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Abstract In the Minimum k-Path Connected Vertex Cover Problem (MkPCVCP), we are
given a connected graph G and an integer k ≥ 2, and are required to find a subset C of
vertices with minimum cardinality such that each path with length k − 1 has a vertex in C ,
and moreover, the induced subgraph G[C] is connected. MkPCVCP is a generalization of the
minimum connected vertex cover problem and has applications in many areas such as security
communications in wireless sensor networks. MkPCVCP is proved to be NP-complete. In
this paper, we give the first polynomial time approximation scheme (PTAS) for MkPCVCP
in unit disk graphs, for every fixed k ≥ 2.

Keywords PTAS · k-Path connected vertex cover · Unit disk graph

1 Introduction

Wireless Sensor Networks (WSN) has been a recently merged advanced technology with
numerous applications in both military and civilian areas (e.g., surveillance in battlefield,
disaster rescuing, environment monitoring, home automation, traffic control, electronics and
wireless technologies and so on).

In many applications of WSN, it is usually important to ensure the security properties
of WSN including confidentiality, authenticity, data integrity and so on. Traditional security
techniques cannot be applied directly to WSN, because sensor devices usually have limited
capabilities of computation, energy and communications. Moreover, they are often deployed
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in accessible areas, where they can be rather easily captured by attackers. In general, a stan-
dard sensor device is not considered as tamper-resistant. It is also undesirable to make all
devices of a sensor network tamper-proof because of the increasing costs. Therefore, the
design of WSN security protocols has become a challenge in security research field.

One of such protocols, known as the Canvas protocols, was designed in [4,6–8,10–12],
which provides data integrity or data origin authentication [6] in a sensor network. The
k-generalized Canvas scheme [8] guarantees data integrity if there at least one vertex is not
captured on each path of the length k − 1 in the communication graph. Thus, during the
deployment and initialization of a sensor network, it should be ensured that, at least one
protected node exists on each path of the length k − 1 in the communication graph, and
the problem of minimizing the cost of the network by minimizing the number of protected
vertices is naturally arisen in [8], which can be formally described as follows:

Given a graph G = (V, E) and an integer k ≥ 2. A subset C of V is a k-path vertex cover
(k-PVC) if each path of length k−1 contains a vertex in C . The minimum k-path vertex cover
problem (MkPVCP) asks to find a k-PVC with minimum cardinality (denoted by ψk(G)).

Boštjan et al. [1] proved that MkPVCP is NP-complete for each fixed k ≥ 2, while for
trees the problem can be solved in linear time. They also gave some upper bounds for ψk(G)
and showed in particular ψk(G) ≤ (2n + m)/6 for every finite graph G with n vertices and
m edges. Tu and Zhou [9] gave a 2-approximation for MkPVCP when k = 3.

In this paper, we are mainly concerned with the minimum k-path vertex cover problem in
unit disk graph (MkPCVCP-UDG) with connectivity requirement.

WSN is usually modelled by a unit disk graph (UDG), where the sensor nodes are cor-
responding to the vertices located on the Euclidean plane, and there is an edge between two
vertices if and only if the Euclidean distance between them is at most one. When talking about
a unit disk graph in this paper, we assume that the geometric location of each sensor is given,
since it has been proved in [5] that determining whether a graph is a UDG is NP-complete.

Obviously, MkPCVCP-UDG is NP-complete, since for k = 1, the problem is reduced to
the minimum connected vertex cover (MCVC), which was shown to be NP-complete in [3]
for UDGs. Zhang et al. [14] gave a PTAS for MCVC in UDGs. In this paper, we present the
first PTAS for MkPCVC on UDGs, by using partition technique and shifting strategy. Such
an approach was used for Steiner trees in the plane [13]. A more complicated approach was
used for minimum connected dominating set [2].

Whereas our basic idea follows that of [2,14], we mention that there are a few parts of
the design and analysis of our algorithm that involves some different ideas. For example,
to ensure the connectivity of the k-path vertex cover, we have to add some additional verti-
ces the number of which is minor compared with the optimal solution. Moreover, the time
complexity analysis of the algorithm seems non-trivial.

