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Abstract Bilevel programming involves two optimization problems where the constraint
region of the upper level problem is implicitly determined by another optimization prob-
lem. In this paper we focus on bilevel problems over polyhedra with upper level constraints
involving lower level variables. On the one hand, under the uniqueness of the optimal solu-
tion of the lower level problem, we prove that the fact that the objective functions of both
levels are quasiconcave characterizes the property of the existence of an extreme point of
the polyhedron defined by the whole set of constraints which is an optimal solution of the
bilevel problem. An example is used to show that this property is in general violated if the
optimal solution of the lower level problem is not unique. On the other hand, if the lower
level objective function is not quasiconcave but convex quadratic, assuming the optimistic
approach we prove that the optimal solution is attained at an extreme point of an ‘enlarged’
polyhedron.
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1 Introduction

Bilevel programming has been proposed for modeling hierarchical decision processes with
two decision makers, the leader or upper level decision maker and the follower or lower
level decision maker. All the variables are controlled either by the leader or by the follower,
both of whom have their own objective function and constraints. The follower optimizes his
objective function under the given parameters from the leader. In return, having complete
information on the possible reactions of the lower level decision maker, the leader selects the
parameters so as to optimize his own objective function. Bilevel problems can be formulated
as:

min
x1,x2

f1(x1, x2) (1a)

s.t. (x1, x2) ∈ R (1b)

where x2 solves

min
x2

f2(x1, x2) (1c)

s.t. (x1, x2) ∈ S (1d)

where x1 ∈ R
n1 and x2 ∈ R

n2 are the upper level and lower level variables, respectively;
f1, f2 : R

n −→ R, n = n1 + n2 are the upper level and lower level objective functions,
respectively; and R, S ⊆ R

n are the sets defined by the upper level and the lower level
constraints, respectively. Usually, upper level constraints involving upper and lower level
variables are called coupling constraints. The set defined by all constraints T = R ∩ S is
called the constraint region. Let R1, S1 and T1 be the projection of R, S and T onto R

n1 ,
respectively. Due to their structure, bilevel programs are nonconvex and quite difficult to
deal with and solve. Bard [2], Dempe [8], Migdalas and Pardalos [14], Migdalas et al. [15]
and Shimizu et al. [18] are good general references on this topic. Additionally, Dempe [9]
and Vicente and Calamai [19] provide surveys which cover applications as well as major
theoretical developments. Chinchuluun et al. [6] discuss some algorithmic and theoretical
results on multilevel programming.

Where all the functions involved are linear (LB problem), Savard [17] has proved that
there is an extreme point of the polyhedron T which solves the problem. Xu [20] has achieved
similar results under weaker assumptions via a penalty function approach. The purpose of this
paper is to analyze bilevel problems over polyhedra which verify the extreme point property
and point out the differences with the linear case. Similarly to the case when there is only
one level of decision making, we will prove that the fact that f1 and f2 are quasiconcave
functions characterizes the property of the existence of an extreme point of the polyhedron T
which solves the bilevel problem, under the uniqueness of the optimal solution of the lower
level problem. Finally, we will prove that exchanging the quasiconcave lower level objective
function for a convex quadratic one allows us to conclude that an optimal solution occurs at an
extreme point of an ‘enlarged’ polyhedron that takes into account complementary constraints
of Karush-Kuhn-Tucker conditions, without assuming that the optimal solution of the lower
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level problem is a singleton. The paper is organized as follows. Section 2 states the problem
and provides some insight into its behavior and approaches regarding the optimal solution.
In Sect. 3 the characterization of bilevel problems with an optimal solution at an extreme
point of T is given. Section 4 provides the main theoretical result on the optimal solution of
bilevel problems with quasiconcave upper level and convex quadratic lower level objective
functions. Finally, Sect. 5 concludes the paper with some final remarks.

