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Abstract In the present paper, we are concerned with conditions ensuring the exact penalty
for nonconvex programming. Firstly, we consider problems with concave objective and con-
straints. Secondly, we establish various results on error bounds for systems of DC inequalities
and exact penalty, with/without error bounds, in DC programming. They permit to recast sev-
eral class of difficult nonconvex programs into suitable DC programs to be tackled by the
efficient DCA.
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1 Introduction

We consider the nonconvex program:

min f (x) s.t.

⎧
⎨

⎩

gi (x) ≤ 0 (i = 1, . . . ,M);
gi (x) = 0 (i = M + 1, . . . , N );
x ∈ C.

(NC P) (1)

here C is a closed convex subset of R
n and f, gi are DC functions (Difference of Convex

functions) on C.
A way to make the study of (NC P) easier is to penalize difficult constraints, e.g., non-

convex constraints. Usually, the penalty problem of (NC P) is

min
(

f (x)+ τp(x)
) : x ∈ C

}
(NC Pτ ) (2)

where τ > 0 and p(x) := ∑M
i=1 g+

i (x)+∑N
i=M+1 |gi (x)| with g+ := max(g, 0).

We say that the exact penalty holds if there exists a nonnegative number τ0 ≥ 0 such that
for all τ > τ0 the problems (NC P), (NC Pτ ) have the same optimal value and the same
optimal solution set. It is well known that such a property generally holds in convex program-
ming ([29–34,36–38,41–43,47,48,52,54,55,67,69]). For nonconvex programming—to the
best of our knowledge—there are few existing exact penalty results in the literature. In [51],
Luo et al. have established a general exact penalty result for problems with the subanalytic
data. In which, p(x)γ , γ ∈ (0, 1), is instead of p(x) in the objective function of the problem
(NC Pτ ). However, from the computational viewpoint, that exact penalty result might be
disadvantageous since the exponential parameter γ is unknown and furthermore, the penalty
functions have not special structure to be enhanced.

Let Γ0(R
n) denote the convex cone of all lower semicontinuous proper convex functions

on R
n . The vector space of DC functions, DC(Rn) = Γ0(R

n) − Γ0(R
n), is quite large to

contain almost real life objective functions and is closed under all the operations usually
considered in Optimization. Throughout the paper, ‖.‖ denotes the Euclidean norm on R

n ,
unless otherwise specified.

Consider the standard DC program

α := inf{ f (x) := g(x)− h(x) : x ∈ R
n} (Pdc)

with g, h ∈ Γ0(R
n).

Remark that the closed convex constraint set C is incorporated in the first convex DC com-
ponent g with the help of its indicator function χC (χC (x) := 0 if x ∈ C,+∞ otherwise).
Recall that in DC programming we have +∞ − (+∞) = +∞ and that the finite optimal
value α implies domg := {x ∈ R

n : g(x) < +∞} ⊂ domh. The function f is called a DC
function (resp. polyhedral DC function) on R

n (resp. if either g or h are polyhedral convex).
Polyhedral DC programs, being DC programs with polyhedral DC objective functions, are
at the heart of DC programming.

DC programming and DCA (DC Algorithms) have been introduced by Pham Dinh Tao
in 1985 and extensively developed by Le Thi Hoai An and Pham Dinh Tao since 1994. DC
programming plays a key role in nonconvex programming because almost nonconvex pro-
grams encountered in practice are DC programs. Based on local optimality conditions and
DC duality, DCA is one of a few efficient algorithms for nonconvex programs, especially
for smooth/nonsmooth large-scale ones. Due to its local character it cannot guarantee the
globality of computed solutions for general DC programs. However, we observe that, with
a suitable starting point, it converges quite often to global solutions. In practice, DCA was
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successfully applied to a lot of different and various nonconvex programs proved to be more
robust and more efficient than related standard methods, especially in the large-scale setting.
On the other hand, it is worth noting that, with appropriate DC decompositions, DCA per-
mits to find again standard optimization algorithms for convex and nonconvex programming
([8], [1–22,63,64] and references therein). In global approaches to nonconvex programming,
DC programming have been investigated by Reiner Horst and Hoang Tuy [26], Reiner Horst,
Panos Pardalos and Nguyen Van Thoai [23], Reiner Horst [24], Reiner Horst et al. [25], Rein-
er Horst and Nguyen Van Thoai [27]. In practice, to check globality of solutions computed by
DCA, we proposed to combine DCA with global optimization techniques like Branch-and-
Bound scheme (B&B) using respectively DC/SDP relaxation techniques [3,4,6,13,21]. The
combined algorithm allows checking globality of solutions computed by DCA and restarting
it if necessary, and, consequently, accelerates the B&B approach. Exact penalty then is cru-
cial insofar as solutions computed by DCA applied to equivalent penalized problems provide
upper bounds for the optimal value of the original problem.

The goal of the present paper is to establish exact penalty results with/without error bounds
of nonconvex constraint sets. These results are based on the concavity of objective/constraint
functions and local error bounds. They permit us to recast several classes of problems (NC P)
into the more suitable DC programming framework. More precisely, under appropriate con-
ditions, (NC P) is equivalent to a DC program.

The paper is organized as follows. The next section presents new general exact penalty
results (without available error bounds for nonconvex feasible sets) for nonconvex programs
with concave objective and constraints functions over bounded polyhedral convex sets. These
results encompass that of An-Tao-Muu in [2] as a special case and allow the statement of
equivalent penalized polyhedral DC programs. In Sect. 3, we investigate new error bound
results for DC inequality systems of the form:

S = {
x ∈ C : g(x)− h(x) ≤ 0

}
,

where C is a closed convex set in R
n and g, h are convex functions on C, by using, local error

bounds, compactness, polyhedrality of C on the one hand, and differentiability of h, polyhed-
rality of g on the other hand. Finally, consequent exact penalty results in DC programming
are reported in the last section.

2 Exact penalty in concave programming

We first investigate exact penalty for nonconvex programs having concave objective functions
and bounded polyhedral convex constraint sets with additional concave constraint functions.
These results are not derived from error bounds of feasible solution sets because the question
concerning their error bounds is still open. We get back to it in Sect. 3.1.

Let K be a nonempty bounded polyhedral convex subset of R
n and let f, g be finite func-

tions on K .Recall that the function f is said to be continuous relative to K , if its restriction to
K is a continuous function. The notions of relative upper semicontinuity and relative lower
semicontinuity are defined similarly. In this section, we are concerned with the following
nonconvex programs:

α := min
{

f (x) : x ∈ K , g(x) = 0
}
(P) (3)

min
{

f (x) : x ∈ K , g(x) ≤ 0
}
(P ′) (4)
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In [2], it has been established an exact penalty result for the problem (P) under the hypothesis
that g is nonnegative on K . We consider (P) here without this nonnegativity assumption.
Problem (P) could be rewritten equivalently

α := min
{

f (x) : x ∈ C, g(x) ≤ 0
}
(P) (5)

where C is the convex set defined by

C := {x ∈ K , g(x) ≥ 0 } (6)

on which g is nonnegative. It is clear that C is a polyhedral convex set iff −g is a polyhedral
convex function on K . In such a case, exact penalty relative to the nonconvex constraint
g(x) ≤ 0 holds, due to [2].

According to DC programming and DCA approaches, to handle nonconvex constraints,
we make use of a penalty function to bring these nonconvex constraints into the objective
function. For this goal, the penalty problem (Pτ ) of (P) is defined by, for τ > 0,

α(τ ) := min
{

f (x)+ τg(x) : x ∈ K , g(x) ≥ 0
}
(Pτ ). (7)

The following result constitutes a substantial extension of the key theorem in ([2]-Theo-
rem 2). Let us denote by V (K ) the vertex set of K and by P and Pτ the optimal solution sets
of (P)− (5) and (Pτ )− (7), respectively.

Theorem 1 Let K be a nonempty bounded polyhedral convex set in R
n and let f, g be finite

concave functions continuous relative to K . Suppose that the feasible set of (P) is nonempty.
Then there exists τ0 ≥ 0 such that for all τ > τ0, the problems (P)− (5) and (Pτ )− (7)
have the same optimal value and the same optimal solution set. Furthermore, we can take
τ0 = f (x0)−α(0)

m with m = min{g(x) : x ∈ V (K ), g(x) > 0} and any x0 ∈ K , g(x0) = 0.

