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Abstract We consider a general equilibrium problem in a normed vector space setting
and we establish sufficient conditions for the existence of solutions in compact and non
compact cases. Our approach is based on the concept of upper sign property for bifunctions,
which turns out to be a very weak assumption for equilibrium problems. In the framework of
variational inequalities, this notion coincides with the upper sign continuity for a set-valued
operator introduced by Hadjisavvas. More in general, it allows to strengthen a number of
existence results for the class of relaxed μ-quasimonotone equilibrium problems.
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1 Introduction

In scientific contexts the term “equilibrium” has been widely used at least in physics, chem-
istry, engineering and economics within different frameworks, relying on different math-
ematical models such as optimization, variational inequalities and noncooperative games
among others. In turn, these mathematical models share an underlying common structure
which allows to conveniently formulate them in a unique format. Therefore, theoretical stud-
ies developed for one of these models can be generally modified to cope with the others
through the common format in a unifying language. This format reads

find x̄ ∈ K such that f (x̄, y) ≥ 0 for all y ∈ K , EP( f, K )

where K ⊆ X is a nonempty convex set of the normed vector space X and f : K × K → R

is a bifunction.
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This general problem was named “equilibrium problem” by Blum and Oettli [9], who
stressed this unifying feature and provided a thorough investigation of its theoretical proper-
ties. Until then, this general format was investigated in different directions by several authors.
To the best of our knowledge, Nikaido and Isoda [25] were the first to characterize Nash equi-
libria as the solutions of EP( f, K ) for an appropriate auxiliary bifunction. Next, a lot of papers
made a positive contribution to this field (see for instance [4,26,28] and references therein).

A large number of applications has been described successfully via the concept of equilib-
rium solution and therefore many researchers devoted their efforts to study EP( f, K ). In fact,
nowadays there is a good theory for equilibria and a rapidly increasing number of algorithms
for finding them (see [5] for a recent survey).

In this paper we aim at studying the existence of equilibria under mild assumptions of
continuity and monotonicity. The equilibrium problem EP( f, K ) has been initially studied
assuming that f is lower semicontinuous in its first argument and quasiconvex in its second
one. Under such assumptions Ky Fan [12] proved existence of solutions assuming compact-
ness of K . Afterwards the same result was established in [10] replacing the compactness of
K with a suitable coerciveness of f .

Subsequently many efforts were concentrated for establishing existence results under
weaker topological assumptions (continuity and coerciveness) and the monotonicity of f
plays a fundamental role. We recall that a bifunction f is said monotone if

f (x, y) + f (y, x) ≤ 0, ∀x, y ∈ K .

However the monotonicity seems too restrictive for many applied problems. In the last decade,
several authors have relaxed this rather restrictive assumption to certain types of generalized
monotonicity. For instance, under the assumption of pseudomonotonicity, Flores-Bazán [14]
provided a characterization of the nonemptiness of the set of solutions by using an approach
based on recession notions coming from minimization problems. His result was improved
in [8] where a very weak coercivity condition was proposed. Moreover in the same paper,
existence results for quasimonotone equilibrium problems with f explicitly quasiconvex with
respect to the second variable were presented. In [19] Iusem and Sosa, exploiting the relation
between equilibrium problems and certain auxiliary convex feasibility problems (which will
be called Minty equilibrium problems in the sequel), together with extensions to equilibrium
problems of gap functions for variational inequalities, established necessary and sufficient
conditions for pseudomonotone equilibrium problems. Their results were extended in [18]
assuming the weaker condition of properly quasimonotonicity and a sort of pseudoconvexity
of f with respect to the second variable. Recently Farajzadeh and Zafarani [13] proposed
different existence results which are based on an interesting technique due to Aussel and
Hadjisavvas [1] in the framework of variational inequalities. These results are established
under a technical condition which is weaker than the explicit quasiconvexity of f (x, ·).

All these results are usually obtained exploiting concepts and methods introduced in the
framework of variational inequalities. For instance one of the key tools for deriving existence
results for EP( f, K ) is to establish a link between the set of solutions of EP( f, K ) and the
set of solutions of a suitable equilibrium problem:

find x̄ ∈ K such that f (y, x̄) ≤ 0 for all y ∈ K . MEP( f, K )

In the framework of variational inequalities, MEP( f, K ) collapses into the so-called Minty
variational inequality and for this reason we will call it Minty equilibrium problem. This
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problem is often called dual equilibrium problem since it is deeply related to the duality
principle for saddle point problems. Unfortunately in the particular case of optimization,
MEP( f, K ) does not recover any of the well-known dual problems: indeed, if f (x, y) =
ϕ(y) − ϕ(x) where ϕ : X → R then, both EP( f, K ) and MEP( f, K ) reduce to the same
minimization problem. For this reason we prefer to use the term “Minty” instead of “dual”.
In the sequel we will denote by S( f, K ) the set of solutions of EP( f, K ), and by M( f, K )

the set of solutions of MEP( f, K ).
The Minty equilibrium problem was initially introduced for variational inequalities [11],

and its relevance to applications was pointed out in [15]. A well-known result, formulated by
Minty in [24], states the equivalence of the Minty and Stampacchia variational inequalities
under continuity and monotonicity assumptions of the involved operator. This is a recurrent
theme in the analysis of the existence of solutions of EP( f, K ): first showing the inclusion
M( f, K ) ⊆ S( f, K ), afterwards proving the nonemptiness of M( f, K ). Since M( f, K )

could be empty, applying to equilibrium problems a definition introduced in [1] for variational
inequalities, Bianchi and Pini [8] considered a weaker concept of solution for MEP( f, K ):
the set of the local Minty solutions is

