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Abstract In this paper we examine non-convex quadratic optimization problems over a
quadratic constraint under unknown but bounded interval perturbation of problem data in the
constraint and develop criteria for characterizing robust (i.e. uncertainty-immunized) global
solutions of classes of non-convex quadratic problems. Firstly, we derive robust solvability
results for quadratic inequality systems under parameter uncertainty. Consequently, we obtain
characterizations of robust solutions for uncertain homogeneous quadratic problems, includ-
ing uncertain concave quadratic minimization problems and weighted least squares. Using
homogenization, we also derive characterizations of robust solutions for non-homogeneous
quadratic problems.
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1 Introduction

Consider the non-convex quadratic optimization model problem with a quadratic inequality
constraint
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minx∈Rn
1

2
xT Ax + aT x (Q P)

s.t.
1

2
xT Bx ≤ β,

where the “data inputs” consist of the n × n matrices A, B and the vector a, and β is a scalar.
Model problems of this form, in particular, appear in wireless communication and signal pro-
cessing [19,26], and also arise as a subproblem in trust-region algorithms for unconstrained
optimization and have been studied extensively in the literature [18,20–22,27,30]. These
problems enjoy theoretically useful and computationally attractive features, including no
duality gap [27,31], tight semi-definite programming relaxation [22,29] and dual character-
ization of the solution [13]. Unfortunately, these features can not, in general, be extended to
quadratic problems with more than one quadratic constraint [1,2,16,22]. Moreover, in these
models, it is assumed that data inputs are precisely known despite the reality of input data
uncertainty in real-world models due to modeling or prediction errors.

Over the years, various approaches to addressing optimization under data uncertainty have
been developed. These approaches can be classified into two broad categories: Stochastic and
Deterministic. Stochastic approaches start by assuming the uncertainty has a probabilistic
description. The best known technique is based on Stochastic Programming [24,25]. On the
other hand, deterministic approaches are based on a description of uncertainty via bounded
sets [4], as opposed to probability distribution. Robust optimization has emerged as a leading
deterministic approach to address optimization under data uncertainty [3,5–9,14,17].

Following the framework of robust optimization [3,4], our approach, in this paper, to
studying these quadratic model problems affected by data uncertainty is to treat uncertainty
via bounded uncertainty sets, described by intervals.

Our main objective of this paper is to study quadratic model problems of type (Q P) in
the face of data uncertainty in the constraint, where the matrix B is uncertain and it belongs
to an interval uncertainty set, V = {B1 +μB2 : μ ∈ [μ1, μ2]}, B1 and B2 are given matrices
and μ1 and μ2 are real numbers with μ1 ≤ μ2. Our aim is to develop verifiable criteria
for characterizing robust (i.e. uncertainty-immunized) solutions for classes of homogeneous
and non-homogeneous quadratic problems under the interval uncertainty. As an illustration,
consider the uncertain quadratic programming problem

min
x∈R2

{
1

2
x2

1 − x2
2 | 1

2
xT Bx ≤ 1

}
,

where B =
(

b1 b2

b2 b3

)
is uncertain. Suppose that we know the exact value of b1, b3 which is

b1, b3, and that the values of b2 are uncertain in the sense that the nominal value of b2 is b2

with the possible error of ±10%. Then, the effect of the data uncertainty can be captured by
considering the uncertainty set V = {B1 + μB2 : μ ∈ [−0.1, 0.1]}, where

B1 =
(

b1 b2

b2 b3

)
and B2 =

(
0 1
1 0

)
.

We make three key contributions to non-convex quadratic optimization under uncertainty.
First, we establish new robust theorems of the alternative for parameterized quadratic

inequality systems, extending various corresponding powerful theorems of the alternative
such as S-lemma [10,22,28]. Related theorems of the alternative may be found in [12,13,15,
22]. These theorems play a key role in deriving dual criteria characterizing robust solutions
of uncertain quadratic programs later in the paper.
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Second, we derive necessary and sufficient conditions for robust global optimality for
classes of homogeneous problems (Q P) under interval uncertainty. These results extend
the useful features of non-convex quadratic optimization over single quadratic constraint to
related problems under data uncertainty.

Third, using homogenization, we obtain characterizations of robust global solutions of
uncertain non-homogeneous quadratic problems, where a more general quadratic constraint
1
2 xT Bx + bT x + β ≤ 0 is uncertain and the uncertain input data (B, b) ∈ V = {B1 + μB2 :
μ ∈ [μ1, μ2]} × {b1 + δb2 : δ ∈ [δ1, δ2]}.

The layout of the paper is as follows. Section 2 provides preliminary results on quadratic
forms and inequalities that will be used and, in some cases, will be extended and applied
later in the paper. Section 3 presents robust theorems of the alternative for quadratic inequal-
ities. Section 4 characterizes robust global optimality for classes of homogeneous quadratic
problems under uncertainty. Section 5 presents necessary and sufficient conditions for global
optimality of non-homogeneous quadratic problems under uncertainty.

2 Preliminaries on quadratic systems

In this section we fix the notation and recall some basic facts on quadratic functions that will
be used throughout this paper. The real line is denoted by R and the n-dimensional Euclidean
space is denoted by R

n . The set of all non-negative vectors of R
n is denoted by R

n+, and the
interior of R

n+ is denoted by intRn+. The space of all (n ×n) symmetric matrices is denoted by
Sn . The (n × n) identity matrix is denoted by In . The notation A � B means that the matrix
A − B is positive semidefinite. Moreover, the notation A � B means the matrix A − B is
positive definite.

The basic and probably the most useful result on the joint-range convexity of homogeneous
quadratic functions is given as follows.

Lemma 2.1 (Dine’s Theorem [11,22]) Let f, g : R
n → R be defined by f (x) = xT A1x and

g(x) = xT A2x, where A1, A2 ∈ Sn. Then the set {(xT A1x, xT A2x) : x ∈ R
n} is convex.

