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Abstract In this paper, we present a unified approach for studying convex composite multi-
objective optimization problems via asymptotic analysis. We characterize the nonemptiness
and compactness of the weak Pareto optimal solution sets for a convex composite multiob-
jective optimization problem. Then, we employ the obtained results to propose a class of
proximal-type methods for solving the convex composite multiobjective optimization prob-
lem, and carry out their convergence analysis under some mild conditions.
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1 Introduction

It is known that scalar-valued composite optimization model is very important in both theory
and methodology, it provides a unified framework for studying convergence behaviour of
various algorithms and Lagrangian optimality conditions. The study of scalar-valued com-
posite optimization model has recently received a great deal of attention in the literature, see
e.g. ( [4,10,15,17,25,27] and the references therein).

However, we are rarely asked to make decisions based on only one criterion; most often,
decisions are based on several conflicting criteria. Multiobjective optimization model pro-
vides the mathematical framework to deal with these situations, there is no doubt that it
is a powerful tool in decision analysis. Moreover, it also has found a lot of significant
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applications in the other fields such as economics, management science and engineering
design. Many papers have been published to study optimality conditions, duality theory and
topological properties of solution sets of multiobjective optimization problems (see, e.g.,
[5–7,9,12,14,19,24]).

Composite multiobjective optimization model is broad and flexible enough to cover many
common types of multiobjective optimization problems, seen in the literature. Moreover, the
model obviously includes the wide class of scalar-valued composite optimization problems,
which is now recognized as fundamental for theory and computation in scalar nonsmooth
optimization. Recently, some investigations for composite multiobjective optimization mod-
els has been proposed in following papers: Jeyakumar and Yang [16–18,26] investigated
some first and second order optimality conditions for both nonsmooth and smooth convex
composite multi-objective optimization problems, they also obtained some duality results for
the problems even when the objective functions were not cone convex. Reddy and Mukher-
jee studied some first order optimality conditions for a class of composite multiobjective
optimization problem with V − ρ-invexity in [21]. Bot et al. [3] also obtained some conju-
gate duality results for multiobjective composed optimization problems. It is worth noticing
that there are fewer results for the composite multiobjective optimization problems since
the complexity of objective functions and the variety of solution sets. Furthermore, to the
best of our knowledge, there is no numerical method has be designed for solving composite
multiobjective optimization problems, even no conceptual one.

In this paper, we consider the following extended-valued composite multiobjective opti-
mization problem:

(C M O P) MinC F(Ax)

s.t. x ∈ S,

where S ⊂ Rn is closed and convex. The outer function F : Rl → Rm ∪ {+∞C } is a
vector-valued function, Fi is the i th components of F, denote by dom Fi the effective domain
of Fi , i.e. dom Fi = {x ∈ Rl |Fi (x) < +∞}. The inner function A : S → Rl is a l × n
matrix such that A(S) ⊂ ∩m

i=1dom Fi . Denote by r(A) and A�, the rank and the transpose of
the matrix A, respectively. To illustrate the nature of the model (C M O P), let us look at an
example.

Example 1.1 Consider the vector approximation (model) problem:

MinC (‖A1(x)‖1, . . . , ‖Am(x)‖m)

s.t. x ∈ S,

where S ⊂ Rn is closed and convex. ‖.‖i , i = 1, 2, . . . ,m is a norm in Rl , and for each
i = 1, 2, . . . ,m, Ai (x) is a l ×n matrix. Various examples of vector approximation problems
of this type that arise in simultaneous approximation are given in [13,14].

The idea is that by studying the composite model problem (C M O P) a unified framework
can be given for the treatment of many questions of theoretical and computational interest
in multiobjective optimization. The motivation of this paper is to consider how to design a
iterative algorithm for computing the model (C M O P) via asymptotic analysis. Although
the inner function A(x) is linear, the composite structure F(A(x)) captures some elementary
characterizations of composite optimization. On the other hand, there are some technical
difficulties in computing asymptotic function and subdifferential of a vector-valued composite
function, when the inner function is not linear.

The paper is organized as follows. In Sect. 2, we present some concepts, basic assumptions
and preliminary results. In Sect. 3, we we characterize the nonemptiness and compactness

123



J Glob Optim (2013) 55:507–520 509

of the weak Pareto optimal solution set of the problem (CMOP). In Sect. 4, we employ
the obtained results to construct a class of proximal-type method for solving the problem
(CMOP), convergence analysis is made under some mild conditions. In Sect. 5, we draw
some conclusions.