ML( f, K ) = {x ∈ K : ∃r > 0 s.t. f (y, x) ≤ 0, ∀y ∈ K ∩ B(x, r)}
where B(x, r) is the ball with center x and radius r > 0. Clearly ML( f, K ) is larger than
M( f, K ) and therefore there are more possibilities that ML( f, K ) can be nonempty. Con-
versely, it is a harder task to show the inclusion ML( f, K ) ⊆ S( f, K ).

However, this inclusion was established in Lemma 2.1 of [8] (and subsequently in Lemma
2.1 of [13]) where the authors exploited a weak concept of continuity introduced in [17] in the
framework of variational inequalities: the upper sign continuity. We recall that a set-valued
operator T : K ⇒ X

∗ with T (x) �= ∅ for every x ∈ K , where X
∗ is the dual space of X, is

called upper sign continuous at x ∈ K if for every y ∈ K the following implication holds:

inf
z∗

t ∈T (zt )
〈z∗

t , y − x〉 ≥ 0, ∀t ∈ (0, 1) ⇒ sup
x∗∈T (x)

〈x∗, y − x〉 ≥ 0 (1)

where zt = (1 − t)x + t y. Upper sign continuity is a very weak notion of continuity.
For instance, any upper hemicontinuous operator, i.e. whose restriction to line segments
of K is upper semicontinuous with respect to the weak∗ topology on X

∗, is upper sign
continuous. Moreover any positive function on R is upper sign continuous. The upper sign
continuity plays an important role for guaranteeing the D-maximal pseudomonotonicity of
a pseudomonotone map T [17] and it was used in [1] for proving the existence of strong
solutions of a quasimonotone Stampacchia variational inequality.

The analogous concept of upper sign continuity for bifunctions introduced in [8] is a
workable definition for showing the link between S( f, K ) and ML( f, K ) but it does not
coincide with the original one in the case of variational inequalities. This is one of the
reasons that leads us to propose a more appropriate notion for bifunctions. This new concept
has the advantage of unifying several known techniques and it provides existence results for
a large class of EP( f, K ).

The paper is organized as follows. In Sect. 2 we recall the main definitions of generalized
convexity and relaxed monotonicity used in literature. Section. 3 is devoted to analyze the
concept of upper sign continuity introduced in [8]. As just written, we propose an alternative
concept (which will be called upper sign property) and we provide certain conditions under
which the upper sign property is weaker than the upper sign continuity. However this property
will turn out to be sufficient to guarantee the inclusion of ML( f, K ) in S( f, K ), which is
one of the key stages for the nonemptiness of S( f, K ). In an analogous way we generalize
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the upper sign property in order to handle the relaxed μ-Minty solutions. Finally, Sect. 4
is devoted to establish sufficient conditions for the existence of solutions of EP( f, K ). As
usual we start considering the equilibrium problem with a compact feasible set, afterwards
we introduce a coercivity condition for avoiding the compactness of K . Comparisons with
other recent results end the paper.

For the sake of the reader, we conclude this section fixing the main notations which will
be used in the rest of the paper.

1.1 Notation

Let X be a normed vector space with norm ‖ · ‖, X
∗ the dual space, and 〈·, ·〉 the duality

pairing between X and X
∗. For each x ∈ X and r > 0 we denote by B(x, r) the closed ball

with center x and radius r . Given a set A ⊆ X, conv A is the convex hull of A.
From now on K ⊆ X will be a nonempty convex set and f : K × K → R an equilibrium

bifunction, namely f (x, x) = 0 for every x ∈ K . Fixed x ∈ K , we will often use the
following two level sets:

lev( f, x) = {y ∈ K : f (x, y) ≤ 0}

and

levs( f, x) = {y ∈ K : f (x, y) < 0}.

If T : K ⇒ X
∗ is a set-valued operator with nonempty and weak∗ compact convex values

we denote by fT the associated bifunction

fT (x, y) = sup
x∗∈T (x)

〈x∗, y − x〉 = max
x∗∈T (x)

〈x∗, y − x〉.

Using this notation clearly MEP( fT , K ) coincides with the Minty variational inequality
associated to T . Instead, invoking the Sion’s minimax theorem, EP( fT , K ) is equivalent
to the Stampacchia variational inequality. Actually, since K and T (x) are convex, T (x) is
nonempty and weak∗ compact, x∗ ∈ X∗, y−x ∈ X∗∗, applying the Sion’s minimax theorem
we get

max
x∗∈T (x)

inf
y∈K

〈x∗, y − x〉 = inf
y∈K

max
x∗∈T (x)

〈x∗, y − x〉.

A point x̄ ∈ K solves EP( fT , K ) if and only if

inf
y∈K

max
x∗∈T (x)

〈x∗, y − x〉 ≥ 0,

and hence if and only if there exists x∗ ∈ T (x) such that 〈x∗, y − x〉 ≥ 0, for all y ∈ K .