2 Existence of an optimal solution of the bilevel problem

For a given x1, the follower solves the lower level problem (1c)–(1d). Let S(x1) = {x2 :
(x1, x2) ∈ S} be its feasible region and M(x1) be the set of optimal solutions, also called the
follower rational reaction set. The feasible region of the bilevel problem, called the inducible
(or induced) region, is:

IR = {(x1, x2) : (x1, x2) ∈ T, x2 ∈ M(x1)} (2)

Any point of IR is a bilevel feasible solution. A point x1 ∈ R
n1 is called permissible if

an x2 ∈ R
n2 exists so that (x1, x2) ∈ IR. Let P be the set of permissible points. Taking

into account previous definitions, the bilevel problem formulated in (1) can be equivalently
written as:

min
x1,x2

f1(x1, x2)

s.t. (x1, x2) ∈ IR.
(3)

Two main difficulties arise when looking for the existence of an optimal solution of bilevel
programs. On the one hand, IR could be an empty set although T is a nonempty set. The
following example in R

2 illustrates this fact.

Example 1

min
x1,x2

x1 + 2x2 + 2

x1 + x2 + 4
s.t. −x1 + 10x2 ≤ 36

5x1 + 13x2 ≥ 18
−6x1 + 22x2 ≥ 32

where x2 solves

max
x2

x2

s.t. x1 − x2 ≤ 0
−x1 − x2 ≤ 0
0 ≤ x2 ≤ 5

Figure 1 displays the constraint region T which is the shaded nonempty compact polyhe-
dron ABCDE. The thick line shows the optimal solution of the lower level problem for all
x1 ∈ S1. Therefore, IR = ∅.

On the other hand, complications arise when there are multiple optima in the lower level
problem, that is to say, M(x1) is not a singleton for some permissible x1. In fact, some authors
use the term min in (1a) in quotation marks to express a certain ambiguity in the problem
formulation in the case of non-unique lower level solutions [8,13]. If the upper level objective
function is sensitive to different values of x2 ∈ M(x1), it is necessary to give a rule to select
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Fig. 1 The inducible region of Example 1 is empty

x∗
2 ∈ M(x1) in order to evaluate f1. Notice, however, that taking into account the intrinsic

noncooperative nature of the model, there is no reason why both decision makers should
collaborate, so it is not certain that the upper level decision maker can influence the selection
of the lower level one.

Several assumptions have been proposed in the literature to make sure that the bilevel
problem is well posed [8,13]. The most common are:

1. To assume that the lower level decision maker always selects the optimal decision which
gives the worst value of f1. This is the pessimistic or strong approach, which is used when
the leader is not able to influence the follower and is forced to choose an approach bound-
ing the damage resulting from an unfavorable selection by the follower. The resulting
problem is: minx1∈P φ(x1) where φ(x1) = maxx2∈M(x1) f1(x1, x2).

2. To assume that the upper level decision maker is able to influence the lower level one so
that the latter always selects the variables x2 to provide the best value of f1. This results
in the so-called optimistic or weak bilevel problem minx1∈P ψ(x1) where ψ(x1) =
minx2∈M(x1) f1(x1, x2). Due to its important properties, we will analyze this case in
depth in the following sections.

The following example in R
2 allows us to illustrate pessimistic and optimistic approaches.

Example 2

min
x1,x2

−x1 + x2, where x2 solves

min
x2

−(x2 − 1)2

s.t. 4x1 + x2 ≥ 5
x1 − 2x2 ≤ 8
x1 + 4x2 ≤ 20
x1 ≤ 7

In Fig. 2, the shaded region is the constraint region and the thick line displays the optimal
solution of the lower level problem for all permissible x1. If we take the optimistic approach
then (4,−2) is the optimal solution of the bilevel problem and the best value of f1 is −6.
But if we take the pessimistic approach, then the infimum of f1 is not attained. Indeed, if the
leader selected x1 = 4, then the follower would choose x2 = 4 since points x2 = −2 and
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Fig. 2 Inducible region and optimistic optimal solution of Example 2

x2 = 4 are optimal solutions of the lower level problem and f1(4, 4) > f1(4,−2). Hence,
the pessimistic bilevel problem has no optimal solution.

