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1 Introduction

The maximal monotone inclusion problem provides a powerful general framework for the
study of many important optimization problems, such as convex programming problems and
variational inequalities. One of the most interesting and important problems in the theory of
maximal monotone operators is to find a zero point of maximal monotone operators. This
problem contains the convex minimization problem and the variational inequality problem. A
popular method for approximating this problem is called the proximal point algorithm intro-
duced by Martinet [24] in a Hilbert space. In 1976, Rockafellar [33] extended the knowledge
of Martinet [24] and proved the weak convergence of the proximal point algorithm. The
proximal point algorithm of Rockafellar [33] is a successful algorithm for finding a zero
point of maximal monotone operators. It gives an approximation to solutions of a variational
inequality for monotone operators, and when the monotone operator be subdifferential of a
proper, convex, and lower semicontinuous function, it gives an approximation to solutions
of a minimization problem for the convex function.

Let E be a Banach space with the dual space E∗ and the norm ‖ · ‖. Let C be a nonempty
closed convex subset of E . Let θ be a bifunction from C × C to R, where R denotes the set
of real numbers.

The equilibrium problem (for short, EP) is as follows: Find x̂ ∈ C such that

θ(x̂, y) ≥ 0, ∀y ∈ C. (1.1)

The set of solutions of (1.1) is denoted by E P(θ).
In addition, there are several other problems, for example, the complementarity problem,

fixed point problem and optimization problem, which can also be written in the form of
an E P(θ). In other words, the E P(θ) is an unifying model for several problems arising in
physics, engineering, science, optimization, economics and others. In the last two decades,
many papers have appeared in the literature on the existence of solutions of E P(θ) (see, for
example, [3,19] and references therein) and some solution methods have been proposed to
solve the E P(θ) (see, for example, [3,7–10,13,16,17,21,27,29,31] and references therein).

Let A : C → E∗ be an operator. The classical variational inequality problem for an
operator A is as follows: Find ẑ ∈ C such that

〈Aẑ, y − ẑ〉 ≥ 0, ∀y ∈ C. (1.2)

The set of solution of (1.2) is denote by V I (A, C). This problems is interesting and
have been studied by many mathematician because it includes various problems in many
branches in mathematics and sciences, for example, linear programming, convex optimization
problems, economics and physics. Let A : C → E∗ be a mapping. Then A is said to be:

(1) monotone if

〈Ax − Ay, x − y〉 ≥ 0, ∀x, y ∈ C;
(2) α−inverse-strongly monotone if there exists a constant α > 0 such that

〈Ax − Ay, x − y〉 ≥ α‖Ax − Ay‖2, ∀x, y ∈ C and x 
= y.

The class of inverse-strongly monotone mappings have been studied by many authors to
approximating a common fixed point (see [17,21,37,44] for more details).

(3) An operator B ⊂ E × E∗ is said to be monotone if 〈x − y, x∗ − y∗〉 ≥ 0 whenever
(x, x∗), (y, y∗) ∈ B. We denote the set {x ∈ E : 0 ∈ Bx} by B−10.
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(4) The monotone operator B is said to be maximal if its graph G(B) = {(x, y∗) : y∗ ∈ Bx}
is not properly contained in the graph of any other monotone operator.

If B is maximal monotone, then the solution set B−10 is closed and convex. Let B be a
monotone operator satisfying D(B) ⊂ C ⊂ J−1(

⋂
r>0 R(J + r B)), where D(B) is domain

of B and R(J + r B) is range of J + r B. Define the resolvent Jr : C → D(B) of B by
Jr x = xr . In other words, Jr = (J +r B)−1 J for all r > 0. Jr is a single-valued mapping from
E to D(B). For any r > 0, the Yosida approximation of B define by Br x = (J x − J Jr x)/r.
We know that Br x ∈ B(Jr x) for all r > 0 and x ∈ E .

Consider the problem: Find v ∈ E such that

0 ∈ Bv, (1.3)

where B is an operator from E into E∗. Such v ∈ E is called a zero point of B. When B is
a maximal monotone operator, a well-known method for solving (1.3) in a Hilbert space H
is the proximal point algorithm: x1 = x ∈ H and

xn+1 = Jrn xn, ∀n ≥ 1, (1.4)

where {rn} ⊂ (0,∞) and Jrn = (I +rn B)−1. Rockafellar [33] proved that the sequence {xn}
converges weakly to an element of B−10.

Let C be a closed convex subset of E . A mapping T : C → C is said to be nonexpansive if

‖T x − T y‖ ≤ ‖x − y‖, ∀x, y ∈ C.

A point x ∈ C is a fixed point of T provided T x = x . Denote by F(T ) the set of fixed points
of T , that is, F(T ) = {x ∈ C : T x = x}.

Recall that a mapping T : C → C is closed if, for each {xn} in C , xn → x and T xn → y
imply that T x = y.

A Banach space E is said to be strictly convex if ‖ x+y
2 ‖ < 1 for all x, y ∈ E with

‖x‖ = ‖y‖ = 1 and x 
= y. Let U = {x ∈ E : ‖x‖ = 1} be the unit sphere of E . Then a
Banach space E is said to be smooth if the limit lim

t→0

‖x+t y‖−‖x‖
t exists for each x, y ∈ U. It

is also said to be uniformly smooth if the limit exists uniformly in x, y ∈ U .
The modulus of convexity of E is the function δ : [0, 2] → [0, 1] defined by

δ(ε) = inf{1 − ‖ x + y

2
‖ : x, y ∈ E, ‖x‖ = ‖y‖ = 1, ‖x − y‖ ≥ ε}.

A Banach space E is uniformly convex if and only if δ(ε) > 0 for all ε ∈ (0, 2].
Consider the functional φ : E × E → R defined by

φ(x, y) = ‖x‖2 − 2〈x, J y〉 + ‖y‖2, ∀x, y ∈ E . (1.5)

where J is the normalized duality mapping. It is obvious from the definition of function φ

that

(‖y‖ − ‖x‖)2 ≤ φ(y, x) ≤ (‖y‖ + ‖x‖)2, ∀x, y ∈ E . (1.6)

If E is a Hilbert space, then φ(y, x) = ‖y − x‖2.