2 Preliminaries: generalized convexity and monotonicity

This section is devoted to recall the main notions of convexity and monotonicity which will
be used in the sequel. Even if most of all the concepts are well known, for the sake of the
completeness, we underline their properties and we furnish some examples.
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2.1 Generalized convexity

A function ϕ : K → R is called quasiconvex if for all x, y ∈ K

ϕ(t x + (1 − t)y) ≤ max{ϕ(x), ϕ(y)}, ∀t ∈ [0, 1].
It is well known that, from the geometrical point of view, the quasiconvexity of ϕ coincides
with the convexity either of the lower level set

{x ∈ K : ϕ(x) ≤ α}, ∀α ∈ R

or of the strict lower level set

{x ∈ K : ϕ(x) < α}, ∀α ∈ R.

The function ϕ is said to be semistrictly quasiconvex if for all x, y ∈ K such that ϕ(x) �= ϕ(y)

it holds that

ϕ(t x + (1 − t)y) < max{ϕ(x), ϕ(y)}, ∀t ∈ (0, 1).

This class of functions was introduced by Karamardian [20] under the name of “strict quasi-
convexity” but we prefer to use this latter term for denoting the subclass of the quasiconvex
functions such that

ϕ(t x + (1 − t)y) < max{ϕ(x), ϕ(y)}, ∀t ∈ (0, 1)

even when ϕ(x) = ϕ(y). Every strictly quasiconvex function is semistrictly quasiconvex
but, without any continuity property, semistrictly quasiconvex functions need not to be qua-
siconvex. For instance the function ϕ(x) = min{0, x} defined on R is quasiconvex but not
semistrictly quasiconvex; instead the function

ϕ(x) =
{

1, if x = 0
0, if x �= 0

is semistrictly quasiconvex but not quasiconvex. This leads to the following definition: a
function is said explicitly quasiconvex if it is quasiconvex and also semistrictly quasiconvex.

In [18] a subclass of the quasiconvex functions was considered. A function ϕ : K → R

is called pseudoconvex if for all x, y ∈ K and all t ∈ (0, 1) it holds that

ϕ(t x + (1 − t)y) ≥ ϕ(x) ⇒ ϕ(y) ≥ ϕ(t x + (1 − t)y).

This notion was introduced by García Ramos and Sosa in [16] and it must not be confused
with the notion of pseudoconvexity introduced by Ortega and Rheinboldt in [27]. It is easy
to check that pseudoconvexity implies quasiconvexity and semistrict quasiconvexity but the
converse does not hold as the previous examples show. Nevertheless pseudoconvexity and
semistrict quasiconvexity coincide when ϕ is lower hemicontinuous, i.e. for every x ∈ K

ϕ(x) ≤ lim inf
t→0+ ϕ((1 − t)x + t y), ∀y ∈ K .

For the sake of completeness we prove this fact.

Lemma 1 Every lower hemicontinuous and semistrictly quasiconvex function ϕ : K → R

is pseudoconvex.
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Proof By contradiction, suppose there exist x, y ∈ K and t ∈ (0, 1) such that ϕ(z) ≥ ϕ(x)

and ϕ(z) > ϕ(y), where z = (1 − t)x + t y. Since ϕ is semistrictly quasiconvex it follows
that ϕ(x) = ϕ(y) and ϕ((1 − s)z + sx) < ϕ(z) for all s ∈ (0, 1). Moreover the lower
hemicontinuity of ϕ at z implies there exists a suitable s ∈ (0, 1) such that ϕ(x) < ϕ(w) <

ϕ(z) with w = (1 − s)z + sx . This leads to a contradiction considering the semistrict
quasiconvexity of ϕ on the interval with extreme points w and y. ��

As immediate consequence, a lower hemicontinuous and semistrictly quasiconvex func-
tion is always quasiconvex.

2.2 Generalized monotonicity

For proving the existence of solutions of variational inequalities, various generalized
monotonicity assumptions have been assumed for the set-valued operator T : K ⇒ X

∗.
A different kind of generalization, namely relaxed monotonicity (or else weak monotonicity,
or global hypomonotonicity) was considered by various authors in relation with algorithms
for finding a solution of variational inequalities [22]. Recently, those different generaliza-
tions were combined and the existence solutions of a variational inequality was shown for
the case of single valued, densely μ-pseudomonotone operators [3]. Bai and Hadjisavvas [2]
introduced a broader class of set-valued relaxed μ-quasimonotone operators and established
existence results. We start recalling the main definitions for set-valued operators proposed
in [2].

Let μ ≥ 0 be fixed. A set-valued operator T : K ⇒ X
∗ is called

– relaxed μ-pseudomonotone if for all x, y ∈ K and x∗ ∈ T (x), y∗ ∈ T (y) it holds that

〈x∗, y − x〉 ≥ 0 ⇒ 〈y∗, x − y〉 ≤ μ‖x − y‖2,

– relaxed μ-quasimonotone if for all x, y ∈ K and x∗ ∈ T (x), y∗ ∈ T (y) it holds that

〈x∗, y − x〉 > 0 ⇒ 〈y∗, x − y〉 ≤ μ‖x − y‖2,

– properly relaxed μ-quasimonotone if for all n ∈ N, x1, . . . , xn ∈ K and x̄ ∈
conv {x1, . . . , xn} there exists i such that

〈x∗
i , x̄ − xi 〉 ≤ μ‖xi − x̄‖2, ∀x∗

i ∈ T (xi ).