3 Bilevel problems over polyhedra

From now on, we restrict our attention to bilevel problems defined over polyhedra. We assume
that S and R are nonempty polyhedra and T 
= ∅. S(x1) and T are assumed to be bounded
in order to guarantee the existence of an optimal solution in the lower level and upper level
problems, respectively. We also assume that f1 and f2 are continuous functions.

Theorem 1 Assuming the optimistic approach, IR is closed.

Proof It directly follows from Theorem I.2.2 in [7]. ��
Theorem 2 Assuming the optimistic approach, if IR is nonempty, then problem (3) has an
optimal solution.

Proof Problem (3) minimizes a continuous function over a nonempty and compact region.
Hence, by applying Weierstrass’s theorem the conclusion follows. ��

Note that the case in which M(x1) is a singleton for all permissible x1 can be considered
a particular case of the optimistic approach.

In the particular case of LB problems, if IR is nonempty, it has been proved that at least
one optimal solution is obtained at an extreme point of the constraint region T [13,17].
This important property allows us, amongst other things, to develop enumerative algorithms
which search amongst extreme points to solve LB problems [5,17]. The following example
in which we have exchanged max for min in the lower level problem of Example 1 suggests
that this property is valid for more general problems.
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Fig. 3 Inducible region and optimal solution of Example 3

Example 3

min
x1,x2

x1 + 2x2 + 2

x1 + x2 + 4
s.t. −x1 + 10x2 ≤ 36

5x1 + 13x2 ≥ 18
−6x1 + 22x2 ≥ 32

where x2 solves

min
x2

x2

s.t. x1 − x2 ≤ 0
−x1 − x2 ≤ 0
0 ≤ x2 ≤ 5

The shaded region in Fig. 3 is the constraint region T. The two faces of T with thick lines are
the feasible region IR. Vertex D is the optimal solution of Example 3. However, Example 2
shows that this property is not true in general. There, the lower level objective function is
strongly (quasi)concave and an optimal solution of the lower level problem is a vertex of the
feasible set of this problem for each fixed x1. But the solution of the bilevel problem is not a
vertex of the constraint region.

For the purpose of characterizing bilevel problems over polyhedra for which there exists
an extreme point of T that solves the problem, we need two additional assumptions:

(A1) M(x1) is a singleton for all x1 ∈ S1.
(A2) f1 is quasiconcave on T and f2(x1, ·) is quasiconcave on S(x1), x1 ∈ T1.

We will call this the quasiconcave bilevel (QB) problem. Recall that a real-valued function h
defined on a convex subset D of R

n is quasiconcave on D if and only if d1, d2 ∈ D, λ ∈ (0, 1)
and h(d1) � h(d2) imply h(d1) � h[(1 − λ)d1 + λd2].

In the first part of this Section we will extend to the more general problem considered in
this paper some results on the geometry of IR obtained in [3] for the quasiconcave bilevel
problem without coupling constraints. For this purpose, let us introduce the following bilevel
problem in which upper level constraints (1b) have been shifted from the upper to the lower
level:

123



J Glob Optim (2012) 53:573–586 579

PT : min
x1,x2

f1(x1, x2), where x2 solves

min
x2

f2(x1, x2)

s.t. (x1, x2) ∈ T

(4)

The feasible set for the follower is T (x1) = {x2 : (x1, x2) ∈ T }, x1 ∈ T1. Let IRT denote
the inducible region of problem PT . Let ̂S = {(x1, x2) : x1 ∈ T1, (x1, x2) ∈ S}. In like
manner, we consider:

P
̂S : min

x1,x2
f1(x1, x2), where x2 solves

min
x2

f2(x1, x2)

s.t. (x1, x2) ∈ ̂S

(5)

In this case, the feasible set for the follower is S(x1), x1 ∈ T1. Let IR
̂S denote the inducible

region of problem P
̂S .

