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Abstract In this paper, we present the derivation of the multiparametric disaggregation
technique (MDT) by Teles et al. (J. Glob. Optim., 2011) for solving nonconvex bilinear pro-
grams. Both upper and lower bounding formulations corresponding to mixed-integer linear
programs are derived using disjunctive programming and exact linearizations, and incorpo-
rated into two global optimization algorithms that are used to solve bilinear programming
problems. The relaxation derived using the MDT is shown to scale much more favorably than
the relaxation that relies on piecewise McCormick envelopes, yielding smaller mixed-integer
problems and faster solution times for similar optimality gaps. The proposed relaxation also
compares well with general global optimization solvers on large problems.

Keywords Global optimization · Mixed integer linear programming ·
Mixed integer nonlinear programming · Quadratic optimization ·
Disjunctive programming

1 Introduction

Bilinear programs, for the purpose of this paper, can be written as the following nonconvex
nonlinear programming problem:

Min z = f0 =
∑

(i, j)∈BL0

ai j0xi x j + h0(x)
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Subject to

fq =
∑

(i, j)∈BLq

ai jq xi x j + hq(x) ≤ 0 q ∈ Q\{0} (P)

x ∈ S ∩� ⊂ R
n

where hq(x) is convex and twice differentiable, ai jq is a scalar with i ∈ I, j ∈ J , and q ∈ Q
represents the set of all functions fq , including the objective function f0 and all constraints.
BLq is an (i, j)-index set which defines the bilinear terms present in the problem. Although
i �= j for strictly bilinear problems, i = j can be allowed to accommodate quadratic
problems. The set S ⊂ R

n is convex, and � ⊂ R
n is an n-dimensional hyperrectangle

defined in terms of the initial variable bounds x L and xU :

� =
{

x ∈ R
n : 0 ≤ x L ≤ x ≤ xU

}

The global optimization of bilinear programs of the form of (P) is important in such areas
as water networks and petroleum blending operations [1–4]. Nonconvex, bilinear constraints
are required to model the mixing of various streams in these systems, and are in some cases the
only nonlinearities in the models. The pooling problem, stemming from the original Haverly
paper [5], contains these bilinear constraints and has received much attention in the literature
[1,2,6–9]. Recently, Misener and Floudas have demonstrated a novel logarithmic relaxation
for modeling bilinear terms with piecewise McCormick envelopes while addressing various
classes of pooling problems [1].

Water network optimization problems containing bilinear terms have also received much
attention in the literature [3,4,10–12]. The same blending constraints present in the pooling
problem are present in water network problems, and thus numerous advances in solving
bilinear programs have been made addressing these problems.

The global optimization of general nonconvex bilinear programs has received significant
attention in the literature [13–27]. The convex McCormick envelopes [1] coupled with spatial
branch and bound search frameworks have been the basis for many of these global optimiza-
tion techniques, with piecewise McCormick envelopes being a more recent development.
Variations of this approach have been suggested, generalizing the convex envelopes to piece-
wise over- and under-estimators [1,17]. Novel ways of representing bilinear terms through
reformulation have been another approach reported in the literature [16]. Misener et al. [1],
building on the work of Vielma and Nemhauser [28,29], have shown that a relaxation of the
bilinear terms can be achieved with a logarithmic number of binary variables. Teles et al. [30]
have introduced a technique to approximate polynomial constraints that exhibits a similar
property, where the main element is the discretization of a subset of the variables.

In this paper, we show that the mixed-integer constraints of the multiparametric disaggre-
gation technique (MDT) presented in [30], when applied to the bilinear terms in program (P),
can be derived from disjunctive programming and convex hull reformulation. This approxi-
mation technique can be used under some conditions to obtain an upper bound. As the main
novelty, we propose a rigorous lower bounding formulation derived from the upper bounding
constraints. After proving that the solution from the upper and lower bounding formulations
converge to that of the original nonlinear formulation in the limit of an infinite number of dis-
cretization intervals, two global optimization algorithms are proposed based on such bounds.
Finally, we conclude with a comparison of this new relaxation approach and the one based
on piecewise McCormick envelopes, and report computational results on small and large
problems.
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2 Discretization with multiparametric disaggregation

Given a nonconvex bilinear term wi j = xi · x j , the MDT described by Teles et al. [30] can
be used to obtain an upper bound on problem (P). The complete formulation can be derived
from a generalized disjunctive programming (GDP) model [31] followed by a convex hull
reformulation [33] and exact linearization [32]. For simplicity in the notation, we first rewrite
the bilinear product wi j = xi · x j as a single bilinear term w = u · v. This product can be
represented exactly with the following constraints and disjunction:

w = u · v (1)

v =
∑

�∈Z

λ� (2)

9∨
k=0

[
λ� = 10� · k

]
∀ � ∈ Z (3)

where v is discretized through the disjunction in (3) that selects one digit k ∈ K =
{0, 1, . . ., 9} for each power � ∈ Z. Here we assume a basis of 10, although other bases
can be selected [11]. Note that since (3) is defined over the domain of all the integer numbers,
this implies an infinite number of disjunctions. Furthermore, v can represent any positive real
number.

First, we consider the convex hull reformulation [33] of the disjunction in (3) after which
we introduce the disaggregated variables,

λ� =
9∑

k=0

λ̂k,� ∀� ∈ Z (4)

λ̂k,� = 10� · k · zk,� ∀ � ∈ Z, k ∈ K (5)
9∑

k=0

zk,� = 1 ∀ � ∈ Z (6)

zk,� ∈ {0, 1} ∀ � ∈ Z, k ∈ K (7)

Substituting (5) into (4) and then into (2) leads to the fully discretized (but still exact
representation) of v:

v =
∑

�∈Z

9∑

k=0

10� · k · zk,� (8)

Considering the product w = u · v by substituting (8) into (1) leads to (9), which involves
nonlinear terms u · zk,�.

w = u ·
[
∑

�∈Z

9∑

k=0

10� · k · zk,�

]
(9)

Performing an exact linearization [32], we introduce new continuous variables ûk,� =
u · zk,� so that:

w =
∑

�∈Z

9∑

k=0

10� · k · ûk,� (10)
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Since u · zk,� =
{

0 if zk,� = 0
u if zk,� = 1

and ûk,� is non-negative, we introduce the following

lower and upper bounding constraints, where uU and uL are the non-negative upper and
lower bounds on u.

uL · zk,� ≤ ûk,� ≤ uU · zk,� ∀� ∈ Z, k ∈ K (11)

Finally, multiplying equation (6) by u and replacing the bilinear terms by the new contin-
uous variables, results in (12). The full set of mixed integer linear constraints for the exact
representation of bilinear product w = u · v is thus given by Eqs. (6–8) and (10–12).

u =
9∑

k=0

ûk,� ∀� ∈ Z (12)

We should note that the same model formulation can be obtained by the special structured
RLT reformulation as described in Sherali et al. [48]. Constraints (6–8) are directly linked to
the choice of using a base-10 representation for variable v. Then, the bounds of variable u
are known: uL ≤ u ≤ uU . Multiplying the lower and upper bounding constraints u −uL ≥ 0
and uU − u ≥ 0 by zk,� ≥ 0 and replacing the bilinear term u · zk,� by ûk,�, leads to (11).
Performing the same variable replacement in the constraint defining variable w, results in
(10) while (12) can be obtained as previously described.