Remark 1.1 If E is a reflexive, strictly convex and smooth Banach space, then, for any
x, y ∈ E , φ(x, y) = 0 if and only if x = y. It is sufficient to show that if φ(x, y) = 0
then x = y. From (1.5), we have ‖x‖ = ‖y‖. This implies that 〈x, J y〉 = ‖x‖2 = ‖J y‖2.

From the definition of J, one has J x = J y. Therefore, we have x = y (see [12,38] for more
details).
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Definition 1.2 (1) A point p in C is called an asymptotic fixed point of T [34] if C contains
a sequence {xn} which converges weakly to p such that limn→∞ ‖xn − T xn‖ = 0. The
asymptotic fixed point set of T is denoted by F̂(T ).

(2) A mapping T from C into itself is called relatively nonexpansive ([28,36,42]) if

(R1) F(T ) is nonempty;
(R2) φ(p, T x) ≤ φ(p, x) for all x ∈ C and p ∈ F(T );
(R3) F̂(T ) = F(T ).

A mapping T is called relatively quasi-nonexpansive (or quasi-φ-nonexpansive) if the con-
ditions (R1) and (R2) hold. Obviously, every relatively nonexpansive mapping is relatively
quasi-nonexpansive mappings, but the converse is not true. The relatively quasi-nonexpansive
mapping is sometimes called hemirelatively nonexpansive mapping. The asymptotic behav-
ior of a relatively nonexpansive mapping was studied in [4,5,11]. The class of relatively
quasi-nonexpansive mappings is more general than that of relatively nonexpansive mappings
(see [4,5,11,25,35]) which requires the strong restriction: F(T ) = F̂(T ).

On the author hand, the generalized projection �C : E → C is a mapping that assigns
to an arbitrary point x ∈ E the minimum point of the functional φ(x, y), that is, �C x = x̄,

where x̄ is the solution to the minimization problem:

φ(x̄, x) = inf
y∈C

φ(y, x). (1.7)

The existence and uniqueness of the operator �C follows from the properties of the
functional φ(y, x) and the strict monotonicity of the mapping J (see, for example [1,2,12,
18,38]). If E is a Hilbert space, �C becomes the metric projection of E onto C .

Example 1.3 [29] Let �C be the generalized projection from a smooth, strictly convex and
reflexive Banach space E onto a nonempty closed convex subset C of E . Then �C is a closed
relatively quasi-nonexpansive mapping from E onto C with F(�C ) = C .

In 2004, Matsushita and Takahashi [26] introduced the following iterative sequence {xn}
defined by

xn+1 = �C J−1(αn J xn + (1 − αn)J T xn), ∀n ≥ 0, (1.8)

where the initial guess element x0 ∈ C is arbitrary, {αn} is a real sequence in [0, 1], T : C →
C is a relatively nonexpansive mapping and �C denotes the generalized projection from E
onto a closed convex subset C of E . They proved that the sequence {xn} converges weakly
to a fixed point of T .

In 2005, Matsushita and Takahashi [25] proposed the following hybrid iteration method
(it is also called the CQ method) with generalized projection for a relatively nonexpansive
mapping T in a Banach space E:

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

x0 ∈ C chosen arbitrarily,

yn = J−1(αn J xn + (1 − αn)J T xn),

Cn = {z ∈ C : φ(z, yn) ≤ φ(z, xn)},
Qn = {z ∈ C : 〈xn − z, J x0 − J xn〉 ≥ 0},
xn+1 = �Cn∩Qn x0, ∀n ≥ 0.

(1.9)

They proved that {xn} converges strongly to a point �F(T )x0, where �F(T ) is the generalized
projection from C onto F(T ).

In 2008, Iiduka and Takahashi [14] introduced the following iterative scheme for finding
a solution of the variational inequality problem for an inverse-strongly monotone operator A
in a 2-uniformly convex and uniformly smooth Banach space E : x1 = x ∈ C and
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xn+1 = �C J−1(J xn − λn Axn), ∀n ≥ 1, (1.10)

where �C is the generalized metric projection from E onto C , J is the duality mapping from
E into E∗ and {λn} is a sequence of positive real numbers. They proved that the sequence
{xn} generated by (1.10) converges weakly to an element of V I (A, C).

In 2009, Inoue et al. [15] proposed the hybrid method in a uniformly convex and uniformly
smooth Banach space E for defined a sequence {xn} as follows:

⎧
⎪⎪⎨

⎪⎪⎩

un = J−1(αn J xn + (1 − αn)J S Jrn xn),

Cn = {z ∈ Cn : φ(z, un) ≤ φ(z, xn),

Qn = {z ∈ Cn : 〈xn − z, J x0 − J xn〉 ≥ 0},
xn+1 = �Cn∩Qn x0, ∀n ≥ 1,

(1.11)

and, under some control conditions, they proved that the sequence {xn} converge strongly to
a point �F(S)∩B−10.

In 2009, Klin-eam et al. [19] extended the result of Inoue et al. [15] for finding a common
element of the zero point set of a maximal monotone operator and the fixed point set of two
relatively nonexpansive mappings in a Banach space E by using a new hybrid method.

Recently, Takahashi and Zembayashi [39,40] studied the problem of finding a common
element of the set of fixed points of a nonexpansive mapping and the set of solutions of an
equilibrium problem in the framework of Banach spaces. Later, Qin et al. [30] introduced
two kinds of iterative algorithms for the problem of finding zeros of maximal monotone
operators. They proved weak and strong convergence theorems in a real Hilbert space. Also,
they applied the results to a problem of finding a minimizer of a convex function.

In this paper, motivated and inspired by the work mentioned above of Inoue et al. [15],
Klin-eam et al. [19], Matsushita and Takahashi [25] and Takahashi and Zembayashi [39,40],
we introduce a new hybrid projection method for finding the fixed point set of relatively quasi-
nonexpansive mappings, the set of variational inequality, the sets of solution of equilibrium
problem and zeros of a maximal monotone operator in Banach spaces. As applications, we
consider a problem of finding a minimizer of a convex function. The results presented in this
paper improve and extend some recent results of Iiduka and Takahashi [14], Inoue et al. [15],
Klin-eam et al. [19], Matsushita and Takahashi [25,26], Takahashi and Zembayashi [39,40]
and given by some authors.

2 Preliminaries

We also need the following lemmas for the proof of our main results.
Let E be a Banach space with the dual space E∗. The generalized duality mapping

Jp : E → 2E∗
is defined by

Jp(x) = {x∗ ∈ E∗ : 〈x, x∗〉 = ‖x‖p, ‖x∗‖ = ‖x‖p−1}, ∀x ∈ E .