Dine’s theorem is known to fail for more than two homogeneous quadratic functions.
Polyak [23] established the following joint-range convexity result for three homogeneous
quadratic functions under a positive definite condition on the matrices involved.

Lemma 2.2 (Polyak’s Lemma [23, Theorem 2.1]) Let n ≥ 3 and let f, g, h : R
n → R be

defined by f (x) = xT A1x, g(x) = xT A2x and h(x) = xT A3x, where A1, A2, A3 ∈ Sn.
Suppose that there exist γ1, γ2, γ3 ∈ R such that

γ1 A1 + γ2 A2 + γ3 A3 � 0. (2.1)

Then the set {(xT A1x, xT A2x, xT A3x) : x ∈ R
n} is convex.

Using Dine’s Theorem, Yakubovich (cf [22]) obtained the following fundamental S-lemma
which has played a key role in many areas of control and optimization.

Lemma 2.3 (S-lemma [22]) Let A1, A2 ∈ Sn. Suppose that there exists x0 ∈ R
n such that

xT
0 A1x0 < 0. Then the following statements are equivalent:

(i) xT A1x ≤ 0 ⇒ xT A2x ≥ 0.
(ii) (∃λ ≥ 0) (∀x ∈ R

n) xT (A1 + λA2)x ≥ 0.
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The following alternative theorem of Yuan [31] for two strict inequalities played a key
role in the study of eigenvalue problems and convergence analysis of trust-region algorithms.

Lemma 2.4 (Yuan’s Alternative Theorem [31]) Let A1, A2 ∈ Sn. Then, exactly one of the
following two statements holds.

(i) (∃x ∈ R
n) xT A1x < 0, xT A2x < 0.

(ii) (∃(λ1, λ2) ∈ R
2+\{(0, 0)}) (∀x ∈ R

n) xT (λ1 A1 + λ2 A2)x ≥ 0.

3 Robust solvability of quadratic inequalities

In this Section, we examine robust theorems of the alternative for quadratic inequality systems
under linear perturbations.

Theorem 3.1 Let A, B1, B2 ∈ Sn and let μ1, μ2 ∈ R with μ1 ≤ μ2. Suppose that

{(xT Ax, xT (B1 + μ1 B2)x, xT (B1 + μ2 B2)x) : x ∈ R
n} is convex.

Then, either one of the following two statements holds:

(1) (∃ x ∈ R
n), 1

2 xT Ax < α, 1
2 xT (B1 + μB2)x < β, ∀ μ ∈ [μ1, μ2]

(2) (∃ (λ1, λ2) ∈ R
2+\{0}) (∃μ ∈ [μ1, μ2]) (∀ x ∈ R

n),

λ1

(
1

2
xT Ax − α

)
+ λ2

(
1

2
xT (B1 + μB2)x − β

)
≥ 0.

Proof Clearly [(2) ⇒ Not(1)] always holds. We show that [Not(1) ⇒ (2)].

[Joint Range Convexity of the quadratic maps]. We first show that

�V = {(xT Ax, max
B∈V

xT Bx) : x ∈ R
n} + intR2+ is convex,

where V = {B1 + μB2 : μ ∈ [μ1, μ2]}. To see this, let (a1, b1) ∈ �V and (a2, b2) ∈ �V ,
and let λ ∈ [0, 1]. Then, there exist x1, x2 ∈ R

n such that

xT
1 Ax1 < a1, max

B∈V
xT

1 Bx1 < b1

and

xT
2 Ax2 < a2, max

B∈V
xT

2 Bx2 < b2.

For each fixed x ∈ R
n , as B �→ xT Bx is a linear map, we have maxB∈V xT Bx is attained at

some extreme point of V . Note that the extreme points of V are B1+μ1 B2 and B1+μ2 B2. We
now see that, for each x ∈ R

n, maxB∈V xT Bx = max{xT (B1 +μ1 B2)x, xT (B1 +μ2 B2)x}.
So, we have

xT
1 Ax1 < a1, xT

1 (B1 + μ1 B2)x1 < b1, xT
1 (B1 + μ2 B2)x1 < b1,

and

xT
2 Ax2 < a2. xT

2 (B1 + μ1 B2)x2 < b2, xT
2 (B1 + μ2 B2)x2 < b2.
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This implies that

(a1, b1, b1) ∈ {(xT Ax, xT (B1 + μ1 B2)x, xT (B1 + μ2 B2)x) : x ∈ R
n} + intR3+

and

(a2, b2, b2) ∈ {(xT Ax, xT (B1 + μ1 B2)x, xT (B1 + μ2 B2)x) : x ∈ R
n} + intR3+.

Now, from the assumption, we see that {(xT Ax, xT (B1 + μ1 B2)x, xT

(B1 + μ2 B2)x) : x ∈ R
n} + intR3+ is convex. Then,

λ(a1, b1, b1) + (1 − λ)(a2, b2, b2) ∈
×{(xT Ax, xT (B1 + μ1 B2)x, xT (B1 + μ2 B2)x) : x ∈ R

n} + intR3+.

So, we can find x3 ∈ R
n such that

xT
3 Ax3 < λa1 + (1 − λ)a2, xT

3 (B1 + μ1 B2)x3 < λb1 + (1 − λ)b2

and

xT
3 (B1 + μ2 B2)x3 < λb1 + (1 − λ)b2.

This gives us that

xT
3 Ax3 < λa1 + (1 − λ)a2 and max

B∈V
xT

3 Bx3 < λb1 + (1 − λ)b2.

So, λ(a1, b1) + (1 − λ)(a2, b2) ∈ �V , and hence �V is convex in this case.