The rest of the paper is organized as follows. In Sect. 2, some preliminaries are given
which will be needed in the sequel. In Sect. 3 we present the algorithm and the proof of
its correctness. Time complexity and performance analysis are given in Sects. 4 and 5,
respectively.

2 Preliminaries

In this section, we introduce some notions and notations to help the later discussions.

Definition 2.1 P is called a k-path if P is a path which contains k vertices.
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Definition 2.2 For two subgraphs G1 and G2 of G, the distance of G1 and G2 is the number
edges of a shortest path of G connecting G1 and G2, denoted by dist (G1,G2).

We use the notation P = (v1, v2, . . . , vt ) denote a path P which contains t vertices and
{v1, v2, . . . , vt } denote a set which contains t vertices. Moreover G−{v1, v2, . . . , vt } denote
the subgraph G[V \ {v1, v2, . . . , vt }] of G induced by V \ {v1, v2, . . . , vt }.

Definition 2.3 (k-PCVC cf. [1]) A subset C of vertices of a graph G is called a k-path
vertex cover if each path of order k in G contains at least one vertex from C . Moreover, if
the subgraph G[C] induced by C also connected in graph G, then C is said to be a k-path
connected vertex cover.

Definition 2.4 Minimum k-Path Connected Vertex Cover Problem (MkPCVCP): Given a
connected graph G = (V, E) and an integer k ≥ 2, find a k-path connected vertex cover set
with minimum cardinality.

For any connected unit disk graph G = (V, E), where |V | = n, we can obtain a PTAS
for MkPCVCP, by using partition technique and shifting strategy.

First, we suppose all the disks associated with vertices of graph G are located in a square

Q = {(x, y)|0 ≤ x ≤ q, 0 ≤ y ≤ q}. Set p = � q
m + 1� and m = � 40(k−1)k3

ε
�, where ε is

an arbitrary positive number. Let Q = {(x, y)| − m ≤ x ≤ mp,−m ≤ y ≤ mp}. Partition
Q into (p + 1)2 cells such that each cell is an m × m small square, excluding the top and
right boundary edges. Then, this partition of Q is denoted by p(0, 0). Second, In general, the
partition p(a, b) can be obtained by shifting the left-lower corner of p(0, 0) from (−m,−m)
to (−m + a,−m + b).

For each cell e of size m×m of p(0, 0), we assume e = {(x, y)|im ≤ x < (i+1)m, jm ≤
y < ( j + 1)m}. Then, we can define its central area Ie and boundary area Be as follows

Ie = {(x, y)|im + 1 ≤ x ≤ (i + 1)m − 1, jm + 1 ≤ y ≤ ( j + 1)m − 1},
Be = e − {(x, y)|im + k ≤ x ≤ (i + 1)m − k, jm + k ≤ y ≤ ( j + 1)m − k}.

We shall use G[Ie] to denote the subgraph of G induced by the vertices in Ie and use
comp(G[Ie]) to denote the set of connected component in G[Ie].

Note that, for each cell e, the central area Ie and the boundary area Be have an overlap
area of width k − 1. This ensures the output of Algorithm 1 (see Sect. 3) is a k-path vertex
cover. If we add some new vertices by step 5 of the Algorithm 1, the connectedness of the
output of the Algorithm 1 can also be ensured.

3 Algorithm overview

In this section, we present our PTAS for MkPCVCP in UDGs. Before doing so, we need a
constant approximation for MkPCVCP, which is similar to the well-known 2-approximation
for the minimum vertex cover.

Initially, let A← ∅. At each iteration, we simply choose a path P = (x1, x2, . . . , xk) on
k vertices in G, and set A← A∪ {x1, . . . , xk}, then let G ← G−{x1, . . . , xk}, repeated the
process until there is no path of length k − 1 is left.

It is clearly the above algorithm gives a k-approximation for MkPVC. Next, we show that
we can modify it into a k2-approximation for MkPCVCP. We need the following lemma.
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Lemma 3.1 Let G be a connected graph and C be a k-path vertex cover of G. Then,
there exist two connected components C1 and C2 of the induced subgraph G[C] such that
dist (C1,C2) ≤ k.