In particular, J = J2 is called the normalized duality mapping. If E is a Hilbert space,
then J = I , where I is the identity mapping.

Remark 2.1 Let E be a Banach space. Then the following are well known (see [12] for more
details):

(1) If E is an arbitrary Banach space, then J is monotone and bounded.
(2) If E is a strictly convex, then J is strictly monotone.
(3) If E is a smooth, then J is single valued and semi-continuous.
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(4) If E is uniformly smooth, then J is uniformly norm-to-norm continuous on each bounded
subset of E .

(5) If E is reflexive, smooth and strictly convex, then the normalized duality mapping J = J2

is single valued, one-to-one and onto.
(6) If E is reflexive, smooth and strictly convex, then J−1 is also single valued, one-to-one,

onto and it is the duality mapping from E∗ into E .
(7) If E is uniformly smooth, then E is smooth and reflexive.
(8) E is uniformly smooth if and only if E∗ is uniformly convex.

Lemma 2.2 [18] Let E be a uniformly convex and smooth Banach space and {xn}, {yn} be
two sequences of E. If φ(xn, yn) → 0 and either {xn} or {yn} is bounded, then ‖xn−yn‖ → 0.

Lemma 2.3 [2] Let C be a nonempty closed convex subset of a smooth Banach space E and
x ∈ E. Then x0 = �C x if and only if

〈x0 − y, J x − J x0〉 ≥ 0, ∀y ∈ C.

Lemma 2.4 [2] Let E be a reflexive, strictly convex and smooth Banach space, C be a
nonempty closed convex subset of E and x ∈ E . Then

φ(y,�C x) + φ(�C x, x) ≤ φ(y, x), ∀y ∈ C.

Lemma 2.5 [29] Let E be a real uniformly smooth and strictly convex Banach space and
C be a nonempty closed convex subset of E. Let T : C → C be a closed and relatively
quasi-nonexpansive mapping. Then F(T ) is a closed convex subset of C.

We make use of the following mapping V : E∗ × E → R studied in Alber [2]:

V (ϕ, x) = ‖ϕ‖2 − 2〈ϕ, x〉 + ‖x‖2, ∀ϕ ∈ E∗, x ∈ E . (2.1)

From the definition of the functional φ and V , we know that V (J y, x) = φ(x, y) for all
x, y ∈ E .

Definition 2.6 [2] (1) An operator �C : E∗ → C is called the generalized projection
operator—if it associates with an arbitrary fixed point ϕ ∈ E∗ to the minimum point of the
functional V (ϕ, x), i.e., a solution to the minimization problem:

V (ϕ,�C (ϕ)) = inf
y∈C

V (ϕ, y).

(2) �C (ϕ) ∈ C ⊂ B is called the generalized projection of the point ϕ.

Remark 2.7 The following properties of V and �C hold (see [2,22] for more detail):

(1) V (ϕ, x) is continuous.
(2) V (ϕ, x) is convex with respect to ϕ when x is fixed and convex with respect to x when

ϕ is fixed.
(3) (‖ϕ‖ − ‖x‖)2 ≤ V (ϕ, x) ≤ (‖ϕ‖ + ‖x‖)2.
(4) V (ϕ, x) = 0 if and only if ϕ = J x .
(5) V (J�Cϕ, x) ≤ V (ϕ, x) for all ϕ ∈ E∗ and x ∈ E .
(6) �C J x = x for any x ∈ C .
(7) �C is monotone in E∗, i.e., for all ϕ1, ϕ2 ∈ E∗,

〈�Cϕ1 − �Cϕ2, ϕ1 − ϕ2〉 ≥ 0.
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(8) If E is uniformly smooth, then ϕ1, ϕ2 ∈ E∗, we have

‖�Cϕ1 − �Cϕ2‖ ≤ 2R1g−1
E (‖ϕ1 − ϕ2‖/R1),

where R1 = (‖�Cϕ1‖2 + ‖�Cϕ2‖2)1/2 and g−1
E is the inverse function to gE defined

by the modulus of smoothness for a uniformly smooth Banach space E .
(9) By (8), we have �C continuous.

(10) If E is smooth, then, for any ϕ ∈ E∗ and x ∈ C ,

x ∈ �Cϕ ⇔ 〈ϕ − J x, x − y〉 ≥ 0, ∀ y ∈ C.

(11) If E is smooth, then, for any ϕ ∈ E∗ and x ∈ �Cϕ, the following inequality holds:

V (J x, y) ≤ V (ϕ, y) − V (ϕ, x), ∀ y ∈ C.

(12) The operator �C is single-valued if and only if E is strictly convex.
(13) If E is reflexive, then, for any ϕ ∈ E∗, �Cϕ is a nonempty closed convex and bounded

subset of C .

Lemma 2.8 [23] Let E be a reflexive strictly convex and smooth Banach space, then �C =
J−1.

Lemma 2.9 [41] Let E be a uniformly convex Banach space. Then, for any r > 0, there
exists a strictly increasing, continuous and convex function g : [0, 2r ] → R with g(0) = 0
such that

‖t x + (1 − t)y‖2 ≤ t‖x‖2 + (1 − t)‖y‖2 − t (1 − t)g(‖x − y‖), ∀x, y ∈ Br , t ∈ [0, 1],
where Br = {z ∈ E : ‖z‖ ≤ r}.
Lemma 2.10 [6] Let E be a uniformly convex and uniformly smooth Banach spaces. Then
the following inequality hold

‖ϕ + 
‖2 ≤ ‖ϕ‖2 + 2〈
, J ∗(ϕ + 
)〉, ∀ϕ,
 ∈ E∗.

Lemma 2.11 [20] Let E be a smooth, strictly convex and reflexive Banach space, C be a
nonempty closed convex subset of E and B : E ⇒ E∗ be a monotone operator satisfying
D(B) ⊂ C ⊂ J−1(∩r>0 R(J + r B)). Let r > 0, Jr and Br be the resolvent and the Yosida
approximation of B, respectively. Then the following hold:

(i) φ(u, Jr x) + φ(Jr x, x) ≤ φ(u, x) for all x ∈ C and u ∈ B−10;
(ii) (Jr x, Br x) ∈ B for all x ∈ C;

(iii) F(Jr ) = B−10.

