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Abstract This paper is concerned with the convergence analysis of power penalty method
to pricing American options on discount bond, where the single factor Cox–Ingrosll–Ross
model is adopted for the short interest rate. The valuation of American bond option is usu-
ally formulated as a partial differential complementarity problem. We first develop a power
penalty method to solve this partial differential complementarity problem, which produces a
nonlinear degenerated parabolic PDE. Within the framework of variational inequalities, the
solvability and convergence properties of this penalty approach are explored in a proper infi-
nite dimensional space. Moreover, a sharp rate of convergence of the power penalty method
is obtained. Finally, we show that the power penalty approach is monotonically convergent
with the penalty parameter.

Keywords Complementarity problem · Variational inequalities · Option pricing ·
Penalty method

1 Introduction

The valuation and hedging of interest rate derivatives, like bond options, interest rate caps
and swaps, have attracted a large number of attention from both mathematicians and financial
engineers. Compared to stock derivatives, the pricing and hedging of interest rate derivatives
pose greater challenges. For instance, for a simple bond option, unlike stock derivatives,
its underlying asset is a bond whose price is dependent on interest rate and time [13]. It
is thus necessary to develop dynamic models that describe the stochastic evolution of the
whole yield curve, which makes pricing interest rate derivatives a complex task. A feature
distinguishing interest models from equity models is the need for the interest rate models
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to exhibit mean reversion and for the volatility to be dependent on the interest rate. Many
approaches to modeling interest rate derivatives have been established among academics and
practitioners, such as Black model [2], Vasicek model, CIR model, HW model [4,11,15] and
so on.

In this paper, we focus on the valuation method to American options on zero-coupon bond
under the CIR model. This problem is formulated as a parabolic partial differential comple-
mentarity problem with suitable boundary and terminal conditions [7,9,12,14,20]. Due to the
early exercise feature, this complementarity problem is, in general, not analytically solvable.
Hence, numerical approximation methods are normally sought for pricing American bond
options. Various approximation techniques have been developed for the solution of American
bond option pricing problem. Among them, lattice method [2,17], explicit method [3,11],
projected successive over relaxed method (PSOR) [19], semidefinite programming method
[5], are the most popular ones in both practice and research.

It is well known that complementarity problems can be solved by penalty methods
(cf. [1,6,10]). Recently, the penalty method for pricing American options on stocks was
also presented in [8,18,21]. Compared with other methods mentioned above, the penalty
method possesses several advantages [16]. First, a desirable accuracy in the approximate
solution can be achieved by a judicious choice of the penalty parameter. Second, the result-
ing penalized PDE is of a simple form that is easy to discretize in any dimensions on both
structured and unstructured meshes. Finally, the penalty method can easily be extended to
other option models such as those of American options with stochastic volatilities and/or
transaction costs. The power penalty method to American options on stocks has been well
investigated in [18,21], where the convergence properties of the power penalty method were
given. However, rare works are available for the study of the power penalty approach to pric-
ing American options on bond. Hence, the main purpose of this paper is to develop a power
penalty method for the complementarity problem arising from the valuation of American
options on bond. Via the theory of variational inequalities, we first approximate the com-
plementarity problem by a nonlinear parabolic PDEs with an lk power penalty term. Then,
strong convergence of the penalization is under investigation. At the same time, we prove that
the solution to the nonlinear PDE converges to that of the original complementarity problem
at the rate of order O(λ−k/2). Furthermore, the monotonicity of convergence of the power
penalty method with the penalty parameter λ is established.

The organization of this paper is as follows. In Sect. 2, we introduce the mathematical
model for pricing American options on bond and its equivalent formulations: complemen-
tarity problem and variational inequalities. Section 3 gives a power penalty approach to the
complementarity problem. The strong convergence, rate of convergence and the monotonic-
ity of convergence of the power penalty method is given in Sect. 5.