[Dualization via separation.] Now, as (1) fails, we have (2α, 2β) /∈ �V . Since �V is
convex, the hyperplane separation theorem gives us that (∃ (λ1, λ2) ∈ R

2+\{0}) (∀ x ∈
R

n), λ1

(
1

2
xT Ax − α

)
+ λ2

(
max
B∈V

1

2
xT Bx − β

)
≥ 0. As, for each x, maxB∈V xT Bx =

max{xT (B1 + μ1 B2)x, xT (B1 + μ2 B2)x}, we have

max

{
1

2
xT (λ1 A + λ2(B1 + μ1 B2))x,

1

2
xT (λ1 A + λ2(B1 + μ2 B2))x

}
− (λ1α + λ2β)

= λ1

(
1

2
xT Ax − α

)
+ λ2

(
1

2
max{xT (B1 + μ1 B2)x, xT (B1 + μ2 B2)x} − β

)
≥ 0.

[Simplification]. This shows that the following system has no solution

1

2
xT (λ1 A + λ2(B1 + μ1 B2))x < (λ1α + λ2β) and

1

2
xT (λ1 A + λ2(B1 + μ2 B2))x

< (λ1α + λ2β).

From Dine’s theorem, we see that {(xT (λ1 A + λ2(B1 + μ1 B2)) x, xT (λ1 A + λ2(B1 +
μ2 B2))x) : x ∈ R

n} is convex, and so, the set

� := {(xT (λ1 A + λ2(B1 + μ1 B2)) x, xT (λ1 A + λ2(B1 + μ2 B2)) x) : x ∈ R
n} + intR2+

is convex. So, (2(λ1α +λ2β), 2(λ1α +λ2β)) /∈ �. Then, the hyperplane separation theorem
again gives us that there exists (δ1, δ2) ∈ R

2+\{0} such that for each x ∈ R
n ,

δ1

(
1

2
xT (λ1 A + λ2(B1 + μ1 B2))x − (λ1α + λ2β)

)

+δ2

(
1

2
xT (λ1 A + λ2(B1 + μ2 B2))x − (λ1α + λ2β)

)
≥ 0.
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Letting λ1 = λ1(δ1 + δ2), λ2 = λ2(δ1 + δ2) and μ = δ1μ1+δ2μ2
δ1+δ2

, we see that μ ∈
[μ1, μ2], (λ1, λ2) ∈ R

2+\{0} and, for each x ∈ R
n ,

λ1

(
1

2
xT Ax − α

)
+ λ2

(
1

2
xT (B1 + μB2)x − β

)
≥ 0.

So, (2) holds. �

When μ1 = μ2, i.e, V is a singleton set, by Dine’s theorem, we see that {(xT Ax, xT (B1 +

μ1 B2)x, xT (B1 + μ1 B2)x) : x ∈ R
n} is always convex.

The following example illustrates that, the setμ1 �= μ2, {(xT Ax, xT (B1+μ1 B2)x, xT (B1

+ μ1 B2)x) : x ∈ R
n} is, in general, not convex and that the convexity requirement

of Theorem 3.1 can not be dropped.

Example 3.1 Let A =
(

2 0
0 −2

)
, B1 =

(−2 0
0 0

)
, B2 =

(
0 1
1 0

)
and μ1 = −1, μ2 = 1.

Let

� = {(xT Ax, xT (B1 + μ1 B2)x, xT (B1 + μ2 B2)x) : x ∈ R
2}

= {(2x2
1 − 2x2

2 ,−2x2
1 − 2x1x2,−2x2

1 + 2x1x2) : (x1, x2) ∈ R
2}.

We first show that � is not convex. Indeed, by considering (x1, x2) = (1, 1) and (x1, x2) =
(1,−1), we see that

(0,−4, 0) ∈ � and (0, 0,−4) ∈ �.

On the other hand,

(0,−2,−2) = (0,−4, 0) + (0,−4, 0)

2
/∈ �.

(Otherwise, there exists z1, z2 ∈ R such that

2z2
1 − 2z2

2 = 0,−2z2
1 − 2z1z2 = −2 and − 2z2

1 + 2z1z2 = −2.

Solving the last two equations gives us that z2
1 = 1 and z2 = 0 which clearly violates the

first equation. This is a contradiction.)
Moreover, one can also verify that the statements (1) and (2) in Theorem 3.1 both fail. To

see this, consider the following system[
x2

1 − x2
2 = 1

2
xT Ax < 0 and ∀ μ ∈ [−1, 1], −x2

1 + μx1x2 = 1

2
xT (B1 + μB2)x < 0

]
.

(3.2)

From the first relation of (3.2), we see that |x1| < |x2|. On the other hand, the second relation
of (3.2) entails that −x2

1 + |x1x2| < 0, and so, |x2| < |x1|. So, the above system has no
solution and hence (1) fails. Moreover, for any (λ1, λ2) ∈ R

2+\{0} and μ ∈ [−1, 1], we have

λ1 A + λ2(B1 + μB2) =
(

2(λ1 − λ2) μλ2

μλ2 −2λ1

)
.

We note that, λ1 A + λ2(B1 + μB2) � 0 implies that 2(λ1 − λ2) ≥ 0 and −2λ1 ≥ 0. This
gives us that λ1 = λ2 = 0 which is impossible. So, (2) also fails.

Let us give certain easily verifiable conditions ensuring the convexity assumption in
Theorem 3.1 when μ1 < μ2.
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Proposition 3.1 Let A, B1, B2 ∈ Sn and μ1 < μ2. Suppose that A, B1, B2 are all diagonal
matrices. Then,

{(xT Ax, xT (B1 + μ1 B2)x, xT (B1 + μ2 B2)x) : x ∈ R
n} is convex.