2.1 Upper bounding formulation

Since in practice it is infeasible to compute the infinite sums over all integers, we represent
v to a finite level of precision, v′, leading to a continuous but approximate representation of
the bilinear term, w′. The constraints in (8) and (10) are modified in (13–14) to allow for a
maximum power of 10 (P) and a minimum power of 10 (p). For the remaining constraints,
(6–7) and (11–12), it suffices to replace � ∈ Z with � ∈ L = {p, p + 1, . . . , P}. These sets
of constraints correspond to the equations proposed by Teles et. al. [30]:

w′ =
P∑

�=p

9∑

k=0

10� · k · ûk,� (13)

v′ =
P∑

�=p

9∑

k=0

10� · k · zk,� (14)

When we incorporate them into problem (P) by redefining wi j = xi · x j , and selecting x j as
the variable on which discretization is performed, the resulting problem (P′) will represent a
mixed-integer approximation to the original problem:

Min z′ = f0 =
∑

(i, j)∈BL0

ai j0wi j + h0(x)

Subject to

fq(x) =
∑

(i, j)∈BLq

ai jqwi j + hq(x) ≤ 0 q ∈ Q\{0} (P′)
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Fig. 1 Feasible region for a
bilinear curve
xi · x j = 0.1, p = −2, P = −1.
The solid curve represents the
exact bilinear curve, while the
dots represent the approximated
(and incomplete) feasible region
resulting from the upper
bounding formulation

Fig. 2 Feasible region for a
bilinear surface. The surface is
the exact bilinear curve, while the
solid lines represent the reduced
feasible region resulting from the
upper bounding formulation for
p = P = −1

wi j =
P∑

�=p

9∑

k=0

10� · k · x̂i jk� ∀(i, j) ∈ BLq , q ∈ Q

x j =
P∑

�=p

9∑

k=0

10� · k · z jk� ∀ j ∈ { j |(i, j) ∈ BLq , q ∈ Q}

xi =
9∑

k=0

x̂i jk� ∀(i, j) ∈ BLq , q ∈ Q, � ∈ L

x L
i · z jk� ≤ x̂i jk� ≤ xU

i · z jk� ∀(i, j) ∈ BLq , q ∈ Q, k ∈ K , � ∈ L
9∑

k=0

z jk� = 1 ∀ j ∈ { j |(i, j) ∈ BLq , q ∈ Q}, � ∈ L

z jk� ∈ {0, 1} ∀ j ∈ { j |(i, j) ∈ BLq , q ∈ Q}, k ∈ K , � ∈ L

x ∈ S ∩ � ⊂ R
n

where x j and wi j represent discrete and continuous approximations to the variables, respec-
tively. Note that if the convex functions hq(x) are linear, problem (P′) represents a mixed
integer linear program (MILP). Otherwise it corresponds to an MINLP.
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Further, note that problem (P′) is a restricted version of problem (P), or equivalently
problem (P) is a relaxation of problem (P′). It then follows that the solution of problem (P′)
either yields an upper bound on problem (P) such that z′ = zU ≥ z, or else problem (P′) is
infeasible. This restricted feasible region can be seen in Figs. 1 and 2.

2.2 Infeasibilities in the discretized problem

The mixed-integer approximation problem (P′) can be infeasible even if the original problem
(P) is feasible. For example, if bounds such as 10p−1 ≤ x j ≤ 2 × 10p−1 are enforced, (P′)
will be infeasible, while such a constraint is completely valid and will not necessarily result
in an infeasible problem (P). Thus, the parameters p and P must be chosen appropriately to
avoid such infeasibilities.

Some general guidelines for ensuring precision-based feasibility can be established. For
example, the largest power of 10 (P) must be large enough such that 10P is of the same order
of magnitude as the upper bound on x j . More precisely: P = �log10 xU

j �.
Additionally, p must be small enough to ensure that at least one (and preferably many)

discretization points lie between the lower and upper bounds for x j . Thus, p ≤ P is the
absolute minimum requirement, but feasibility is more likely as p is decreased. Note that
these guidelines do not guarantee feasibility of (P′) in all cases, but represent the minimum
level of precision needed given reasonable bounds on x j .

3 Lower bounding with multiparametric disaggregation

To obtain a lower bounding problem using multiparametric disaggregation, we first note that
in the discretized problem, there always exists a gap between discretization points for a finite
p. Thus, we can introduce a slack variable �x j such that x R

j = x ′
j + �x j , where x ′

j is the

discretized representation of x j from Sect. 2, x R
j is the continuous representation of x j and

the slack variable �x j is bounded between 0 and 10p .
Again switching to the notation w = u ·v for the bilinear term, we have for the continuous

representation of v, denoted as vR :

vR =
P∑

�=p

9∑

k=0

10� · k · zk,� + �v (15)

0 ≤ �v ≤ 10p (16)

For the continuous representation of the bilinear term, wR , note that:

wR = u · vR = u · (
v′ + �v

) = w′ + u · �v = w′ + �w (17)

where w′ and v′ are given by (13–14). The slack variable �w replaces the bilinear term u ·�v

that can be relaxed using the McCormick envelope, (18–19), which in this case coincides
with the RLT bound factor products uL ≤ u ≤ uU and 0 ≤ �v ≤ 10p:

uL · �v ≤ �w ≤ uU · �v (18)(
u − uU

)
· 10p + uU · �v ≤ �w ≤

(
u − uL

)
· 10p + uL · �v (19)
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Introducing these constraints into Problem (P), and expressing the variables in terms of
the original variables wi j = xi · x j , we obtain the new optimization problem, (PR):