Before proceeding, some standard notation is to be used in the paper. For an open set
S ⊂ R and 1 ≤ p ≤ ∞, let

L p(S) =

⎧
⎪⎨

⎪⎩
v :

⎛

⎝

∫

S

|v(x)|pdx

⎞

⎠

1/p

< ∞

⎫
⎪⎬

⎪⎭

denote the space of all p-power integrable functions on S. We use the ‖·‖L p(S) to denote
the norm on L p(S). The inner product on L2(S) is denoted by (·, ·). For m = 1, 2, . . . and
p = 2, we let Hm(S) denote the usual Sobolev space with the norm ‖ · ‖Hm (S). We put

Hm
0 (S) = {v : v ∈ Hm(S), v|∂S = 0}
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where ∂S is the boundary of S. Finally, for any Hilbert space W (S), the norm of
L p(0, T ; W (S)) is denoted by

‖v‖L p(0,T ;W (S)) =
⎛

⎝

T∫

0

‖v(·, t)‖p
W (S) dt

⎞

⎠

1/p

.

Obviously, L p(0, T ; L p(S)) = L p(S × (0, T )).
For clarity, we will often simply write v(·, t) as v(t) when we regard v(·, t) as an element

of H1
0 (S). From time to time, we will also suppress the independent time variable t when it

causes no confusion in doing so.

2 Mathematic model

In this paper, we assume the CIR model is applied for the interest rate term structure. That
means the short-term interest rate r is governed by the following mean-reverting version of
the square-root process

dr = κ (θ − r) dt + σ
√

rdW,

where dW is the increment of a Wiener process, θ is the long-term level of the short rate,
κ > 0 stands for the reversion speed, σ 2r (σ > 0) is the variance. In practice the interest rate
r is a positive defined quantity, which enforces the following constraint (Feller’s condition
[4])

0 < σ 2 < 2κθ. (1)

In [4], it has been shown that the price P (r, t, s) of a pure discount bond with face value $1
at its maturity date s is given as follows

P (r, t, s) = A (t, s) e−B(t,s)r ,

where

A (t, s) =
[

φ1eφ2(s−t)

φ2
[
eφ1(s−t) − 1

] + φ1

]φ3

, B (t, s) = eφ1(s−t) − 1

φ2
[
eφ1(s−t) − 1

] + φ1
,

φ1 =
√

μ2 + 2σ 2, φ2 = (μ + φ1) /2, φ3 = 2θ/σ 2,

θ = κθ, μ = κ + λ,

and λ is the market risk premium.
Now, let V (r, t) be the value of an American option on a zero-coupon bond with striking

price K , where the holder can receive the payoff V ∗ (r, t) at expiry date T . Then, the option
pricing problem can be formulated as the following parabolic partial differential comple-
mentarity problem (PDCP) [19].

Problem 1
⎧
⎨

⎩

LV (r, t) ≥ 0,

V (r, t) − V ∗ (r, t) ≥ 0,

LV (r, t) · (V (r, t) − V ∗ (r, t)) = 0,

(2)

123



1316 J Glob Optim (2013) 56:1313–1323

a.e. in (0,+∞) × (0, T ), where

LV = −∂V

∂t
−

[
1

2
σ 2r

∂2V

∂r2 + (
θ − μr

) ∂V

∂r
− r V

]

with the final condition

V (r, t = T ) = V ∗ (r, T ) =
{

max [P (r, T, s) − K , 0] , for a call,
max [K − P (r, T, s) , 0] , for a put.

and the following boundary conditions

V (0, t) = lim
r→+0

V ∗ (r, t) , (3)

lim
r→+∞ V (r, t) = lim

r→+∞ V ∗ (r, t) . (4)

For computational purpose, we restrict r in a region [0, R], where R is sufficiently large
to ensure the accuracy of the solution ([19]). Thus, (4) becomes

V (R, t) = V ∗(R, t). (5)

Remark 1 It is worth noting that T < s and K < P (0, T, s) = A (T, s) for a call option
or K > A (T, s) for a put option, since otherwise the option would never be exercised and
would be worthless.

In order to remove the degenerate factor r in the second order derivative term of L , by
introducing

x = √
r , V (r, t) = x−αeγ tU (x, t) , U∗ (x, t) = xαe−γ t V ∗ (

x2, t
)
, u = U∗ − V

we transform (2)–(4) into the following equivalent form satisfying a homogeneous Dirichlet
boundary condition, where α and γ are properly selected positive constants to have a coercive
bilinear form.