Lemma 2.12 [32] Let E be a reflexive, strictly convex and smooth Banach space and B ⊂
E × E∗ be a maximal monotone. Then R(J + r B) = E∗ for all r > 0.

For solving the equilibrium problem for a bifunction θ : C × C → R, we assume that θ

satisfies the following conditions:

(A1) θ(x, x) = 0 for all x ∈ C ;
(A2) θ is monotone, i.e., θ(x, y) + θ(y, x) ≤ 0 for all x, y ∈ C ;
(A3) for any x, y, z ∈ C ,

lim
t↓0

θ(t z + (1 − t)x, y) ≤ θ(x, y);

(A4) for any x ∈ C , y �→ θ(x, y) is convex and lower semi-continuous.
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For example, let B be a continuous and monotone operator of C into E∗ and define

θ(x, y) = 〈Bx, y − x〉, ∀x, y ∈ C.

Then θ satisfies the conditions (A1)–(A4).
The following result is given in Blum and Oettli [3]:

Lemma 2.13 Let C be a closed convex subset of a smooth, strictly convex and reflexive
Banach space E, θ be a bifunction from C × C to R satisfying the conditions (A1)-(A4),
r > 0 and x ∈ E. Then there exists z ∈ C such that

θ(z, y) + 1

r
〈y − z, J z − J x〉 ≥ 0, ∀y ∈ C.

Lemma 2.14 [40] Let C be a closed convex subset of a uniformly smooth, strictly convex
and reflexive Banach space E and θ be a bifunction from C ×C to R satisfying the conditions
(A1) − (A4). For any r > 0 and x ∈ E, define a mapping Kr : E → C as follows:

Kr x = {z ∈ C : θ(z, y) + 1

r
〈y − z, J z − J x〉 ≥ 0, ∀y ∈ C}, ∀x ∈ C.

Then the following hold:

(1) Kr is single-valued;
(2) Kr is a firmly nonexpansive-type mapping, i.e., for all x, y ∈ E,

〈Kr x − Kr y, J Kr x − J Kr y〉 ≤ 〈Kr x − Kr y, J x − J y〉;
(3) F(Kr ) = E P(θ);
(4) E P(θ) is closed and convex.

Lemma 2.15 [40] Let C be a closed convex subset of a smooth, strictly convex and reflexive
Banach space E, θ be a bifunction from C × C to R satisfying the conditions (A1)-(A4) and
r > 0. Then, for any x ∈ E and q ∈ F(Kr ),

φ(q, Kr x) + φ(Kr x, x) ≤ φ(q, x).

Lemma 2.16 [43] Let C be a nonempty closed convex subset of a uniformly smooth, strictly
convex real Banach space E and A : C → E∗ be a continuous monotone mapping. For any
r > 0, define a mapping Fr : E → C as follows:

Fr x = {z ∈ C : 〈y − z, Az〉 + 1

r
〈y − z, J z − J x〉 ≥ 0, ∀y ∈ C}, ∀x ∈ C.

Then the following hold:

(1) Fr is single-valued;
(2) F(Fr ) = V I (A, C);
(3) V I (A, C) is closed and convex subset of C;
(4) φ(q, Fr x) + φ(Fr x, x) ≤ φ(q, x) for all q ∈ F(Fr ).

3 Main results

In this section, we prove some new convergence theorems for finding a common solution
of the set of common fixed points of relatively quasi nonexpansive mappings, the set of the
variational inequality, the sets of solutions of the equilibrium problem and zeros of a maximal
monotone operator in a real uniformly smooth and uniformly convex Banach space.
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Theorem 3.1 Let C be a nonempty closed and convex subset of a uniformly convex and
uniformly smooth Banach space E. Let B : E ⇒ E∗ be a maximal monotone operator
satisfying D(B) ⊂ C and Jr = (J + r B)−1 J for all r > 0, where J is the duality mapping
on E. Let θ be a bifunction from C × C to R satisfying the conditions (A1)–(A4). Let A
be a continuous monotone mapping of C into E∗ and T : C → C be a relatively quasi-
nonexpansive mapping. Define two mappings Frn , Krn : E → C by

Frn x = {z ∈ C : 〈y − z, Az〉 + 1

rn
〈y − z, J z − J x〉 ≥ 0, ∀y ∈ C}

and

Krn x = {z ∈ C : θ(z, y) + 1

rn
〈y − z, J z − J x〉 ≥ 0, ∀y ∈ C}.

Assume that � := F(T ) ∩ B−10 ∩ E P(θ) ∩ V I (A, C) 
= ∅. For an initial point x1 ∈ E
with C1 = C, we define the iterative sequence {xn} as follows:

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

zn = Frn xn,

yn = �C (αn J xn + (1 − αn)J T Jrn zn),

un = Krn yn,

Cn+1 = {z ∈ Cn : φ(z, un) ≤ φ(z, zn) ≤ φ(z, xn)},
xn+1 = �Cn+1 J x1, ∀n ≥ 1,

(3.1)

where {αn} is a sequence in [0, 1] and {rn} ⊂ [d,∞) for some d > 0. If lim infn→∞ αn(1 −
αn) > 0, then the sequence {xn} converges strongly to a point p ∈ �, where p = �� J x1.

Proof We split the proof into seven steps as follows:
Step 1. We first show that Cn+1 is closed and convex for each n ≥ 1.

Clearly, C1 = C is closed and convex. From the definition of Cn+1, it is obvious that Cn+1

is closed. Suppose that Cn is convex. Then for any z ∈ Cn , we know that φ(z, un) ≤ φ(z, xn)

is equivalent to

2〈z, J xn − Jun〉 ≤ ‖xn‖2 − ‖un‖2. (3.2)

This inequality is affine in z and hence Cn+1 is convex for each n ≥ 0. Thus, Cn+1 is closed
and convex.