Proof As B1 and B2 are both diagonal, B1 + μ1 B2 and B1 + μ2 B2 are also diagonal
matrices. Let A = diag(a1, . . . , an), B1 + μ1 B2 = diag(b1, . . . , bn) and B1 + μ2 B2 =
diag(c1, . . . , cn). Then,{

(xT Ax, xT (B1 + μ1 B2)x, xT (B1 + μ2 B2)x) : x ∈ R
n
}

=
{(

n∑
i=1

ai x2
i ,

n∑
i=1

bi x2
i ,

n∑
i=1

ci x2
i

)
: (x1, . . . , xn) ∈ R

n

}

=
{(

n∑
i=1

ai yi ,

n∑
i=1

bi yi ,

n∑
i=1

ci yi

)
: (y1, . . . , yn) ∈ R

n+

}
,

and so, is convex. �

Proposition 3.2 Let A, B1, B2 ∈ Sn and μ1 < μ2. Suppose that n ≥ 3 and that there exist
γ0, γ1, γ2 ∈ R such that

γ0 A + γ1 B1 + γ2 B2 � 0. (3.3)

Then, {(xT Ax, xT (B1 + μ1 B2)x, xT (B1 + μ2 B2)x) : x ∈ R
n} is convex.

Proof Let δ1 = γ1μ2−γ2
μ2−μ1

and δ2 = γ2−γ1μ1
μ2−μ1

. Then, by (3.3), we have

γ0 A + δ1(B1 + μ1 B2) + δ2(B1 + μ2 B2) = γ0 A + γ1 B1 + γ2 B2 � 0.

So, the conclusion will follow from Polyak’s lemma (Lemma 2.2). �

As a consequence of Theorem 3.1 we obtain a generalization of S-lemma for parameter-

ized quadratic inequality systems.

Corollary 3.1 (Robust S-Lemma) Let A, B1, B2 ∈ Sn and let μ1, μ2 ∈ R with μ1 ≤ μ2.
Suppose that the set

{(xT Ax, xT (B1 + μ1 B2)x, xT (B1 + μ2 B2)x) : x ∈ R
n}

is convex. If there exists x0 ∈ R
n such that xT

0 (B1 + μB2)x0 < 0, ∀ μ ∈ [μ1, μ2] then, the
following statements are equivalent:

(1) [∀ μ ∈ [μ1, μ2], xT (B1 + μB2)x ≤ 0] ⇒ xT Ax ≥ 0
(2) (∃ λ ≥ 0) (∃μ ∈ [μ1, μ2]) (∀ x ∈ R

n), xT (
A + λ(B1 + μB2)

)
x ≥ 0.

Proof The conclusion will follow if we show [(1) ⇒ (2)] as the converse implication always
holds. To see this, assume that (1) holds. Then the following system has no solution:

xT Ax < 0, xT (B1 + μB2)x ≤ 0, ∀ μ ∈ [μ1, μ2].
So, the system

xT Ax < 0, xT (B1 + μB2)x < 0, ∀ μ ∈ [μ1, μ2]
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has also no solution. Applying Theorem 3.1, there exist (λ1, λ2) ∈ R
2+\{0}) and μ ∈ [μ1, μ2]

such that for each x ∈ R
n ,

λ1xT Ax + λ2xT (B1 + μB2)x ≥ 0.

But λ1 �= 0 as xT
0 (B1 + μB2)x0 < 0, ∀ μ ∈ [μ1, μ2]. Hence (2) holds. �


In passing, we note that the Robust S-lemma collapses to S-lemma [2] in the special case
when μ1 = μ2. In this case, the convexity assumption always holds.

4 Uncertain homogeneous quadratic problems

Consider the uncertain quadratic programming problem

(H P) minx∈Rn
1

2
xT Ax

s.t.
1

2
xT Bx ≤ β,

where A ∈ Sn, β > 0 and B ∈ Sn is uncertain and it belongs to the interval uncertainty set
V , described by the bounded set V = {B1 + μB2 : μ ∈ [μ1, μ2]} where B1, B2 are given
n × n matrices.

The robust counterpart of (H P) is

(H P1) minx∈Rn
1

2
xT Ax

s.t.
1

2
xT Bx ≤ β, ∀ B ∈ V.

Definition 4.1 We say that x is a (global) robust solution of (H P) in the sense that it is a
(global) solution of its robust counterpart (H P1).

Theorem 4.1 (Robust Solution Characterization) For the problem (H P), let V = {B1 +
μB2 : μ ∈ [μ1, μ2]} with B1, B2 ∈ Sn. Suppose that

{(xT Ax, xT (B1 + μ1 B2)x, xT (B1 + μ2 B2)x) : x ∈ R
n} is convex.

Then, a robust feasible point x is a robust solution of (H P) if and only if there exist λ ≥ 0
and μ ∈ [μ1, μ2] with⎧⎨

⎩
(

A + λ(B1 + μB2)
)
x = 0 (First-order Condition)

λ( 1
2 xT (B1 + μB2)x − β) = 0 (Complementary Slackness)

A + λ(B1 + μB2) � 0 (Second-order Condition).

(4.4)

Proof (Necessary Part.) Let x be a robust solution of problem (H P). Then,

∀ B ∈ V,
1

2
xT Bx ≤ β ⇒ 1

2
xT Ax ≥ α := 1

2
xT Ax .

This implies that the following system has no solution

1

2
xT Ax < α and max

B∈V
1

2
xT Bx < β.
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So, Theorem 3.1 gives us that there exist (λ1, λ2) ∈ R
2+\{0} and μ ∈ [μ1, μ2] such that

λ1

(
1

2
xT Ax − α

)
+ λ2

(
1

2
xT (B1 + μB2)x − β

)
≥ 0, ∀x ∈ R

n .

We now show that λ1 > 0. Otherwise, we have λ1 = 0 and so λ2
( 1

2 xT (B1 +μB2)x −β
) ≥ 0

for all x ∈ R
n . Letting x = 0 and noting that β > 0, we have λ2 ≤ 0 and hence λ2 = 0

which contradicts (λ1, λ2) �= {0}. Thus, λ1 > 0, and so,(
1

2
xT Ax − α

)
+ λ

(
1

2
xT (B1 + μB2)x − β

)
≥ 0, ∀x ∈ R

n

where λ = λ2
λ1

≥ 0. Letting x = x , we see that λ( 1
2 xT (B1 + μB2)x − β) = 0. So,

h(x) = ( 1
2 xT Ax − α

) + λ
( 1

2 xT (B1 + μB2)x − β
)

attains its global minimizer at x , and
hence ∇h(x) = 0 and ∇2h(x) � 0. Thus,(

A + λ(B1 + μB2)
)
x = 0 and A + λ(B1 + μB2) � 0.