Problem 2
⎧
⎨

⎩

u (x, t) ≤ 0,

L u(x, t) ≤ f (x, t) ,

(L u(x, t) − f (x, t)) · u (x, t) = 0,

(6)

in Ω = I × (0, T ) , I = (0, X) , X = √
R, with

u (x, T ) = 0 (7)

and

u (0, t) = u (X, t) = 0, (8)

where

L u = −∂u

∂t
− 1

8
σ 2 ∂2u

∂x2 + c1 (x)
∂u

∂x
+ c2 (x) u,

f (x, t) = −L U∗ (x, t)

with

c1 (x) = σ 2

8

(

1 + 2α − 4a

σ 2

)

x−1 + b

2
x,

c2 (x) = σ 2α

8

(
4a

σ 2 − α − 2

)

x−2 + x2 + γ − αb

2
.
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Remark 2 The choice of positive constants α and γ can be found in [20].

It is a standard result [10] that the linear complementarity problem (6)–(8) can be refor-
mulated as the following equivalent variational inequalities.

Problem 3 Find u ∈ K , such that, for all v ∈ K ,
(

−∂u

∂t
, v − u

)

+ A(u, v − u; t) ≥ ( f, v − u) (9)

a.e. in (0, T ), where A(·, ·; t) is in a bilinear form defined by

A(u, v; t) := σ 2

8

(
∂u

∂x
,
∂v

∂x

)

+
(

c1
∂u

∂x
+ c2u, v

)

, u, v ∈ H1
0 (I ),

and K = {v ∈ H1
0 (I ) : v ≤ 0} is a convex and closed subset of H1

0 (I ).

For Problem 3, we establish the following unique solvability result.

Lemma 1 Variational inequality (9) has a unique solution.

Proof In fact, it has been shown in [20] that the operator A(·, ·; t) is coercive and continuous,
i.e.

A(u, u; t) ≥ γ1 ‖u‖2
H1

0 (I ),
(10)

A(u, v; t) ≤ γ2 ‖u‖H1
0 (I ) ‖v‖H1

0 (I ) , (11)

where γ1 and γ2 are two positive constants. Hence, by virtue of Theorem 2.3 in [1], the unique
solvability for the parabolic variational inequalities (i.e., Problem 3) is established. ��
Remark 3 It is pointed out in [20] that when κθ

σ 2 = 1
2 , the bilinear form A(·, ·; t) is not coer-

cive, hence the existence of the solution to variational inequality (9) cannot be guaranteed.
However, since the Feller’s condition (1) is applied, this case is ruled out in this work. Hence,
with the choice of positive constants α and γ suggested in [20], the coerciveness of A(·, ·; t)
is guaranteed.

3 Power penalty approach

In this section, we propose a power penalty approach to the complementarity problem (6)–(8).
To derive the power penalty approach, we first consider the following nonlinear variational
inequalities problem:

Problem 4 Find uλ ∈ H1
0 (I ) such that, for all v ∈ H1

0 (I ),
(

−∂uλ

∂t
, v − uλ

)

+ A(uλ, v − uλ; t) + j (v) − j (uλ) ≥ ( f, v − uλ), (12)

a.e. in (0, T ), where

j (v) = λk

k + 1
[v]

k+1
k+ , k > 0, λ > 1, (13)

and [z]+ = max{0, z} for any z.
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Since the bilinear operator A is coercive and continuous, and the operator j is lower semi-
continuous, the unique solvability of Problem 4 is easily obtained (cf. [10]).

From (13), we can see that j (v) is differentiable. Thus, Problem 4 is equivalent to the
following problem.

Problem 5 Find uλ ∈ H1
0 (Ω) such that, for all v ∈ H1

0 (Ω),

(

−∂uλ

∂t
, v

)

+ A(uλ, v; t) + ( j ′(uλ), v) = ( f, v), (14)

a.e. in (0, T ), where

j ′(v) = λ[v]1/k
+ . (15)

We remark that (5)–(15) is a penalized variational equation corresponding to (3). The
strong form of (5)–(15), which defines the penalized equation approximating (6), is given by

L uλ + λ[uλ]1/k
+ = f, (16)

with the given boundary and final conditions

uλ (0, t) = 0,

uλ (X, t) = 0,

uλ (x, T ) = 0.