Step 2. We show that � ⊂ Cn for all n ≥ 1 and {xn} is well defined.
We show by induction that � ⊂ Cn for all n ≥ 1. Put un = Krn yn and vn = Jrn zn for

all n ≥ 1. From Lemma 2.14, it follows that Krn is a relatively quasi-nonexpansive mapping
and � ⊂ C1 = C . Suppose that � ⊂ Cn for some n ≥ 1. Let q ∈ � ⊂ Cn . Since T
is a relatively quasi-nonexpansive mapping, by nonexpansiveness of Jrn (see [38, Theorem
4.6.3]), we have

φ(q, un) = φ(q, Krn yn)

≤ φ(q, yn)

= V (J yn, q)

= V (J (�C (αn J xn + (1 − αn)J T Jrn zn)), q)

≤ V (αn J xn + (1 − αn)J T Jrn zn, q)

= V (αn J xn + (1 − αn)J T vn, q)

= αn V (J xn, q) + (1 − αn)V (J T vn, q)

= αnφ(q, xn) + (1 − αn)φ(q, T vn)
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≤ αnφ(q, xn) + (1 − αn)φ(q, vn)

= αnφ(q, xn) + (1 − αn)φ(q, Jrn zn)

≤ αnφ(q, xn) + (1 − αn)φ(q, zn)

= αnφ(q, xn) + (1 − αn)φ(q, Frn xn)

≤ αnφ(q, xn) + (1 − αn)φ(q, xn)

≤ φ(q, xn). (3.3)

This shows that q ∈ Cn+1 which implies that � ⊂ Cn+1 and hence � ⊂ Cn for all n ≥ 1.
This implies that the sequence {xn} is well defined.

Step 3. We prove that {xn} is bounded.
From the definition of xn that xn = �Cn J x1, we have

V (J x1, xn) ≤ V (J x1, q), ∀q ∈ �. (3.4)

This implies that {V (J x1, xn)} is bounded. From the definition of V , it follows that {xn} is
bounded and so {zn}, {yn}, {un} and {T vn} are also bounded.

Step 4. We show that {xn} is a Cauchy sequence in C .
Since xn = �Cn J x1 and xn+1 = �Cn+1 J x1, we have

V (J x1, xn) ≤ V (J x1, xn+1), ∀n ≥ 1, (3.5)

and hence {V (J x1, xn)} is nondecreasing. From (3.4) and (3.5), it follows that lim
n→∞ V (J x1, xn)

exists. For any positive integers m > n, from xm = �Cm J x1 ∈ Cm ⊂ Cn and the property
of V , we have

V (J xn, xm) ≤ V (J x1, xm) − V (J x1, xn), ∀n ≥ 1.

Taking m, n → ∞, we have lim
n→∞ V (J xn, xm) = 0 and also

lim
n→∞ φ(xm, xn) = 0. (3.6)

From Lemma 2.2, we get ‖xn − xm‖ → 0 and so {xn} is a Cauchy sequence and, by the
completeness of E and the closedness of C , we can assume that there exists p ∈ C such that
xn → p ∈ C as n → ∞.

Step 5. We show that ‖Jun − J xn‖ → 0 as n → ∞.
From Step 4, taking m = n + 1, we also have

lim
n→∞ φ(xn+1, xn) = 0. (3.7)

Form Lemma 2.2, it follows that

lim
n→∞ ‖xn+1 − xn‖ = 0. (3.8)

Since J is uniformly norm-to-norm continuous on bounded subsets of E , we have

lim
n→∞ ‖J xn+1 − J xn‖ = 0. (3.9)

Since xn+1 = �Cn+1 J x1 ∈ Cn+1 ⊂ Cn and the definition of Cn+1, we have

φ(xn+1, un) ≤ φ(xn+1, xn), ∀n ≥ 1.

Thus, by (3.7), we obtain

lim
n→∞ φ(xn+1, un) = 0. (3.10)
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Again, applying Lemma 2.2, we get

lim
n→∞ ‖xn+1 − un‖ = 0. (3.11)

From ‖un − xn‖ = ‖un − xn+1 + xn+1 − xn‖ ≤ ‖un − xn+1‖ + ‖xn+1 − xn‖, it follows that

lim
n→∞ ‖un − xn‖ = 0. (3.12)

Thus, since J is uniformly norm-to-norm continuous on bounded subsets of E , we also have

lim
n→∞ ‖Jun − J xn‖ = 0. (3.13)

Step 6. We show that p ∈ �, where

� := F(T ) ∩ B−10 ∩ E P(θ) ∩ V I (A, C)

(a) We show that p ∈ F(T ) as n → ∞. From (3.3), for any q ∈ �, it follows that
lim

n→∞ φ(q, zn) = φ(q, p). Since zn = Frn xn

φ(zn, xn)=φ(Frn xn, xn) ≤ φ(q, xn) − φ(q, Frn xn)=φ(q, xn) − φ(q, zn) → 0 as n → ∞
applying Lemma 2.2, we get

lim
n→∞ ‖zn − xn‖ = 0. (3.14)

Since J is uniformly norm-to-norm continuous on bounded subsets of E , we obtain

lim
n→∞ ‖J zn − J xn‖ = 0. (3.15)

From (3.3), we have φ(q, vn) ≥ 1
1−αn

(φ(q, un)−αnφ(q, xn)) and so it follows from Lemma
2.12 that

φ(vn, zn) = φ(Jrn zn, zn)

≤ φ(q, zn) − φ(q, Jrn zn)

= φ(q, zn) − φ(q, vn)

≤ φ(q, zn) − 1

1 − αn
(φ(q, un) − αnφ(q, xn))

≤ φ(q, xn) − 1

1 − αn
(φ(q, un) − αnφ(q, xn))

= 1

1 − αn
(φ(q, xn) − φ(q, un))

= 1

1 − αn
(‖xn‖2 − ‖un‖2 − 2〈q, J xn − Jun〉)

≤ 1

1 − αn
(‖xn‖2 − ‖un‖2 + 2|〈q, J xn − Jun〉|)

≤ 1

1 − αn

(‖xn − un‖(‖xn‖ + ‖un‖) + 2‖q‖‖J xn − Jun‖).
It follows from lim infn→∞ αn(1 − αn) > 0, (3.12) and (3.13) that

lim
n→∞ φ(vn, zn) = 0.

Thus, from Lemma 2.2, we also have

lim
n→∞ ‖vn − zn‖ = 0. (3.16)
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It follows from (3.3) that

φ(q, vn) ≤ φ(q, xn). (3.17)

On the other hand, we note that

φ(q, xn) − φ(q, un) = ‖xn‖2 − ‖un‖2 − 2〈q, J xn − Jun〉
≤ ‖xn − un‖(‖xn‖ + ‖un‖) + 2‖q‖‖J xn − Jun‖.