[Sufficient Part.] Assume that there exist λ ≥ 0 and μ ∈ [μ1, μ2] such that⎧⎨
⎩

(
A + λ(B1 + μB2)

)
x = 0 (First-order Condition)

λ( 1
2 xT (B1 + μB2)x − β) = 0 (Complementary Slackness)

A + λ(B1 + μB2) � 0 (Second-order Condition).

Let x be any robust feasible point of (H P). Then ∀ B ∈ V, 1
2 xT Bx ≤ β, and so,

1

2
xT (B1 + μB2)x ≤ β.

By the complementary slackness condition, we have

λ

2
xT (B1 + μB2)x ≤ λβ = λ

2
xT (B1 + μB2)x .

Let h(x) = 1
2 xT Ax +λ

( 1
2 xT (B1 +μB2)x −β

)
. Then, the first-order condition and the sec-

ond-order condition give us that h is a convex function with ∇h(x) = 0. So, h(x) ≥ h(x).
That is to say,

1

2
xT Ax ≥ 1

2
xT Ax + λ

(
1

2
xT (B1 + μB2)x − β

)
− λ

(
1

2
xT (B1 + μB2)x − β

)

≥ 1

2
xT Ax .

So, x is a robust solution of (H P). �

Remark 4.1 Note that the set of optimality conditions (4.4) means that x is a global solution
of the tractable deterministic quadratic program

(Pμ) minx∈Rn
1

2
xT Ax

s.t.
1

2
xT (B1 + μB2)x ≤ β,

for some μ ∈ [μ1, μ2].
As a consequence of Theorem 4.1 we derive necessary and sufficient conditions for con-

cave quadratic minimization problems (H P).

123



218 J Glob Optim (2013) 55:209–226

Corollary 4.1 (Robust Solution of Concave Minimization) For the problem (H P), let n ≥ 3
and A ≺ 0. Let V = {B1 + μB2 : μ ∈ [μ1, μ2]} with B1, B2 ∈ Sn. Then, a robust feasible
point x is a robust solution of (H P) if and only if there exist λ ≥ 0 and μ ∈ [μ1, μ2] such
that (A + λ(B1 + μB2)

)
x = 0, λ( 1

2 xT (B1 + μB2)x − β) = 0 and A + λ(B1 + μB2) � 0.

Proof The conclusion will follow from Theorem 4.1 and Proposition 3.2 as A ≺ 0 ensures
that (3.3) holds. �


Now, consider the following uncertain weighted least squares:

(W L) min
1

2

n∑
i=1

vi x2
i (W L)

s.t.
1

2

n∑
i=1

wi x2
i ≤ β,

where β > 0, vi ∈ R and the data wi , i = 1, . . . , n are uncertain and each wi belongs to the
uncertainty set Vi = [wi , wi ] for some wi , wi ∈ R with wi ≤ wi .

Theorem 4.2 (Robust Solution of Weighted Least Squares) A feasible point x is a robust
solution of (W L) if and only if there exist λ ≥ 0 and wi ∈ [wi , wi ], i = 1, . . . , n, such that∑n

i=1(vi + λwi )xi = 0, λ( 1
2

∑n
i=1 wi x2

i − β) = 0 and vi + λwi ≥ 0.

Proof The problem (W L) can be equivalently rewritten as

min

{
1

2
xT Ax | 1

2
xT Bx ≤ β

}
,

where A = diag(v1, . . . , vn), B ∈ V := {B1 + μB2 : μ ∈ [μ1, μ2]}, μ1 = −1, μ2 = 1,

B1 = diag

(
w1 + w1

2
, . . . ,

wn + wn

2

)
and B2 = diag

(
w1 − w1

2
, . . . ,

wn − wn

2

)

[Necessary Part.] Let x be a robust solution of problem (W L). Then,

∀ B ∈ V,
1

2
xT Bx ≤ β ⇒ 1

2
xT Ax ≥ α := 1

2
xT Ax .

This implies that the following system has no solution

1

2
xT Ax < α and max

B∈V
1

2
xT Bx < β.

As A, B1 and B2 are all diagonal matrices, Proposition 3.1 gives us that there exist (λ1, λ2) ∈
R

2+\{0} and μ ∈ [μ1, μ2] such that

λ1

(
1

2
xT Ax − α

)
+ λ2

(
1

2
xT (B1 + μB2)x − β

)
≥ 0, ∀x ∈ R

n .

Let wi = wi −wi
2 + μ

wi −wi
2 . Then,

λ1

(
1

2

n∑
i=1

vi x2
i − α

)
+ λ2

(
1

2

n∑
i=1

wi x2
i − β

)
≥ 0.
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We now show that λ1 > 0. Otherwise, we have λ1 = 0 and so λ2
( 1

2

∑n
i=1 wi x2

i − β
) ≥ 0,

for all x ∈ R
n . Letting x = 0 and noting that β > 0, we have λ2 ≤ 0 and hence λ2 = 0

which contradicts (λ1, λ2) �= {0}. So,
(

1

2

n∑
i=1

vi x2
i − α

)
+ λ

(
1

2

n∑
i=1

wi x2
i − β

)
≥ 0, ∀x ∈ R

n

where λ = λ2
λ1

≥ 0. Now, letting x = x , we see that λ
( 1

2

∑n
i=1 wi x2

i − β
) = 0. Then,

h(x) = ( 1
2

∑n
i=1 vi x2

i −α
)+λ

( 1
2

∑n
i=1 wi x2

i −β
)

attains its global minimizer at x,∇h(x) =
0 and ∇2h(x) � 0. These conditions yield

n∑
i=1

(vi + λwi )xi = 0 and vi + λwi ≥ 0.