2 Preliminaries

In this section, we introduce various notions of Pareto optimal solutions and present some
preliminary results that will be used throughout this paper.

Let C = Rm+ ⊂ Rm and C1 = {x ∈ Rm+| ‖x‖ = 1}. We define, for any y1, y2 ∈ Rm ,

y1 ≤C y2 if and only if y2 − y1 ∈ C; (2.1)

y1 �≤intC y2 if and only if y2 − y1 �∈ intC. (2.2)

The extended space of Rm is R̄m = Rm ∪{−∞C ,+∞C }, where −∞C is an imaginary point,
each of the coordinates is −∞ and the imaginary point +∞C is analogously understood (with
the conventions ∞C + ∞C = ∞C , μ(+∞C ) = +∞C for each positive number μ). The
point y ∈ Rm is a column vector and its transpose is denoted by y�. The inner product in
Rm is denoted by 〈·, ·〉.

It is worth noticing that the binary relation �≤intC is closed in the sense that if xk → x∗
as k → ∞, xk �≤intC 0, then we have x∗ �≤intC 0. This is because of the closeness of the set
W =: Rm \ {−intC}.
Definition 2.1 [5] Let K ⊂ Rn be convex and a map F : K → Rm ∪ {+∞C } is said to be
C-convex if

F((1 − λ)x + λy) ≤C (1 − λ)F(x)+ λF(y)

for any x, y ∈ K and λ ∈ [0, 1].F is said to be strictly C-convex if

F((1 − λ)x + λy) ≤intC (1 − λ)F(x)+ λF(y)

for any x, y ∈ K with x �= y and λ ∈ (0, 1).

Definition 2.2 [11] A map F : K ⊂ Rn → Rm ∪ {+∞C } is said to be C-lsc at x0 ∈ K if,
for any neighborhood V of F(x0) in Rm , there exists a neighborhood U of x0 in Rn such
that F(U ∩ K ) ⊆ V + C . The map F : K ⊂ Rn → Rm ∪ {+∞C } is said to be C-lsc on K
if it is C-lsc at every point x0 ∈ K .

Remark 2.1 In fact, when C = Rm+ , the Rm+-lower semicontinuity of F = (F1, . . . , Fm) is
equivalent to the (usual) lower semicontinuity of each Fi .

Definition 2.3 [5] Let K ⊂ Rn be convex and F : K → Rm ∪ {+∞C } be a vector-valued
function. x∗ ∈ K is said to be a Pareto optimal solution of F on K if

(F(K )− F(x∗)) ∩ (−C\{0}) = ∅,
x∗ ∈ K is said to be a weak Pareto optimal solution of F on K if

(F(K )− F(x∗)) ∩ (−intC) = ∅,
x∗ ∈ K is said to be an ideal optimal solution of F on K if

F(x)− F(x∗) ∈ C, ∀x ∈ K .
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Lemma 2.1 [11] Let K ⊂ Rn be a closed set, and suppose that W ⊂ Rm is a closed
set such that W + C ⊆ W . Assume that F : K → Rm ∪ {+∞C } is C-lsc. Then, the set
P = {x ∈ K | F(x)− λ ∈ −W } is closed for all λ ∈ Rm.

Definition 2.4 [1] Let K be a nonempty set in Rn . Then the asymptotic cone of the set K ,
denoted by K ∞, is the set of all vectors d ∈ Rn that are limits in the direction of the sequence
{xk} ⊂ K , namely

K ∞ =
{

d ∈ Rn | ∃tk → +∞, and xk ∈ K , lim
k→+∞

xk

tk
= d

}
. (2.3)

In the case that K is convex and closed, then, for any x0 ∈ K ,

K ∞ = {d ∈ Rn | x0 + td ∈ K ,∀ t > 0}. (2.4)

Lemma 2.2 [1] A set K ⊂ Rn is bounded if and only if its asymptotic cone is just the zero
cone: K ∞ = {0}.
Definition 2.5 [1] For any given function f : Rn → R ∪ {+∞}, the asymptotic function
of f is defined as the function f ∞ such that epi f ∞ = (epi f )∞, where epi f = {(x, t) ∈
Rn × R| f (x) ≤ t} is the epigraph of f . Consequently, we can give the analytic representation
of the asymptotic function f ∞:

f ∞(d) = inf

{
lim inf
k→+∞

f (tkdk)

tk
: tk → +∞, dk → d

}
. (2.5)