Min zR = f0 =
∑

(i, j)∈BL0

ai j0wi j + h0(x)

subject to

fq(x) =
∑

(i, j)∈BLq

ai jqwi j + hq(x) ≤ 0 q ∈ Q\{0}

wi j =
P∑

�=p

9∑

k=0

10� · k · x̂i jk� + �wi j ∀(i, j) ∈ BLq , q ∈ Q

x j =
P∑

�=p

9∑

k=0

10� · k · z jk� + �x j ∀ j ∈ { j |(i, j) ∈ BLq , q ∈ Q} (PR)

xi =
9∑

k=0

x̂i jk� ∀(i, j) ∈ BL Q, q ∈ Q, � ∈ L

x L
i · z jk� ≤ x̂i jk� ≤ xU

i · z jk� ∀(i, j) ∈ BLq , q ∈ Q, � ∈ L , k ∈ K
9∑

k=0

z jk� = 1 ∀ j ∈ { j |(i, j) ∈ BLq , q ∈ Q}, � ∈ L

x L
i · �x j ≤ �wi j ≤ xU

i · �x j

�wi j ≤ (
xi − x L

i

) · 10p + x L
i · �x j

�wi j ≥ (
xi − xU

i

) · 10p + xU
i · �x j

⎫
⎪⎬

⎪⎭
∀(i, j) ∈ BLq , q ∈ Q

0 ≤ �x j ≤ 10p ∀ j ∈ { j |(i, j) ∈ BLq , q ∈ Q}
z jk� ∈ {0, 1} ∀ j ∈ { j |(i, j) ∈ BLq , q ∈ Q}, k ∈ K , � ∈ L

x ∈ S ∩ � ⊂ R
n

While (PR) does not exactly represent the product wi j = xi · x j and is feasible for values of
wi j , xi , and x j that do not satisfy wi j = xi · x j , the bilinear term is feasible in (PR). Thus,
(PR) is a relaxation of (P). The relaxed feasible region resulting from (PR) can be seen in
Figs. 3 and 4.

The following property can be readily established from the above discussion:

Property 1 The solution of problem (PR) yields a lower bound for problem (P), i.e. zR ≤ z.

4 Discussion of global optimization algorithms

The upper and lower bounding schemes described can be combined into a global optimization
algorithm. First, the following property can be established:

Property 2 As p approaches−∞, z′ approaches zR .

Proof As p approaches –∞ in (PR)

lim
p→−∞ �x j = lim

p→−∞ 10p = 0

lim
p→−∞ �wi j = xU

i · lim
p→−∞ �x j =

(
xi − x L

i

)
· lim

p→−∞ 10p + x L
i · lim

p→−∞ �x j = 0
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Fig. 3 Plot of the lower
bounding feasible region for
wi j = 0.1 and p = P = −1. The
solid line is the true curve, while
the dotted lines represent the
boundaries of the relaxed feasible
region of (PR). Note the
similarities to piecewise
McCormick envelopes

Fig. 4 Feasible region of the
relaxed problem (PR). The
surface is the exact bilinear curve,
while the envelopes represent the
relaxed feasible region resulting
from the lower bounding
formulation for p = P = −1

Thus, since the variables �x j and �wi j are eliminated, this yields problem (P′), and
hence z′ approaches zR . ��

From Property 2, we can establish that as precision is increased (i.e. p approaches−∞),
both (P′) and (PR) converge to the same value. Assuming P is large enough such that
10P ≥ xU

j , we can further state that (P′) and (PR) converge such that z′ = zR = z.

4.1 Algorithm 1

The first global optimization algorithm that can be established from the aforementioned upper
and lower bounding is as follows. First, we start at some coarse level of discretization such
that P ≥ p, and solve both (PR) and (P′). If the difference in solutions to the upper and lower
bounding problems is sufficiently small, then the algorithm terminates; otherwise, precision
is increased and the problems are resolved. The algorithm is then as follows:

Algorithm 1

Step 0. Choose p = P = �log10 xU
j �

Step 1. Solve (PR) to obtain the lower bound zR .
Step 2. Solve (P′) to obtain the upper bound z′. If (P′) is infeasible, let z′ = +∞.
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Step 3. If (z′−zR)/zR ≤ ε, STOP, the solution is globally optimal. Otherwise, set p = p−1,
and return to step 1.

4.2 Algorithm 2

While Algorithm 1 follows most naturally from the problems (P′) and (PR), it has several
shortcomings. Notably, because (P′) and (PR) are fairly similar and increase similarly in
problem size as precision is added, solving (P′) and (PR) repeatedly becomes increasingly
expensive. Thus, an alternative method for obtaining an upper bound is to use a local NLP
algorithm in place of solving the problem (P′).

Algorithm 2

Step 0. Choose p = P = �log10 xU
j �

Step 1. Solve (PR) to obtain the lower bound zR .
Step 2. Solve (P) using a local NLP algorithm to obtain some upper bound z using the

solution to (PR) as a starting point.
Step 3. If (z−zR)/zR ≤ ε, STOP, the solution is globally optimal. Otherwise, set p = p−1

and return to step 1.

Algorithm 2 is generally more computationally efficient than Algorithm 1, as the solution
of (P) using a local NLP algorithm is obtained much faster than the increasingly large MILP
that (P′) becomes as P − p grows.

4.3 Extensions to MINLP

The algorithms in Sects. 4.1 and 4.2 can be readily extended for solving MINLPs with the
following general form:

Min z = f0(x, y)

subject to

fq(x, y) ≤ 0 q ∈ Q\{0}

fq(x, y) =
∑

(i, j)∈BLq

ai jq xi x j + hq(x, y) q ∈ Q (P-MINLP)

x ∈ S ∩ � ⊂ R
n

y ∈ {0, 1}
where hq(x, y) is jointly convex in x and y. For most cases in practice the variables y appear
in linear form in these terms [34].

Analogous problems (P′-MINLP) and (PR-MINLP) can be derived, and Algorithm 1
can be used without modification. However, Algorithm 2 requires some modification, as
(P-MINLP) cannot be solved using a local NLP algorithm because it is an MINLP. A heuristic
can be used to compute the upper bound as in Algorithm 2:

Algorithm 3

Step 0. Choose p = P = �log10 xU
j �

Step 1. Solve (PR-MINLP) to obtain zR .
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Step 2. Fix the binary variables y in (P-MINLP) to the values found by the solution of
(PR-MINLP) in Step 1, reducing it to an NLP. Solve (P-MINLP) with these fixed
binary variables using a local NLP algorithm to obtain some z using the solution to
(PR-MINLP) as a starting point.

Step 3. If (z−zR)/zR ≤ ε, STOP, the solution is globally optimal. Otherwise, set p = p−1
and return to step 1.

A disadvantage of this algorithm is that it could take, in the worst case, an infinite number of
iterations to converge. By fixing the binary variables to that of the solution to (PR-MINLP),
(P-MINLP) can be rendered infeasible, and algorithm would continue until (PR-MINLP)
has enough discretization points to exactly represent (P-MINLP). If this occurs, heuristics
or other approaches may be utilized to obtain an upper bound in place of solving (P-MINLP)
with fixed binary variables. However, in practice, this is unlikely to occur.