Thus it follows from ‖xn − un‖ → 0 and ‖J xn − Jun‖ → 0 that

φ(q, xn) − φ(q, un) → 0 (3.18)

as n → ∞. Since {xn} and {T vn} are bounded, {J xn} and {J T vn} are also bounded. From
Lemma 2.9, if r = supn≥0{‖J xn}, ‖J T vn‖}, then there exists a continuous strictly increasing
convex function g such that

φ(q, un) = φ(q, Krn yn)

= φ(q, yn)

= V (J yn, q)

≤ V (αn J xn + (1 − αn)J T Jrn zn, q)

= V (αn J xn + (1 − αn)J T vn, q)

= ‖αn J xn + (1 − αn)J T vn‖2 − 2〈αn J xn + (1 − αn)J T vn, q〉 + ‖q‖2

≤ αn‖J xn‖2 + (1 − αn)‖J T vn‖2 − 2αn〈J xn, q〉 − 2(1 − αn)〈J T vn, q〉 + ‖q‖2

−αn(1 − αn)g(‖J xn − J T vn‖)
≤ αn V (J xn, q) + (1 − αn)V (J T vn, q) − αn(1 − αn)g(‖J xn − J T vn‖)
= αnφ(q, xn) + (1 − αn)φ(q, T vn) − αn(1 − αn)g(‖J xn − J T vn‖)
≤ αnφ(q, xn) + (1 − αn)φ(q, vn) − αn(1 − αn)g(‖J xn − J T vn‖)
≤ αnφ(q, xn) + (1 − αn)φ(q, xn) − αn(1 − αn)g(‖J xn − J T vn‖)
≤ φ(q, xn) − αn(1 − αn)g(‖J xn − J T vn‖).

It follows that

αn(1 − αn)g(‖J xn − J T vn‖) ≤ φ(q, xn) − φ(q, un).

It follows from lim infn→∞ αn(1 − αn) > 0 and (3.18) that

lim
n→∞ g(‖J xn − J T vn‖) = 0.

From the property of g such that g(0) = 0, it follow that

lim
n→∞ ‖J xn − J T vn‖ = 0.

Since E be a uniformly smooth Banach spaces, E∗ is a uniformly convex Banach spaces.
Further, since J−1 is uniformly norm to norm continuous on bounded set, we get

lim
n→∞ ‖xn − T vn‖ = 0. (3.19)

By using the triangle inequality, we have ‖vn − xn‖ ≤ ‖vn − zn‖ + ‖zn − xn‖. Thus, from
(3.14) and (3.16), it follows that

lim
n→∞ ‖vn − xn‖ = 0. (3.20)
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Again, by using the triangle inequality, we have ‖vn − T vn‖ ≤ ‖vn − xn‖ + ‖xn − T vn‖.
Thus, from (3.19) and (3.20), it follows that

lim inf
n→∞ ‖vn − T vn‖ = 0. (3.21)

Therefore, it follows from the clossedness of T and (3.20) that p ∈ F(T ).
(b) We show that p ∈ E P(θ). From (3.3), we get φ(q, yn) ≤ φ(q, xn). From Lemma

2.14 and un = Krn yn , we observe that

φ(un, yn) = φ(Krn yn, yn)

≤ φ(q, yn) − φ(q, Krn yn)

≤ φ(q, xn) − φ(q, Krn yn)

= φ(q, xn) − φ(q, un). (3.22)

From (3.18) and Lemma 2.2, we get

lim
n→∞ ‖un − yn‖ = 0. (3.23)

Since J is uniformly norm-to-norm continuous on bounded subsets of E , we obtain

lim
n→∞ ‖Jun − J yn‖ = 0.

From the condition {rn} ⊂ [d,∞) for some d > 0, we have ‖Jun−J yn‖
rn

→ 0 as n → ∞ and

θ(un, y) + 1
rn

〈y − un, Jun − J yn〉 ≥ 0, ∀y ∈ C.

By (A2), we have

‖y − un‖‖Jun − J yn‖
rn

≥ 1

rn
〈y − un, Jun − J yn〉

≥ −θ(un, y)

≥ θ(y, un), ∀y ∈ C,

and un → p and so θ(y, p) ≤ 0 for all y ∈ C . For any 0 < t < 1, define yt = t y + (1− t)p.
Then yt ∈ C , which imply that θ(yt , p) ≤ 0. From (A1), it follows that

0 = θ(yt , yt ) ≤ tθ(yt , y) + (1 − t)θ(yt , p) ≤ tθ(yt , y).

Thus θ(yt , y) ≥ 0. From (A3), we have θ(p, y) ≥ 0 for all y ∈ C and so p ∈ E P(θ).
(c) We show that p ∈ V I (A, C). From Frn xn = zn ∈ C , we have

〈v − zn, Azn〉 + 1

rn
〈v − zn, J zn − J xn〉 ≥ 0,

that is,

〈v − zn, Azn〉 + 〈v − zn, J zn−J xn
rn

〉 ≥ 0, ∀v ∈ C. (3.24)

For any 0 < t < 1, define vt = tv + (1 − t)p. Then vt ∈ C . It follows from (3.24) that

〈vt − zn, Azn〉 + 〈vt − zn,
J zn − J xn

rn
〉 ≥ 0, ∀vt ∈ C,
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that is,

〈vt − zn, Avt 〉 ≥ 〈vt − zn, Avt 〉 − 〈vt − zn, Azn〉 − 〈vt − zn,
J zn − J xn

rn
〉 ≥ 0, ∀v ∈ C.

(3.25)

Thus, by the condition {rn} ⊂ [d,∞) for some d > 0 and (3.25), we have J zn−J xn
rn

= 0.
Since A is monotone, we have

〈vt − zn, Avt 〉 ≥ 〈vt − zn, Avt − Azn〉 ≥ 0

and so

lim
n→∞〈vt − zn, Avt 〉 = 〈vt − p, Avt 〉 ≥ 0,

since zn → p, that

〈v − p, Avt 〉 ≥ 0, ∀v ∈ C.

Again, taking t → 0 in the inequality above,

〈v − p, Ap〉 ≥ 0, ∀v ∈ C.

This implies that p ∈ V I (A, C).
(d) We show that p ∈ B−10. Since J is uniformly norm-to-norm continuous on bounded

subsets of E , it follows from (3.16) that

lim
n→∞ ‖J zn − Jvn‖ = 0.