When f is a proper convex and lower semi-continuous (lsc in short) function, we have

f ∞(d) = sup{ f (x + d)− f (x)| x ∈ dom f } (2.6)

or equivalently

f ∞(d) = lim
t→+∞

f (x + td)− f (x)

t
= sup

t>0

f (x + td)− f (x)

t
, ∀ d ∈ dom f (2.7)

and

f ∞(d) = lim
t→0+ t f (t−1d), ∀ d ∈ dom f. (2.8)

For the indicator function δK , we have that δ∞K = δK ∞ , where K ⊂ Rn is a nonempty set.

Definition 2.6 [23] The function f : Rn → R∪{+∞} is said to be coercive if its asymptotic
function f ∞(d) > 0, for all d �= 0 ∈ Rn and it is said to be counter-coercive if its asymptotic
function f ∞(d) = −∞, for some d �= 0 ∈ Rn .

Lemma 2.3 [1] Let f : Rn → R ∪{+∞} be proper convex and lower semicontinuous, then
the following three statement are equivalent:

(a) f is coercive;
(b) the optimal set {x ∈ Rn | f (x) = inf f } is nonempty and compact;
(c) lim‖x‖→+∞ inf f (x)

‖x‖ > 0.

Definition 2.7 [19] A cone C2 ⊆ Rm is called Daniell if any decreasing sequence of Rm

having a lower bound converges to its infimum. For example, the cone C = Rm+ has the
Daniell property.
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Definition 2.8 [24] A set S ⊂ Rm is said to have the domination property with respect to
C , if there exists s ∈ Rm such that S ⊆ s + C .

Let H : Rn → Rm ∪ {+∞C } be a vector-valued function, denote by Epi F the epigraph
of H , i.e.

Epi H = {(x, y) ∈ Rn × Rm |y ∈ H(x)+ C}.
Similarly, we define the asymptotic function of a vector-valued function.

Definition 2.9 For any given vector-valued function H : Rn → Rm ∪ {+∞C }, the asymp-
totic function of H is defined as the function H∞ : Rn → Rm ∪ {+∞C } such that

Epi H∞ = (Epi H)∞.

Proposition 2.1 Let H : Rn → Rm ∪{+∞C } be a proper, C-lsc and C-convex vector-valued
function. One has

H∞(d) = lim
t→∞

H(x + td)− H(x)

t
, ∀d ∈ dom H∞, (2.9)

where x is any vector in dom H.

Proof From the C-convexity of H , we know that the set Epi H is also convex in Rn × Rm .
By the definition of the asymptotic cones of Epi H , one has that for any x ∈ dom H ,

(Epi H)∞ = {(d, u) ∈ Rn × Rm |(x, H(x))+ t (d, u) ∈ Epi H,∀t > 0}. (2.10)

That is for each (d, u) ∈ (Epi H)∞ if and only if for any x ∈ dom H , we have

H(x + td) ≤C H(x)+ tu,∀t > 0. (2.11)

From the inequality (2.11), we define a new function T : Rn → Rm ∪ {+∞C }:

T (d) = sup
t>0

H(x + td)− H(x)

t
≤C u (2.12)

and hence

(Epi H)∞ = EpiT,∀ x ∈ dom H.

On the other side, for any fixed x, d ∈ Rn and i ∈ {1, . . . ,m}, the function Hi (x+td)−Hi (x)
t is

nondecreasing with t > 0. Thus we obtain that

lim
t→+∞

Hi (x + td)− Hi (x)

t
= ui ,∀ i ∈ {1, . . . ,m},

and

lim
t→+∞

H(x + td)− H(x)

t
= u.

That is

H∞(d) = lim
t→∞

H(x + td)− H(x)

t
∀ d ∈ dom H∞.

The proof is complete. ��
Remark 2.2 From the statement of Proposition 2.1 and the formula 2.7, we have

H∞(d) = (H∞
1 (d), . . . , H∞

m (d)).

123



512 J Glob Optim (2013) 55:507–520

Proposition 2.2 Let F : Rl → Rm ∪{+∞C } be a proper function, let A be a linear map from
Rn → Rl with A(Rn) ⊂ dom F, and let G(x) = F(Ax) be a proper composite function. If
F is proper, C − lsc and C − convex. Then, G is C-lsc and C-convex.