These concepts collapse into the usual ones of pseudomonotonicity, quasimonotonicity, and
proper quasimonotonicity when μ = 0.

Here we adapt these definitions to equilibrium bifunctions.

Definition 1 Let μ ≥ 0 be fixed. The bifunction f is called

– relaxed μ-pseudomonotone if for all x, y ∈ K it holds that

f (x, y) ≥ 0 ⇒ f (y, x) ≤ μ‖x − y‖2,

– relaxed μ-quasimonotone if for all x, y ∈ K it holds that

f (x, y) > 0 ⇒ f (y, x) ≤ μ‖x − y‖2,

– properly relaxed μ-quasimonotone if for all n ∈ N, x1, . . . , xn ∈ K and x̄ ∈
conv {x1, . . . , xn} there exists i such that

f (xi , x̄) ≤ μ‖xi − x̄‖2.
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In the case of set-valued operators, relaxed μ-pseudomonotonicity implies proper relaxed
μ-quasimonotonicity which implies relaxed μ-quasimonotonicity. In the general case,
as considered here, relaxed μ-pseudomonotonicity implies relaxed μ-quasimonotonicity
but proper relaxed μ-quasimonotonicity neither implies, nor is implied by, relaxed μ-
pseudomonotonicity.

For instance the bifunction f (x, y) = ex2
(x2 − y2) defined on R×R is pseudomonotone

(and therefore relaxed μ-pseudomonotone for each μ ≥ 0) but not properly relaxed μ-
quasimonotone for all μ ≥ 0 (take x1 = −μ − 1, x2 = μ + 1 and x̄ = 0). On the converse
the bifunction

f (x, y) =
{

1, if xy < 0
0, if xy ≥ 0

is properly quasimonotone (and therefore properly relaxed μ-quasimonotone for each μ ≥ 0)
but not relaxed μ-quasimonotone for all μ ≥ 0 (take x and y such that xy < 0 and sufficiently
close).

The following condition provides a simple sufficient criterion for the proper relaxed μ-
quasimonotonicity of an equilibrium bifunction.

Lemma 2 Let f be a relaxed μ-pseudomonotone equilibrium bifunction such that the strict
level set levs( f, x) is convex for every x ∈ K . Then f is properly relaxed μ-quasimonotone.

Proof By contradiction assume there exist x1, . . . , xn ∈ K and x̄ ∈ conv {x1, . . . , xn} such
that f (xi , x̄) > μ‖xi − x̄‖2 for all i . From the relaxed μ-pseudomonotonicity of f we deduce
that, for every i, f (x̄, xi ) < 0, that is xi ∈ levs( f, x̄). The convexity of levs( f, x̄) implies
that x̄ ∈ levs( f, x̄) which is absurd since f (x̄, x̄) = 0. ��

However, since the bifunction of the last example is quasiconvex with respect to the second
variable, it follows that the quasiconvexity of f (x, ·) is not enough to guarantee the relaxed
μ-quasimonotonicity of a properly relaxed μ-quasimonotone function.

3 The upper sign property and its consequences

3.1 The definition

In order to extend to bifunctions the notion of upper sign continuity, in [8] Bianchi and Pini
proposed the following definition.

Definition 2 The equilibrium bifunction f is upper sign continuous (with respect to the first
variable) at x ∈ K if for every y ∈ K the following implication holds

f (zt , y) ≥ 0, ∀t ∈ (0, 1) ⇒ f (x, y) ≥ 0, (2)

where zt = (1 − t)x + t y.

The upper sign continuity is a very weak form of continuity. For instance if f (·, y) is
upper hemicontinuous at x , i.e.

f (x, y) ≥ lim sup
t→0+

f ((1 − t)x + t z, y), ∀z ∈ K
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then it is upper sign continuous. Nevertheless in the particular case when the equilibrium
bifunction is fT the definition of upper sign continuity for bifunctions does not coincide with
the original definition for the set-valued operator T . Indeed for every t ∈ (0, 1)

fT (zt , y) = sup
z∗

t ∈T (zt )

〈z∗
t , y − zt 〉 = (1 − t) sup

z∗
t ∈T (zt )

〈z∗
t , y − x〉.

Hence if fT is upper sign continuous then T is upper sign continuous but the converse does
not hold.

Example 1 The set-valued operator T : R ⇒ R defined by

T (x) =
{ {1}, if x ≥ 0

[−1, 1] , if x < 0

is upper sign continuous everywhere. The associated support bifunction

fT (x, y) =
{

y − x, if x ≥ 0
|y − x |, if x < 0

does not satisfy (2) at x = 0 (take y < 0).

For this reason we propose a slightly different notion which allows to embrace the defin-
ition of upper sign continuity for set-valued operators.