(17)

Remark 4 If k = 1
2 , this penalty approach corresponds to the quadratic penalty approach. For

k = 1, the typical l1 penalty approach is obtained. When k > 1, it is the so-called lower order
penalty approach [18]. In the next section, we will investigate the convergence properties of
uλ to u as λ → ∞.

Remark 5 The regularity results of the solution to the penalized problems have been studied
extensively in several monographs such as [6] and [1]. In brief, under the assumption that
uλ(x, t) and f (x, t) are sufficiently smooth, we have the following regularity results.

∂uλ(x, t)

∂t
, uλ(x, t) ∈ L2(0, T ; H1

0 (I )) ∩ L∞(0, T ; L2(I )).

4 Convergence analysis

4.1 Rate of convergence of the power penalization

We now show that, as λ → ∞, the solution to Problem 5 converges to that of Problem 3 in
a proper norm. We start this discussion by the following Lemma.

Lemma 2 Let uλ be the solution to Problem 5. If uλ ∈ L p(Ω), then there exists a positive
constant C, independent of uλ and λ, such that

‖[uλ]+‖L p(Ω) ≤ C

λk
,

‖[uλ]+‖L∞(0,T ;L2(I )) + ‖[uλ]+‖L2(0,T ;H1
0 (I )) ≤ C

λk/2 , (18)

where k is the power of the lk power penalty function and p = 1 + 1/k.
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Proof Assume that C is a generic positive constant, independent of uλ and λ. Clearly, [uλ]+ ∈
H1

0 (I ) for almost all t ∈ (0, T ). Now, setting v = [uλ]+ in (14), we have
(

−∂uλ

∂t
, [uλ]+

)

+ A(uλ, [uλ]+; t) + λ([uλ]1/k
+ , [uλ]+) = ( f, [uλ]+). (19)

Integrating both sides of (19) from t to T and using the coerciveness property of the operator
A and Hölder’s inequality, it follows that

1

2
‖[uλ (t)]+‖2

L2(I ) + γ1

T∫

t

||[uλ]+||2
H1

0 (I )
dτ + λ

T∫

t

[uλ]1+1/k
+ dτ

≤
T∫

t

( f, [uλ]+)dτ ≤ C

⎛

⎝

T∫

t

||[uλ]+||p
L p(I )dτ

⎞

⎠

1/p

, (20)

from which, we infer

1

2
‖[uλ (t)]+‖2

L2(I )
+ γ1

T∫

t

||[uλ]+||2
H1

0 (I )
dτ + λ

T∫

t

||[uλ]+||p
L p(I )dτ

≤ C

⎛

⎝

T∫

t

||[uλ]+||p
L p(I )dτ

⎞

⎠

1/p

.

(21)

This implies that

λ

T∫

t

||[uλ]+||p
L p(I )dτ ≤ C

⎛

⎝

T∫

t

||[uλ]+||p
L p(I )dτ

⎞

⎠

1/p

.

From this, it follows that
⎛

⎝

T∫

t

||[uλ]+||p
L p(I )dτ

⎞

⎠

1/p

≤ C

λ1/(p−1)
. (22)

Then, from (21) and (22), we have

1

2
([uλ]+, [uλ]+) +

T∫

t

||[uλ]+||2
H1

0 (I )
dτ ≤ C

⎛

⎝

T∫

t

||[uλ]+||p
L p(I )dτ

⎞

⎠

1/p

≤ C

λ1/(p−1)
,

and hence

([uλ]+, [uλ]+)
1
2 +

⎛

⎝

T∫

t

||[uλ]+||2
H1

0 (I )
dτ

⎞

⎠

1
2

≤ C

λ1/(2p−2)
,

i.e.

‖[uλ]+‖L∞(0,T ;L2(I )) + ‖[uλ]+‖L2(0,T ;H1
0 (I )) ≤ C

λk/2 .

��
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On the basis of Lemma 2, we obtain the following convergence rate.

Theorem 1 Assume that the assumptions of Lemma 2 are satisfied. If uλ ∈ L p(Ω) and
∂u
∂t ∈ Lq(Ω), then there exists a positive constant C, independent of uλ and λ, such that

‖uλ − u‖L∞(0,T ;L2(I )) + ‖uλ − u‖L2(0,T ;H1
0 (I )) ≤ C

λk/2 , (23)

where k is the power of the lk power penalty function, and p = 1 + 1/k, 1/p + 1/q = 1.