5 Comparison with piecewise McCormick envelopes

A common approach to solving bilinear programs of the form (P) is to bound the bilinear terms
using McCormick convex envelopes [35]. This formulation results in a lower bounding LP if
the only nonlinearities are bilinear, or a lower bounding convex NLP if there are remaining
convex nonlinearities. For each bilinearity wi j = xi · x j , we introduce instead the following
constraints:

wi j ≥ xi · x L
j + x L

i · x j − x L
i · x L

j

wi j ≥ xi · xU
j + xU

i · x j − xU
i · xU

j

wi j ≤ xi · x L
j + xU

i · x j − xU
i · x L

j

wi j ≤ xi · xU
j + x L

i · x j − x L
i · xU

j

∀(i, j) ∈ BLq , q ∈ Q (20)

This relaxation yields a lower bound on problem (P). However, this lower bound can be
weak depending on the bounds on xi and x j . To improve the quality of the lower bound,
these convex envelopes can be used on discretized portions of the variable range. Thus,
piecewise McCormick envelopes can be introduced in (P) to obtain a tighter lower bound at
the cost of becoming an MILP or convex MINLP [10,17,36]. The envelopes, defined over a
set of N points on the domain of variable x j , can be represented by the following disjunctive
constraints:

∨N
n=1

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

y jn
wi j ≥ xi · x L

jn + x L
i · x j − x L

i · x L
jn ∀{i |(i, j) ∈ BLq , q ∈ Q}

wi j ≥ xi · xU
jn + xU

i · x j − xU
i · xU

jn ∀{i |(i, j) ∈ BLq , q ∈ Q}
wi j ≥ xi · x L

jn + xU
i · x j − xU

i · x L
jn ∀ {

i | (i, j) ∈ BLq , q ∈ Q
}

wi j ≥ xi · xU
jn + x L

i · x j − x L
i · xU

jn ∀{i |(i, j) ∈ BLq , q ∈ Q}
x L

jn ≤ x j ≤ xU
jn

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

∀{ j |(i, j) ∈ BLq , q ∈ Q}

x L
i ≤ xi ≤ xU

i ∀{i |(i, j) ∈ BLq , q ∈ Q}
x L

jn = x L
j +

(
xU

j − x L
j

)
· (n − 1)/N

xU
jn = x L

j +
(

xU
j − x L

j

)
· n/N

⎫
⎬

⎭ ∀ {
j | (i, j) ∈ BLq , q ∈ Q

}
, n ∈ {1, . . . , N }

(21)
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Applying the convex hull reformulation [33] for the above disjunctive constraints yields

wi j ≥ ∑N
n=1

(
x̂i jn · x L

jn + x L
i · x jn −x L

i · x L
jn · y jn

)

wi j ≥ ∑N
n=1

(
x̂i jn · xU

jn + xU
i · x̂ jn − xU

i · xU
jn · y jn

)

wi j ≤ ∑N
n=1

(
x̂i jn · x L

jn + xU
i · x̂ jn − xU

i · x L
jn · y jn

)

wi j ≤ ∑N
n=1

(
x̂i jn · xU

jn + x L
i · x̂ jn − x L

i · xU
jn · y jn

)

xi = ∑N
n=1 x̂i jn

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎭

∀ (i, j) ∈ BLq , q ∈ Q

x j = ∑N
n=1 x̂ jn∑N

n=1 y jn = 1

}
∀ {

j | (i, j) ∈ BLq , q ∈ Q
}

x L
i · y jn ≤ x̂i jn ≤ xU

i · y jn∀ (i, j) ∈ BLq , q ∈ Q, n ∈ {1, . . . , N }
x L

jn · y jn ≤ x̂ jn ≤ xU
jn · y jn

y jn ∈ {0, 1}
}

∀ {
j | (i, j) ∈ BLq , q ∈ Q

}
, n ∈ {1, . . . , N } (22)

By adding these piecewise McCormick envelope constraints (22) to problem (P), we can
define a new relaxed MILP or convex MINLP, (PR-PCM). Furthermore, we can compare
the performance of (PR-PCM) to the lower bounding problem derived from multiparametric
disaggregation, (PR).

6 Illustrative example (P1)

We first consider as an example the bilinear program by Quesada and Grossmann [37] and
originally reported by Al-Khayyal and Falk [18]:

Min f = −x1 + x1x2 − x2

subject to

− 6x1 + 8x2 ≤ 3 (P1)

3x1 − x2 ≤ 3

0 ≤ x1, x2 ≤ 1.5

The global optimum of this bilinear program is f = −1.08333 at (1.165864, 0.497580).
Two other local minima correspond to: f = −1.0 at (1, 1), and f = −1.005 at (0.917,
1.062).

6.1 Lower bounding problems

In order to compare the lower bounds predicted by multiparametric disaggregation and piece-
wise McCormick envelopes, we solve the relaxation problems (PR) and (PR-PCM) result-
ing from multiparametric disaggregation and piecewise McCormick, respectively. For the
specific example Problem (P1), we can derive analogous relaxed problems (P1R) and (P1R-
PCM) using the MDT and piecewise McCormick envelopes, respectively. Note that x1 is the
variable being discretized.

Problem size and computational results are shown in Table 1 for the lower bounds
predicted by (P1R) at P = 0 and p = {0,−1, . . .,−6} and (P1R-PCM) at N =
{1, 15, 150, 1,500, 15,000}. Solving (P1R-PCM) at various levels of discretization, it
becomes clear that problem size increases approximately exponentially with each order of
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Min f = −x1 + w12 − x2
subject to
−6x1 + 8x2 ≤ 3
3x1 − x2 ≤ 3
0 ≤ x1, x2 ≤ 1.5

w12 = ∑P
�=p

∑9
k=0 10� · k · x̂k,� + �w12 w12 ≤ ∑N

n=1 1.5x̂1n + x̂2n x L
1n − 1.5x L

1n yn

x1 = ∑P
�=p

∑9
k=0 10� · k · zk,� + �x1 w12 ≤ ∑N

n=1 x̂2n xU
1n

x2 = ∑9
k=0 x̂k,� ∀� ∈ L w12 ≥ ∑N

n=1 x̂2n x L
1n

x̂k,� ≤ 1.5 · zk,�∀� ∈ L , k ∈ K w12 ≥ ∑N
n=1 1.5x̂1n + x̂2n xU

1n − 1.5xU
1n yn∑9

k=0 zk,� = 1 ∀� ∈ L x1 = ∑N
n=1 x̂1n

0 ≤ �w12 ≤ 1.5�x1 x2 = ∑N
n=1 x̂2n

(x2 − 1.5) · 10p + 1.5�x1 ≤ �w12 ≤ x2 · 10p yn x L
1n ≤ x̂1n ≤ yn xU

1n∀n = 1, 2 . . . N
0 ≤ �x1 ≤ 1.5 · 10p 0 ≤ x̂2n ≤ 1.5yn∀n = 1, 2 . . . N
zk,� ∈ {0, 1}∀� ∈ L , k ∈ K