Definition 3 The equilibrium bifunction f is said to have the upper sign property (with
respect to the first variable) at x ∈ K if there exists r > 0 such that for every y ∈ K ∩ B(x, r)

the following implication holds

f (zt , x) ≤ 0, ∀t ∈ (0, 1) ⇒ f (x, y) ≥ 0, (3)

where zt = (1 − t)x + t y.

We prefer to use the term “property” instead of “continuity” for two reasons. First, the
concept of upper sign continuity was introduced before and it has been used quite often (to our
knowledge the notion has been used in [13]). In this way we do not mix up the two notions.
Moreover our definition does not seem apparently related to some kind of continuity.

Example 2 The bifunction f : R × R → R defined by

f (x, y) =
{

x − y, if x < y
0, if x ≥ y

is continuous (and hence upper sign continuous) everywhere but it does not satisfy the
upper sign property anywhere. Indeed take x and y = x + ε with arbitrary ε > 0. Since
zt = x + tε > x we have f (zt , x) = 0 for all t ∈ (0, 1) but f (x, x + ε) < 0.

However the two definitions are not comparable. We have just seen that there exist upper
sign continuous bifunctions which have not the upper sign property. On the converse, the
following example clarifies why we have used the term “upper sign” for our property.

Example 3 The upper sign continuity for a set-valued operator T can be equivalently refor-
mulated as follows: there exists r > 0 such that for every y ∈ K ∩ B(x, r) the implication
(1) follows. Indeed it is clear that this “local” condition is weaker than the “global” one. For
the converse, fix y ∈ K and assume that

inf
z∗

t ∈T (zt )
〈z∗

t , y − x〉 ≥ 0, ∀t ∈ (0, 1).
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For a suitable t the point zt ∈ K ∩ B(x, r) and zt − x = t(y − x). From the “local” upper
sign continuity we deduce that

0 ≤ sup
x∗∈T (x)

〈x∗, zt − x〉 = t sup
x∗∈T (x)

〈x∗, y − x〉.

Hence the “local” definition of upper sign continuity is equivalent to the “global” one.
Now, let fT be the equilibrium bifunction associated to T and y ∈ K ∩ B(x, r). Choosing

zt = (1 − t)x + t y with t ∈ (0, 1) we have

fT (zt , x) = sup
z∗

t ∈T (zt )

〈z∗
t , x − zt 〉 = −t inf

z∗
t ∈T (zt )

〈z∗
t , y − x〉,

and the inequality fT (zt , x) ≤ 0 coincides with inf z∗
t ∈T (zt )〈z∗

t , y − x〉 ≥ 0. Hence, in the
case of variational inequalities, the upper sign property of fT is the upper sign continuity of
T . For this reason the bifunction fT introduced in Example 1 has the upper sign property but
it is not upper sign continuous.

Even if upper sign continuity and upper sign property are not comparable in general, the
previous example shows that in the case of variational inequalities the upper sign property
is a weaker condition than the upper sign continuity proposed in [8]. The following result
highlights a large class of bifunctions for which the previous implication holds.

Lemma 3 Let f be an equilibrium bifunction such that for every x, y1, y2 ∈ K it holds that

f (x, y1) ≤ 0 and f (x, y2) < 0 ⇒ f (x, zt ) < 0, ∀t ∈ (0, 1) (4)

where zt = (1− t)y1 + t y2. If f is upper sign continuous then it has the upper sign property.
Moreover, under the above assumption, every upper hemicontinuous bifunction with respect
to the first variable has the upper sign property.

Proof Actually, we show that (3) holds for all y ∈ K . Take x, y ∈ K such that f (zt , x) ≤ 0
for all t ∈ (0, 1) and assume that f is upper sign continuous. By contradiction, suppose that
f (x, y) < 0. From (2), there exists s ∈ (0, 1) such that f (zs, y) < 0. But f (zs, x) ≤ 0 and
f (zs, zs) = 0, and the contradiction descends from (4). ��
Remark 1 Condition (4) is a technical assumption introduced in [13] in order to show the
inclusion of ML( f, K ) in S( f, K ). It can be easily shown that (4) is equivalent to assume
that levs( f, x) is convex for every x ∈ K and moreover the implication

f (x, y1) = 0 and f (x, y2) < 0 ⇒ f (x, zt ) < 0, ∀t ∈ (0, 1) (5)

holds for every x, y1, y2 ∈ K . The convexity of levs( f, x) is guaranteed by the quasiconvexity
of f (x, ·). Instead condition (5), which was introduced and named sign preserving property
in [7], is clearly satisfied if f is semistrictly quasiconvex with respect to the second variable.
Hence if f (x, ·) is explicitly quasiconvex (and in particular when it is pseudoconvex), the
upper sign continuity is stronger than the upper sign property.

3.2 Applications of the upper sign property

We have stressed the fact that, for a quite reasonable class of equilibrium problems, the upper
sign property is a very weak form of continuity, weaker than the upper sign continuity.

The main purpose of this subsection is to highlight links between S( f, K ) and suitable
sets of solutions related to the MEP( f, K ). The first result is a generalization of Lemma 2.1
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in [8] and Lemma 2.1 in [13] and we prove that ML( f, K ) is a subset of S( f, K ) under the
upper sign property of the involved bifunction.