Proof From Remark 2.1, we know that G is C-lsc if and only if Gi is lsc for any i ∈
{1, . . . ,m}. Since A is a linear map and Fi is lsc for any fixed i ∈ {1, . . . ,m}. So Gi is lsc
for any i ∈ {1, . . . ,m}, clearly G is C-lsc.

On the other side, let x1, x2 ∈ S and λ ∈ [0, 1]. From the assumptions, we obtain

G(x1) = F(Ax1), G(x2) = F(Ax2)

and

G(λx1 + (1 − λx2)) = F(A(λx1 + (1 − λ)x2)).

By the C − convexi ty of F , we derive

F(A(λx1+(1 − λ)x2)) ≤C λF(Ax1)+(1−λ)F(Ax2)=λG(x1)+(1 − λ)G(x2). (2.13)

That is G is C-convex. The proof is complete. ��
Proposition 2.3 Let the same assumptions as in Proposition 2.2 hold. Then,

G∞(d) = F∞(Ad), ∀d ∈ Rn . (2.14)

Proof The proof of Proposition 2.3 is a little bit trivial, so we omit it.

Throughout this paper. we denote by X̄ the weak Pareto optimal solutions set and X∗ the
ideal solutions set of problem (CMOP), respectively.

3 Characterizations of weak Pareto solution optimal sets

We denote by

S1 = ∩y∈S{u ∈ S∞|F(A(λu + y))− F(Ay) ∈ −W,∀λ > 0}
and

S2 = ∩y∈S{x ∈ S|F(Ax)− F(Ay) ∈ −W }∞.
Theorem 3.1 In problem (CMOP), suppose that F is proper, C-lsc and C-convex. If X̄ �= ∅,
then

X̄∞ ⊆ S1 ⊆ S2. (3.1)

Furthermore, if the ideal solution set X∗ is nonempty, then S1 = X̄∞.

Proof (1) Taking any u ∈ X̄∞, from the definition of asymptotic cone, we have there exist
some sequences {xk} ⊂ X̄ and {tk} with tk → +∞ such that lim

k→+∞
xk
tk

= u. By the fact of

xk ∈ X̄ , one has

F(Ay)− F(Axk) ∈ W,∀y ∈ S. (3.2)

For each y ∈ S, we have

F(Ay) ∈ F(Ay)− C. (3.3)

123



J Glob Optim (2013) 55:507–520 513

By virtue of Proposition 2.2, for any fixed λ > 0, we have

F

(
A

((
1 − λ

tk

)
y + λ

tk
xk

))
≤C

(
1 − λ

tk

)
F(Ay)+ λ

tk
F(Axk),

when tk is sufficiently large. That is

F

(
A

((
1 − λ

tk

)
y + λ

tk
xk

))
∈

(
1 − λ

tk

)
F(Ay)+ λ

tk
F(Axk)− C. (3.4)

From the inequality (3.2), one has

λ

tk
F(Axk) ∈ λ

tk
F(Ay)− W (3.5)

and by the formula (3.3), we derive(
1 − λ

tk

)
F(Ay) ∈

(
1 − λ

tk

)
F(Ay)− C. (3.6)

Hence, combining (3.4), (3.5) with (3.6), we obtain

F

(
A

((
1 − λ

tk

)
y + λ

tk
xk

))
∈ F(Ay)− W. (3.7)

Taking the limit in (3.7) as k → +∞, we derive

F(A(y + λu)) ∈ F(Ay)− W.

That is u ∈ S1.
(2). Taking any d ∈ S1, which means that for any x ∈ S, we have

F(Ax)− F(A(x + λd)) ∈ W, ∀λ > 0. (3.8)

Without lose of generality, we assume xk = x + λkd , where λk → +∞. From the inclusion
(3.8), we have

F(Ax)− F(Axk) ∈ W. (3.9)

Choosing tk = λk , we obtain

lim
k→+∞

xk

tk
= lim

k→+∞
x̄ + λkd

λk
= d.