Proof First, note that the convention min∅ g(x) = +∞ will be used in the sequel. For τ ≥ 0,
since the functions f, f + τg, being continuous concave functions on K , then P and Pτ are
nonempty. Set C = {x ∈ K : g(x) ≥ 0}. Denote by E(C) the set of all extremal points of
C. Then C = coE(C). It is obvious that

E(C) ⊂ {x ∈ V (K ) : g(x) > 0} ∪ {x ∈ K : g(x) = 0}.
We first prove that there exists τ0 ≥ 0 such that P ⊂ Pτ and α(τ) = α for all τ > τ0. Indeed,
if {x ∈ V (K ) : g(x) > 0} = ∅ then E(C) ⊂ {x ∈ K : g(x) = 0}. Since f + τg is concave,
then there is z ∈ E(C) ⊂ {x ∈ K , g(x) = 0} such that z ∈ Pτ . Hence, for any x ∈ P, we
have

f (x) ≤ f (z) ≤ f (y)+ τg(y) for all y ∈ C.

That is, x ∈ Pτ . It follows that P ⊂ Pτ and α(τ) = α.

We now consider the case {x ∈ V (K ), g(x) > 0} �= ∅. Set τ0 = f (x0)−α(0)
m and x0 ∈ K

with g(x0) = 0. Let τ > τ0. By again the concavity of f + τg, there exists z ∈ Pτ ∩ E(C).
It follows that g(z) = 0. In fact, if g(z) > 0 then z ∈ V (K ). Therefore, g(z) ≥ m > 0 and

f (z)+ τg(z) > f (z)+ τ0g(z) ≥ f (z)+ f (x0)− α(0) ≥ f (x0),

a contradiction. Hence z ∈ P ∩ Pτ and α(τ) = α. By using the same argument as for the
above case, we also obtain P ⊂ Pτ for all τ > τ0.

Next, let τ > τ0. For any z ∈ Pτ , to see that z ∈ P, we assume for contradiction that
g(z) > 0. Then by taking some τ ′ with τ0 < τ ′ < τ, one has
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α(τ) = f (z)+ τg(z) > f (z)+ τ ′g(z) ≥ α(τ ′) = α.

This contradicts α(τ) = α. Thus, P = Pτ and the proof is complete. 
�
Let us now consider the problem (P ′):

min
{

f (x) : x ∈ K , g(x) ≤ 0
}

(P ′). (8)

Obviously, (P ′) is equivalent to the following one:

min
{

f (x) : (x, t) ∈ K × [0, β], g(x)+ t = 0
}
(P ′) (9)

where β ≥ max{−g(x) : x ∈ K } and such the equivalence is in the following usual sense: If
x is a solution of (P ′)then (x,−g(x)) is a solution of (P ′).Conversely, if (x, t) is a solution
of (P ′) then x is a solution of (P ′).

In virtue of Theorem 1, there is τ0 ≥ 0 such that for all τ > τ0, the problem (P ′) is
equivalent to the following one:

min
{

f (x)+ τ(t + g(x)) : (x, t) ∈ K × [0, β], g(x)+ t ≥ 0
}
(P ′
τ ). (10)

Thus we obtain the following corollary.

Corollary 1 Under the assumptions of Theorem 1, the problems (P ′)−(8) and
(P ′
τ )−(10) are equivalent in the sense given in Theorem 1.

It is obvious that (P ′
τ )−(10) is a DC program. As shown by the corollary, it is worth noting

that if f, g are finite concave functions on a nonempty bounded polyhedral convex set K ,
then Problem (P ′)− (8) is equivalent to (P ′

τ )−(10).
By applying Corollary 1, we list below the nonconvex programs (with DC objective func-

tions and DC constraint functions) frequently encountered in practice that we can advanta-
geously recast into more suitable equivalent DC programs (in the sense given Theorem 1):
(a) Polyhedral convex objective function and concave constraint function

Consider the problem with a nonempty feasible set:

min
{

f (x) : x ∈ K , g(x) ≤ 0
}
, (11)

where K is a polyhedral convex set and f ∈ Γ0(R
n) is a polyhedral convex function, i.e., it

is a sum of a pointwise supremum of a finite collection of affine functions and an indicator
funtion of a nonempty polyhedral convex set D

f (x) : = max{〈x, yi 〉 − αi : i = 1, . . . , r} + χD(x) (12)

= f (x)+ χD(x),

such that D ∩ K is bounded and g is a finite concave function continuous relative to D ∩ K .
Obviously, this problem is equivalent to

min
{
t : f (x) ≤ t, (x, t) ∈ [D ∩ K ] × [a, b], g(x) ≤ 0

}
, (13)

where a ≤ min{ f (x) : x ∈ [D ∩ K ]} and b ≥ max{ f (x) : x ∈ [D ∩ K ]}. According
to Corollary 1, if the feasible set of (11) is nonempty there is τ0 such that for all τ > τ0,

Problem (13) is equivalent to following DC program (with β ≥ maxx∈[D∩K ](−g(x))):

min
{
t+τ(s + g(x)) : f (x)≤ t, (x, t, s) ∈ [D ∩ K ]×[a, b] × [0, β], g(x)+s ≥ 0

}
,

(14)
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that can be reduced to

min
{

f (x)+ τ(s + g(x)) : (x, s) ∈ [D ∩ K ] × [0, β], g(x)+ s ≥ 0
}

(15)

(b) Concave objective function and DC (whose first DC component is polyhedral convex
function) constraint function

Let f be a finite concave function on a polyhedral convex set K . Let g be a polyhedral
convex function defined as in (12) with domg := {x ∈ R

n : g(x) < +∞} = D such that
D∩ K is bounded nonempty, and h be a finite convex function on D∩ K . Let us now consider
the following problem with a polyhedral DC constraint:

min
{

f (x) : x ∈ K , g(x)− h(x) ≤ 0
}
. (16)

This problem is equivalently transformed into

min
{

f (x) : (x, t) ∈ [D ∩ K ] × [a, b], g(x)− t ≤ 0, t − h(x) ≤ 0
}
, (17)

where a ≤ minx∈[D∩K ] g(x), b ≥ maxx∈[D∩K ] g(x). In virtue of Corollary 1, if the feasible
set of (16) is nonempty then there is τ0 ≥ 0 such that for all τ > τ0 Problem (17) is equivalent
to the DC program (β ≥ maxx∈[D∩K ] h(x)− a):

min
{

f (x)+ τ(s + t − h(x)) : (x, t, s) ∈ [D ∩ K ] × [a, b] × [0, β], (18)

g(x)− t ≤ 0, s + t − h(x) ≥ 0
}
.

(c) DC objective function and DC constraint function (whose first DC component is polyhe-
dral convex function)

Let K be a nonempty polyhedral convex set in R
n . Consider the nonconvex program with

a polyhedral DC objective function f = g0 − h0 and DC constraint function:

min{g0(x)− h0(x) : x ∈ K , g1(x)− h1(x) ≤ 0} (19)

where g0, g1 are polyhedral convex functions on R
n, i.e.,

g0(x) : = max{〈x, yi 〉 − αi : i = 1, . . . , q} + χD(x) (20)

= g0(x)+ χD(x),

g1(x) : = max{〈x, zi 〉 − αi : i = 1, . . . , r} + χR(x)

= g1(x)+ χR(x),

with D, R being nonempty polyhedral convex sets and h0, h1 are a finite convex function
continuous relative to D ∩ K ∩ R. Assume that the polyhedral convex set D ∩ K ∩ R is
bounded nonempty.

Problem (19) is equivalent to

min{s − h0(x) : (x, s, t) ∈ D ∩ K ∩ R × [a0 , b0] × [a1 , b1], g0(x) ≤ s, g1(x) ≤ t,

t − h1(x) ≤ 0} (21)

where a0 , b0, a1 , b1 are constant numbers verifying

a0 ≤ min{ g0(x) : x ∈ D ∩ K ∩ R} ≤ max{ g0(x) : x ∈ D ∩ K ∩ R} ≤ b0

a1 ≤ min{ g1(x) : x ∈ D ∩ K ∩ R} ≤ max{ g1(x) : x ∈ D ∩ K ∩ R} ≤ b1

Hence, it follows from Corollary 1 that if the feasible set of Problem (21) is nonempty then
there is τ0 ≥ 0 such that for all τ > τ0 this problem is equivalent to
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min{s−h0(x)+τ [u + t − h1(x)] : (x, s, t, u) ∈ D ∩ K ∩ R×[a0 , b0]×[a1 , b1] × [0, c],
g0(x) ≤ s, g1(x) ≤ t, u + t − h1(x) ≥ 0} (22)

with c being a constant number satisfying c ≥ max{h1(x) : x ∈ D ∩ K ∩ R} − a1.