Lemma 1 A point x̃1 ∈ T1 is permissible for problem (1) if and only if an x̃2 ∈ R
n2 exists

so that

(x̃1, x̃2) ∈ IRT ∩ IR
̂S . (6)

Proof If x̃1 is permissible then an x̃2 ∈ R
n2 exists so that (x̃1, x̃2) ∈ IR. Since (x̃1, x̃2) ∈ T

and x̃2 = argminy2
{ f2(x̃1, y2) : y2 ∈ S(x̃1)}, then (x̃1, x̃2) ∈ IR

̂S .
Taking into account that T (x̃1) ⊆ S(x̃1), we obtain that x̃2 = argminy2

{ f2(x̃1, y2) : y2 ∈
T (x̃1)} and so (x̃1, x̃2) ∈ IRT . Therefore, (x̃1, x̃2) ∈ IRT ∩ IR

̂S .
Similarly, from (6) we obtain that x̃2 is the optimal solution to the lower level problem of

problem (1) for x1 = x̃1 and (x̃1, x̃2) ∈ T . Therefore, (x̃1, x̃2) ∈ IR, and x̃1 is permissible.

��
In words, Lemma 1 establishes that a point x̃1 ∈ T1 is permissible if and only if an

x̃2 ∈ R
n2 exists so that x̃2 is an optimal solution of the lower level problem of problem (4)

(i.e. (x̃1, x̃2) ∈ IRT ) and x̃2 is an optimal solution of the lower level problem of problem (5)
(i.e. (x̃1, x̃2) ∈ IR

̂S). Note that, for x1 permissible, the optimal solution of the lower level
problem of problems (5) and (1) coincide.

Lemma 2 Assuming hypothesis (A1) and (A2), the feasible regions of problems (1), (4)
and (5) are the union of faces of the corresponding constraints regions.

Proof Since problems (4) and (5) do not include coupling constraints, the assertion of the
lemma regarding these problems directly follows from Lemmas 2.1–2.5 in [3]. That is to say,
there exist J and I finite index sets so that

IRT =
⋃

j∈J

Tj (7a)

IR
̂S =

⋃

i∈I

̂Si (7b)

where Tj , j ∈ J , and ̂Si , i ∈ I , denote nonempty faces of T and ̂S, respectively.
Now, let us prove that there exists a finite index set K so that the feasible region of

problem (1) can be expressed as follows:

IR =
⋃

k∈K

Tk (8)

where Tk, k ∈ K , denote nonempty faces of T .
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We recall here that every face of a polyhedron is itself a polyhedron and the fact that the
collection of all relative interiors of nonempty faces of a nonempty convex set is a partition
of that set (Theorem 18.2 in [16]).

Let (x̃1, x̃2) ∈ IR. As a consequence of Lemma 1, we can write IR = IRT ∩ IR
̂S . Hence,

(x̃1, x̃2) ∈ IRT and, by applying (7a) and previous remarks, we conclude that there is a face
Tk of T, k ∈ J , so that (x̃1, x̃2) ∈ ri Tk , where ri denotes relative interior. We associate face
Tk to the point (x̃1, x̃2). Let K ⊂ J be the index set of the nonempty faces of T associated
to points in IR. Hence, IR ⊂ ⋃

k∈K Tk .
In order to prove the other direction of the proof, we will show that for all k ∈ K , Tk ⊂ IR.
According with the selection of faces Tk, k ∈ K , there is (x̃1, x̃2) ∈ IR ∩ ri Tk . Since

(x̃1, x̃2) ∈ IR = IRT ∩ IR
̂S , by applying (7b) and previous remarks, we conclude that there

exists i ∈ I so that (x̃1, x̃2) ∈ ri ̂Si .
Bearing in mind that ̂S is a convex set, ̂Si is a face of ̂S and Tk is a convex set in ̂S

such that ri Tk meets ̂Si , we conclude that the face Tk ⊂ ̂Si (Theorem 18.1 in [16]). Tak-
ing into account that Tk is a face in IRT and ̂Si is a face in IR