That is d ∈ S2.
(3). Taking any d ∈ S1, by the assumption that X∗ is nonempty, we have

x̄ + tkd ∈ S, ∀tk > 0, (3.10)

where x̄ ∈ X∗ is fixed and tk → +∞. Taking any y ∈ S, it is easy to check that

F(Ay)− F(A(x̄ + tkd)) = F(Ay)− F(Ax̄)+ F(Ax̄)− F(A(x̄ + tkd)). (3.11)

From the definition of X∗, we have

F(Ay)− F(Ax̄) ∈ C,∀x ∈ S (3.12)

and by the definition of S1, we obtain

F(Ax̄)− F(A(x̄ + tkd)) ∈ W. (3.13)
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Combining (3.12) with (3.13), we have

F(Ay)− F(A(x̄ + tkd)) ∈ W, ∀y ∈ S. (3.14)

The formula (3.14) means that x̄ + tkd ∈ X̄ . We denote by xk = x̄ + tkd and it follows that

lim
k→+∞

xk

tk
= lim

k→+∞
x̄ + tkd

tk
= d.

Hence, we conclude d ∈ X̄∞. The proof is complete. ��
Remark 3.1 When A = I is an identical mapping, some corresponding results have obtained
in [8,11].

Next let’s consider some necessary and sufficient conditions for the nonemptiness and
compactness of weak Pareto optimal solution sets in the problem (CMOP).

Lemma 3.1 In the problem (CMOP), we assume F is proper, C-lsc and C-convex. Then we
have X̄ is nonempty and compact if and only if

S∞ ⋂
∪m

j=1{d ∈ Rn |F∞
j (Ad) ≤ 0} = {0} (3.15)

Proof Denote by argminS Fj the solution set of the following scalar-valued optimization
problem:

min Fj (Ax)

s.t. x ∈ S,

where j ∈ [1, . . . ,m]. By virtue of Theorem 2.1 of [8], one has that X̄ is nonempty and
compact if and only if argminS Fj is nonempty and compact for any j ∈ [1, ..,m]. We
observe that the nonemptiness and compactness of argminS Fj is equivalent to

S∞ ∩ {d ∈ Rn |F∞
j (Ad) ≤ 0} = {0} (3.16)

for each j ∈ [1, ..,m], see the Theorem 27.1 of [22]. Thus, we obtain the formula (3.15) is
equivalent to X̄ is nonempty and compact. The proof is complete. ��
Remark 3.2 The linearity of A(x)makes it possible to obtain the analytical expression of the
asymptotic function of the vector-valued function (Proposition 2.3). By virtue of the analytical
expression of the asymptotic function, Lemma 3.1 generalizes some corresponding results
of [8].

4 Proximal-type method for convex composite multiobjective optimization problem

It is known that the following constrained multiobjective optimization problem

MinC {F(Ax)| x ∈ S} (C M O P)

is equivalent to the unconstrained multiobjective optimization problem

inC {F0(Ax)|x ∈ Rn} (M O P)

in the sense that they have the same sets of Pareto optimal solutions and the same sets of
weak Pareto optimal solutions, where

F0(Ax) =
{

F(Ax), if x ∈ S;
+∞C , if x /∈ S.
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Lemma 4.1 If K ⊂ Rn is a convex set and F1 : K → Rm ∪ {+∞C } is a proper C-convex
map, then

C − ARG M I Nw{F1(x) | x ∈ K } =
⋃

z∈C1

argmin{〈F1(x), z〉 | x ∈ K }

where C − ARG M I Nw{F1(x) | x ∈ K } is the weak Pareto optimal solution set of F1 on K .

This follows immediately from Theorem 2.1 in [2].
Now we make the following assumption:
(A) the set X̄ is nonempty and compact.
Here we propose the following vector-valued proximal-type method (VPM, in short):

Step (1): Taking any x0 ∈ Rn ;
Step (2): Given xk , if xk ∈ X̄ , then xk+p = xk for all p ≥ 1 and the algorithm stops,
otherwise goes to step (3).
Step (3): If xk /∈ X̄ , then compute xk+1 satisfying

xk+1 ∈ C − ARG M I Nw{F0(Ax)+ εk

2
‖x − xk‖2ek | x ∈ θk} (4.1)

where θk := {x ∈ Rn |F0(Ax) ≤C F0(Axk)}, εk ∈ (0, ε], ε > 0 and goes to step (2).
Next we will establish the main results in this section.

Theorem 4.1 In the problem (M O P), let F0 : Rl → Rm ∪{+∞C } be proper C-convex and
C-lower semicontinuous mapping. Further suppose that r(A) = n. Under the assumption
(A), any sequence {xk} generated by the method (VPM) is well-defined and bounded.