Finally, Problem (19) is equivalent to the DC program

min{ f (x, u, t) = g0(x)− h0(x)+ τ [u + t − h1(x)] : (23)

(x, t, u) ∈ D ∩ K ∩ R × [a1 , b1] × [0, c], g1(x) ≤ t, u + t − h1(x) ≥ 0}

3 Error bounds for DC inequality systems

Throughout the paper ‖.‖ denotes the Euclidean norm on R
n unless otherwise specified, and

B(c, r) := {x ∈ R
n : ‖x − c‖ ≤ r}. Let C be a nonempty closed subset in R

n and let h be a
finite function on C. We consider the solution set of the following inequality system

S = {x ∈ C : h(x) ≤ 0} (24)

Recall that an error bound of S is an inequality of the form

d(x, S) ≤ τh+(x) for all x ∈ C, (25)

where d(x, S) = inf z∈S ‖x − z‖, and τ is a positive number. For x0 ∈ S, if the inequality in
(25) holds for all x in a neighborhood of x0, then we say that S has an error bound around
x0. Instead of (25), an inequality of the form

d(x, S) ≤ τh+(x)γ for all x ∈ C, (26)

with τ > 0 and 0 < γ < 1 will be called an error bound for (24) with the exponent γ. Note
that if an error bound of S holds for a norm it holds for every norm because all norms on
R

n are equivalent. Error bounds have important applications in many areas of mathematical
programming, e.g., in sensitivity analysis, in convergence analysis of some algorithms, and
in exact penalty, etc. The reader is referred to the suvey papers [28,45,66] and the references
therein for the summary of the theory and applications of error bounds. For convex inequal-
ity systems, many results on error bounds have been established in the literature (see, e.g.,
[46,56–62] and references therein) and several conditions ensuring the error bounds have
been investigated in different contexts. However, from the computational point of view these
existing conditions are hard to check in practical problems.

Recently, in [50,51], Luo et al. by adapting the very deep result of Lojasiewicz [46], have
established the error bound result with exponent for subanalytic systems and the application
to establish the exact penaltization results for optimizations problems with equilibrium con-
straints. In [49,50], the authors also have sharply estimated the exponential parameter for
nonconvex quadratic systems under appropriate conditions.

In this section, we derive several new results on error bounds for the inequality system (24)
when C is a suitable closed convex set and h is a concave function on C. These systems play
an important role in global optimization.

In general, a system which has local error bounds at all points in its solution set does not
necessarily attain the global error bound. However, under the compactness hypothesis, such
an implication holds as will show the following proposition that will be needed thereafter.

Theorem 2 Let C be a nonempty compact set in R
n . Let h be a finite function lower semi-

continuous relative to C and S := {x ∈ C : h(x) ≤ 0} �= ∅. Suppose that for each z ∈ S,
there exist τ(z), γ (z) > 0 and ε(z) > 0 such that
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d(x, S) ≤ τ(z)h+(x)γ (z) for all x ∈ B(z, ε(z)) ∩ C. (27)

Then there exist τ, γ > 0 such that

d(x, S) ≤ τh+(x)γ for all x ∈ C. (28)

Proof Since h is lower semicontinuous relative to C and C is compact, then S is a compact
set too. For each z ∈ S, let 0 < ε(z) < 1, τ (z), γ (z) such that (27) is satisfied. By the
compactness, there exist z1, . . . , zm in S such that

S ⊂
m⋃

i=1

B(zi , ε(zi )/2).

Set ε = min{ε(zi ) : i = 1, . . . ,m}; γ = min{γ (zi ) : i = 1, . . . ,m} and τ = max{τ(zi ) :
i = 1, . . . ,m}. Let x ∈ C such that d(x, S) ≤ ε/2. Then we can find z ∈ S such that
‖x − z‖ ≤ ε/2. Therefore, there is an index i ∈ {1, . . . ,m} such that z ∈ B(zi , ε(zi )/2). It
follows that

‖x − zi‖ ≤ ‖x − z‖ + ‖z − zi‖ ≤ ε/2 + ε(zi )/2 ≤ ε(zi ).

Hence, we obtain

d(x, S) ≤ τ(zi )h
+(x)γ (zi ) ≤ τh+(x)γ

if h+(x) < 1; otherwise, one has d(x, S) ≤ h+(x)γ . Now let x ∈ C with d(x, S) > ε/2.
We say that there is a η > 0 such that

h(x) ≥ η for all x ∈ C, d(x, S) > ε/2.

Indeed, if this is not the case, one selects a sequence {xk} ⊂ C such that h(xk) ≤ ηk and
d(xk, S) > ε/2 for all k,where {ηk} is a sequence of positive numbers with lim k→+∞ηk = 0.
By the compactness, without loss of generality, assume that {xk} converges to some x∗ ∈ C.
Then h(x∗) ≤ 0 by lower semicontinuity of h. That is, x∗ ∈ S and a contradiction that
d(xk, S) ≤ ‖xk − x∗‖ → 0. Since C is bounded, then d(·, S) is bounded above on C , say,
by some r > 0. Thus for all x ∈ C with d(x, S) > ε/2, one has

d(x, S) ≤ r ≤ r

ηγ
h(x)γ .

By taking τ ∗ = max{τ, 1, r/ηγ }, we obtain

d(x, S) ≤ τ ∗h+(x)γ for all x ∈ C.

The proof is complete. 
�
Remark 1 We see from the proof above that if (27) is satisfied for a common exponent γ
which does not depend on z, then (28) holds also with this exponential parameter.

3.1 Error bounds for DC inequality systems

It is well known (see Sect. 4) that error bounds of feasible solution sets of nonconvex programs
provide, in an elegant and deep way, exact penalty for those problems with Lipschitz objective
functions. This subsection is concerned with error bounds for DC inequality systems.
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Let f : R
n → R∪{+∞} be a lower semicontinuous function on R

n . The lower directional
derivative (or contingent derivative or Hadamard derivative) of f at x ∈ dom f := {x ∈
R

n : f (x) < +∞} is given by

f ′(x; u) = lim
(t,v)→(0+,u)

inf
f (x + tv)− f (x)

t
.

If f is differentiable at x with the derivative ∇ f (x) then f ′(x; u) = 〈∇ f (x), u〉.When f is
convex or concave then the lower directional derivative coincides with the usual directional
derivative. The Clarke derivative of a locally Lipschitz f at x is given by the following
formula.

f 0(x; u) := lim sup
(t,v)→(0+,x)

sup
f (v + tu)− f (v)

t
.

The Clarke subdifferential of f at x is defined by

∂0 f (x) := {y ∈ R
n : 〈y, u〉 ≤ f 0(x; u) ∀u ∈ R

n}.
It is well known that when f is a convex function and continuous at x then Clarke subdif-
ferential of f at x coincides with the subdifferential of f at x in the sense of convex analy-
sis—which is denoted by ∂ f (x)—and ∂0(− f )(x) = −∂ f (x).More generally, by observing
from the sum rule for the Clarke subdifferential, if g, h are convex and continuous at x then
one has

∂0(g − h)(x) ⊂ ∂g(x)− ∂h(x).

We present first a general sufficient condition for the error bound in terms of the lower
directional derivative. This condition can be derived from the existing sufficient conditions
using generalized derivatives in the literature (see [28,44,57,65]). However, for the reader’s
convenience, we give here a simple proof in the context of finite dimension.

Proposition 1 Let C be a nonempty closed convex set in R
n, let h be a finite function lower

semicontinuous relative to C and S := {x ∈ C : h(x) ≤ 0} �= ∅.
(i) Given x0 ∈ S. If there exists μ > 0, ε > 0 such that for each y ∈ [B(x0, ε) ∩ C] \ S

there exists z ∈ C, z �= y such that h′(y; z − y) < −μ‖z − y‖ then one has

d(x, S) ≤ 1

μ
h+(x) for all x ∈ B(x0, ε/2) ∩ C.