From the condition {rn} ⊂ [d,∞) for some d > 0, we have

lim
n→∞

1
rn

‖J zn − Jvn‖ = 0.

thus, since Jrn zn = vn, we have

lim
n→∞ ‖Brn zn‖ = lim

n→∞
1
rn

‖J zn − J Jrn zn‖ = lim
n→∞

1
rn

‖J zn − Jvn‖ = 0.

From the monotonicity of B, for any (w,w∗) ∈ G(B), we have 〈w − vn, w∗ − Brn zn〉 ≥ 0
for all n ≥ 0 and so, letting n → ∞, we get 〈w − p, w∗〉 ≥ 0. So, from the maximality of
B, we have p ∈ B−10. Therefore, it follows from (a), (b), (c) and (d) that p ∈ �.

Step 7. we show that p = �� J x1.
From the property of �C and p ∈ �, we have

V (J�� J x1, p) + V (J x1,�� J x1) ≤ V (J x1, p). (3.26)

Since xn+1 = �C+1 J x1 ∈ Cn+1 and �� ∈ Cn+1 for all n ≥ 1, it follows that

V (J xn+1,�� J x1) + V (J x1, xn+1) ≤ V (J x1,�� J x1). (3.27)

By Remark 2.7(1), that V is continuous and limn→∞ xn = p. Then we get

lim
n→∞ V (J x1, xn+1) = V (J x1, p). (3.28)

Thus, from (3.26), (3.27) and (3.28), we can conclude that

V (J x1, p) = V (J x1,�� J x1),

that is, p = �� J x1. The proof is completed. ��
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Setting A ≡ 0 in Theorem 3.1, then we obtain the following corollary:

Corollary 3.2 Let C be a nonempty closed and convex subset of a uniformly convex and
uniformly smooth Banach space E. Let B : E ⇒ E∗ be a maximal monotone operator satis-
fying D(B) ⊂ C and Jr = (J +r B)−1 J for all r > 0, where J is the duality mapping on E.
Let θ be a bifunction from C × C to R satisfying the conditions (A1)–(A4) and T : C → C
be a relatively quasi-nonexpansive mapping. Define a mappings Krn : E → C by

Krn x = {z ∈ C : θ(z, y) + 1

rn
〈y − z, J z − J x〉 ≥ 0, ∀y ∈ C}, ∀x ∈ E .

Assume that � := F(T ) ∩ B−10 ∩ E P(θ) 
= ∅. For an initial point x1 ∈ E with C1 = C,
we define the iterative sequence {xn} as follows:

⎧
⎪⎪⎨

⎪⎪⎩

yn = �C (αn J xn + (1 − αn)J T Jrn xn),

un = Krn yn,

Cn+1 = {z ∈ Cn : φ(z, un) ≤ φ(z, xn)},
xn+1 = �Cn+1 J x1, ∀n ≥ 1,

(3.29)

where {αn} is a sequence in [0, 1] such that lim infn→∞ αn(1−αn) > 0 and {rn} ⊂ [d,∞) for
some d > 0. Then the sequence {xn} converges strongly to a point p ∈ �, where p = �� J x1.

Let E be a Banach space and f : E → (−∞,∞] be a proper lower semicontinuous
convex function. Define the subdifferential of f as follows:

∂ f (x) = {x∗ ∈ E∗ : f (y) ≥ 〈y − x, x∗〉 + f (x), ∀y ∈ E}, ∀x ∈ E .

Then ∂ f is a maximal monotone operator (see [38] for more details).

Corollary 3.3 Let C be a nonempty closed, convex subset of a uniformly convex and uni-
formly smooth Banach space E. Let θ be a bifunction from C × C to R satisfying the
conditions (A1)–(A4), A be a continuous monotone mapping of C into E∗ and T : C → C
be a relatively quasi-nonexpansive mapping. Define mappings Frn , Krn : E → C by

Frn x = {z ∈ C : 〈y − z, Az〉 + 1

rn
〈y − z, J z − J x〉 ≥ 0, ∀y ∈ C}, ∀x ∈ E,

and

Krn x = {z ∈ C : θ(z, y) + 1

rn
〈y − z, J z − J x〉 ≥ 0, ∀y ∈ C}, ∀x ∈ E .

Assume that � := F(T )∩E P(θ)∩V I (A, C) 
= ∅. For an initial point x1 ∈ E with C1 = C,
define the iterative sequence {xn} as follows:

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

zn = Frn xn,

yn = �C (αn J xn + (1 − αn)J T zn),

un = Krn yn,

Cn+1 = {z ∈ Cn : φ(z, un) ≤ φ(z, xn)},
xn+1 = �Cn+1 J x1, ∀n ≥ 1,

(3.30)

where {αn} is a sequence in [0, 1] such that lim infn→∞ αn(1 − αn) > 0 and {rn} ⊂ [d,∞)

for some d > 0. Then the sequence {xn} converges strongly to a point p ∈ �, where
p = �� J x1.
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Proof Let B = ∂iC as in Theorem 3.1, where iC is the indicator function, that is,

iC (x) =
{

0, x ∈ C;
∞, otherwise.

(3.31)

For any x ∈ E and r > 0, it follows that

p = Jr x ⇐⇒ J p + r∂iC (p) � J x

⇐⇒ J x − J p ∈ r∂iC (p)

⇐⇒ iC (y) ≥
〈
y − p,

J x − J p

r

〉
+ iC (p), ∀y ∈ E

⇐⇒ 0 ≥ 〈y − p, J x − J p〉, ∀y ∈ C

⇐⇒ p = argminy∈Cφ(y, x)

⇐⇒ p = �C x .

Then we know that B is a maximal monotone operator and Jr = �C for any r > 0. Thus,
by Theorem 3.1, we obtain the conclusion. The proof is completed. ��
Remark 3.4 Theorem 3.1 and Corollary 3.2 extend and improve the result of Inoue et al. [15]
and Matsushita and Takahashi [25] in the following aspect:

1. from the viewpoint of computation, we remove Qn (from the CQ-method to the shrinking
projection method);

2. from the viewpoint of mappings, from relatively nonexpansive mapping to quasi -φ-
nonexpansive mappings;

3. from the viewpoint of method, we modify and improve the result’s Matsushita and Taka-
hashi [25,26] and Iiduka and Takahashi [14] to the new method by using the generalized
projection method, also we obtain a strong convergence theorem.