Proof Let C1 and C2 be two connected components of G[C]with shortest distance in G. Sup-
pose that � = (v1, v2, . . . , vt ) is the shortest path in G connecting C1 and C2. If t ≥ k + 2,
consider the subpath (v2, v3, . . . , vt−1), since C is a k-path vertex cover of G. Thus, there
must exist a vertex v in the subpath that belongs to C . Let C3 be the connected component
of G[C] which contains v. Then, we have

dist (C1,C3) < dist (C1,C2),

which contradicts with our choice of C1 and C2. ��
Lemma 3.2 Let G = (V, E) be a connected graph. There is a polynomial time k2-approxi-
mation for MkPCVCP.

Proof Let C∗ be an optimal solution for MkPCVCP of G. Suppose Ac is the output of the
k-approximation mentioned above, and ̂C is an optimal solution for MkPVCP of G. For any
k-path in Ac, there must exist a vertex belong to ̂C . Then, we must have

|Ac| ≤ k̂C ≤ k|C∗|,
since the size of an optimal solution for MkPVCP cannot exceed the size an optimal solution
for MkPCVCP.

Moreover, if Ac is not connected, we can reduce the number of connected component
of Ac by one through adding at most k − 1 vertices into Ac, until Ac becomes connected.
So, we need to add at most (t − 1)(k − 1) vertices into Ac to get a k-PCVC set C0, where
t (t ≤ |Ac|) is the number of connected component of Ac in graph G. Thus, we have

|C0| ≤ |Ac| + (t − 1)(k − 1) ≤ k|Ac| ≤ k2|C∗|.
So, there is a k2-approximation for MkPCVCP. ��
Algorithm 1 (PTAS for MkPCVCP-UDG)

Input: A connected unit disk graph G = (V, E) with |V | = n, a positive integer k ≥ 2
and a real number ε > 0.

1. Let m ← � 40(k−1)k3

ε
�.

2. Let C0 ⊆ V be a k2-approximation to the MkPCVC for G.
3. For a← 0 to m − 1 do.

(a) Let C0(a)← {v ∈ C0|v lies in the boundary area of p(a, a)}.
(b) Choose a∗ such that |C0(a∗)| = mina∈{0,1,...,m−1}|C0(a)|.

4. For any component H ∈ comp(G[Ie]), use exhausted search to find a minimum k-PCVC
CH of H . Set C[e] =⋃

H∈comp(G[Ie]) CH .
5. For each cell e of p(a∗, a∗). If there exists a connected component H ∈ comp(G[Ie])

such that CH
⋂

C0 = ∅, find a path Pe(H) which connects CH and C0(a∗) with the
minimum length. Set Ce =⋃

H∈comp(G[Ie]) Pe(H); else, Set Ce = ∅.
6. Output C ← C0(a∗)

⋃

(
⋃

e∈p(a∗,a∗) C[e])⋃(⋃e∈p(a∗,a∗) Ce).

Theorem 3.3 The output C of algorithm 1 is a k-path connected vertex cover for unit disk
graph G.
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Fig. 1 Two cases that a path lies in a cell e

Fig. 2 The path
(v1, . . . , vt−1, vt ) is in H ∈
comp (G[Ie])

Proof First, for any path (v1, v2, . . . , vk) with length k − 1, the Euclidean distance between
vi and vi+1 is less than or equal to 1 for i = 1, 2, . . . , k − 1. It follows that the path
(v1, v2, . . . , vk) belong to either the central area of e or the boundary area of e, since the
central area and boundary area have an overlap area with width k − 1 for each cell e. In the
former case, the path is in a component H ∈ G[Ie]. So, the path is covered by C[e] ⊆ C . In
the second case, we also see that the path is covered by C0(a∗) (see Fig. 1). Thus, any path
with length k − 1 in G is covered by C , and C is a k-path vertex cover of G.