Proof First ,we note that u − uλ can be decomposed as

u − uλ = Rλ − [uλ]+ ,

where

Rλ = u + [uλ]− , [uλ]− = − min (uλ, 0) .

Then, it follows from (18) that, in order to prove (23), it is sufficient to show that

||Rλ||L∞(0,T ;L2(I ))∩L2(0,T ;H1
0 (I )) ≤ C

λk/2 . (24)

Set v = u − Rλ in (9) and v = Rλ in (14). Then, we have
(

−∂u

∂t
,−Rλ

)

+ A(u,−Rλ; t) ≥ ( f,−Rλ), (25)

(

−∂uλ

∂t
, Rλ

)

+ A(uλ, Rλ; t) + λ
(
[uλ]1/k

+ , Rλ

)
= ( f, Rλ). (26)

Combining (25) and (26) gives
(

−∂(uλ − u)

∂t
, Rλ

)

+ A(uλ − u, Rλ; t) + λ([uλ]1/k
+ , Rλ) ≥ 0.

But, it follows from u ≤ 0 that.
(
[uλ]1/k

+ , Rλ

)
=

(
[uλ]1/k

+ , u
)

+
(
[uλ]1/k

+ , [uλ]−
)

=
(
[uλ]1/k

+ , u
)

≤ 0.

Thus,
(

−∂(u − uλ)

∂t
, Rλ

)

+ A(u − uλ, Rλ; t) ≤ 0, (27)

and hence
(

−∂ Rλ

∂t
, Rλ

)

+ A(Rλ, Rλ; t) ≤
(

−∂[uλ]+
∂t

, Rλ

)

+ A([uλ]+, Rλ; t).

Integrating both sides of the above from t to T and then using Cauchy-Schwartz inequality,
we obtain

1

2
||Rλ (t)| |2L2(I ) + γ1

T∫

t

||Rλ||2H1
0 (I )

dτ

≤ ([uλ(t)]+, Rλ(t)) +
T∫

t

(

[uλ]+,
∂ Rλ

∂τ

)

dτ +
T∫

t

A([uλ]+, Rλ; τ)dτ. (28)
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But
∣
∣
∣
∣
∣
∣

T∫

t

(

[uλ]+,
∂ Rλ

∂τ

)

dτ

∣
∣
∣
∣
∣
∣
=

∣
∣
∣
∣
∣
∣

T∫

t

(

[uλ]+,
∂u

∂τ

)

dτ

∣
∣
∣
∣
∣
∣
≤ C‖[uλ]+‖L p(Ω)

∥
∥
∥∂u

∂t

∥
∥
∥

Lq (Ω)
≤ C

λk
,

and hence (28) gives

1

2
||Rλ (t)| |2L2(I ) + γ1

T∫

t

||Rλ||2H1
0 (I )

dτ ≤ C

λk/2

⎛

⎝|Rλ (t)| +
T∫

t

||Rλ||2H1
0 (I )

dτ

⎞

⎠ + C

λk
,

so that (24) follows. ��

4.2 The monotonic convergence of the penalization

In this subsection, we will show that when the penalty parameter λ increases, the solution to
the penalized problem decreases. Moreover, the solution of the penalized problem is bounded
below by that of the original complementarity problem. The monotonic convergence of the
power penalization is stated in the following theorem.

Theorem 2 Let 0 < λ1 ≤ λ2 be two different penalty parameters. Then,

u ≤ uλ2 ≤ uλ1 ,

where u is the solution to Problem 3, uλ1 and uλ2 are the solutions to Problem 5 for λ = λ1

and λ2, respectively.