(ii) In addition, if C is bounded, h is continuous relative to C and for all x ∈ S with
h(x) = 0, the set

{(μ, ε) > (0, 0) : ∀y ∈ [B(x, ε) ∩ C] \ S ∃zy ∈ C such that h′(y; zy − y)

< −μ‖zy − y‖}
is nonempty, then there is τ > 0 such that

d(x, S) ≤ τh+(x) for all x ∈ C.

Proof (i) Letμ > 0, ε > 0 as in (i). Let x ∈ B(x0, ε/2)∩C with h(x) > 0. For every ξ > 1,
consider the following function defined by ϕ(x) = h+(x)+ ξ h(x)

d(x,S)‖x − x‖, x ∈ C. Then ϕ
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is lower semicontinuous relative to C, bounded below and coercive (i.e., lim‖x‖→∞ ϕ(x) =
+∞) on C. Hence, the minimum of ϕ relative to C is attained at y ∈ C

h+(y)+ ξ
h(x)

d(x, S)
‖y − x‖ ≤ h+(x)+ ξ

h(x)

d(x, S)
‖x − x‖, ∀x ∈ C.

It implies that

h+(y) ≤ h+(x)+ ξ
h(x)

d(x, S)
‖x − y‖, ∀x ∈ C. (29)

By setting x = x in the first inequality, we get

ξ
h(x)

d(x, S)
‖y − x‖ ≤ h+(x).

Thus ‖y − x‖ < d(x, S) ≤ ε/2. It follows that y ∈ [B(x0, ε) ∩ C] \ S. On the other hand,
from the relation (29), we derive that

−h+(y + t (z − y)))+ h+(y)
t‖z − y‖ ≤ ξ

h(x)

d(x, S)
, ∀t ∈ (0, 1), z ∈ C.

According to the assumption, there exists zy ∈ C such that h′(y; zy − y) < −μ‖zy − y‖.
By setting z = zy and letting t → 0+, and since ξ > 1 is arbitrary, we obtain the desired
inequality

h(x)

d(x, S)
≥ −h′(y; zy − y)

∥
∥zy − y

∥
∥

> μ > 0

and complete the proof of (i).
For the assertion (ii), by virtue of Theorem 2, it suffices to show that for each x0 ∈ S,

there exist τ, ε > 0 such that

d(x, S) ≤ τh+(x) for all x ∈ B(x0, ε) ∩ C.

Indeed, let x0 ∈ S. If h(x0) < 0 then by the continuity of h, there is ε > 0 such that h(x) < 0
for all x ∈ B(x0, ε) ∩ C. Therefore, d(x, S) = h+(x) = 0 for all x ∈ B(x0, ε) ∩ C.

The case h(x0) = 0 follows directly from part (i). 
�
Remark 2 Proposition 1 remains valid if we replace the conditions (i) (resp. (ii) by the fol-
lowing conditions (iii) (resp. (iv)):

(iii) Let x0 ∈ S. If there exits z ∈ C such that the function x → h′(x; z − x) is upper
semicontinuous at x0 and h′(x0; z − x0) < 0.

(iv) In addition, if C is bounded, h is continuous relative to C and for all x0 ∈ S with
h(x0) = 0,there exits z ∈ C such that the function x → h′(x; z − x) is upper semicon-
tinuous at x0 and h′(x0; z − x0) < 0.

Error bound for the relative complementary of a Euclidean ball with respect to another
one

Let us present now a nice application of Proposition 1 in pointing out an error bound for
this nonconvex set, which is of great interest in practice.

Let a1, a2 ∈ R
n and r1, r2 > 0 be given. Denote by S the solution set of the system:

S := {x ∈ R
n : ‖x − a1‖2 − r2

1 ≤ 0, ‖x − a2‖2 − r2
2 ≥ 0}. (30)

Set C = B(a1, r1) and h(x) = −‖x − a2‖2 + r2
2 .
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Proposition 2 If S is nonempty, then there is τ > 0 such that

d(x, S) ≤ τ(r2
2 − ‖x − a2‖2)+ for all x ∈ C. (31)

Proof We shall show Proposition 2 by using the condition (iv) in Remark 2. Let x0 ∈ S with
h(x0) = 0. We shall distinguish different cases:

(1) If ‖x0 − a1‖ < r1 then, for t > 0 is sufficiently small, one has z := x0 + t (x0 − b) ∈ C
and h′(x0; z − x0) = −2t‖x0 − b‖2 < 0.

(2) If ‖x0 − a1‖ = r1 and a1 �= a2 then there exists u ∈ R
n with ‖u‖ = 1 such that

〈u, x0 −a1〉 < 0 and 〈u, x0 −a2〉 > 0. Hence for t > 0 sufficiently small, we also have

z := x0 + tu ∈ C and h′(x0; z − x0) = −2t〈x0 − b, u〉 < 0.

(3) If ‖x0 − a1‖ = r1 and a1 = a2 = a then we have r1 ≥ r2.Two subcases should be
considered:

(3.1) If r1 > r2 then ‖x0 − a‖ < r1 for all x0 ∈ S with h(x0) = 0 and we return to
the case 1).

(3.2) If r1 = r2 = r then there no z ∈ C such that h′(x0; z − x0) < 0, i.e., the
condition (iv) in Remark 2 doesn’t hold. However we can state two error bounds
for S in this subcase as follows:

The first error bound is given by

d(x, S) ≤ (r − ‖x − a‖) for all x ∈ C, (32)

which is a nonsmooth error bound, while the second smooth error bound

d(x, S) ≤ 1

r
(r2 − ‖x − a‖2) for all x ∈ C (33)

comes from the fact that

h(x) = −‖x − a‖2 + r2 = (r − ‖x − a‖)(r + ‖x − a‖) ≥ rd(x, S) for all x ∈ C \ S


�
Remark 3 Proposition 1 establishes existence of error bounds without providing the value
of the parameter τ , which is important for using exact penalty techniques in a computational
point of view. The error bounds (32) and (33) are then very interesting in practice. Note that
if {x ∈ R

n : ‖x − a2‖ − r2 ≤ 0} is contained in C,then S has the following error bounds

d(x, S) ≤ (r − ‖x − a2‖)+ for all x ∈ C,

and

d(x, S) ≤ 1

r
(r2 − ‖x − a2‖2)+ for all x ∈ C

Next, we give a condition ensuring the error bound for DC inequality systems which is a
slight extension of the well known Slater one for convex systems (when h = 0). The systems
of that type play an important role in DC programming. Let C be a nonempty closed convex
set in R

n and let g, h be finite convex functions on C. Consider the following set:

S = {x ∈ C : g(x)− h(x) ≤ 0}.
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Theorem 3 Let C ⊂ R
n be a nonempty compact convex set, g be a finite convex function

continuous relative to C and h be a differentiable convex function on C. If for each x0 ∈ S
with g(x0)− h(x0) = 0 the set

{z ∈ C : g(z)− 〈∇h(x0), z − x0〉 − h(x0) < 0} (34)

is nonempty, then there exists τ > 0 such that

d(x, S) ≤ τ [g(x)− h(x)]+ for all x ∈ C.

Proof Let x0 ∈ S and let z ∈ C satisfy (34). By the assumptions, the function z → g(z)−
〈∇h(y), z − y〉− h(y) is continuous and negative at x0. Hence there exist μ > 0, ε > 0 such
that

g(z)− 〈∇h(y), z − y〉 − h(y) < −μ < 0,

for all y ∈ B(x0, ε) ∩ C. For each y ∈ B(x0, ε) ∩ S, defining the set S(y) by

S(y) = {x ∈ C : g(x)− 〈∇h(y), x − y〉 − h(y) ≤ 0}.
By the convexity of h, S(y) ⊂ S. Consequently,

d(x, S) ≤ d(x, S(y)) for all x ∈ C, y ∈ B(x0, ε) ∩ S.

Let now x ∈ C \ S. Then g(x) − 〈∇h(x), x − y〉 − h(y) > 0. Therefore, there exist
xy := t x + (1 − t)z ∈ [x, z], t ∈ (0, 1) such that g(xy) − 〈∇h(y), xy − y〉 − h(y) = 0.
Thus xy ∈ S(y) and

d(x, S) ≤ ‖x − xy‖ = (1 − t)‖x − z‖. (35)

On the other hand,

0 = g(xy)− 〈∇h(y), xy − y〉 − h(y) ≤ t[g(x)− 〈∇h(y), x − y〉 − h(y)]
+ (1 − t)[g(z)− 〈∇h(y), z − y〉 − h(y)].