̂S , it directly follows that
Tk ⊆ IRT ∩ IR

̂S = IR. ��

Remark 1 It is worth pointing out that, unlike quasiconcave problems without coupling con-
straints, when such constraints exist IR is not necessarily connected. The Example 3 shows
this fact. The feasible region IR is formed by the segments AB and DE (see Fig. 3) and
so is a non-connected union of faces of T . Bilevel problems are very sensitive to the exis-
tence of upper level constraints including upper level and lower level variables. Mersha and
Dempe [13] and Audet et al. [1] have investigated the consequences of shifting upper level
constraints to the lower level for linear bilevel problems. Calvete and Galé [4] have done the
same for linear bilevel problems with several followers.

Let us now concentrate on optimality. For one level problems, minx∈T f (x) where f is
continuous and T is a compact polyhedron, it is well-known that f attains its minimum at an
extreme point of T and in all its polyhedra subsets if and only if f is quasiconcave on T [12].
In fact, this is an alternative definition of quasiconcavity. The following two theorems extend
this characterization to bilevel problems.

Theorem 3 If IR is nonempty and (A1) and (A2) are verified, then there is an extreme point
of T which is an optimal solution of the bilevel problem (1).

Proof Taking into account Theorem 2, problem (1) can be reformulated as:

min
x1,x2

f1(x1, x2)

s.t. (x1, x2) ∈ ⋃

k∈K
Tk .

(9)

By Theorem 2, a minimizing solution (x̃1, x̃2) exists. If it is an extreme point of T , the proof
finishes. Otherwise, k ∈ K exists so that (x̃1, x̃2) is an optimal solution to the problem:

min
x1,x2

f1(x1, x2)

s.t. (x1, x2) ∈ Tk .
(10)

Since f1 is quasiconcave and Tk is a nonempty compact polyhedron, there is an extreme
point of Tk (therefore an extreme point of T ) which solves problem (10). Since this extreme
point gives the same value of f1 as (x̃1, x̃2), this extreme point of T solves problem (1). ��
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Theorem 4 Let C ⊆ R
n1+n2 be a convex set. Let f1 and f2 be continuous functions on C. If

for each nonempty polyhedra R ⊆ C and S ⊆ C, with S(x1) and R ∩ S bounded, assumption
(A1) holds and the bilevel problem (1) attains its optimal value at an extreme point of R ∩ S,
then f1 is quasiconcave on C and f2(x1, ·) is quasiconcave on C(x1) = {x2 : (x1, x2) ∈
C}, x1 ∈ C1 the projection of C onto R

n1 .

Proof Let (x1
1 , x1

2 ), (x
2
1 , x2

2 ) ∈ C so that f1(x1
1 , x1

2 ) ≤ f1(x2
1 , x2

2 ). Let

R = S = {

(x1, x2) : (x1, x2) = λ
(

x1
1 , x1

2

) + (1 − λ)
(

x2
1 , x2

2

)

, λ ∈ [0, 1]}

Notice that, R, S ⊆ C are nonempty compact polyhedra whose extreme points are (x1
1 , x1

2 )

and (x2
1 , x2

2 ). By hypothesis, the associated bilevel problem (1) attains its optimal value at
an extreme point of R ∩ S = R = S. Hence

f1
(

x1
1 , x1

2

) ≤ f1
[

λ
(

x1
1 , x1

2

) + (1 − λ)
(

x2
1 , x2

2

)]

, λ ∈ [0, 1]
and f1 is quasiconcave on C .