∑N
n=1 yn = 1

0 ≤ x̂k,� ≤ 1.5∀� ∈ L , k ∈ K x L
1n = x L

1 + xU
n − x L

n /N · (n − 1)∀n = 1, 2 . . . N
xU

1n = x L
1 + xU

n − x L
n /N · n∀n = 1, 2 . . . N

yn ∈ {0, 1}∀n = 1, 2 . . . N
(P1R) (P1R-PCM)

magnitude decrease in the optimality gap. However, this is not the case when solving (P1R)
since as precision is added, i.e. p is decreased, a linear relationship holds. Note that the dis-
cretization level of MDT at p = −1 matches that of PCM at N = 15(p = −2 is equivalent
to N = 150 and so on) and that the lower bounds are exactly the same. Upper bounds are also
reported by using as a starting point the solution of the lower bounding relaxation problem
as in Algorithm 2 in Sect. 4.2. Thus, the MDT columns are equivalent to the iterations of the
algorithm with the reported CPU time being the total time required for the lower and upper
bounding problems. These times would need to be accumulated to compare Algorithm 2
directly to BARON, unless the discretization level (p) is chosen a priori. Results for solving
the original NLP (P1) with the global optimization solver BARON are reported in the second
column.

As seen in Table 1, the relaxed problems (P1R) and (P1R-PCM) are considerably larger
than the original NLP (P1) since the addition of both continuous and binary variables increases
problem size. However, note that the multiparametric disaggregation problem (P1R) requires
fewer additional continuous variables and fewer constraints than when utilizing piecewise
McCormick envelopes in (P1R-PCM). For a single McCormick envelope, a relatively weak
lower bound of −1.5 is obtained leading to an upper bound that is in fact a suboptimal solution.
Multiparametric disaggregation with p = −4 approaches an optimality gap of 0.003 %, while
piecewise McCormick envelopes, even with 1,500 partitions, only approach an optimality
gap of 0.034 %. Further discretization and refinement of the solution is quickly solved using
multiparametric disaggregation, as the p = −5 and p = −6 problems are solved in <1.2 s
and fewer than 130 variables. In contrast, increasing the number of partitions to 15,000 in
(P1R-PCM), leads to a MILP that cannot be solved in 1-h of computational time.

7 Numerical experiments

The performance of the underestimating problems from multiparametric disaggregation (PR)
and piecewise McCormick (PR-PCM) is further evaluated through the solution of three

123



J Glob Optim (2013) 57:1039–1063 1051

Ta
bl

e
1

C
om

pa
ri

so
n

be
tw

ee
n

m
ul

tip
ar

am
et

ri
c

di
sa

gg
re

ga
tio

n
(M

D
T

)
an

d
pi

ec
ew

is
e

M
cC

or
m

ic
k

(P
C

M
),

pr
ob

le
m

(P
1)

.F
or

M
D

T,
P

=
0

is
us

ed

M
et

ho
d

B
A

R
O

N
a

M
D

T
M

D
T

M
D

T
M

D
T

M
D

T
M

D
T

M
D

T
PC

M
PC

M
PC

M
PC

M
PC

M

p
or

N
–

0
−1

−2
−3

−4
−5

−6
1

15
15

0
1,

50
0

15
,0

00
B

in
ar

y
va

ri
ab

le
s

0
2

12
22

32
42

52
62

1
15

15
0

1,
50

0
15

,0
00

To
ta

lv
ar

ia
bl

es
3

10
30

50
70

90
11

0
13

0
7

49
45

4
4,

50
4

45
,0

04

E
qu

at
io

ns
3

15
37

59
81

10
3

12
5

14
7

14
70

61
0

6,
01

0
60

,0
10

L
ow

er
bo

un
d

(C
PL

E
X

)
−1

.0
83

33
−1

.3
33

33
−1

.1
16

67
−1

.0
86

67
−1

.0
83

67
−1

.0
83

37
−1

.0
83

34
−1

.0
83

33
−1

.5
−1

.1
16

67
−1

.0
86

67
−1

.0
83

67
−1

.3
88

48

U
pp

er
bo

un
d

(C
O

N
O

PT
)

−1
.0

83
33

−1
.0

83
33

−1
.0

83
33

−1
.0

83
33

−1
.0

83
33

−1
.0

83
33

−1
.0

83
33

−1
.0

83
33

−1
.0

05
21

−1
.0

83
33

−1
.0

83
33

−1
.0

83
33

−1
.0

83
33

O
pt

im
al

ity
ga

p
(%

)
0.

00
00

18
.8

2.
98

0.
31

0.
03

4
0.

00
3

0.
00

03
0.

00
00

33
.0

2.
98

0.
31

0.
03

4
22

.0

C
PU

tim
e

(s
)

0.
34

0.
24

0.
24

0.
23

0.
25

0.
25

0.
58

1.
19

0.
22

0.
25

0.
68

7.
70

3,
60

0

a
A

pp
lie

d
di

re
ct

ly
to

(P
1)

It
al

ic
va

lu
es

in
di

ca
te

th
at

th
e

m
ax

im
um

co
m

pu
ta

tio
na

lt
im

e
w

as
re

ac
he

d

123



1052 J Glob Optim (2013) 57:1039–1063

Ta
bl

e
2

C
om

pa
ri

so
n

be
tw

ee
n

m
ul

tip
ar

am
et

ri
c

di
sa

gg
re

ga
tio

n
(M

D
T

)
an

d
pi

ec
ew

is
e

M
cC

or
m

ic
k

(P
C

M
),

pr
ob

le
m

(P
2)

M
et

ho
d

B
A

R
O

N
a

M
D

T
M

D
T

M
D

T
M

D
T

M
D

T
PC

M
PC

M
PC

M

p
or

N
–

(0
,0

,0
)

(−
1,

−1
,
−1

)
(−

2,
−2

,
−2

)
(−

3,
−3

,
−3

)
(−

4,
−4

,
−4

)
(2

4,
12

,1
8)

(2
40

,1
20

,1
80

)
(2

,4
00

,1
,2

00
,1

,8
00

)
B

in
ar

y
va

ri
ab

le
s

0
47

77
10

7
13

7
16

7
54

54
0

5,
40

0

To
ta

lv
ar

ia
bl

es
9

23
8

37
8

51
8

65
8

79
8

29
6

2,
78

0
27

,6
20

E
qu

at
io

ns
10

41
3

64
7

88
1

1,
11

5
1,

34
9

51
3

4,
50

9
44

,4
69

L
ow

er
bo

un
d

(C
PL

E
X

)
10

12
2.