Theorem 1 Let f be an equilibrium bifunction with the upper sign property such that for
every x, y ∈ K it holds that

f (x, y) < 0 ⇒ f (x, zt ) < 0, ∀t ∈ (0, 1) (6)

where zt = (1 − t)x + t y. Then ML( f, K ) ⊆ S( f, K ).

Proof Assume that x ∈ ML( f, K ) and take y ∈ K . From the definitions of upper sign
property and ML( f, K ) there exists r > 0 such that (3) holds and f (z, x) ≤ 0 for all
z ∈ K ∩ B(x, r). In particular take any z ∈ K ∩ B(x, r) belonging to the interval with
extreme points x and y. Therefore f (zt , x) ≤ 0 where zt = (1 − t)x + t z with t ∈ (0, 1),
and the upper sign property implies that f (x, z) ≥ 0. From (6) we deduce that f (x, y) must
be necessarily non negative and the arbitrariness of y concludes the proof. ��

Some remarks are needed about the proof and the comparison between our result and the
others already presented in literature.

Remark 2 – From the proof we notice that the upper sign property of f allows to deduce
the inclusion of ML( f, K ) in the set of the local solutions of EP( f, K ). Instead condition
(6) is a technical assumption which ensures that every local solution of EP( f, K ) belongs
to S( f, K ).

– Clearly condition (6) is a particular case of conditions (4) and (5): it is enough to choose
y1 = x and y2 = y.

– Now we compare our result with Lemma 2.1 in [8] and Lemma 2.1 in [13] where the
same conclusion is reached. In [8] the authors assume that f is upper sign continuous and
quasiconvex with respect to the second variable. Moreover they require that (5) holds. As
just written, (6) is weaker than (5). Besides, Lemma 3 guarantees that our assumptions
are globally weaker.
Instead in [13] the authors do not require the quasiconvexity of f (x, ·) but, in addition
to the upper sign continuity, they assume the stronger technical condition (4). All these
assumptions imply ours by Lemma 3.

– An analogous result in [18] was proved under the assumptions of lower semicontinuity
and pseudoconvexity of f with respect to the second variable and upper hemicontinuity
with respect to the first variable. Clearly all these assumptions are stronger than ours.

Example 4 Let K = [−1, 1] ⊆ R and f be defined as follows:

f (x, y) =
{

y − x, if x ≥ 0 or x < 0 and y ≥ x
0, if x < 0 and y < x .

The bifunction f has the upper sign property and the convexity of f (x, ·) guarantees
that the condition (6) holds. Hence Theorem 1 implies that ML( f, K ) ⊆ S( f, K ). Indeed
ML( f, K ) = {−1} and S( f, K ) = [−1, 0). Notice that this inclusion cannot be deduced by
Lemma 2.1 in [8] or Lemma 2.1 in [13] because f is not upper sign continuous at x = 0
(take y < 0).

In the framework of variational inequalities, Bai and Hadjisavvas [2] introduced the con-
cept of relaxed μ-quasimonotone set-valued operator. By using this property, they established
new existence results. The crucial point of their paper lies in the relation between the solution
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set of the variational inequality and the solution set of a suitable relaxed μ-Minty problem.
Adapting their definition to the case of equilibrium problems we introduce the following
concept.

Definition 4 Let μ ≥ 0 be fixed. A point x ∈ K is called a local relaxed μ-Minty solution
if there exists r > 0 such that

f (y, x) ≤ μ‖y − x‖2, ∀y ∈ K ∩ B(x, r). (7)

We denote by Mμ
L ( f, K ) the set of x ∈ K which satisfy (7).

Clearly every local relaxed μ-Minty solution is a local Minty solution of the problem asso-
ciated to the bifunction f (x, y)−μ‖x−y‖2 and M0

L( f, K ) = ML( f, K ). Moreover ifμ′ < μ

then Mμ′
L ( f, K ) ⊆ Mμ

L ( f, K ). The next goal is to prove the inclusion Mμ
L ( f, K ) ⊆ S( f, K ).

For this reason we need to link the definition of upper sign property to the parameter μ.

Definition 5 Let μ ≥ 0 be fixed. A bifunction f is said to have the μ-upper sign property
(with respect to the first variable) at x ∈ K if there exists r > 0 such that for every y ∈
K ∩ B(x, r) the following implication holds

f (zt , x) ≤ μ‖zt − x‖2, ∀t ∈ (0, 1) ⇒ f (x, y) ≥ 0, (8)

where zt = (1 − t)x + t y.

If μ > μ′, every bifunction with the μ-upper sign property has the μ′-upper sign property
and, as before, the upper sign property coincides with the 0-upper sign property.

Lemma 4 Let f be an equilibrium bifunction such that for every x ∈ K there exists r > 0
such that for every y ∈ K ∩ B(x, r)

(1 − t) f (zt , x) + t f (zt , y) ≥ 0, ∀t ∈ (0, 1). (9)

If f is upper hemicontinuous with respect to the first variable then it has the μ-upper sign
property for every μ ≥ 0.