To continue, let x̃1 ∈ C1 and x1
2 , x2

2 ∈ C(x̃1) so that f2(x̃1, x1
2 ) ≤ f2(x̃1, x2

2 ). Let

R = S = {

(x1, x2) : (x1, x2) = λ
(

x̃1, x1
2

) + (1 − λ)
(

x̃1, x2
2

)

, λ ∈ [0, 1]}

As before, we conclude that either (x̃1, x1
2 ) or (x̃1, x2

2 ) is an optimal solution of the cor-
responding bilevel problem. If (x̃1, x1

2 ) is the optimal solution, then, in particular, it is a
bilevel feasible solution. Hence, taking into account the lower level problem associated with
x1 = x̃1, f2(x̃1, x1

2 ) ≤ f2(x̃1, y2),∀y2 ∈ S(x̃1). Therefore

f2
(

x̃1, x1
2

) ≤ f2
[

λ
(

x̃1, x1
2

) + (1 − λ)
(

x̃1, x2
2

)]

, λ ∈ [0, 1].
Similarly, if (x̃1, x2

2 ) is the optimal solution, then f2(x̃1, x2
2 ) ≤ f2(x̃1, y2),∀y2 ∈ S(x̃1).

Since x1
2 ∈ S(x̃1) then

f2
(

x̃1, x1
2

) = f2
(

x̃1, x2
2

) ≤ f2
[

λ
(

x̃1, x1
2

) + (1 − λ)
(

x̃1, x2
2

)]

, λ ∈ [0, 1].
Therefore, in both cases the quasiconcavity of f2(x1, ·) on C(x1), x1 ∈ C1 follows. ��

Remark 2 It is worth mentioning that if the assumption (A1) is omitted these theorems are
no longer valid. Example 2 shows that (A1) is necessary.

4 Bilevel problems with quadratic lower level problems

The focus is now on a slightly different problem where it is not possible to prove that an
optimal solution can be found at an extreme point of the set T but at an extreme point of a
related single-level problem. In this Section assumption (A1) is omitted and the optimistic
approach of the bilevel programming problem is taken.

We consider the quasiconcave quadratic bilevel (QQB) problem in which f1 is quasicon-
cave, f2 is convex quadratic and R and S are polyhedra. It can be formulated as:

min
x1,x2

f1(x1, x2), (11a)

s.t. (x1, x2) ∈ R (11b)
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where x2 solves

min
x2

1

2
x�

2 Qx2 + c(x1)
�x2 (11c)

s.t. Ax2 ≤ b − Bx1 (11d)

where Q is an n2 × n2 matrix which is assumed to be positive semidefinite, c(x1) : R
n1 −→

R
n2 is a linear function, A is a p × n2-matrix, B is a p × n1-matrix and b is a p-dimensional

column vector. Here clearly we have S = {(x1, x2) ∈ R
n : Bx1 + Ax2 ≤ b}. As before,

S(x1) and R ∩ S are assumed to be bounded in order to guarantee the existence of an optimal
solution in the lower level and upper level respectively.

By using the (in this case necessary and sufficient) Karush-Kuhn-Tucker optimality con-
ditions applied to the lower level problem (11c)–(11d), we can replace problem (11) by:

min
x1,x2,u

f (x1, x2)

(x1, x2) ∈ R
Qx2 + c(x1)+ A�u = 0
u ≥ 0
Ax2 ≤ b − Bx1

u�(Ax2 + Bx1 − b) = 0

(12)

Both problems (11) and (12) are equivalent if global optimal solutions of the bilevel pro-
gramming problem are considered [10].

Let �(x1, x2) denote the set of Lagrange multipliers related to problem (11):

�(x1, x2) := {u ≥ 0 : Qx2 + c(x1)+ A�u = 0, u�(Ax2 + Bx1 − b) = 0}.
This set is a convex polyhedron [11] having a finite number of vertices. The following theorem
characterizes local optimal solutions to QQB problems in terms of local optimal solutions of
problem (12).

Theorem 5 The point (̃x1, x̃2) ∈ T is a local optimal solution of problem (11) if and only if
(̃x1, x̃2, ũ) is a local optimal solution of problem (12) for each vertex ũ ∈ �(̃x1, x̃2).