Proof Let x0 ∈ Rn be an initial point and we assume the algorithm has reached step k. We will
show that the next iterative xk+1 does exist. Defining a new function Tk(x) : Rn → R∪{+∞}
with

Tk(x) = 〈F0(Ax), λ〉 + εk

2
‖x − xk‖2〈ek, λ〉 + δθk (x)

where λ ∈ C1 and δθk (x) is the indicator function of set θk . Denote by X̄k the solution set of
the following scalar-valued optimization problem:

min{Tk(x)| x ∈ Rn} (M O Pk).

It is clear that θk is a nonempty and convex set by its definition. From the assumptions that
F0 is C-lsc and C-convex, we know that for any λ ∈ C1, the function 〈F0(Ax), λ〉 + δθk (x)
is convex and lsc with respect to x . That is Tk(x) is lsc and convex. By the assumption (A)
and the virtue of Lemma 2.3, we have

(λF0)
∞(Ad) > 0, ∀d ∈ Rn and Ad �= 0. (4.2)

From the assumption that r(A) = n, we have the following inequality

(λF0)
∞(Ad) > 0, ∀d �= 0 ∈ Rn . (4.3)

From the definition of an indicator function, we know that

δθk
∞(d) = δθk

∞(d) =
{

0, if d ∈ θk
∞;

+∞, if d /∈ θk
∞. (4.4)

Thus, combining (4.3) with (4.4), we obtain that

(λF0)
∞(Ad)+ δθk

∞(d) > 0, ∀d �= 0 ∈ Rn . (4.5)
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On the other side, by the fact of {ek} ⊂ Rm+ and the definition of λ, we have 〈ek, λ〉 > 0. And
by the formula (2.8), we obtain

(‖d − xk‖2)∞ = lim
t→0+ t

∥∥∥∥d

t
− xk

∥∥∥∥
2

= lim
t→0+

‖d − xk‖2

t
≥ 0, ∀d �= 0 ∈ Rn . (4.6)

From the Proposition 2.6.1 of [1], we derive that

T ∞
k (d) = (λF0)

∞(Ad)+ δθk
∞(d)+ εk

2
〈ek, λ〉(‖d − xk‖2)∞ (4.7)

Combining (4.4), (4.5) with (4.6), we obtain that

T ∞
k (d) > 0, ∀d �= 0 ∈ Rn .

By the virtue of Lemma 2.3, we conclude that the set X̄k is nonempty and compact for every
k ∈ N . From Lemma 4.1, we have a minimizer of Tk(x) satisfies 4.1 and can be taken as
xk+1.

Next we will show that the sequence {xk} is bounded as k → +∞. Let’s consider its
contrary, assume ‖xk‖ = +∞ as k → +∞. From the formula (4.2), we know that the
function 〈F0(Ax), λ〉 is coercive. From the statements (c) of Lemma 2.3, we have

lim‖xk‖→+∞ inf
〈F0(Axk), λ〉

‖xk‖ > 0. (4.8)

However by the definition of the method (VPM), we know

lim‖xk‖→+∞ inf
〈F0(Axk), λ〉

‖xk‖ ≤ lim‖xk‖→+∞ inf
〈F0(Ax0), λ〉

‖xk‖ = 0 (4.9)

a contradiction with (4.8). Thus the sequence {xk} is bounded. The proof is complete. ��
Remark 4.1 The main statements of Theorem 4.1 are concerned with the existence and the
boundedness of sequences. Compared with some corresponding results in [2], our contribu-
tions are that we present a quite different method to prove the existence of iterates and the
boundedness of sequences via asymptotic analysis. It is worth noticing that when the regular
term in (4.1) is not quadratic, the traditional method does not deal with such complex cases.
However, the method in this paper does still work.

Lemma 4.2 Let the assumptions in Theorem 4.1 hold and suppose that F0(A(Rn)) have the
domination property. Then, we have

lim
k→+∞ ‖xk − xk+1‖ = 0. (4.10)

Proof From the method (VPM), we know that if the sequence stops at some iteration, xk will
be a constant vector thereafter. Now we assume that the sequence {xk} will not stop finitely.
Define E ⊂ Rn as follows

