 — ¥*))
< =P = g1 (s — za— " = y) 4202 | Bxa — Bx*| 2 — y*].
(3.17)

Let ro = sup,>o {lzn — ¥*|I, llky — x*|I}. By Proposition 2.1 and Lemma 2.6, we have

ko — %
— | Pezn — MAzy) = Pe(y* = 2AYH)|?
< {zn = 2Azy — (v = 24y, j (ky — x¥))
= (20 — y", jlkn — X)) + A {AY* = Azy, j (ky — x™))
< 3(||zn P+ k= 2P = 220 = kn + 5 = 35|
+ A {Ay* = Azy, jlky — x¥)),

where g7 : [0, 0c0) — [0, 00) is a continuous, strictly increasing and convex function such
that g»(0) = 0. Therefore we get

lkw = x* 7 < 20 = ¥*|° = g2(|2n — kn + (* = y)|) + 20 {A* — Azp, j (hy — x¥))

=< ||Zn - y*||2_g2(||1n_kn+(x* - y*)||)+2)» ”AZn - Ay*H ||kn _x*” .
(3.18)
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Substituting (3.17) into (3.18), we obtain
[ =27 < o =2 = 1w = 2 = @ = )]+ 20 | B = Bx*| 2 = 57
—&2(|zn —kn + * = y)|) + 24 |Azn — Ay*| [kn —x*.  (3.19)
From (3.19), we get
[n =
= ”(1 — Bu) (xn — x*) + B (ky — x*)|
<=8 ||xn _x*”2 + Bn ||kn _X*”2

< 0 = x*[* = Bugi (|0 — 20 — & = y)|) = Buga(|zn — kn + F = y9)|)
+2Bni | Bxn — Bx*| |z — y*| + 2Buh | Azw — Ay*| ||kn — x*| . (3.20)

} 2

Combining (3.15) and (3.20), we have
a1 =
< Yo [on = 7 A=) [oen =2 = (= y)Bagt (n — 20 — @* = yO)
—(1 = y)Bug2(|zn — kn + &% — ¥ + 200 = yu)Bast | Bxw — Bx*| |20 — y*|
+2(1 = yu) B | Azn — Ay*|| [|kn — x*|| + 200 My
< o =2 = (1 = y)Bagi (|50 — 20 — = 5|
—(1 = y)Bug2(||zn — kn + * = y5)|)
21 || Bxy — Bx*|| | zn — y*|| + 22 || Azw — AY*|| [Kn — x*|| + 200 M1,
which implies
(L= y)Bug1(|xn —zn — &* =y + A = v Bug2(|zn — kn + ™ = yH)|)
< o =1 = s =2 + 20 B — B2 20 — 7]
+21 | Az — AY*|| [ kn — x| + 2000 M
< N = Xt (oen = %[ + |xng1 = x*) + 2 | Bxw — Bx*| | 20 — »*|
+2i | Azn — Ay*|| [[kn — x*|| + 200, M.
Since lim inf,— 00 B > 0, liminf,—oo(1 — ) > 0, limy o0 @, = 0, (3.9) and (3.16), we

have

lim g1(|x, =z, — * = y"|) =0, lim g(|zn —kp + * = y")|) = 0.
n— 00 n—oo
It follows from the properties of g; and g», we obtain
lim [x, —z, — % —y9)|| =0, lim [z, —k, + * —y")| =0. 32D
n—oo

n—oo

From (3.21), we have

%0 = knll < ||xn =20 — &5 =y | + |20 —kn + 5 = y9) |
— Qasn — o0. (3.22)

Consequently, we obtain

lyn = xnll = Bu llxn — knll = Oasn — oo. (3.23)
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From (3.10) and (3.23), we have
1T yn = yull < NTwyn — xnll + X0 — yull = O asn — oo. (3.24)
It follows that
| Twxn — xull < 1 Twxn — Tuynll + 1Tayn — Yull + lyn — xall
<

211xn = yull + 1 Tayn — yull
— 0asn — oo. (3.25)

Since
hp (1 Twxn — Txnll) < sup {hp (| Tyx — Tx|| : x € D')}.

By Lemma 2.15 and the continuity of % p/, we have lim,,— oo A p/ (|| T X, — Tx, 1) = 0. And
the properties of 4 yield

lim (| 7,x, — Tx,|| = 0.
n—oo
It follows that
1Txn — xnll < N Txp — Tuxpll + 1 Tuxn — xull — Oasn — oo. (3.26)

Define amappingU : C — CasUx = éTx+(1—38)Gx, where G is defined by Lemma 2.10
and § € (0, 1) is a constant. Then by Lemma 2.8, we know that U is nonexpansive and
F(U)=F(T)NF(G) =N, F(T,) N Q= F.Wedefine x, =tySx, + (I —tD)Ux,, it
follows from Lemma 2.13 that {x;} converges strongly to z € F(U) = F. From (3.22) and
(3.26), we have

lxn — Uxpll = 180 — Txn) + (1 = 8)(xn — Gxp) |l
= 160, — Txp) + (1 = 8)(xn — kp)l
< 8llxn — Txpll + (1 = 8) llxn — kall

— 0asn — oo. (3.27)
By Lemma 2.14, we have
limsup (ySz — Dz, j(x, —2)) <0. (3.28)
n—oo

Step 4 Finally we prove that x, — z € F asn — 00.
From (3.1) and (3.4), we have

Ixn41 — zIl?