Proof If (̃x1, x̃2) ∈ T is a local optimal solution of problem (11) the result is obvious.
Assume now that the point (̃x1, x̃2, ũ) is a local optimal solution of problem (12) for each

vertex ũ ∈ �(̃x1, x̃2) and that, arguing by contradiction, (̃x1, x̃2) is not a local optimal solu-
tion of problem (11). Then, there exists a sequence (xk

1 , xk
2 ) of feasible points to the bilevel

programming problem converging to (̃x1, x̃2) with f1(xk
1 , xk

2 ) < f1(̃x1, x̃2) for all k.
Then, since the Karush-Kuhn-Tucker conditions are necessary and sufficient optimality

conditions for problem (11c)–(11d), there exists a sequence of vertices uk ∈ �(xk
1 , xk

2 )

such that the triple (xk
1 , xk

2 , uk) is feasible to problem (12) with a smaller objective function
value than (̃x1, x̃2) for each k. Hence, each accumulation point (̂x1, x̂2, û) of the sequence
(xk

1 , xk
2 , uk) cannot be local optimal for this problem. The existence of accumulation points

is a result of finiteness of the number of variables and constraints: for each vertex uk of the
set �(xk

1 , xk
2 ) there exists a subset I k ⊆ {1, . . . , p} such that the system

A�u = −Qxk
2 − c(xk

1 )

ui = 0, i ∈ I k (13)

has the unique solution uk . Since {1, . . . , p} is finite we can consider the finite family of all
the sets I k which appear infinitely often in the family of all the sets {I k}k corresponding to
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the sequence {xk
1 , xk

2 , uk}k . For each of these sets, the coefficient matrix in system (13) is
a regular quadratic matrix having an inverse matrix which is independent of k. Hence, for
k → ∞, all accumulation points of the sequence {uk}k are solutions û of the systems (13)
for the different selections of I k and (xk

1 , xk
2 ) being replaced with (̃x1, x̃2). Since it is easy

to see that û is a vertex of �(̃x1, x̃2), a contradiction to our assumption is revealed and the
proof is concluded. ��

To proceed, let us consider the complementarity condition in problem (12) and note that,
for each feasible solution (x1, x2, u) of this problem there exist sets I, J ⊆ {1, . . . , p} with

ui ≥ 0, (Ax2 + Bx1 − b)i = 0, i ∈ I,

ui = 0, (Ax2 + Bx1 − b)i ≤ 0, i ∈ J.

Then, problem (12) can be replaced by a patchwork of problems (PI J ) for each possible
selection of the sets I, J, I ∩ J = ∅, I ∪ J = {1, . . . , p}:

min
x1,x2,u

f (x1, x2)

(x1, x2) ∈ R

Qx2 + c(x1)+ A�u = 0

u ≥ 0

Ax2 ≤ b − Bx1

ui ≥ 0, (Ax2 + Bx1 − b)i = 0, i ∈ I

ui = 0, (Ax2 + Bx1 − b)i ≤ 0, i ∈ J .

(PI J )

Computing the best optimal solution among all these problems (PI J ) yields the optimal
solution of (12). Note that each of the problems (PI J ) has a polyhedral feasible set and that,
due to quasiconcavity of the function f1, an optimal solution of each of the problems (PI J )
can be found at an extreme point of this feasible set. Hence, local optimal solutions of the
problem (12) are located at extreme points of the union of the finite number of polyhedral
feasible sets of the problems (PI J ) and, hence, at extreme points of the problem (12), too,
even if the complementary slackness condition is dropped. This allows us to conclude the
following corollary:

Corollary 1 Considering problem (12), an optimal solution (x1, x2) can be found at a vertex
(x1, x2, u) of the set

(x1, x2) ∈ R
Qx2 + c(x1)+ A�u = 0
u ≥ 0
Ax2 ≤ b − Bx1 .

(14)

As a consequence of this result, it is possible to develop enumerative algorithms considering
vertices of (14) to solve problem (11) globally.