E = {x ∈ Rn | F0(Ax) ≤C F0(Axk) ∀k ∈ N }.
By the assumption that F0(A(Rn)) has the domination property, it follows from the Daniell
property of Rm+ that we have E is nonempty. Since xk+1 is a weak Pareto optimal solution of
problem (4.1), there exists a λk ∈ C1 such that xk+1 is the solution of the following problem
(M O Pλk ):

min{Tλk (x)| x ∈ Rn},
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where Tk(x) = 〈F0(Ax), λk〉 + εk
2 ‖x − xk‖2〈ek, λk〉 + δθk (x) and δθk (x) is the scalar-

valued indicator function. Thus xk+1 satisfies the first-order necessary optimality condi-
tion of problem (M O Pλk). It follows from Theorem 3.23 of [20] that there exists μk ∈
∂〈F0(.), λk〉(Axk+1) and νk ∈ ∂δθk (xk+1) such that

A�μk + εk〈ek, λk〉(xk+1 − xk)+ νk = 0.

Denote by αk = εk〈ek, λk〉, obviously the sequence αk > 0 for all k ∈ N . By the fact that
〈νk, x − xk+1〉 ≤ 0 for any x ∈ θk , we have that

〈A�μk + αk(xk+1 − xk), x − xk+1〉 ≥ 0 ∀x ∈ θk .

Let x∗ ∈ E . It is obvious that x∗ ∈ θk for all k ∈ N and we deduce that

〈A�μk + αk(xk+1 − xk), x∗ − xk+1〉 ≥ 0. (4.11)

By the definition of subgradient of 〈F0(Axk+1), λk〉, we have that

〈F0(Ax∗)− F0(Axk+1), λk〉 ≥ 〈μk, Ax∗ − Axk+1〉.
From the fact that x∗ ∈ θk for all k ∈ N , we have 〈F0(Ax∗)− F0(Axk+1), λk〉 ≤ 0. It follows
that

〈A�μk, x∗ − xk+1〉 ≤ 0 (4.12)

and

0 ≤ αk〈xk+1−xk, x∗ − xk+1〉=αk(‖xk − x∗‖2−‖xk+1−x∗‖2−‖xk − xk+1‖2). (4.13)

Combining the inequality (4.13) and the fact of αk > 0, we obtain that

‖xk − xk+1‖2 ≤ ‖xk − x∗‖2 − ‖xk+1 − x∗‖2 (4.14)

From the statements of Theorem 4.1, we have the sequence {‖xk − x∗‖2} is bounded, fur-
thermore by the inequality (4.14), we know {‖xk − x∗‖2} is a nonnegative and nonincreasing
sequence, and hence is convergent. We conclude that

lim
k→+∞ ‖xk − xk+1‖ = 0. (4.15)

The proof is complete. ��
Theorem 4.2 Let the assumptions in Theorem 4.1 and Lemma 4.2 hold. Then any cluster
point of {xk} belongs to X̄ .

Proof If there exists k0 ≥ 1 such that xk0+p = xk0 ,∀p ≥ 1. Then, it is obvious that xk0 is a
cluster point of {xk} and it is also a weak Pareto optimal solution of problem (MOP). Now
suppose that the algorithm does not terminate finitely. Then, by Theorem 4.1, we have that
{xk} is bounded and it has some cluster points. Next we will show that all of cluster points are
weak Pareto optimal solutions of problem (MOP). Let x̂ be one of the cluster points of {xk}
and {xk j } be a subsequence of {xk}, which converges to x̂ . Let λ ∈ C1. We define a function
ψλ : S → R ∪ +∞ as φλ(x) = 〈F0(Ax), λ〉. Since F0 is C-lsc and C-convex, ψλ is also lsc
and convex, it follows that ψλ(x̄) ≤ lim inf

j→+∞ ψλ(xk j ). By the fact that xk+1 ∈ θk , we can see

that F0(Axk+1) ≤C F0(Axk) for k ∈ N . Thus, ψλ(xk+1) ≤ ψλ(xk). Therefore,

ψλ(x̄) ≤ lim inf
j→+∞ ψλ(xk j ) = inf{ψλ(xk)}.
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Hence, we have that ψλ(x̄) ≤ ψλ(xk), which implies F0(Ax̄) ≤C F0(Axk). Assume that x̄
is not the weak Pareto optimal solution of problem (MOP), then there exists x∗ ∈ Rn such
that F(Ax∗) ≤intC F(Ax̄). Taking λk j ∈ Rm+ as a subsequence of λk , obviously there exists
λ̄ ∈ Rm+ such that λ̄ is a cluster point of {λk j }. Without loss of generality, we assume that

lim
j→+∞ λk j = λ̄.