[Sufficient Part.] This part is similar to the proof in Theorem 4.1. �


5 Uncertain non-homogeneous problems

In this Section, we derive necessary and sufficient conditions for robust global optimality
for classes nonhomogeneous quadratic problems with a single uncertain quadratic inequality
constraint. Let A ∈ Sn, a, b ∈ R

n and β ∈ R, and consider the following nonhomogeneous
quadratic problem with constraint uncertainty:

(Q P) minx∈Rn
1

2
xT Ax + aT x

s.t.
1

2
xT Bx + bT x + β ≤ 0,

where (B, b) ∈ Sn × R
n is uncertain and

(B, b) ∈ V = {B1 + μB2 : μ ∈ [μ1, μ2]} × {b1 + δb2 : δ ∈ [δ1, δ2]}.
The robust counterpart of (Q P) is

(Q P1) minx∈Rn
1

2
xT Ax + aT x

s.t.
1

2
xT Bx + bT x + β ≤ 0, ∀ (B, b) ∈ V.

For a given point x , let α = −( 1
2 xT Ax + aT x) and denote

H0 =
(

A a
aT 2α

)
, H1=

(
B1 + μ1 B2 b1 + δ1b2

(b1 + δ1b2)
T 2β

)
and H2=

(
B1 + μ2 B2 b1 + δ2b2

(b1 + δ2b2)
T 2β

)
.

We shall say the problem (Q P) is regular with respect to x if

{(xT H0x, xT H1x, xT H2x) : x ∈ R
n} is convex.

Note again that in the case where μ1 = μ2 and δ1 = δ2 (i.e. H1 = H2) the problem (Q P) is
always regular for any given point x .
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Theorem 5.1 (Robust Solution Characterization) Let x be a robust feasible point of (Q P).
Suppose that (Q P) is regular with respect to x and that there exists x0 ∈ R

n such that

1

2
xT

0 Bx0 + bT x0 + β < 0, ∀ (B, b) ∈ V.

Then, x is a robust solution of (Q P) if and only if there exist λ ≥ 0, μ ∈ [μ1, μ2] and
δ ∈ [δ1, δ2] such that⎧⎨

⎩
(A + λ(B1 + μB2)) x = − (a + λ(b1 + δb2)) (First-order Condition)

λ( 1
2 xT (B1 + μB2)x + (b1 + δb2)

T x + β) = 0 (Complementary-Slackness)
A + λ(B1 + μB2) � 0 (Second-order Condition).

(5.5)

Proof (Necessary Part.) Let x be a robust solution of problem (Q P) and let α := − 1
2 xT Ax −

aT x . Then,

∀ (B, b) ∈ V,
1

2
xT Bx + bT x + β ≤ 0 ⇒ 1

2
xT Ax + aT x + α ≥ 0.

This implies that the following system has no solution:[
1

2
xT Ax + aT x + α < 0 and ∀ (B, b) ∈ V,

1

2
xT Bx + bT x + β < 0

]
. (5.6)

[Homogenization.] We first show that the homogeneous system in R
n+1

[
(x, t) ∈ R

n × R, max

{
1

2
xT Bx + tbT x + βt2 : (B, b) ∈ V

}

< 0 and
1

2
xT Ax + taT x + αt2 < 0

]

also has no solution. Otherwise, there exists (x̃, t̃) ∈ R
n+1 such that

1

2
x̃ T Ax̃ + t̃aT x̃ + αt̃2 < 0 and max

{
1

2
x̃ T Bx̃ + t̃bT x̃ + β t̃2 : (B, b) ∈ V

}
< 0.

If t̃ �= 0, then, we have

1

2

(
x̃

t̃

)T

A

(
x̃

t̃

)
+ aT

(
x̃

t̃

)

+ α < 0 and max

{
1

2

(
x̃

t̃

)T

B

(
x̃

t̃

)
+ bT

(
x̃

t̃

)
+ β : (B, b) ∈ V

}
< 0

which contradicts the fact that the system (5.6) has no solution. On the other hand, if t̃ = 0,
then we have

1

2
x̃ T Ax̃ < 0 and max

{
1

2
x̃ T Bx̃ : B = B1 + μB2, μ ∈ [μ1, μ2]

}
< 0.

Let xs = sx̃ . Then, as s → +∞, 1
2 xT

s Axs + aT xs + α → −∞ and

max

{
1

2
xT

s Bxs + bT xs + β : (B, b) ∈ V
}

= max

{
s2 1

2
x̃ T Bx̃ + sbT x̃ + β : (B, b) ∈ V

}
→ −∞
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This shows us that for large enough s, xs satisfies (5.6) which is a contradiction. So, we see
that the following homogeneous system in R

n+1 has no solution[
1

2
xT Ax + taT x + αt2 < 0 and max

{
1

2
xT Bx + tbT x + βt2 : (B, b) ∈ V

}
< 0

]
.

(5.7)

[Dualization]. Now, we show that there exist (λ1, λ2) ∈ R
2+\{0}, μ ∈ [μ1, μ2] and δ ∈

[δ1, δ2] such that

λ1

(
1

2
xT Ax + aT x + α

)
+ λ2

(
1

2
xT (B1 + μB2)x + (b1 + δb2)

T x + β

)
≥ 0, ∀x ∈ R

n .

We now split the proof into two cases: Case 1, μ1 < μ2; Case 2, μ1 = μ2.
Suppose that Case 1 holds. Let

W1 =
(

B1 b1 + δ1μ2−δ2μ1
μ2−μ1

b2

(b1 + δ1μ2−δ2μ1
μ2−μ1

b2)
T 2β

)
and W2 =

(
B2

δ2−δ1
μ2−μ1

b2
δ2−δ1
μ2−μ1

bT
2 0

)
.