4 Applications

4.1 Application to Hilbert spaces

If E = H , a Hilbert space, then H is a uniformly smooth and uniformly convex Banach
space E and every closed relatively quasi-nonexpansive mapping reduces to a closed quasi-
nonexpansive mapping. Moreover, J = I (: the identity operator on H ) and �C = PC (: the
projection mapping from H into C). Thus the following corollaries hold:

Theorem 4.1 Let C be a nonempty closed and convex subset of a Hilbert space H. Let
B : H ⇒ H be a maximal monotone operator satisfying D(B) ⊂ C and Jr = (I + r B)−1

for all r > 0. Let θ be a bifunction from C × C to R satisfying the conditions (A1)–(A4), let
A be a continuous monotone mapping of C into H and T : C → C be a quasi-nonexpansive
mapping. Define mappings Frn , Krn : H → C by

Frn x = {z ∈ C : 〈y − z, Az〉 + 1

rn
〈y − z, z − x〉 ≥ 0, ∀y ∈ C}, ∀x ∈ H,

and

Krn x = {z ∈ C : θ(z, y) + 1

rn
〈y − z, z − x〉 ≥ 0, ∀y ∈ C}, ∀x ∈ H.
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Assume that � := F(T ) ∩ B−10 ∩ E P(θ) ∩ V I (A, C) 
= ∅. For an initial point x1 ∈ H
with C1 = C, define the iterative sequence {xn} as follows:

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

zn = Frn xn,

yn = PC (αn xn + (1 − αn)T Jrn zn),

un = Krn yn,

Cn+1 = {z ∈ Cn : ‖z − un‖ ≤ ‖z − xn‖},
xn+1 = PCn+1 x1, ∀n ≥ 1,

(4.1)

where {αn} is a sequence in [0, 1] such that lim infn→∞ αn(1−αn) > 0 and {rn} ⊂ [d,∞) for
some d > 0. Then the sequence {xn} converges strongly to a point p ∈ �, where p = P�x1.

Corollary 4.2 Let C be a nonempty closed and convex subset of a Hilbert space H. Let θ

be a bifunction from C × C to R satisfying the conditions (A1)–(A4), let A be a continuous
monotone mapping of C into H and T : C → C be a quasi-nonexpansive mapping. Define
mappings Frn , Krn : H → C by

Frn x = {z ∈ C : 〈y − z, Az〉 + 1

rn
〈y − z, z − x〉 ≥ 0, ∀y ∈ C}, ∀x ∈ H,

and

Krn x = {z ∈ C : θ(z, y) + 1

rn
〈y − z, z − x〉 ≥ 0, ∀y ∈ C}, ∀x ∈ H.

Assume that � := F(T ) ∩ E P(θ) ∩ V I (A, C) 
= ∅. For an initial point x1 ∈ H with
C1 = C, define the iterative sequence {xn} as follows:

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

zn = Frn xn,

yn = PC (αn xn + (1 − αn)T zn),

un = Krn yn,

Cn+1 = {z ∈ Cn : ‖z − un‖ ≤ ‖z − xn‖},
xn+1 = PCn+1 x1, ∀n ≥ 1,

(4.2)

where {αn} is a sequence in [0, 1] such that lim infn→∞ αn(1−αn) > 0 and {rn} ⊂ [d,∞) for
some d > 0. Then the sequence {xn} converges strongly to a point p ∈ �, where p = P�x1.

Proof Let B = ∂iC as in Theorem 3.1, where iC is the indicator function. For any x ∈ H
and r > 0, we have

p = Jr x ⇐⇒ p + r∂iC (p) � x

⇐⇒ x − p ∈ r∂iC (p)

⇐⇒ iC (y) ≥
〈
y − p,

x − p

r

〉
+ iC (p), ∀y ∈ H

⇐⇒ 0 ≥ 〈y − p, x − p〉, ∀y ∈ C

⇐⇒ p = PC x .

Then we know that B is a maximal monotone operator and Jr = PC for any r > 0. Thus, by
Theorem 4.1, we obtain the conclusion. ��
4.2 Application to a proper lower semi-continuous convex function

In this section, by using Theorem 3.1, we can consider the problem of finding a minimizer
of a proper lower semi-continuous convex function f in a Banach space.
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Theorem 4.3 Let C be a nonempty closed and convex subset of a Banach space E. Let f
be a proper lower semi-continuous convex function. Let θ be a bifunction from C × C to
R satisfying the conditions (A1)-(A4), A be a continuous monotone mapping of C into E
and T : C → C be a quasi-nonexpansive mapping. Define mappings Frn , Krn : E → C by
Theorem 3.1.

Assume that � := F(T ) ∩ ∂ f −10 ∩ E P(θ)∩ V I (A, C) 
= ∅. For an initial point x1 ∈ E
with C1 = C, define the iterative sequence {xn} as follows:

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

zn = Frn xn,

vn = argminw∈E { f (w) + 1
2rn

‖w‖2 + 1
rn

〈w, zn〉},
yn = �C (αn xn + (1 − αn)T vn),

un = Krn yn,

Cn+1 = {z ∈ Cn : φ(z, un) ≤ φ(z, xn)},
xn+1 = �Cn+1 x1, ∀n ≥ 1,

(4.3)

where {αn} is a sequence in [0, 1] such that lim infn→∞ αn(1−αn) > 0 and {rn} ⊂ [d,∞) for
some d > 0. Then the sequence {xn} converges strongly to a point p ∈ �, where p = P�x1.

Proof Since f : E → (−∞,+∞] is a proper convex lower semi-continuous function, then,
we obtain that the subdifferential ∂ f of f is maximal monotone (see Rockafellar [33]). For
r > 0 and x ∈ E , denote Jr be the resolvent of ∂ f . Then we notice that

J x ∈ J Jr x + r∂ f (Jr x)

and hence

0 ∈ ∂ f (Jr x) + 1

r
J Jr x − 1

r
x

= ∂( f + 1

2r
‖ · ‖2 − 1

r
J x)(Jr x). (4.4)

This implies that

Jr x = argminw∈E { f (w) + 1

2r
‖w‖2 + 1

r
〈w, J x〉}, (4.5)

that is, for zn ∈ C ⊂ E , we have vn = argminw∈E { f (w)+ 1
2rn

‖w‖2 + 1
rn

〈w, J zn〉} = Jr zn .
Thus, from Theorem 3.1, we can get the conclusion. The proof is completed. ��
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