Second, we prove that the subgraph G[C] induced by C is connected.
Let H1 and H2 be two distinct connected components in G[C0(a∗)] with shortest dis-

tance in G[C0]. Since C0 is connected, there is a path � = (v0, v1, . . . , vt , vt+1) of
G[C0] connecting H1 and H2 through the central area of a cell e. Since the central area
and the boundary area of each cell have an overlap with width k − 1, we assume without
loss of generality that {v0, v1, v2, . . . , vk−1} ⊆ V (H1), {vt−k+2, . . . , vt , vt+1} ⊆ V (H2)

and {vk, vk+1, . . . , vt−k+1} ⊆ Ie \ Be. Then, we see that {v1, . . . , vk−1, vt−k+2, . . . , vt } ⊆
Ie

⋂

Be. So, the path (v1, v2, . . . , vt−1, vt ) is in H ∈ comp(G[Ie]). According to our Algo-
rithm 1, there exists a connected component CH ∈ C[e] connecting H1 and H2 (see Fig. 2).

For each cell e of p(a∗, a∗) and each connected component H ∈ comp(G[Ie]), there are
two cases needed to be considered.
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Fig. 3 CH is connected with
C0(a

∗)

(1) If there exists a connected component H ∈ comp(G[Ie]) such that CH
⋂

C0 �= ∅,
there must exist a vertex x in CH belong to C0. Then, there exists a path P =
(v0, v1, . . . , vt ) ⊆ C0 connecting an other vertex y ∈ C0(a∗) which is belong to the
other parts of G outside of e, since G[C0] is connected in G. Suppose v0 = x, vt = y
and {v0, v1, . . . , vt−1} ⊆ e. Let i be the index such that vi is the first vertex on P
with vi ∈ Be. Then, we see that vi−1 ∈ Ie \ Be, vi , . . . , vi+k−2 ∈ Ie and thus
vi−1, vi , . . . , vi+k−2 ∈ Ie. So, There must exist a vertex in {vi−1, vi , . . . , vi+k−2}
belong to CH . Thus, CH is connected with C0(a∗) (see Fig. 3).

(2) If there exists a connected component H ∈ comp(G[Ie]) such that CH
⋂

C0 = ∅, by
step 5 of our Algorithm 1, there must exist a path Pe(H) connecting CH and C0(a∗)
with minimum length.

For each case, we get the conclusion that CH is connected with C0(a∗). So, we have that
C is a k-path connected vertex cover for unit disk graph G. ��

4 Time complexity

In this section, we give an analysis of the time complexity of Algorithm 1. Clearly, the step
4 of Algorithm 1 using exhausted search is the most time consuming part. So, we need to
prove that the step 4 of Algorithm 1 can also be executed in polynomial time, for any fixed
k ≥ 2 and ε > 0.

Lemma 4.1 If G is a UDG. Then, for any vertex v of G, there are at most 5 independent
vertices in N (v), where N (v) is the set of vertices adjacent with v in G.

Lemma 4.2 Let H be a connected subgraph induced by some vertices in a cell e in p(a∗, a∗).
Assume that H does not contain a k-path. Let � be the maximum degree of vertices in H.
Then, we have � ≤ 6k.

Proof Let v be a vertex with maximum degree � in H . Divide the disk centered at v with
diameter two into six parts. By the pigeonhole, there must exist a part of the disk has least ��6 �
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vertices. So, we have ��6 � < k, for otherwise the connected component H would contain a
k-path. Thus, we have � ≤ 6k. ��

Lemma 4.3 For any m × m cell e of the partition p(a, a), let H be a connected subgraph
which does not contain a k-path in cell e. Then we have |V (H)| ≤ g(k), where g(k) = 4(6k)k .

Proof Let � be the maximum degree of vertices in H . Then, by the above Lemma 4.2, we
have � ≤ 6k and the diameter of the subgraph G[H ] induced by H is less than or equal to
k − 1, since H does not contain a k-path. So, we have

|V (H)| ≤ k − 1+ 2[(�− 2)+ (�2 − 2)+ · · · + (�� k−3
2 � − 2)]

≤ 2(�+�2 + · · · +�� k−3
2 �) = 2

�(1−�� k−3
2 �+1)

1−� ≤ 2
�(�

k+1
2 − 1)

�− 1

≤ 2
�(�

k+1
2 − 1)
�
2

≤ 4�
k+1

2 ≤ 4�k ≤ 4(6k)k .