Proof By contradiction, suppose there exists μ ≥ 0 such that f has not the μ-upper sign
property at x . Therefore for every r ′ < r there exists y′ ∈ K ∩ B(x, r ′) such that f (z′

t , x) ≤
μ‖z′

t − x‖2 for all t ∈ (0, 1) and f (x, y′) < 0. Since f (·, y′) is upper hemicontinuous at x ,
there are ε > 0 and δ ∈ (0, 1) such that f (z′

t , y′) < −ε for every t ∈ (0, δ). From (9) we
deduce

0 ≤ (1 − t) f (z′
t , x) + t f (z′

t , y′) ≤ μ(1 − t)t2‖x − y′‖2 − εt

and the contradiction is achieved choosing t sufficiently small. ��
It is easy to show that the technical assumption (9) holds if f (x, ·) is locally convex at

x , uniformly with respect to x , that is there exists r > 0, independent on x , such that the
function f (x, ·) restricted to B(x, r) is convex. Hence under a mild assumption of convexity,
also the μ-upper sign property is a kind of weak continuity.

Moreover, arguing as in Theorem 1, it is possible to get the following result.

Theorem 2 Let f be an equilibrium bifunction with the μ-upper sign property such that (6)
holds. Then Mμ

L ( f, K ) ⊆ S( f, K )
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We conclude this section dealing with all these last results in the case of variational
inequalities. Let us consider the bifunction fT associated to the set-valued operator T . The
μ-upper sign property of fT assumes the following equivalent form

inf
z∗

t ∈T (zt )
〈z∗

t , y − x〉 ≥ −μt‖y − x‖2, ∀t ∈ (0, 1)

⇒ sup
x∗∈T (x)

〈x∗, y − x〉 ≥ 0 (10)

where x, y ∈ K and zt = (1− t)x + t y. Since fT is convex with respect to y, from Lemma 4
we deduce that every upper hemicontinuous set-valued operator T with nonempty weakly∗
compact values verifies (10) for each μ ≥ 0. The converse does not hold. For instance the
set-valued operator T : R ⇒ R defined by

T (x) =
⎧⎨
⎩

[0, 1], if x > 0
{0}, if x = 0
[−1, 0] , if x < 0

is not upper hemicontinuous at x = 0 but property (10) is verified for every μ ≥ 0 since

inf
z∗

t ∈T (zt )
〈z∗

t , y〉 = 0 and sup
x∗∈T (0)

〈x∗, y〉 = 0

for each y ∈ R. For all these considerations Theorem 2 not only generalizes to equilibrium
problems the fundamental Lemma 2.1 in [2] stated for variational inequalities, but also allows
to improve it in the variational inequalities’ context.

4 Existence results

Theorem 1 and Theorem 2 pave the way towards a simple approach for deriving the existence
of solutions of EP( f, K ): any assumption which guarantees the nonemptiness of Mμ

L ( f, K )

for a suitable μ ≥ 0 is a sufficient condition for the nonemptiness of S( f, K ).
When f is not properly relaxed μ-quasimonotone, we follow the idea which was originally

expressed in [1] for variational inequalities and adapted in [8] and [13] for equilibrium
problems. In the sequel, for each x ∈ K we denote by Fμ the set

Fμ(x) = {y ∈ K : f (x, y) ≤ μ‖x − y‖2}.
Theorem 3 Let f be a relaxed μ-quasimonotone equilibrium bifunction which is not prop-
erly relaxed μ-quasimonotone. Suppose that the set Fμ(x) is closed and lev( f, x) is convex
for every x ∈ K . Then ML( f, K ) is nonempty.

Proof Since f is not properly relaxed μ-quasimonotone, there exist x1, . . . , xn ∈ K and
x̄ ∈ conv {x1, . . . , xn} such that

f (xi , x̄) > μ‖xi − x̄‖2, ∀i = 1, . . . , n.

Since Fμ(xi ) are closed, there exists r > 0 such that for every fixed y ∈ K ∩ B(x̄, r)

f (xi , y) > μ‖xi − y‖2, ∀i = 1, . . . , n.

From the relaxed μ-quasimonotonicity of f we deduce

f (y, xi ) ≤ 0, ∀i = 1, . . . , n.

Lastly, the convexity of lev( f, y) concludes the proof. ��
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Now the nonemptiness of S( f, K ) descends immediately from Theorem 1 and Theorem 3.

Corollary 1 Let f be a relaxed μ-quasimonotone equilibrium bifunction which is not prop-
erly relaxed μ-quasimonotone. Suppose that the set Fμ(x) is closed and lev( f, x) is convex
for every x ∈ K . Moreover assume that f has the upper sign property and condition (6)
holds. Then S( f, K ) is nonempty.

The requirement that f must not be properly relaxed μ-quasimonotone is fundamental. For
instance the linear bifunction f (x, y) = x − y is clearly properly relaxed μ-quasimonotone
and relaxed μ-quasimonotone for each μ. All the others assumptions of Corollary 1 are
satisfied but EP( f, K ) with feasible region K = [0,+∞) has not solution. Notice that K is
not compact.

If we assume the compactness of K it is possible to invoke the so-called Three Polish The-
orem [21]. This result was originally stated in R

n by Knaster, Kuratowski and Mazurkiewicz
and later it was extended to the case of an infinite-dimensional topological vector space by
Ky Fan [12]. We recall this fundamental result.