48
10

12
1.

33
10

12
1.

33
10

12
2.

21
10

12
2.

46
10

12
2.

49
10

12
1.

84
10

12
1.

84
10

12
2.

29

U
pp

er
bo

un
d

(C
O

N
O

PT
)

10
12

2.
49

10
12

2.
49

10
12

2.
49

10
12

2.
49

10
12

2.
49

10
12

2.
49

10
12

2.
49

10
12

2.
49

10
12

2.
49

O
pt

im
al

ity
ga

p
(%

)
0.

00
01

0.
01

1
0.

01
1

0.
00

3
0.

00
03

0.
00

00
0.

00
6

0.
00

6
0.

00
2

C
PU

T
im

e
(s

)
0.

35
0.

43
0.

35
0.

56
0.

66
1.

11
0.

44
1.

42
13

3

a
A

pp
lie

d
di

re
ct

ly
to

(P
2)

Fo
r

M
D

T,
P

=
(2

,
1,

1)
is

us
ed

123



J Glob Optim (2013) 57:1039–1063 1053

Ta
bl

e
3

C
om

pa
ri

so
n

be
tw

ee
n

m
ul

tip
ar

am
et

ri
c

di
sa

gg
re

ga
tio

n
(M

D
T

)
an

d
pi

ec
ew

is
e

M
cC

or
m

ic
k

(P
C

M
),

pr
ob

le
m

(P
3)

B
A

R
O

N
a

M
D

T
M

D
T

M
D

T
M

D
T

PC
M

PC
M

P
=

(4
,
4,

4)
(P

3a
)

p
or

N
(2

,2
,2

)
(1

,1
,1

)
(0

,0
,0

)
(−

1,
−1

,
−1

)
(9

9,
90

,9
0)

(9
90

,9
00

,9
00

)

L
ow

er
bo

un
d

(C
PL

E
X

)
70

49
.2

41
63

78
.0

38
69

78
.5

26
70

42
.7

66
70

48
.5

80
63

78
.0

38
55

44
.5

92

U
pp

er
bo

un
d

(C
O

N
O

PT
)

70
49

.2
48

70
49

.2
48

70
49

.2
48

70
49

.2
48

70
49

.2
48

70
49

.2
48

70
49

.2
48

O
pt

im
al

ity
ga

p
(%

)
0.

00
01

10
.5

1.
01

0.
09

0.
00

9
10

.5
27

.1

C
PU

tim
e

(s
)

0.
44

1.
28

18
.1

27
8

2,
67

3
7.

32
3,

60
0

P
=

(4
,
3,

3,
3)

(P
3b

)
p

or
N

(1
,1

,1
,1

)
(0

,0
,0

,0
)

(−
1,

−1
,
−1

,
−1

)
(−

2,
−2

,
−2

,
−2

)
(9

00
,9

9,
99

,9
9)

(9
00

0,
99

0,
99

0,
99

0)

L
ow

er
bo

un
d

(C
PL

E
X

)
66

10
.9

73
70

02
.3

03
70

44
.5

18
70

48
.7

75
66

10
.9

73
27

32
.4

60

U
pp

er
bo

un
d

(C
O

N
O

PT
)

70
49

.2
48

70
49

.2
48

70
49

.2
48

70
49

.2
48

70
49

.2
48

70
49

.2
48

O
pt

im
al

ity
ga

p
(%

)
6.

63
0.

67
0.

06
7

0.
00

67
6.

63
15

8

C
PU

tim
e

(s
)

2.
26

31
.8

18
4

1,
89

8
43

6
3,

60
0

P
=

(3
,
3,

3,
3,

3)
(P

3c
)

p
or

N
(1

,1
,1

,1
,1

)
(0

,0
,0

,0
,0

)
(−

1,
−1

,
−1

,
−1

,
−1

)
(−

2,
−2

,
−2

,
−2

,
−2

)
(9

9,
99

,9
9,

99
,9

9)
(9

90
,9

90
,9

90
,9

90
,9

90
)

L
ow

er
bo

un
d

(C
PL

E
X

)
65

91
.3

93
69

99
.4

66
70

44
.2

24
70

48
.7

45
65

91
.3

93
29

09
.4

01

U
pp

er
bo

un
d

(C
O

N
O

PT
)

70
49

.2
48

70
49

.2
48

70
49

.2
48

70
49

.2
48

70
49

.2
48

70
49

.2
48

O
pt

im
al

ity
ga

p
(%

)
6.

95
0.

71
0.

07
0.

00
7

6.
95

14
2

C
PU

tim
e

(s
)

1.
18

6.
24

45
.7

52
0

8.
34

3,
60

0

a
A

pp
lie

d
di

re
ct

ly
to

(P
3)

It
al

ic
va

lu
es

in
di

ca
te

th
at

th
e

m
ax

im
um

co
m

pu
ta

tio
na

lt
im

e
w

as
re

ac
he

d

123



1054 J Glob Optim (2013) 57:1039–1063

additional small test problems from the literature for different accuracy levels. Since in all
problems the functions hq(x) in (P) are linear, the resulting bounding MILP problems were
solved in GAMS 23.8.2 [38] using CPLEX 12.4 (1 thread) [39]. Default options were used
except for the relative optimality tolerance, equal to 10−6 and a maximum computational
effort equal to 3,600 CPU seconds. Similarly as in problem (P1), the original nonlinear
programs were solved by CONOPT 3 [40], following initialization with the values from the
MILP, and by BARON 10.2 [41]. We also report results for larger problems in the areas of
water networks and multiperiod blending. Such problems were also solved by GloMIQO
1.0.0 [49]. The computational experiments were performed on an Intel i7 950 processor
running at 3.07 GHz, with 8 GB of RAM, running Windows 7.