Proof In (14), we set v = [uλ2 − uλ1 ]+ and λ = λ1 and λ2, respectively. Then, it follows
that
(
− ∂uλ1

∂t , [uλ2 − uλ1 ]+
)

+ A
(

uλ1 ,
[
uλ2 − uλ1

]

+ ; t
)

+ λ1

(
[
uλ1

] 1
k+ ,

[
uλ2 − uλ1

]

+

)

=
(

f,
[
uλ2 − uλ1

]

+
)

,

(
− ∂uλ2

∂t ,
[
uλ2 − uλ1

]

+
)

+ A
(

uλ2 ,
[
uλ2 − uλ1

]

+ ; t
)

+ λ2

(
[
uλ2

] 1
k+ ,

[
uλ2 − uλ1

]

+

)

=
(

f,
[
uλ2 − uλ1

]

+
)

,

and hence
(

−∂(uλ2 − uλ1)

∂t
, [uλ2 − uλ1 ]+

)

+ A(uλ2 − uλ1 , [uλ2 − uλ1 ]+; t)

= λ1

(
[uλ1 ]1/k

+ , [uλ2 − uλ1 ]+
)

− λ2

(
[uλ2 ]1/k

+ , [uλ2 − uλ1 ]+
)

= (λ1 − λ2)
(
[uλ1 ]1/k

+ , [uλ2 − uλ1 ]+
)

+ λ2

(
[uλ1 ]1/k

+ − [uλ2 ]1/k
+ , [uλ2 − uλ1 ]+

)
.

(29)

For the first term in (29), it is obvious that

(λ1 − λ2)
(
[uλ2 ]1/k

+ , [uλ2 − uλ1 ]+
)

= (λ1 − λ2)

X∫

0

[uλ2 ]1/k
+ [uλ2 − uλ1 ]+dx ≤ 0, (30)

since λ1 < λ2.
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For the second term in (29), we shall also show that

λ2

(
[uλ1 ]1/k

+ − [uλ2 ]1/k
+ ,

[
uλ2 − uλ1

]

+
)

= λ2

X∫

0

(
[uλ1 ]1/k

+ − [uλ2 ]1/k
+

)
[uλ2 − uλ1 ]+dx ≤ 0.

In fact, since for the set where uλ2 ≤ uλ1 , [uλ2 − uλ1 ]+ = max{uλ2 − uλ1 , 0} = 0, to

calculate
∫ X

0 ([uλ1 ]1/k
+ − [uλ2 ]1/k

+ )[uλ2 − uλ1 ]+dx we only need to integrate uλ2 − uλ1 over
the set for which uλ2 > uλ1 . On this set, by virtue of the monotonicity of the operator

[·]1/k
+ = (max {·, 0})1/k we can infer that

λ2

(
[uλ1 ]1/k

+ − [uλ2 ]1/k
+ ,

[
uλ2 − uλ1

]

+
)

≤ 0.

Consequently, on the whole set I = (0, X), we have

λ2

(
[uλ1 ]1/k

+ − [uλ2 ]1/k
+ ,

[
uλ2 − uλ1

]

+
)

≤ 0. (31)

It then follows form (29), (30) and (31) that
(

−∂(uλ2 − uλ1)

∂t
, [uλ2 − uλ1 ]+

)

+ A(uλ2 − uλ1 , [uλ2 − uλ1 ]+; t) ≤ 0,

so that

1

2
||[uλ2 (t) − uλ1 (t)]+||2L2(I ) + γ1

T∫

t

||[uλ2 − uλ1 ]+||2
H1

0 (I )
dτ ≤ 0,

and hence

[uλ2 − uλ1 ]+ = 0 and uλ1 ≥ uλ2 .

Finally, passing to the limit as λ2 → ∞ (for a converging subsequence), we deduce that

uλ1 ≥ uλ2 ≥ u.

��
Remark 6 By virtue of Lemma 2 and Theorem 2, we can see that the power penalized problem
(16) solves the following complementarity problem

⎧
⎪⎨

⎪⎩

uλ ≤ C
λk ,

L uλ ≤ f,

(L uλ − f ) ·
(

uλ − C
λk

)
= 0,

where C is independent of uλ and λ. Intuitively, this complementarity problem is an approx-
imation of the original complementarity problem (6).

5 Conclusion

We have studied the power penalty method for pricing American options on pure discount
bond under the CIR model. By using the equivalence of LCP and variational inequalities,
the power penalty method was developed. Its solvability and convergence properties of the
monotonic penalty method were established as well. We have shown that the solution to the
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power penalized nonlinear equation converges to that of the original LCP. Furthermore, a
sharp convergence rate of the power penalty method was achieved. Finally, the monotonicity
of convergence of the penalization was demonstrated.
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