Thus we have that

〈F0(Ax∗)F0(Ax̄), λk j 〉 ≥ 〈F0(Ax∗)− F0(Axk j +1), λk j 〉
= ψλk j

(x∗)− ψλk j
(xk j +1). (4.16)

Let Tk(x) be the function defined in the proof of Theorem 4.1. There exist some ξk j ∈
∂ψk j (xk j +1) and ρk j ∈ ∂Tk j (xk j +1) such that

ρk j = ξk j + εk j 〈ek j , λk j 〉(xk j +1 − xk j ).

It follows that

ψk j (x
∗)−ψk j (xk j+1)=〈ρk j , x∗ − xk j +1〉−εk j 〈ek j , λk j 〉〈xk j +1−xk j , x∗ − xk j+1〉. (4.17)

From the definition of the method (VPM), we have

〈ρk j , x∗ − xk j +1〉 ≥ 0.

That is

ψk j (x
∗)− ψk j (xk j +1) ≥ −εk j 〈ek j , λk j 〉〈xk j +1 − xk j , x∗ − xk j +1〉. (4.18)

Similarly denote by αk j = εk j 〈ek j , λk j 〉, obviously αk j > 0. From the inequality (4.18), we
deduce that

ψk j (x
∗)− ψk j (xk j +1) ≥ −αk j ‖xk j +1 − xk j ‖‖x∗ − xk j +1‖. (4.19)

Noted that {xk} is bounded so that {‖x∗ − xk j +1‖} is also bounded. By virtue of Lemma 4.2,
we have lim

j→+∞ ‖xk j +1 − xk j ‖ = 0. We conclude that the limit of the rightmost expression

in (4.19) as j → +∞ vanishes. Thus, taking limit in (4.16) we obtain

〈F0(Ax∗)− F0(Ax̄), λ̄〉 ≥ 0 (4.20)

where λ̄ is the cluster point of {λk j }. Then we can conclude that (4.16) contradicts with the
facts that λ̄ ∈ C1 and the assumption F0(Ax∗) ≤intC F0(Ax̄), thus we can claim that x̄ is a
weak Pareto optimal solution of problem (MOP). The proof is complete. ��
Theorem 4.3 Assume the same assumptions as in Theorem 4.2 Then the whole sequence
{xk} converges to a weak Pareto optimal solution of problem (MOP).

Proof Suppose to the contrary both x̂ and x̃ are two distinct cluster points of {xk} and

lim
j→+∞ xk j = x̂, lim

i→+∞ xki = x̃

From the Theorem 4.2, we know that x̂ and x̃ are also the weak Pareto optimal solutions of
problem (CMOP), ‖x̃ − xk‖ and ‖x̂ − xk‖ are convergent. So there exists α̃, α̂ ∈ R such that

lim
k→+∞(‖x̃ − xk‖ − ‖x̂ − xk‖) = α̃ − α̂. (4.21)
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Since

‖xk − x̃‖2 = ‖xk − x̂‖2 + 2〈xk − x̂, x̂ − x̃〉 + ‖x̂ − x̃‖2 (4.22)

and

lim
k→+∞〈xk − x̂, x̂ − x̃〉 = 1

2
(‖x̂ − x̃‖2 + α̂2 − α̃2). (4.23)

The left-hand of (4.23) vanishes for x̂ is a cluster point of {xk}, it follows that

‖x̂ − x̃‖2 = α̃2 − α̂2. (4.24)

Repeating it again by changing the roles of x̂ and x̃ , we have that

‖x̂ − x̃‖2 = α̂2 − α̃2. (4.25)

Combining (4.24) with (4.25), it is obvious that

‖x̂ − x̃‖ = 0 ⇒ x̂ = x̃

which contradicts with the assumption that x̂ �= x̃ . We conclude that {xn} is convergent to a
weak Pareto optimal solution of the problem (CMOP) and the proof is complete. ��

5 Conclusion

In this paper, we defined the asymptotic function of a vector-valued function, obtained the
analytical expression of the asymptotic function of a class of cone-convex vector-valued
function, characterized the nonemptiness and compactness of the weak Pareto optimal solu-
tion sets of a composite multiobjective optimization problem. We then applied the obtained
results to construct a proximal-type method for solving the composite multiobjective opti-
mization problem. Under some conditions, we proved that any sequence generated by this
method converges to a weak Pareto optimal solution of the problem.
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