7.1 Small test problems

7.1.1 P2

Problem (P2) is originally from the compilation of test problems by Rijckaert and Martens
[42] but has been converted to a bilinear program following simple transformations and addi-
tion of new variables. The global optimal solution is f = 10122.4932 at (78, 33, 29.995740,
45, 36.775327, 0.030303, 27.264982, 0.033338). Variables x1, x2 and x3 are selected for
parameterization/partitioning.

min f = 5.3578x2
3 + 0.8357x1x5 + 37.2392x1

s.t. 0.00002584x3x5 − 0.00006663x2x5 − 0.0000734x1x4 ≤ 1

0.000853007x2x5 + 0.00009395x1x4 − 0.00033085x3x5 ≤ 1

1330.3294x6 − 0.42x1 − 0.30586x7 ≤ x5

0.00024186x2x5 + 0.00010159x1x2 + 0.00007379x2
3 ≤ 1

2275.1327x8 − 0.2668x1 − 0.40584x4 ≤ x5

0.00029955x3x5 + 0.00007992x1x3 + 0.00012157x3x4 ≤ 1

1 = x2x6

x7x2 = x2
3

1 = x8x3

78 ≤ x1 ≤ 102, 33 ≤ x2 ≤ 45, 27 ≤ x3 ≤ 45, 27 ≤ x4 ≤ 45, 27 ≤ x5 ≤ 45

1

45
≤ x6 ≤ 1

33
,

272

45
≤ x7 ≤ 452

33
,

1

45
≤ x8 ≤ 1

27
.

7.1.2 P3

Test problem (P3) corresponds to Problem 106 in Hock and Schittowski [43]. While the
objective function and the first three constraints are linear, there are three bilinear inequali-
ties. To study how the choice of parameterized/partitioning variables affects computational
performance, three versions are considered: (a) 3 parameterized/partitioned variables, x1, x2

and x3; (b) 4 variables, x2, x5, x6 and x8; (c) 5 variables, x4, x5, x6, x7 and x8. The global opti-
mal solution is f = 7049.2479 at (579.573535, 1359.977872, 5109.696534, 182.039993,
295.612139, 217.960007, 286.427855, 395.612139).
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min f = x1 + x2 + x3

s.t. 0.0025(x4 + x6) − 1 ≤ 0

0.0025(−x4 + x5 + x7) − 1 ≤ 0

0.01(−x5 + x8) − 1 ≤ 0

100x1 − x1x6 + 833.33252x4 − 83333.333 ≤ 0

x2x4 − x2x7 − 1250x4 + 1250x5 ≤ 0

x3x5 − x3x8 − 2500x5 + 1250000 ≤ 0

100 ≤ x1 ≤ 10000, 1000 ≤ x2, x3 ≤ 10000, 10 ≤ x4, x5, x6, x7, x8 ≤ 100

7.1.3 P4

Test problem (P4) is taken from Shen and Zhang [44] and after a few transformations the
following bilinear problem results. It features a global optimal solution f = 460212.25 at
(43.165468, 45, 70, 1.228374, 27.749229, 0.814083). Variables x2, x5 and x6 are chosen as
the parameterized variables.

min f = 168x1x2 + 3651.2x5 + 40000x6

s.t. 1.0425x1 − x2 ≤ 0

0.00035x1x2 − 1 ≤ 0

1.25x4 − x1 + 41.63 ≤ 0

x1x2 − x3x5 = 0

x4x6 − 1 = 0

40 ≤ x1 ≤ 44, 40 ≤ x2 ≤ 45, 60 ≤ x3 ≤ 70, 0.1 ≤ x4 ≤ 1.4

22.85714 ≤ x5 ≤ 33, 0.714286 ≤ x6 ≤ 10

7.2 Computational statistics

Tables 1, 2, 3 and 4 give the computational results for problems (P1–P4) as a function of
the discretization level, and the columns correspond to the iterations of Algorithm 2, where
the relaxation problem is either generated by multiparametric disaggregation (PR), MDT
columns, or by the piecewise McCormick envelopes (PR-PCM), PCM columns. We provide
the problem size, lower bound from the relaxation problem, and upper bound from a local
NLP solver (the values of the latter remain the same independent of the accuracy level). The
optimality gap and total computational effort (CPLEX plus CONOPT, the latter being almost
negligible) are also reported. Note that the triplets in Table 2 are related to the number of
discrete points for the three variables selected. The n-tuples in Tables 3 and 4 have a similar
meaning. In problems (P2–P3), the discretization points of PCM match exactly those being
used by MDT (e.g. second column of PCM should be compared with second column of
MDT).

An interesting observation is that for the same accuracy level, the relaxation from piecewise
McCormick (PCM) is tighter than MDT in (P2) but identical in (P1) and (P3). If one looks
at the original NLP problems, the latter problems have strictly bilinear terms whereas (P2)
features a quadratic term in x3, which is one of the variables being discretized. Applying
the piecewise relaxation to a quadratic term wi i = xi · xi makes it possible to use tighter
bounds for both parts of xi in each partition n, see (23), whereas with MDT just one part
is discretized, meaning the use of the overall bounds for the other part. This provides the
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Table 5 Comparison for water-using networks design problems [11]

Problem Original NLP BARON GloMIQO MDT

Varia-
bles

Equa-
tions

CPU
Time
(s)

Gap
(%)

CPU
time
(s)

Gap
(%)

Binary
variables

Total
variables

Equa-
tions

p CPU
time
(s)

Gap
(%)

Ex14 123 81 3,600 2.01 1,980 0.01 445 4,560 2,683 0 3,600 0.39

Ex15 136 87 3,600 1.52 1,916 0.01 576 5,860 3,384 0 3,600 0.48

Ex17 74 38 3,600 2.44 3,600 3.14 104 970 887 1 3.61 0.01

Ex18 60 37 3,600 0.98 3,600 0.82 178 1,272 887 0 2.11 0.01

Ex20 171 84 3,600 3.75 3,600 2.48 451 5,572 2,833 0 3,600 0.39

Results for MDT obtained using algorithm 2 (data for last iteration)
Italic values indicate that the maximum computational time was reached

explanation for multiparametric disaggregation being less tight than piecewise McCormick,
which can be observed in Fig. 5.

∨N
n=1

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎣

yin

wi i ≥ xi · x L
in + x L

i,n · xi − x L
in · x L

in

wi i ≥ xi · xU
in + xU

i,n · xi − xU
in · xU

in

wi i ≤ xi · x L
in + xU

i,n · xi − xU
in · x L

in

x L
in ≤ xi ≤ xU

in

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎦

x L
in = x L

i + (
xU

i − x L
i

) · (n − 1)/N

xU
in = x L

i + (
xU

i − x L
i

) · n/N

(23)

For (P4), the lower bounds of x5 and x6 are not integer values and so, while the number of
discrete points is roughly the same, their location is not, making it possible for the relaxation
from MDT to be better than the one from PCM. For instance, p = (−2,−2,−2) leads
to a slightly better lower bound than N = (500, 1, 000, 1, 000). Due to the better perfor-
mance of the new method, there are more columns for MDT than for PCM, meaning that
higher accuracy levels, i.e. lower optimality gaps, can be achieved by the former for a given
computational time.