��

Lemma 4.4 The number of independent unit disks in an m ×m cell e is at most � 4(m+1)2

π
�.

Proof Enlarge the cell e to an (m + 1)× (m + 1) cell by adding a boundary with width 0.5.
Then, all the disks in cell e lie in the (m + 1)× (m + 1) cell. Since each unit disk occupies
area π

4 , the result follows from the independence assumption. ��

Theorem 4.5 The time complexity of our Algorithm 1 is nO( f (k)/ε2), where n is the number
of vertices in the graph and f (k) = k4g(k).

Proof For any connected component H ∈ comp(G[Ie]), consider the subgraph G[V (H) \
CH ] induced by V (H) \ CH . We know that G[V (H) \ CH ] does not contain any k-path.
Without a loss of generality, we assume V (H) \CH = C1

⋃

C2
⋃ · · ·⋃ Cs , where Ci (i =

1, 2, . . . , s) are connected components of G[V (H) \ CH ] and s is less than the potential of
the maximum independent unit disk set. By Lemma 4.4, we have

s ≤
⌈

4(m + 1)2

π

⌉

.

According to Lemma 4.3, we have

|V (H) \ CH | =
∣

∣

∣

∣

C1

⋃

C2

⋃

· · ·
⋃

Cs

∣

∣

∣

∣

≤ g(k)

⌈

4(m + 1)2

π

⌉

.

Now, we use the following strategy to compute CH : enumerate the induced subgraphs

of H with no more than g(k)� 4(m+1)2

π
� vertices to find out all induced subgraphs whose

connected components does not contain a k-path. Then take complements and find out the
one which is connected with minimum number of vertices.

The above exhausted search for CH takes time at most

g(k)� 4(m+1)2
π
�

∑

i=0

(

nH

i

)

= nO(g(k)m2)
H ,
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where nH is the number of vertices in H . Therefore, the total running time of Algorithm 1
is at most

∑

e,H

nO(g(k)m2)
H =

⎛

⎝

∑

e,H

nH

⎞

⎠

O(g(k)m2)

= nO(g(k)m2) = nO( f (k)/ε2).

��

5 Performance analysis

The following theorem shows that our Algorithm 1 is a PTAS.

Theorem 5.1 Let C∗ be an optimal solution to MkPCVCP in unit disk graph G, and C be
the output of Algorithm 1. Then, we have |C | ≤ (1+ ε)|C∗|.
Proof First, we prove that

|C0(a
∗)| ≤ 4k3

m
|C∗|.

According to the partition and shifting technique, the location of the graph G relative to
the grid of the partition changes when the partition shifts (towards northwest). Without loss
generality, we may imagine that the grid of the partition is fixed, but actually the graph G is
moving (towards southwest). Thus, for each vertex v in C0, it belongs to at most 4k of the
sets C0(0),C0(1), . . . ,C0(m − 1). Therefore, we have

m−1
∑

a=0

|C0(a)| ≤ 4k|C0| ≤ 4k × k2|C∗| = 4k3|C∗|.

and thus, we have

|C0(a
∗)| ≤ 4k3

m
|C∗| (1)

Second, we modify C∗ into C∗ by adding some vertices such that C∗ satisfied the follow-
ing condition:

(C1) For each connected component H of G[Ie], C∗
⋂

V (H) is a k-PCVC of H .

For each cell e, let C∗e = C∗
⋂

Ie. Obviously, we have C∗e = C∗
⋂

Ie is a k-PVC of G[Ie].
Suppose there exists a connected component H of G[Ie] such that the condition (C1) is not
satisfied. By Lemma 1, there are two connected components H1 and H2 of G[C∗e

⋂

V (H)]
such that H1 and H2 can be connected through adding at most k − 1 vertices in V (H) \C∗e .
Now, add these vertices into C∗e . If the new C∗e still does not satisfy condition (C1). Then, con-
tinue above process to merge connected components. Without loss of generality, we assume
that this has been done t times before C∗e satisfied condition (C1), and thus:

|C∗e | ≤
∣

∣

∣C∗
⋂

e
∣

∣

∣+ (k − 1)t (2)