= (A =y —anD)(Tyyn — 2), jnt1 — 2)) + ¥a (X0 — 2, j (Xng1 — 2))
+op (Y Syn — Dz, j(Xn41 — 2))

<A =yn =) 1Tyyn — zll 1xn+1 = zll + Vo 1% — zll X041 — 2]l
+ oy (YSyn — v Sz, j(Xut1 — 2)) +an (¥ Sz — Dz, j(Xut1 — 2))

S A =ya =) lyn — 2l X041 — 2l + ¥ X — 2l X041 — 2l
+any lyn — zll Ixn41 — zll
+an (y Sz — Dz, j(xp+1 — 2))

<A =yu =) Ixn — 2zl Ixn+1 — 2l + Yo X0 — 2l IXn41 — 2zl
+any xn — zll lxn41 — zll
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+an (ySz — Dz, j(xpt1 — 2))
= =ay(y =) llxn =zl lIxp41 — zll + on (¥ Sz — Dz, j(xpy1 — 2))

1—oa,(y —vy) .

< #(Hxn — 202 gt — 21 + @ (¥ Sz — Dz, j (gt — 2)
1—a,(7 —y) 1 .

< 7”2 llx, — zlI> + 7 1 = 21> + &y (¥ Sz — Dz, j(xnt1 — 2)),

which implies
2(ySz — Dz, j(xn41 — 2))
v =y

01 — 2l < A —an(@ — ) 1xn — 2I* + an (7 — ¥)
(3.29)

Apply Lemma 2.3 to (3.29), we obtain x, — z € F as n — o0.This completes the
proof. O

Next we give two simple examples about the control parameters {o,} , {8n}, {y,} of The-
orem 3.1.

Example 3.2 Put o, = i, Yo = 3+ &, Bn = % + % Then the conditions (i)—(iii) are

satisfied in theorem 3.1.
1 .. e
11 s Vn = lioeﬁ, Bn = % arctan n + % Then the conditions (i)—(iii)
4n2
are satisfied in theorem 3.1.

Example 3.3 Puta, =

Theorem 3.4 Let C be a nonempty closed convex subset of a 2-uniformly smooth and uni-
Sformly convex Banach space such that C = C C C. Let Pc be the sunny nonexpansive
retraction from X to C. Let the mappings A, B : C — X be a-inverse-strongly accretive
and B-inverse-strongly accretive, respectively. Let {T; : C — C}72 be an infinite family of
nonexpansive mappings with F := N2 F(T;)) N Q # (. Let f : C — C be a contraction
with a constant 0 € (0, 1) and D : C — C be a strongly positive linear bounded operator
with the coefficient y such that 0 < y’ < %. For arbitrarily given xo € C, let the sequence
{xn} be generated iteratively by

Zn = Pc(xy — uBxy),
kn = PC(Zn — )LAZn)y

3.30
vn = (1= Bu)xn + Buk, (3-30)
Xn+l = any/f()’n) + YuXn + [(1 = yu) I — oy D1T;, yn,
where 0 < A < % and (0 < pu < % Assume that {oy,}, {8,} and {y,} are three sequences

in [0, 1] satisfying the following conditions:

(1) limyseoa, =0, ZZO:() oy = 00;

(i) 0 <liminf,— oo ¥y <limsup,_, o ¥n < 1,
(1) limp—oo |Bnt1 — Bnl =0, liminf, o B, > 0.

Suppose that for any bounded subset D' of C there exists an increasing, continuous and convex
function hp from R into R such that hpy (0) = 0 and limg ;o sup {hp (|| Tez — Tiz|) :
z € D’} = 0. Let T be a mapping from C into C defined by Tx = lim,_, o T, x forallx € C
and suppose that F(T) = N2 F(T;).Then {x,} converges strongly to z € F, which also
solves the following variational inequality:

(vf@) =Dz, j(p—2)) =0, VpeF. (3.3D)
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Proof Take S = g, y = y’'60 in Theorem 3.1, we note that g is nonexpansive. So we obtain

the desired result by Theorem 3.1. O

Theorem 3.5 Let C be a nonempty closed convex subset of a 2-uniformly smooth and uni-
Sformly convex Banach space such that C = C C C. Let Pc be the sunny nonexpansive
retraction from X to C. Let the mappings A, B : C — X be a-inverse-strongly accretive
and B-inverse-strongly accretive, respectively. Let {T; : C — C}72, be an infinite family of
nonexpansive mappings with F := N2 F(T;) N Q # @. Let ¢ : C — C be a Meir-Keeler
contraction and D : C — C be a strongly positive linear bounded operator with the coef-
ficient y such that 0 < y < y. For arbitrarily given xo € C, let the sequence {x,} be
generated iteratively by

Zn = Pc(xy — uBxy),

kn = Pc(zn — LAzy),

yu =0 = Bu)xn + ﬂﬂkl’ls

Xpp1 = YO On) + Vaxn + (1 — y)I — ay DT, yp,

where 0 < A < %5 and0 < u < % Assume that {a,}, {B,} and {y,} are three sequences

in [0, 1] satisfying the following conditions:

(3.32)

(1) lim,se0a, =0, Z?,OZO oy = O0;
(i) 0 <liminf, oy <limsup,_, . ¥n < 1;
(i) limu—eo |Brt1 — Bul = 0, liminf, o B, > 0.

Suppose that for any bounded subset D' of C there exists an increasing, continuous and convex
function hp from RT into RY such that hp'(0) = 0 and limy ;o0 sup {hp (|| Tz — Tyzl)) :
Z€ D/} = 0. Let T be amapping from C into C defined by Tx = lim,_, », Tyx forallx € C
and suppose that F(T) = N2 F(T;). Then {x,} converges strongly to z € F, which also

solves the following variational inequality:

(v¢(@) — Dz, j(p—2) =0, VpeF. (3.33)
Proof We note that ¢ is nonexpansive, so the conclusion of Theorem 3.5 can be obtained
from Theorem 3.1 immediately. O
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