While MDT is not as tight as PCM, the latter generates considerably larger MILP problems
for the same accuracy level. More specifically, with PCM we get exactly an exponential
increase in the number of binary variables with the change of power and roughly the same
behavior with respect to the number of total variables and constraints. In other words, the
number of 0–1 variables grows linearly with the number of partitions. In contrast, the number
of 0–1 variables for MDT grows logarithmically with the number of discrete points and
linearly with the change of power, keeping problems tractable for a wider accuracy range.
Notice that with MDT all problems can be solved with an optimality gap of less than 0.01 %
in less than one hour, while PCM closes only to a gap of 6.63 % for (P3).

Since problem size is related to the number of parameterized/partitioned variables, one
might be tempted to keep this number as low as possible. However, the results for (P3)
give opposite results, since the worst performance is obtained for 3 parameterized variables
(gap=0.009 %), followed by 4 (gap=0.0067 % in 1898 CPUs) and then 5 (gap=0.0071 %
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Fig. 5 Feasible region from
conventional McCormick,
piecewise McCormick (PCM)
and multiparametric
disaggregation relaxation (MDT)
for a quadratic term over a
specific region. Notice that the
underestimation from PCM is
strictly tighter than MDT in the
region xi ∈]25, 35[\{30}

400

600

800

1000

1200

1400

1600

20 25 30 35 40

Exact

McCormick Under

McCormick Over

PCM Under

PCM Over

MDT Under

MDT Over

1

Fig. 6 Comparison of Algorithms 1 and 2 for problem (P3a). The upper bound from Algorithm 1 for p = 4
is equal to 30,000 (off scale)

in 520 CPUs, which improves to just 0.0020 % for p = (−3, . . .,−3), calculated using the
best possible solution at time of termination).

7.2.1 Evaluation of Algorithm 1

Compared to Algorithm 2 in Tables 2, 3 and 4, Algorithm 1 generally leads to larger optimality
gaps, particularly in the first iterations at coarse discretization levels, and it also requires more
CPU time since two MILPs are solved at each iteration. Comparatively, solving (P) with a
local solver can be done almost instantaneously. The lower bounding problem is the same
as in Algorithm 2, while the upper bounding problem (P′) yields considerably worse bounds
than the ones returned from the local NLP solver (recall that these were always global optimal
solutions). As is illustrated in Fig. 6 for test problem (P3a), the solutions from both (P′) and
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(PR) typically become closer to the optimum with an increase in accuracy. However, it is
clear that using a local NLP solver, as in Algorithm 2, is a superior approach. While it is
possible for the solution of (P′) to be closer to the global optimum than the solution of (P)
using a local NLP algorithm, in practice, this generally does not occur, especially when using
the solution of (PR) as a starting point.

7.3 Results for larger problems

As seen in Tables 1, 2, 3 and 4, when compared to the commercial solver BARON, multipara-
metric disaggregation is competitive in (P1), (P2) and (P4) but is orders of magnitude slower
in (P3). This is to be expected given the very small size of problems and the reduced number
of bilinear terms, which facilitates the spatial branch-and-bound procedure in BARON. In
order to evaluate how both methods scale with problem size, we solved the five most difficult
(higher optimality gap at termination when solved with BARON) water-using network design
problems in Teles et al. [11], which also correspond to bilinear programs. In such problems,
the discretized variables are concentrations featuring P = 3 in Ex17 and P = 2 in the other
examples. The relative optimality tolerance was set to 0.01 % and the total computational
time to 1-h.

Table 5 lists the results for global optimization solvers BARON and GloMIQO together
with the implementation of algorithm 2 for MDT. While BARON fails to prove optimality
in all five cases, GloMIQO and MDT are successful in two, which interestingly are not the
same. GloMIQO takes roughly half an hour to tackle Ex14 and Ex15, while it takes just
a few seconds for MDT to solve EX17 and Ex18. In the full set of problems from [11],
MDT performs better than BARON 84 % of the time and slightly better than GloMIQO
(53 %) when considering the CPUs performance metric. The average optimality gaps are
however considerably lower, 0.088 % for MDT, 0.466 % for GloMIQO and 0.711 % for
BARON.

In Table 6, several blending problems [45,46] are solved using BARON, GloMIQO, and
Algorithm 3 at a single level of discretization. These are multiperiod blending problems with
varying numbers of tanks, time periods, and product qualities. Each problem is identified
such that 6T-3P-2Q-029 is a 6 tank, 3 time period, 2 quality problem, with a unique 3-digit
identifier to distinguish it from other problems of the same size. The results for MDT are
reported for P = 0 and p = −3 and were solved using Gurobi [47] using 12 threads. As these
problems are originally MINLPs, larger than those in Table 5, and 12 threads are utilized, the
computational difference is much more significant. GloMIQO and BARON both use MILP
solvers in their algorithms which can utilize multiple threads, but this effect is not significant
as the subproblems being solved are generally very small. Because of the use of multiple
threads and multiple CPUs in this comparison, wall times are reported for all three methods.
While GloMIQO and BARON are unable to converge to an optimality gap of 0.1 % within
the time limit of 2 h, the MDT is able to close the gap in all but two cases. In these two
cases an additional level of discretization would close the gap, but these results show that if
a reasonably fine discretization is chosen a priori, the optimality gaps can be significantly
less than those of commercial global optimization solvers. For the one problem that BARON
and GloMIQO were able to close the gap within the time limit, MDT outperformed them
by approximately 17 and 1,400 times, respectively, although the problem is small enough
and is solved fast enough that meaningful conclusions should not be drawn from this result
alone.
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8 Conclusions

This paper has presented a derivation based on disjunctive programming and exact lineariza-
tion of the multiparametric disaggregation technique (MDT) for solving bilinear program-
ming problems. The derivation, which was shown to be equivalent to applying the reformula-
tion linearization technique (RLT), gives rise to an MILP approximation that yields an upper
bound if feasible with respect to the original problem. A lower bounding MILP relaxation
problem has also been derived, which can then be used as basis for rigorous global optimiza-
tion algorithms. As has been shown with the smaller test problems, the relaxation from the
MDT was shown to be as tight as the relaxation based on piecewise McCormick envelopes
(PCM) for strictly bilinear terms but weaker for quadratic terms. The real advantage of MDT
comes from the more favorable scaling of problem size as discretization is increased, which
is translated into an ability to reach considerably lower optimality gaps and a clearly better
computational performance. For large problems it was shown that multiparametric disaggre-
gation can outperform global solvers BARON and GloMIQO.
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