Then,

W1 + μ1W2=
(

B1 + μ1 B2 b1 + δ1b2

(b1 + δ1b2)
T 2β

)
and W1 + μ2W2=

(
B1 + μ2 B2 b1 + δ2b2

(b1 + δ2b2)
T 2β

)
.

It follows from (5.7) that

1

2

(
x
t

)T

H0

(
x
t

)
< 0 and ∀ μ ∈ [μ1, μ2], 1

2

(
x
t

)T

(W1 + μW2)

(
x
t

)
< 0

has no solution. From the assumption, we see that

{(zT H0z, zT (W1 + μ1W2)z, zT (W1 + μ2W2)z) : z ∈ R
n+1} is convex.

So, Theorem 3.1 implies that there exist (λ1, λ2) ∈ R
2+\{0}, μ ∈ [μ1, μ2], and for each

(x, t)T ∈ R
n+1,

λ1

(
1

2

(
x
t

)T

H0

(
x
t

))
+ λ2

(
1

2

(
x
t

)T

(W1 + μW2)

(
x
t

))
≥ 0.

In particular, letting t = 1, we see that, for each x ∈ R
n

λ1

(
1

2
xT Ax + aT x + α

)

+λ2

(
1

2
xT (B1 + μB2)x +

(
b1 +

(
δ1μ2 − δ2μ1

μ2 − μ1
+ μ

δ1μ2 − δ2μ1

μ2 − μ1

)
b2

)T

x +β

)
≥ 0.

Let δ := δ1μ2−δ2μ1
μ2−μ1

+ μ
δ1μ2−δ2μ1

μ2−μ1
. As μ ∈ [μ1, μ2], we see that δ ∈ [δ1, δ2] and

λ1

(
1

2
xT Ax + aT x + α

)
+ λ2

(
1

2
xT (B1 + μB2)x + (b1 + δb2)

T x + β

)
≥ 0.

Suppose that Case 2 holds and let μ1 = μ2 = μ and let

W1 =
(

B1 + μB2 b1

bT
1 2β

)
and W2 =

(
0n×n b2

bT
2 0

)
.
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Then,

W1 + δ1W2 =
(

B1 + μB2 b1 + δ1b2

(b1 + δ1b2)
T 2β

)
and W1 + δ2W2 =

(
B1 + μB2 b1 + δ2b2

(b1 + δ2b2)
T 2β

)
.

It follows from (5.7) that

1

2

(
x
t

)T

H0

(
x
t

)
< 0 and ∀ δ ∈ [δ1, δ2], 1

2

(
x
t

)T

(W1 + δW2)

(
x
t

)
< 0

has no solution. From the assumption, we see that

{(zT H0z, zT (W1 + δ1W2)z, zT (W1 + δ2W2)z) : z ∈ R
n+1} is convex.

So, Theorem 3.1 gives us that there exist (λ1, λ2) ∈ R
2+\{0}, δ ∈ [δ1, δ2] such that for each

(x, t)T ∈ R
n+1),

λ1

(
1

2

(
x
t

)T

H0

(
x
t

))
+ λ2

(
1

2

(
x
t

)T

(W1 + δW2)

(
x
t

))
≥ 0.

Letting t = 1, we see that, for each x ∈ R
n

λ1

(
1

2
xT Ax + aT x + α

)
+ λ2

(
1

2
xT (B1 + μB2)x + (b1 + δb2)

T x + β

)
≥ 0.

Therefore, there exist (λ1, λ2) ∈ R
2+\{0}, μ ∈ [μ1, μ2] and δ ∈ [δ1, δ2] such that

λ1

(
1

2
xT Ax + aT x + α

)
+ λ2

(
1

2
xT (B1 + μB2)x + (b1 + δb2)

T x + β

)
≥ 0, ∀x ∈ R

n .

[Simplification]. Clearly, λ1 �= 0, Otherwise, we have λ2
(
xT (B1 +μB2)x +(b1 +δb2)

T x +
β
) ≥ 0 for all x ∈ R

n . Letting x = x0, we see that λ2 ≤ 0. So, λ2 = 0 which contradicts
(λ1, λ2) �= {0}. Thus, λ1 > 0, and so,
(

1

2
xT Ax + aT x + α

)
+ λ

(
1

2
xT (B1 + μB2)x + (b1 + δb2)

T x + β

)
≥ 0, ∀x ∈ R

n,

where λ = λ2
λ1

≥ 0. Now, letting x = x , we see that

λ

(
1

2
xT (B1 + μB2)x + (b1 + δb2)

T x + β

)
≥ 0.

This together with the fact that λ ≥ 0 and x is robust feasible yields that

λ

(
1

2
xT (B1 + μB2)x + (b1 + δb2)

T x + β

)
= 0.

Note that 1
2 xT Ax + aT x + α = 0. It follows that, for each x ∈ R

n ,

1

2
xT Ax + aT x + α + λ

(
1

2
xT (B1 + μB2)x + (b1 + δb2)

T x + β

)

≥ 1

2
xT Ax + aT x + α + λ

(
1

2
xT (B1 + μB2)x + (b1 + δb2)

T x + β

)
.
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Then, h(x) = ( 1
2 xT Ax + aT x + α

) + λ
( 1

2 xT (B1 + μB2)x + (b1 + δb2)
T x + β

)
attains its

global minimizer at x , and hence ∇h(x) = 0 and ∇2h(x) � 0. They give us that(
A + λ(B1 + μB2)

)
x = −(

a + λ(b1 + δb2)
)

and A + λ(B1 + μB2) � 0.

[Sufficient Part.] Suppose that there exist λ ≥ 0, μ ∈ [μ1, μ2] and δ ∈ [δ1, δ2] such that(
A +λ(B1 +μB2)

)
x = −(

a +λ(b1 + δb2)
)
, λ( 1

2 xT (B1 +μB2)x + (b1 + δb2)
T x +β) = 0

and A + λ(B1 + μB2) � 0. Then, for any robust feasible point x , we have ∀ (B, b) ∈
V, 1

2 xT Bx + bT x + β ≤ 0, and so,

1

2
xT (B1 + μB2)x + (b1 + δb2)

T x + β ≤ 0.