It follows that

(1 − t) ≤ g(x)− 〈∇h(y), x − y〉 − h(y)

μ
. (36)

From (35) and (36), we obtain

d(x, S) ≤ d(x, S(y)) ≤ g(x)− 〈∇h(y), x − y〉 − h(y)

μ
‖x − z‖, (37)

for all x ∈ C, x /∈ S(y). Next, take δ > 0 such that

‖x0 − z‖ + ε

μ
δ < 1/2. (38)

Since h is continuously differentiable on C, then there exists ε′ > 0 with ε′ < ε such that

‖∇h(u)− ∇h(v)‖ < δ for all u, v ∈ C, ‖u − v‖ < ε′.

Let x ∈ B(x0, ε
′/2) ∩ C be given. Pick y ∈ S such that ‖x − y‖ = d(x, S). Obviously,

y ∈ B(x0, ε). Thanks to the mean value theorem, we can find y′ ∈ [x, y] such that

h(x)− h(y) = 〈∇h(y′), x − y〉.
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Hence

h(x)− h(y) ≤ 〈∇h(y), x − y〉 + δ‖x − y‖. (39)

Combining the relations (37), (38), (39), we derive that

d(x, S) ≤ ‖x − z‖
μ

[g(x)− h(x)] + ‖x − z‖
μ

δ‖x − y‖

≤ ‖x0 − z‖ + ε

μ
[g(x)− h(x)] + d(x, S)

2
.

(40)

Hence

d(x, S) ≤ τ [g(x)− h(x)] for all x ∈ B(x0, ε
′/2) ∩ C,

where τ = 2(‖x0 − z‖ + ε)/μ. In view of Theorem 2, the proof is complete. 
�
In the case of systems consisting of quadratic inequalities, the conditions in the preceding

proposition can be rewritten more simply as follows.

Corollary 2 Let C be a nonempty compact convex subset of R
n and

fi (x) := 1

2
〈x, Qi x〉 + 〈qi , x〉 + ri , i = 1, . . . ,m

where Qi are symmetric n × n matrices, qi ∈ R
n, ri ∈ R. Let

f (x) := max{ fi (x) : i = 1, . . . ,m}.
If for each x ∈ S := {x ∈ C : f (x) ≤ 0} with f (x) = 0, there holds

{z ∈ C : f (z)+ λ

2
‖z − x‖2 < 0} �= ∅,

where λ := max{ρ(Qi ) : i = 1, . . . ,m} and ρ(Qi ) is the spectral radius of Qi , then there
exists τ > 0 such that

d(x, S) ≤ τ f +(x) for all x ∈ C.

Proof The function f is a DC function on R
n whose DC decomposition given below, accord-

ing to [70], is particularly interesting:

f (x) = max

{
1

2
〈x, (Qi + λI )x〉 + 〈qi , x〉 + ri : i = 1, . . . ,m

}

− λ

2
‖x‖2 := g(x)− h(x),

where I denotes the identity matrix. Obviously, the functions g, h are convex. The conclusion
follows immediately from Proposition 3 and the following equality.

g(z)− 〈∇h(x), z − x〉 − h(x) = f (z)+ λ

2
‖z − x‖2.


�
Consider now the following system of the concave inequalities:

S = {x ∈ R
n : hi (x) ≤ 0, i = 1, . . . ,m},

where hi : R
n → R, (i = 1, . . . ,m) are m concave functions. Setting (� := {1, . . . ,m})

h(x) := max{h1(x), . . . , hm(x)}, �(x) := {i ∈ {1, . . . ,m} : hi (x) = h(x)}
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Proposition 3 Let hi , (i = 1, . . . ,m), h and S be defined as above. If S and the set

{z ∈ R
n : hi (z) > 0for i = 1, . . . ,m} (41)

are nonempty, then for every ρ > 0, there exists τ > 0 such that

d(x, S) ≤ τh+(x) for all x ∈ R
n, ‖x‖ ≤ ρ.

Moreover, if R
n \ S is bounded then the inequality holds for all x ∈ R

n .

Proof By the finiteness and the concavity of hi on R
n, the functions hi , (i = 1, . . . ,m),

are continuous on R
n, so is the function h. By compactness, we only need to show that S has

a local error bound at each x ∈ S. Indeed, for any x ∈ S, if h(x) < 0 then the conclusion
trivially holds. Suppose h(x) = 0. Thanks to [44,57,72] and several other contributions, it
suffices to prove that 0 /∈ ∂0h(x). By [35] (Proposition 2.3.12), one has

∂0h(x) ⊂ co{−∂(−hi )(x) : i ∈ �(x)}.
Let y ∈ ∂0h(x). Then there exist λi ∈ [0, 1], ∑i∈�(x) λi = 1; yi ∈ −∂(−hi )(x), i ∈ �(x)
such that y = ∑

i∈�(x) λi yi . Hence

〈y, z − x〉 =
∑

i∈�(x)
λi 〈yi , z − x〉 ≥

∑

i∈�(x)
λi (hi (z)− hi (x)) = h(z) > 0.

Therefore, y �= 0 and which completes the proof. 
�

In the case of m = 1 concave inequality, if the assumption (41 ) doesn’t hold then S = R
n

and it is trivial that d(x, S) ≤ τh+(x) for all x ∈ R
n . Hence one has

Corollary 3 Let h be a finite concave function on R
n and let S := {x ∈ R

n : h(x) ≤ 0} be
nonempty. Then for every ρ > 0, there exists τ > 0 such that

d(x, S) ≤ τh+(x) for all x ∈ R
n, ‖x‖ ≤ ρ.

Moreover if R
n \ S is bounded, then

d(x, S) ≤ τh+(x) for all x ∈ R
n .

Remark 4 Let E := {x ∈ R
n : ‖x‖ = r} that can be written as E := {x ∈ C : h1(x) =

r − ‖x‖ ≤ 0} where C := {x ∈ R
n : ‖x‖ ≤ r}. According to Corollary 4 there is τ1 > 0

such that

d(x, E) ≤ τ1h1(x) for all x ∈ C. (42)

Similarly using the concave function h2(x) := r2 − ‖x‖2 ≥ 0 to define E := {x ∈ C :
h2(x) ≤ 0} yields the error bound with τ2 > 0

d(x, E) ≤ τ2h2(x) for all x ∈ C (43)

Since

2rh1(x)≥h2(x) :=r2−‖x‖2 = [r +‖x‖][r − ‖x‖] = [r + ‖x‖]h1(x) ≥ rh1(x) ∀x ∈ C,

(44)

123



J Glob Optim (2012) 52:509–535 523

there hold

(i) If τ1 > 0 verifies (42) then τ2 = τ1
r verifies (43)

(ii) Conversely if τ2 > 0 verfies (43) then τ1 = 2rτ2 verifies (42)

Consider now the feasible set F := {x ∈ B(c, r) : h3(x) := r − ‖x − c‖ ≥ 0} in
Proposition 2. Since B(c, r) = c + C, F = c + S and the distance is invariant with respect
to translations, it follows from (42) that there τ3 > 0 such that

d(x, F) ≤ τ3h3(x) for all x ∈ B(c, r) (45)

Likewise, the concave function h4(x) := r2 −‖x − c‖2 leads to the error bound with τ4 > 0

d(x, F) ≤ τ4h4(x) for all x ∈ B(c, r) (46)

and the parameters τ3, τ4 satisfy the properties (i) and (ii)as τ1, τ2. Note at last that the error
bound of F given by (32) and (33) are practically advantageous insofar as the parameters
τ3, τ4 are known.

3.2 Error bounds for concave inequality systems over polyhedral convex sets

Let now K be a nonempty bounded polyhedral convex set and let h be a finite concave
function on K . Consider the following set:

S = {x ∈ K : h(x) ≤ 0}.
The constraint “h(x) ≤ 0” is often called reverse convex constraint. Of course, the preceding
results on exact penalty in Sect. 2 can be applicable for this system. However, under addi-
tional assumptions, we can establish some results on error bounds which are easy to verify
in many applications. It is worth noting that the sets of that type figure in many practical
problems (see, e.g., [1,2,8,11]).