Theorem 4 Let Y be a real topological Hausdorff vector space, C be a subset of Y and
T : C ⇒ Y be a set-valued operator satisfying the following conditions:

(a) T is a KKM-map, that is for any n ∈ N and x1, . . . , xn ∈ C

conv {x1, . . . , xn} ⊆
n⋃

i=1

T (xi ),

(b) T (x) is closed for each x ∈ C,
(c) there exists x ∈ C such that T (x) is compact.

Then ⋂
x∈C

T (x) �= ∅.

Notice that the proper relaxed μ-quasimonotonicity of f is equivalent to affirm that Fμ

is a KKM-map. Since ⋂
x∈K

Fμ(x) ⊆ Mμ
L ( f, K )

the following result is an immediate consequence of Theorem 4.

Corollary 2 Let K be weakly compact and f be a properly relaxed μ-quasimonotone equi-
librium bifunction such that Fμ(x) is weakly closed for every x ∈ K . Then Mμ

L ( f, K ) is
nonempty.

The next step is to replace the assumption of compactness of K with weaker conditions,
which clearly have to involve some suitable form of coercivity on f .

Theorem 5 Assume that X is a reflexive Banach space and K is closed. Let f be a μ-
quasimonotone equilibrium bifunction with the μ-upper sign property and satisfying (5).
Suppose that Fμ(x) is closed and lev( f, x) is convex for every x ∈ K . Assume that the
following coercivity condition holds:
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(C) for any sequence {xn} ⊆ K such that ‖xn‖ → ∞, there exist n0 ∈ N and yn0 ∈ K such
that ‖yn0‖ < ‖xn0‖ and f (xn0 , yn0) ≤ 0.

Then S( f, K ) is nonempty.

Proof For each fixed n ∈ N, we denote by Kn the intersection of K with the closed ball
centered at the origin with radius n, i.e.

Kn = {x ∈ K : ‖x‖ ≤ n}.
Since Kn is nonempty for sufficiently large n, in what follows, for the sake of simplicity,
we suppose without loss of generality that Kn is nonempty for all n ∈ N. Moreover the
reflexivity of X and the closedness of K imply that Kn is weakly compact for every n. From
Theorem 3 and Corollary 2, for every n there exists xn ∈ Mμ

L ( f, Kn). We distinguish two
cases.

(a) There exists n0 ∈ N such that ‖xn0‖ < n0. Therefore xn0 ∈ Mμ
L ( f, K ) and the non-

emptiness of S( f, K ) descends from Theorem 2.
(b) Suppose that ‖xn‖ = n for all n ∈ N. In this case the coercivity condition guarantees the

existence of n0 ∈ N and yn0 ∈ K such that ‖yn0‖ < ‖xn0‖ = n0 and f (xn0 , yn0) ≤ 0.
From Theorem 2, f (xn0 , y) ≥ 0 for every y ∈ Kn0 ; in particular f (xn0 , yn0) = 0. Take
any y ∈ K \ Kn0 . Since ‖yn0‖ < n0, there exists t ∈ (0, 1) such that zt = t y+(1− t)yn0

belongs to Kn0 . It follows that f (xn0 , zt ) ≥ 0. Since f (xn0 , yn0) = 0, we conclude from
(5) that f (xn0 , y) ≥ 0 and xn0 ∈ S( f, K ). ��

We give an application of Theorem 5 when μ = 0.

Example 5 Let K = (−∞, 1] ⊆ R and f be defined by

f (x, y) =
{

y2 − (1 + x)y + x, if x �= 0
−y, if x = 0.

Obviously f (x, ·) is convex and continuous, for every fixed x ∈ K . Hence f satisfies the
condition (5) and lev( f, x) is closed and convex. It can be verified that f is quasimonotone but
not pseudomonotone and that f has the upper sign property. The feasible set K is unbounded
but the coercivity condition (C) holds. In fact, if {xn} ⊆ K and xn → −∞, there exists
a suitable n0 such that xn0 < −1. Then yn0 = xn0 + 1 ∈ K verifies |yn0 | < |xn0 | and
f (xn0 , yn0) = xn0 < 0. Theorem 5 guarantees that S( f, K ) is nonempty. However, f is not
an upper sign continuous bifunction. Indeed, for x = 0, y = 1 and zt = x + t (y − x) = t ,
we have f (zt , 1) = 0, for all t �= 0 but f (0, 1) = −1.

We end with a brief comparison with other results from the literature. The coercivity
condition (C) was initially considered in the framework of variational inequality problems
by Luc [23] when the operator is single-valued. In [8] the authors adapted to equilibrium
problems a minimal coercivity condition stated in [6] for variational inequalities:

(C1) there exists n0 ∈ N such that for every x ∈ K \ Kn0 there exists y ∈ K such that
‖y‖ < ‖x‖ and f (x, y) ≤ 0.

It is not hard to verify that that (C) and (C1) are equivalent. Hence Theorem 5 improves
Theorem 4.2 in [8]. Moreover as underlined at the end of Sect. 3, the μ-upper sign property
of the bifunction fT associated to a set-valued operator T is weaker than the upper hemicon-
tinuity of T . Therefore adapting Theorem 5 to the particular case of variational inequalities,
an improvement of the existence result in [2] can be derived.
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