By the complementary slackness condition, we have

λ

(
1

2
xT (B1 + μB2)x + (b1 + δb2)

T x

)
≤ −λβ=λ

(
1

2
xT (B1 + μB2)x + (b1 + δb2)

T x

)
.

Let h(x) = ( 1
2 xT Ax + aT x

)+λ(xT (B1 +μB2)x + (b1 +δb2)
T x +β). Then, the first-order

condition and the second-order condition give us that h is a convex function with ∇h(x) = 0.
So, h(x) ≥ h(x). So,

1

2
xT Ax + aT x ≥ 1

2
xT Ax + aT x + λ

(
1

2
xT (B1 + μB2)x + (b1 + δb2)

T x + β

)

−λ

(
1

2
xT (B1 + μB2)x + (b1 + δb2)

T x + β

)

≥ 1

2
xT Ax + aT x .

So, x is a robust solution of (Q P). �

Corollary 5.1 Let n ≥ 2 and x be a robust feasible point. Suppose that there exist γ1, γ2 ∈ R

such that γ1 H1 + γ2 H2 � 0. and that there exists x0 ∈ R
n such that

1

2
xT Bx + bT x + β < 0, ∀ (B, b) ∈ V.

Then, x is a robust solution of (Q P) if and only if there exist λ ≥ 0, μ ∈ [μ1, μ2] and
δ ∈ [δ1, δ2] such that

(
A + λ(B1 + μB2)

)
x = −(

a + λ(b1 + δb2)
)
, λ( 1

2 xT (B1 + μB2)x +
(b1 + δb2)

T x + β) = 0 and A + λ(B1 + μB2) � 0.

Proof As γ1 H1 + γ2 H2 � 0, Proposition 3.2 implies that (Q P) is regular for any feasible
point x . So, the conclusion follows from the preceding theorem. �


We finish this Section by providing an example to illustrate our robust solution character-
ization.

Example 5.1 Consider the following nonconvex quadratic problem with data uncertainty

min x2
1 + x2

2 − 3

2
x2

3 + x3

s.t a1x2
1 + a2x2

2 + a3x2
3 + a4x3 ≤ 1,

where the data a1, a2, a3, a4 ∈ R are uncertain. Suppose that we know that the nominal value
of a1, a3, a4 are 1, 1,−0.5 with the possible error of ±0.5, and the nominal value of a2 is 1
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with the possible error of ±1. Then, this problem can be captured by the following uncertain
(Q P):

(Q P) minx∈R3
1

2
xT Ax + aT x

s.t.
1

2
xT Bx + bT x + β ≤ 0,

where β = −1,

A =
⎛
⎝ 2 0 0

0 2 0
0 0 −3

⎞
⎠ , a =

⎛
⎝ 0

0
1

⎞
⎠,

and (B, b) ∈ S3 × R
3 is uncertain and

(B, b) ∈ V = {B1 + μB2 : μ ∈ [μ1, μ2]} × {b1 + δb2 : δ ∈ [δ1, δ2]}
with μ1 = −1, μ2 = 1, δ1 = −1, δ2 = 1,

B1 =
⎛
⎝ 2 0 0

0 2 0
0 0 2

⎞
⎠ , B2 =

⎛
⎝ 1 0 0

0 2 0
0 0 1

⎞
⎠ , b1 =

⎛
⎝ 0

0
−0.5

⎞
⎠ , b2 =

⎛
⎝ 0

0
−0.5

⎞
⎠.

Then,

H1 =
(

B1 + μ1 B2 b1 + δ1b2

(b1 + δ1b2)
T 2β

)
=

⎛
⎜⎜⎝

1 0 0 0
0 0 0 0
0 0 1 0
0 0 0 −2

⎞
⎟⎟⎠

and

H2 =
(

B1 + μ2 B2 b1 + δ2b2

(b1 + δ2b2)
T 2β

)
=

⎛
⎜⎜⎝

3 0 0 0
0 4 0 0
0 0 3 −1
0 0 −1 −2

⎞
⎟⎟⎠.

So, this problem is regular as

(−2)H1 + H2 =

⎛
⎜⎜⎝

1 0 0 0
0 4 0 0
0 0 1 −1
0 0 −1 2

⎞
⎟⎟⎠ � 0.

Let x = (0, 0, 1−√
7

3 )T , μ = δ = 1 and λ = 1. It can be verified that x is robust feasible.
Moreover, we see that⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

(A + λ(B1 + μB2)) x = (0, 0, 0)T = −(
a + λ(b1 + δb2)

)
(First-order Condition)

λ
( 1

2 xT (B1 + μB2)x + (b1 + δb2)
T x + β

) = 0 (Complementary Slackness)

A + λ(B1 + μB2) =
⎛
⎝ 5 0 0

0 6 0
0 0 0

⎞
⎠ � 0 (Second-order Condition).

(5.8)

So, our robust solution characterization is satisfied at x = x . Moreover, we can directly
verify that x is a robust solution. To see this, we note that for any robust feasible point
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x = (x1, x2, x3)
T , we have 1

2 xT (B1 + μB2)x + (b1 + δb2)
T x + β ≤ 0 with μ = 1 and

δ = 1, i.e.,

1.5x2
1 + 2x2

2 + 1.5x2
3 − x3 ≤ 1.

This gives us that, for any robust feasible point x = (x1, x2, x3)
T , we must have x3 ≥

−1 + 1.5x2
1 + 2x2

2 + 1.5x2
3 and hence the objective value

1

2
xT Ax + aT x = x2

1 + x2
2 − 1.5x2

3 + x3 ≥ −1 + 2.5x2
1 + 3x2

2 ≥ −1.

As 1
2 xT Ax + aT x = −1, we see that x is a robust solution.
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