Theorem 4 Let K be a nonempty bounded polyhedral convex set in R
n and let h be a

differentiable concave function on K . If S is nonempty, then there exists τ > 0 such that

d(x, S) ≤ τh+(x) for all x ∈ K . (47)

Proof We prove this by induction on the dimension dimK of K . When dimK = 0, then K
has a single element. Then, by the nonemptiness of S, S = K and (47) holds trivially with
t0 = 0. Suppose that (47) holds for every nonempty bounded polyhedral convex set K with
dimK ≤ k. Now, let K be a bounded polyhedral convex set with dimK = k + 1. Denote by
F(K ) the set of faces F of K such that F �= K , and by �(K ) the set of faces F of K such
that F �= K and F ∩ S �= ∅. Obviuously, �(K ) is a nonempty finite set. By the induction
hypothesis, for each F ∈ �(K ), there exists t (F) ≥ 0 such that

d(x, S ∩ F) ≤ t (F)h+(x) for all x ∈ F (48)

Let us set

t1 := max
F∈�(K ) t (F) ∈ (0,+∞).

For each F ∈ F(K ) \�(K ), then h(x) is positive on F. Since h is continuous relative on the
compact set K , then h attains a minimizer on that each F with m(F) := minx∈F h(x) > 0.
Denote by
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m := min
F∈F(K )\�(K )m(F) > 0 if F(K ) \ �(K ) �= ∅, otherwise m = +∞;

M := max
x∈K

g(x) and � := diamK = max{‖x − y‖ : x, y ∈ K }.

If M = 0 then S = K and then the proof is done. Suppose that M > 0 and pick ε ∈ (0,M/�).
Taking

t0 = max

{

t1,
1

ε
,

�

M − ε�
,
�

m

}

and let t > t0. Let x ∈ K \ S be given and let y∗ be a solution of the problem

min{‖x − y‖ + th+(x) : x ∈ K }.
We need to prove that y∗ ∈ S. Suppose this isn’t the case. We show that y∗ /∈ ri(K ), where,
ri(K ) denotes the relative interior of K . Indeed, by working on the Affine hull Aff(K ) of K
instead of R

n, without loss of generality, we can suppose that Aff(K ) = R
n and therefore

ri(K ) = int(K ). Assume to the contrary that y∗ ∈ int(K ). Then y∗ is a local minimizer of
the function y �→ ‖x − y‖ + th(y). Hence, one has

t‖∇h(y∗)‖ ≤ 1.

Thus, by the concavity of h, one obtains

h(z)− h(y∗) ≤ 〈∇h(y∗), z − y∗〉 ≤ ‖∇h(y∗)‖‖z − y∗‖ ≤ ε�, for all z ∈ K .

Consequently, h(y∗) ≥ M − ε� > 0. Pick a z ∈ S, since y∗ is a minimizer of the function
‖x − ·‖ + th+ on K , one derives that

t ≤ ‖x − z‖ − ‖x − y∗‖
h(y∗)

≤ ‖z − y∗‖
M − ε�

≤ �

M − ε�
≤ t0,

a contradiction. Hence y∗ /∈ ri(K ). It follows that there exists F ∈ F(K ) such that y∗ ∈ F.
Then F must belong to �(K ) because of the definition of m, t0 and that

h(y∗) ≤ ‖x − z‖ − ‖x − y∗‖
t

≤ �

t
<
�

t0
≤ m.

Thus, one has y∗ ∈ argmin{‖x − y‖ + th+(y) : y ∈ F} and

th+(y∗) ≤ ‖x − y‖ − ‖x − y∗‖ ≤ ‖y − y∗‖ for all y ∈ S ∩ F.

Hence, th+(y∗) ≤ d(y∗, S ∩ F). This together with the relation (48) imply y∗ ∈ S ∩ F. As
a result, th(x) ≥ ‖x − y∗‖ ≥ d(x, S) and the proof is completed. 
�

As before, let K be a given nonempty bounded polyhedral convex set. We now consider
the function h defined by

h(x) =
m∑

j=1

min{hi j (x) : i ∈ � j } (49)

where �1, . . . ,�m are finite index sets and hi j are differentiable concave functions on K .
The functions of this type are not differentiable. By applying Theorem 4, we next show that
the conclusion of Theorem 4 remains valid for the function h given by (49).

123



J Glob Optim (2012) 52:509–535 525

Theorem 5 Let K be a nonempty bounded polyhedral convex set and let h be defined as
above. Suppose that the set S := {x ∈ K : h(x) ≤ 0} is nonempty. Then there exists τ > 0
such that

d(x, S) ≤ τh+(x) for all x ∈ K .

Proof For any (x, j) ∈ K × {1, . . . ,m}, let

�( j, x) :=
{

i ∈ � j : hi j (x) = min
i∈� j

hi j (x)

}

.

For any (x, j) ∈ K × {1, . . . ,m}, pick i( j, x) ∈ �( j, x) and define the set S(x) by

S(x) :=
⎧
⎨

⎩
y ∈ K :

m∑

j=1

hi( j,x), j (y) ≤ 0

⎫
⎬

⎭
.

Obviously, S(x) ⊂ S, for any x ∈ K . First, we show that there exists ε > 0 such that S(x)
is nonempty for any x ∈ K with h(x) ≤ ε. Indeed, suppose for a contradiction that this
does not hold. We can select a sequence {x p} such that S(x p) = ∅, lim p→∞ h(x p) ≤ 0
and that (relabeling if necessary) for each j = 1, . . . ,m, i( j, x p) coincide for all p. By the
compactness of K , without loss of generality, assume that x p converges to x∗ ∈ K . One
has

∑m
j=1 hi( j,x p), j (x∗) ≤ 0. Therefore, x∗ ∈ S(x p) for all p, contrary to the emptiness of

S(x p). According to Theorem 4 and since the index sets � j are finite, there is τ > 0 such

that

d(y, S(x)) ≤ τ

m∑

j=1

[hi( j,x), j ]+(y), for all x, y ∈ K , h+(x) ≤ ε.

Hence, for all x ∈ K satisfying h(x) ≤ ε, one has

d(x, S) ≤ d(x, S(x)) ≤ τ

m∑

j=1

[hi( j,x), j ]+(x) = τh+(x).

Since K is bounded, there is ρ > 0 such that d(x, S) ≤ ρ for all x ∈ K . Therefore,
d(x, S) ≤ (ρ/ε)h(x), for all x ∈ K satisfying h(x) > ε. The proof is complete. 
�

Combining Theorem 5 and Hoffman’s result on the error bound for linear inequality
system, we state the following result.

Theorem 6 Let A be a n × m matrix and let a ∈ R
m . Suppose that h is a concave function

defined by (49) in which, hi j are differentiable concave functions on R
n . Assume that the set

S := {x ∈ R
n : Ax + a ≤ 0, h(x) ≤ 0} is nonempty.

Then, for any ρ > 0, there exists τ > 0 such that

d(x, S) ≤ τ
(‖[Ax + a]+‖ + h+(x)

)
for all x ∈ R

n, ‖x‖ ≤ ρ.

Proof Because all norms on a finite-dimensional vector space are equivalent, it suffices to
prove the theorem with the norm ‖ · ‖ := ‖ · ‖1. Let ρ > 0 be given and x∗ ∈ S. Consider
the following truncated set of S :

S1 := S ∩ {x ∈ R
n : ‖x‖ ≤ ‖x∗‖ + 2ρ}.
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For any x, y ∈ R
n with ‖x‖ < ρ and ‖y‖ > ‖x∗‖ + 2ρ, one has

‖x − y‖ ≥ ‖y‖ − ‖x‖ > ‖x∗‖ + 2ρ − ρ ≥ ‖x − x∗‖.
Therefore, d(x, S1) = d(x, S), for all x ∈ R

n with ‖x‖ ≤ ρ. Denote by

K := {x ∈ R
n : Ax + a ≤ 0, ‖x‖ ≤ ‖x∗‖ + 2ρ}.

Then, K is a bounded polyhedral convex set. In virtue of Theorem 5, there exists τ > 0 such
that

d(x, S) = d(x, S1) ≤ τh+(x) for all x ∈ K .