The next example in R
2 illustrates that the bilevel optimal solution of a QQB problem is

a vertex of an ‘enlarged’ polyhedron and not a vertex of R ∩ S.
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x 2 max (lower level objective)

x
1 max

(upper level objective)

global
optimum

Fig. 4 Lower level problem of Example 5

Example 4 Let us consider the problem

min
x1,x2

−(x2
1 + x2

2 )

1 ≤ x1 ≤ 2,
where x2 solves

min
x2

x2
2 − 2x2

s.t. −x1 + x2 ≤ 2
−x1 − x2 ≤ 1 .

For each parameter x1 the solution of the lower level problem is x2 = 1. Hence, the global
optimal solution of the bilevel problem is (x1, x2) = (2, 1), which is not a vertex of the
polyhedron T defined by all the constraints.

Considering the feasible sets of the problems (PI J ), it is easy to see that there are only
feasible solutions if u1 = u2 = 0. Then, x2 = 1 and x1 can be arbitrarily chosen in [1, 2].
The optimal solution of this subproblem is (x1, x2, u1, u2) = (2, 1, 0, 0), which is a vertex
of the ‘enlarged’ polyhedron:

{(x1, x2, u1, u2) : 1 ≤ x1 ≤ 2, 2x2 − 2 + u1 − u2 = 0,

u1 ≥ 0, u2 ≥ 0, −x1 + x2 ≤ 2, −x1 − x2 ≤ 1} .
In [10] it is shown that in Theorem 5 it is really necessary to verify local optimality of
(̃x1, x̃2, ũ) to problem (12) for all vertices of �(̃x1, x̃2). The following example in R

2, dis-
played in Fig. 4, shows this fact.

Example 5

min
x1,x2

x1

0 ≤ x1 ≤ 10,

where x2 solves

min
x2

x2

s.t. x1 + x2 ≤ 2

0 ≤ x2 ≤ 1
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Consider the point (x1, x2) = (1, 1). Then, there are two active constraints in the lower
level problem with only one variable. The multiplier set is �(x1, x2) = {u = (u1, u2, u3) :
u1, u2 ≥ 0, u1 + u2 = 1, u3 = 0}. Take u = (1, 0, 0). Then, in an open neighborhood of
the point (x1, x2, u1, u2, u3) = (1, 1, 1, 0, 0) we have u1 > 0 and hence, in problem (12),
by complementarity slackness, x2 = 1. Solving problem (12) under these conditions we
obtain the optimal solution (x1, x2, u1, u2, u3) = (1, 1, 1, 0, 0). On the contrary, if we take
u = (0, 1, 0), in an open neighborhood of the point (x1, x2, u1, u2, u3) = (1, 1, 0, 1, 0) we
have u2 > 0 and hence, in (10), x1 = 2 − x2. Therefore, in this open neighborhood, we can
choose points (x1, x2, u1, u2, u3) with better values of f1 than 1.

5 Conclusions

In this paper we have analyzed bilevel problems over polyhedra with extreme point opti-
mal solutions. We have proved that the fact that both objective functions are quasiconcave
characterizes the property of the existence of an extreme point of the polyhedron defined
by the whole set of constraints which solves the bilevel problem. This property allows us to
consider enumerative methods which search amongst extreme points to solve the problem.
In order to obtain this property it is necessary to assume that the optimal solution of the lower
level problem is a singleton. Quasiconcave functions include as important particular cases
linear, linear fractional or linear multiplicative functions.

If the upper level objective function is quasiconcave and the lower level one is convex
quadratic, by replacing the lower level problem with the Karush-Kuhn-Tucker conditions we
have proved that an optimal solution can be found at an extreme point of a related polyhedron
which takes into account complementary constraints. In this case, no assumption is required
for the set of optimal solutions of the lower level problem and the optimistic approach is
taken. If the lower level function is an arbitrary convex parametric optimization problem, we
can replace it with the Karush-Kuhn-Tucker conditions but, since these conditions are not
polyhedral, we cannot conclude that optimal solutions can be found at the vertices.

Acknowledgments The authors gratefully acknowledge the anonymous referees for their valuable sugges-
tions to improve the presentation of the paper.
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