Third, we can proved that
∣

∣

∣C0(a
∗)

⋂

e
∣

∣

∣ ≥ t

5
(3)
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Suppose that the connected components are merged in the order H1 and H2, H3 and
H4, . . . , H2t−1 and H2t . For simplicity, we assume that all the above Hj ’s are distinct con-
nected components. Let x1

i , x2
i , . . . , xk−1

i be k−1 adjacent vertices in V (H2i−1)
⋂

Be
⋂

Ie,
such that x1

i , x2
i , . . . , xk−1

i is adjacent with a vertex xk
i ∈ Be\Ie. Then, there must exist a

vertex in {x1
i , x2

i , . . . , xk
i } belonging to C0. Let wi = x j

i , j = 1, 2, . . . , k, if x j
i ∈ C0. Note

that x j
i ∈ Be. Hence wi ∈ C0(a∗)

⋂

e. Let {x1
i , x2

i , . . . , xk
i }\{wi } be charged on wi . How-

ever, a vertex may be charge more than once as wi ’s. For example, it is possible that there
are two independent vertices xi , x j covered by the same vertex of C0, since they belong to
different components of G[C∗⋂ Ie]. Then, by Lemma 4.1, such a vertex charges at most 5
times as wi ’s. Thus, we have

5(k − 1)
∣

∣

∣C0(a
∗)

⋂

e
∣

∣

∣ � (k − 1)t

and inequality (3) follows. So, we have

|C∗e | ≤
∣

∣

∣C∗
⋂

e
∣

∣

∣+ 5(k − 1)
∣

∣

∣C0(a
∗)

⋂

e
∣

∣

∣ (4)

Last, for each path Pe(H), we know that, by the step 5 of Algorithm 1, Pe(H) connects
CH and C0(a∗) with minimum cardinality. Since the central area Ie and the boundary area
Be have an overlap area with width k − 1. So, there exists a path P = (v0, v1, . . . , vt )

connecting CH and Be \ Ie. Let v0 ∈ CH and vt ∈ Be \ Ie. Then, there must exist a vertex
x ∈ {v0, v1, . . . , vk−1} belonging to C0(a∗). So, by the minimality of the path Pe(H). We
have

|Pe(H)| ≤ k − 2.

Charge the path Pe(H) to the vertex x . Then, using a similar arguments as above, we have

∣

∣

∣

∣

∣

∣

⋃

e∈p(a∗,a∗)
Ce

∣

∣

∣

∣

∣

∣

≤
∑

e∈p(a∗,a∗)
5(k − 2)

∣

∣

∣C0

⋂

Be

⋂

Ie

∣

∣

∣ ≤ 5(k − 2)|C0(a
∗)|

Note that in Algorithm 1, C[e] is the subset satisfying the condition (C1) with minimum
cardinality, for each cell e. It follows that |C[e]| ≤ |C∗e |. Thus, we have

∣

∣

∣

∣

∣

∣

⋃

e∈p(a∗,a∗)
C[e]

∣

∣

∣

∣

∣

∣

=
∑

e∈p(a∗,a∗)
|C[e]|

≤
∑

e∈p(a∗,a∗)
|C∗e |

≤ |C∗| + 5(k − 1)|C0(a
∗)|

≤ |C∗| + 20(k − 1)k3

m
|C∗|.
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Thus, by Eqs. 1–5, we have

|C | =
∣

∣

∣

∣

∣

∣

C0(a
∗)

⋃

⎛

⎝

⋃

e∈p(a∗,a∗)
C[e]

⎞

⎠

⋃

⎛

⎝

⋃

e∈p(a∗,a∗)
Ce

⎞

⎠

∣

∣

∣

∣

∣

∣

≤ |C0(a
∗)| +

∑

e∈p(a∗,a∗)
|C[e]| +

∑

e∈p(a∗,a∗)
|Ce|

≤ 5(k − 1)|C0(a
∗)| + |C∗| + 20(k − 1)k3

m
|C∗|

≤ |C∗| + 40(k − 1)k3

m
|C∗|

≤ (1+ ε)|C∗|.
This completes the proof. ��
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