For x ∈ R
n with ‖x‖ ≤ ρ, let us take y ∈ K such that d(x, K ) = ‖x − y‖. Denote by L the

Lipschitz constant of h on (‖x∗‖ + 2ρ)BRn (BRn stands for the unit ball in R
n). One has

d(x, S)≤‖x − y‖ + d(y, S) ≤ ‖x − y‖ + τh+(y) ≤ (τ L + 1)d(x, K )+ τh+(x). (50)

On the other hand, according to Hoffman’s result on the error bound for linear inequality
systems [40], there exists β > 0 such that

d(x, K ) ≤ β‖[Ax + a]+‖ for all x ∈ R
n, ‖x‖ ≤ ρ. (51)

From the inequalities (50), (51), one obtains

d(x, S) ≤ (τ L + 1)β‖[Ax + a]+‖ + τh+(x) for all x ∈ R
n, ‖x‖ ≤ ρ.


�
A direct application of Theorem 6 is to derive the error bound for the following linear

complementarity problem:
(LCP) Find x ∈ R

n such that Ax + a ≥ 0, Bx + b ≥ 0 and 〈Ax + a, Bx + b〉 = 0,
where A, B are real n × n matrices and a, b ∈ R

n . Let Ai , Bi ( j = 1, . . . , n) are the row
vectors of A, B, respectively and a := (a1, . . . , an)

T , b := (b1, . . . , bn)
T . Denote by S the

solution set of (LC P). It is obvious that

S =
{

x ∈ R
n : Ax + a ≥ 0, Bx + b ≥ 0, h(x) :=

n∑

i=1

min{Ai x + ai , Bi x + bi } ≤ 0

}

.

Corollary 4 For any ρ > 0, there exists τ > 0 such that the following inequality holds

d(x, S) ≤ τ

(

‖[−Ax − a]+‖ + ‖[−Bx − b]+‖ +
[

n∑

i=1

min{Ai x + a j , Bi x + bi }
]+)

for all x ∈ R
n with ‖x‖ ≤ ρ.

In [53], it was established a error bound result for linear monotone complementary prob-
lems. It is worth to note that the error bound result in Corollary 4 does not require the added
assumption of monotonicity.

Let us end this section with two other error bounds resulting from Theorem 6. The first
one involves the convex quadratic constraints

gi (x) := 1

2
〈Qi x, x〉 + 〈qi , x〉 + ri , i = 1, . . . ,m (52)
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where qi ∈ R
n, ri ∈ R and Qi are symmetric positive semidefinite n × n matrices. Let K be

a nonempty bounded polyhedral convex set in R
n . Consider the following inequality system:

S = {
x ∈ K : gi (x) ≤ 0, h p(x) ≤ 0, (i, p) ∈ {1, . . . ,m} × {1, . . . , �}},

where h p are functions of the same type as in Theorem 5, i.e.,

h p(x) :=
∑

j∈�p

min{hi j (x) : i ∈ � j,p},

where �p,� j,p are finite index sets and hi j are differentiable concave functions on K . Set

S1 = {x ∈ K : gi (x) ≤ 0, i = 1, . . . ,m}. (53)

Theorem 5 yields the following result:

Corollary 5 Let gi , h p be defined as above. In addition, suppose that S is nonempty, gi , (i =
1, . . . ,m), are nonnegative on K and h p, (p = 1, . . . , �), are nonnegative on S1. Then there
exists τ > 0 such that

d(x, S) ≤ τ

l∑

p=1

h p(x) for all x ∈ S1.

Proof As shown by Wang-Pang in [71]: if the convex quadratic function gi are nonnegative
on K , then the set S1 can be written as follows:

S1 = {
x ∈ K : Qi (x − z) = 0, 〈Qi z + qi , x − z〉 ≤ 0, i = 1, . . . ,m

}
. (54)

where z is an arbitrary element of S1. Thus, S1 is a nonempty bounded polyhedral convex
set. Since all h p are nonnegative on S1, there holds

S =
⎧
⎨

⎩
x ∈ S1 : h(x) :=

l∑

p=1

h p(x) ≤ 0

⎫
⎬

⎭
.

Hence, the conclusion follows directly from Theorem 5. 
�
Finally the second error bound derived from Theorem 5 is related to finite feasible sets

Corollary 6 Let K be a nonempty bounded polyhedral convex set and let h be as in Theo-
rem 5. Assume that the set S := {x ∈ K : h(x) ≤ 0} has finitely many elements. Then for
all closed set C ⊂ K such that S

′ = {x ∈ C : h(x) ≤ 0} is nonempty, there exists τ > 0
such that

d(x, S′) ≤ τh+(x) for all x ∈ C.

Proof In virtue of Theorem 5, there exists τ1 > 0 such that

d(x, S) ≤ τ1h+(x) for all x ∈ K .

If S ⊂ C then S′ = S and the conclusion holds trivially. Otherwise, set E := S \ C, α :=
minx∈E d(x,C) and β := maxx,y∈K ‖x − y‖. Then α > 0 because E is a finite set. Let
x ∈ C and z ∈ S such that ‖x − z‖ = d(x, S). If z ∈ S′ then d(x, S′) = ‖x − z‖ ≤ τ1h+(x).
Otherwise, z ∈ E and τ1h+(x) ≥ ‖x − z‖ ≥ α. Therefore, d(x, S′) ≤ β ≤ τ1β

α
h+(x), and

the proof is complete. 
�
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Remark 5 It is easy to see that the assumption on the finiteness of the set S is satisfied if
h is strictly concave and nonnegative on K . For example, consider the feasible set in 0 − 1
programming:

S := {x ∈ C : x ∈ {0, 1}n}
where C is a closed subset of R

n . One can rewrite S = {x ∈ C ∩ [0, 1]n : h(x) ≤ 0} where
h(x) := 〈e, x〉 − ‖x‖2, and e ∈ R

n is the vector of ones. Obviously, the assumptions of
Corollary 6 are satisfied.

Note that the concave (but not strictly) penalty function

h(x) =
n∑

i=1

min{xi , 1 − xi }

also verifies the assumptions of Corollary 6.

4 Exact penalty in DC programming via error bounds

To complement the results concerning exact penalty in concave programming of Sect. 2, we
use the error bounds results in Sect. 3 to establish below some exact penalty properties in DC
programming. Recall that, throughout this section, two problems are said to be equivalent if
they have the same optimal value and the same optimal solution set.

First, we give a general exact penalty result which is a refinement of that mentioned by
Clarke in [35]. Recall that a real-valued function f defined on a set C in R

n is said to be
Lipschitz on C, if there exists a nonnegative scalar L such that

| f (x)− f (y)| ≤ L‖x − y‖
for all x, y ∈ C. Also f is said to be locally Lipschitz relative to C at some x ∈ C if for
some ε > 0, f is Lipschitz on B(x, ε) ∩ C.

Let θ be a finite DC function on a closed convex set C, i.e.

θ(x) = ϕ(x)− ψ(x) ∀x ∈ C, (55)

where ϕ and ψ belong to Γ0(R
n) such that

C ⊂ dom ϕ := {x ∈ R
n : ϕ(x) < +∞} ⊂ dom ψ (56)

According to [39,68], if

(i) dom ϕ and dom ψ have the same dimension and
(ii) C is bounded and contained in the relative interior of dom ϕ,then the DC function θ is

Lipschitz on C.

Let f, h be real-valued functions defined on C.Consider the minimization problem whose
optimal solution set is denote by P :

α = inf{ f (x) : x ∈ C, h(x) ≤ 0} (P), (57)

that we can write as

α = inf{ f (x) : x ∈ S}, (58)

where

S := {x ∈ C : h(x) ≤ 0} (59)
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Let g : C → R be a nonnegative function such that S can be expressed by

S := {x ∈ C : g(x) ≤ 0} (60)

Such a function g must verify

g(x) = 0 if and only if x ∈ S (61)

Exact penalty in mathematical programming usually deals with (Sect. 3)

g(x) := [
h+(x)

]γ
(62)

For τ ≥ 0, we define the problems (Pτ ) by

α(τ) = inf{ f (x)+ τg(x) : x ∈ C} (Pτ ), (63)

whose optimal solution set is denoted by Pτ .

Proposition 4 Let f be a Lipschitz function on C with constant L and let g be a nonnegative
finite function on C such that S := {x ∈ C : h(x) ≤ 0} = {x ∈ C : g(x) ≤ 0}. If S is
nonempty and there exists some � > 0 such that

d(x, S) ≤ �g(x) for all x ∈ C,

then one has:

(i) α(τ) = α and P ⊂ Pτ for all τ ≥ L�
(ii) Pτ = P for all τ > L�

Proof (i) We have

α(τ) = inf{ f (x)+ τg(x) : x ∈ C} (64)

min{inf{ f (x) : x ∈ S}, inf{ f (x)+ τg(x) : x ∈ C \ S}}
≤ α

Hence α(τ) = α if α = −∞. Suppose now that α ∈ R. We shall prove the opposite
inequality of (64) for τ ≥ L�. By definition of α, for every ε > 0 there exists z ∈ S such
that

α ≤ f (z) ≤ α + ε (65)

For any x ∈ C , pick a sequence {xk} in S such that d(x, S) = limk−→∞ ‖x − xk‖ . By
assumption, for all k, one has

f (z)− ε ≤ f (xk) ≤ f (x)+ L‖x − xk‖.
Letting k → +∞ yields for

f (z)− ε ≤ f (x)+ Ld(x, S) ≤ f (x)+ τh(x),

and so

f (z) ≤ α(τ)+ ε (66)

It implies that α ≤ α(τ). Hence α = α(τ) and the inclusion P ⊂ Pτ then is immediate.
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(ii) Assume now τ > L� and let z ∈ Pτ . If z /∈ S, then g(z) > 0 and there exists a sequence
{zk} in S such that ‖z − zk‖ → d(z, S). Since τg(z) > Ld(z, S), then for k sufficiently
large, one has

f (z)+ τh(z) > f (z)+ L‖z − zk‖ ≥ f (zk).

This contradicts the fact z ∈ Pτ . Hence, z ∈ S and f (z) ≤ f (x) for all x ∈ S, i.e., z ∈ P.
�
The above proof is quite standard and follows the line in [35]. However, it is worth noting

that our proof, unlike that of [35], needs neither the nonemptiness of the optimal solution set
of (P) nor the closedness of its feasible set S.

4.1 Exact penalty for concave inequalities constraints

The error bound results in Sect. 3 and Theorem 4 allow to state nice exact penalty properties
in mathematical programming with concave constraints.

The first exact penalty property concerns the couple of nonconvex programs:

inf{ f (x) : x ∈ K , h(x) ≤ 0} (P) (67)

and its penalized program

inf{ f (x)+ τh+(x) : x ∈ K } (Pτ ), (68)

where K is a nonempty bounded polyhedral convex set in R
n and h is a concave function on

K defined by (49)

h(x) =
m∑

j=1

min{hi j (x) : i ∈ � j }.

For each j = 1,... ,m,� j is a finite index sets and for i ∈ � j , hi j is differentiable concave
functions on K .

Theorem 7 Assume that the feasible set S := {x ∈ K : h(x) ≤ 0} of (67) is nonempty. If
f is a Lipschitz function on K then there exist τ0 > 0 such that for all τ > τ0 the problems
(67) and (68) are equivalent.

Proof It follows directly from Proposition 4 and Theorem 5. 
�
Next we consider the following problem (P) with additional convex quadratic constraints:

min{ f (x) : x ∈ K , h(x) ≤ 0, gi (x) ≤ 0, i = 1, . . . , k}, (P)

where K is a nonempty bounded polyhedral convex set, gi (x), (i = 1, . . . , k), are convex
quadratic functions

gi (x) := 1

2
〈Qi x, x〉 + 〈qi , x〉 + ri , i = 1, . . . , k

already encountered in (52) and the function h defined by

h(x) :=
m∑

j=1

min{〈ai , x〉 + bi : i ∈ � j }, (69)

with � j , ( j = 1, . . . ,m),being finite index sets and ai ∈ R
n, bi ∈ R. Note that −h is

polyhedral convex.
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Theorem 8 Let K , gi , (i = 1, . . . , k), h be defined as above and let f be a Lipschitz func-
tion on K . Assume further that the feasible set of (P) is nonempty. Then there exists τ0 > 0
and an integer s ≤ k such that (P) is equivalent to

min{ f (x)+ τ [h+(x)] 1
2s : x ∈ K , gi (x) ≤ 0, i = 1, . . . , k}, (Pτ ( 1

2s ))

for all τ > τ0. In particular we can take s = k.

Proof Denote by S and C the feasible sets of (P) and (Pτ ( 1
2s )) respectively

C : = {x ∈ K : gi (x) ≤ 0, i = 1,... , k}
S : = {x ∈ C : h(x) ≤ 0}

It is clear that C is a nonempty bounded closed convex set.
Thanks to Proposition 4, it is enough to show that there exists τ > 0 and an integer s ≤ k

such that

d(x, S) ≤ τ [h+(x)] 1
2s for all x ∈ C.

For each j = 1,... ,m and for x ∈ S pick i( j, x) ∈ � j such that

〈ai( j,x), x〉 + bi( j,x) = min{〈ai , x〉 + bi : i ∈ � j }
and set

S(x) =
⎧
⎨

⎩
y ∈ C :

m∑

j=1

〈ai( j,x), y〉 + bi( j,x) ≤ 0

⎫
⎬

⎭

Obviously, S(x) ⊂ S for all x ∈ C. Similarly to the proof of Theorem 5, we prove the
existence of ε > 0 such that S(x) �= ∅ for all x ∈ C with h(x) ≤ ε. Notice that S(x) is
the solution set of an affine/convex quadratic inequality system. According to Wang-Pang
(Theorem 5 in [71]), and by the finiteness of the index sets � j , there exists an integer s ≤ k
and τ > 0 such that

d(y, S(x)) ≤ τ

⎡

⎣

⎛

⎝
m∑

j=1

〈ai( j,x), x〉 + bi( j,x)

⎞

⎠

+⎤

⎦

1
2s

whenever x ∈ C with S(x) �= ∅ and y ∈ C. Hence, d(x, S) ≤ d(x, S(x)) ≤ τ [h+(x)] 1
2s

whenever h(x) ≤ ε. If h(x) > ε, then we have

d(x, S) ≤ (r/ε
1

2s )[h+(x)] 1
2s

for any r ≥ max{d(x, S) : x ∈ C}. The proof is complete. 
�
Application to 0–1 Programming. Consider the following problems in mixed 0 −1 program-
ming:

min{ f (x, y) : (x, y) ∈ K , x ∈ {0, 1}n}, (P1)

and more generally,

min{ f (x, y) : (x, y) ∈ K , gi (x, y) ≤ 0, i = 1, . . . , k, x ∈ {0, 1}n}, (P2)
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where K is a nonempty bounded polyhedral convex set in R
n × R

m, gi , i = 1, . . . , k are
convex quadratic functions on R

n × R
m . We define the functions h and h by

h(x) =
n∑

i=1

xi (1 − xi ), h(x) =
n∑

i=1

min{xi , 1 − xi },

where x = (x1, . . . , xn) ∈ R
n . Obviously, (P1), (P2) are equivalent to the following, respec-

tively,

min{ f (x, y) : (x, y) ∈ K ∩ ([0, 1]n × R
m), h(x) ≤ 0}, (P′

1)

min{ f (x, y) : (x, y) ∈ K ∩ ([0, 1]n × R
m), gi (x, y) ≤ 0, i = 1, . . . , k, h(x) ≤ 0}.

(P′
2)

Observe that the set C := K ∩ ([0, 1]n ×R
m) is also a nonempty bounded polyhedral convex

set in R
n × R

m, and h, h are nonnegative concave function on C. In view of Theorems 5
and 8, if f is Lipschitz on C then there exist τ0 > 0 such that (P1), (P2) are equivalent to the
following problems(P1,τ ), (P2,τ (1/2k)) whenever τ > τ0, respectively

min{ f (x, y)+ τh(x) : (x, y) ∈ K ∩ ([0, 1]n × R
m)}, (P′

1,τ )

min{ f (x, y)+ τ [h(x)]1/2k : (x, y) ∈ K ∩ ([0, 1]n × R
m), gi (x, y) ≤ 0, i = 1, . . . , k.}

(P2,τ (1/2k))

By observing that h(x) ≤ 2h(x) for all x ∈ [0, 1]n, (P2), (P2,τ (1/2k)) are equivalent to

min{ f (x, y)+ 2τh(x)1/2
k : (x, y) ∈ K ∩ ([0, 1]n × R

m), gi (x, y) ≤ 0, i = 1, . . . , k.}
(P2,τ (1/2k))

5 Conclusion

We present in this paper new exact penalty results, with/without error bounds, in DC program-
ming, that strongly rely on the concavity of the objective functions and constraints within a
bounded polyhedral convex set. The resulting penalty equivalent DC programs seem to be
quite suitable to the DCA for their solution.
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