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Abstract Response surface methods, and global optimization techniques in general, are
typically evaluated using a small number of standard synthetic test problems, in the hope
that these are a good surrogate for real-world problems. We introduce a new, more rigor-
ous methodology for evaluating global optimization techniques that is based on generating
thousands of test functions and then evaluating algorithm performance on each one. The test
functions are generated by sampling from a Gaussian process, which allows us to create a set
of test functions that are interesting and diverse. They will have different numbers of modes,
different maxima, etc., and yet they will be similar to each other in overall structure and level
of difficulty. This approach allows for a much richer empirical evaluation of methods that is
capable of revealing insights that would not be gained using a small set of test functions. To
facilitate the development of large empirical studies for evaluating response surface methods,
we introduce a dimension-independent measure of average test problem difficulty, and we
introduce acquisition criteria that are invariant to vertical shifting and scaling of the objective
function. We also use our experimental methodology to conduct a large empirical study of
response surface methods. We investigate the influence of three properties—parameter esti-
mation, exploration level, and gradient information—on the performance of response surface
methods.
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List of symbols
f The function to be optimized. f : X ⊆ R

d → R

X The domain of f
x, z, w Points in the domain of f
x j The j th coordinate of the point x
||x || The Euclidean norm of x
x A list of points x1, x2, ..., xn

x1:k A sublist of points x1, x2, ..., xk

f (x), or f A list of function values f (x1), f (x2), ..., f (xn)

k(x, z) The kernel function between the points x and z
k(x, z) A column vector whose i th element is k(xi , z)
k(x, z) A row vector whose i th element is k(x, zi )

k(x, z) = K A kernel matrix whose (i, j) th element is k(xi , z j )

μ(x) The prior mean function
σ 2

f The “signal” or “process” variance of a Gaussian process
σ 2

n The noise variance of a Gaussian process
�i The characteristic length-scale along the i th dimension
L A diagonal length-scale matrix
X A random variable
p(X = x) Probability (or density) of the event X = x
E[X ] The expectation of X
Cov(X, Y ) The covariance between X and Y : Cov(X, Y ) = E[(X−E(X)) · (Y−E[Y ])]
(a)+, [a]+ max(a, 0)

I The identity matrix
R The set of real numbers
�(x) The standard Gaussian right tail probability p(X > x), X ∼ N (0, 1)

EEC Expected Euler Characteristic
MEI Maximum Expected Improvement
MPI Maximum Probability of Improvement
ILN Independent Log Normal
BFGS Broyden-Fletcher-Goldfarb-Shanno (hill-climbing method)

1 Introduction

Response surface methods (Jones 2001) belong to a class of global optimization algorithms
that retain all accumulated data about the objective function and use all of it to determine
where next to evaluate the objective. They are particularly appropriate for problems where
the objective is multimodal and expensive to evaluate, which is common in engineering
applications; response surface methods are thus extremely important in the development and
analysis of complex, real-world, deployed systems.

In contrast to local optimization techniques like quasi-Newton and conjugate gradient
methods, response surface methods have many free parameters that must be supplied by
the user to tailor the method to the optimization problem at hand. Here we are considering
“parameters” in the most general sense: a parameter could be a real number that controls
the amount of exploration an algorithm does, or it could be a choice among different model
classes for the response surface. Some of these parameters appear in the models of the objec-
tive function, and some appear in the acquisition criteria that are used to determine where
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next to observe the objective function. Guidance on how to set these parameters to achieve
good performance can be gleaned from empirical studies of response surface methods, and
indeed this is a sensible approach since the kind of theoretical analysis that is feasible for
local optimization methods is not feasible in the more complex response surface setting.
Thus, response surface methods, and global optimization techniques in general, have typi-
cally been evaluated using case-study type analyses of real-world problems, and by analysis
of performance on sets of synthetic test problems.

We wholeheartedly endorse the study of response surface optimization on real-world prob-
lems (Li and Sudjianto 2005; Huang et al. 2006; Lizotte et al. 2007). Such studies reveal
strengths and weaknesses of response surface methods in precisely the domains where we
want good performance. Unfortunately, these studies can be high-cost in terms of time or
money or both from the point of view of a researcher who is more interested in studying the
performance of optimization methods rather than the substantive outcome of the study. This
can make it difficult to use real-world studies for algorithm development.

Therefore, research on response surface methods uses standard synthetic test problems
(Dixon and Szegö 1978) to evaluate methods instead, in the hope that these are a good sur-
rogate for expensive, real-world problems. To date, however, many algorithm evaluations
have used only a small number (i.e. fewer than twenty) hand-constructed test functions,
although there is work on expanding this number (Khare et al. 2003; Deb et al. 2005). While
hand-constructed functions have proven useful for ensuring that response surface methods
show reasonable behaviour, we are concerned that such a small set is not sufficient for
selecting appropriate parameters for a given method, nor is it sufficient for rigorously com-
paring different methods. Of course these functions are designed to have properties like
non-concavity and multi-modality that are representative of real problems, and we would
certainly not expect good methods to perform poorly on them; however, meta-optimization
of optimization methods to perform well on such a limited test suite invites “overfitting” the
methods to problems that have no practical importance.

Ideally, we would like to use a large number of real-world problems to evaluate and study
global optimization methods, but as we noted above, this is impractical. Failing this, however,
it is crucial to at least move toward the use of a much richer set of synthetic test problems in
order to achieve meaningful progress. We therefore introduce a new methodology for evalu-
ating global optimization techniques that is based on generating thousands of test functions
and then evaluating algorithm performance on each one. The test functions are generated
by sampling from a Gaussian process, which allows us to create a set of test functions that
are interesting and diverse—they will have different numbers of modes, different maxima,
etc. Despite this variety, the test functions will be similar to each other in overall structure
and level of difficulty, which are attributes that can be controlled by the experimenter. This
approach allows for a much richer empirical evaluation of methods that is capable of revealing
insights that would not be gained using a very small set of test functions.

To facilitate the development of large empirical studies for evaluating response surface
methods, we introduce two new ideas:

– We introduce a dimension-independent measure of average test problem difficulty based
on an interpretation of the expected Euler characteristic of excursion sets of functions
drawn from a Gaussian process, and present a polynomial time algorithm for computing
this measure. This allows us to generate test problems that have different dimensionality
and different “bumpiness”, but have similar difficulty on average. This also allows us
to express a preference for simple functions when estimating response surface model
parameters.
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– We introduce acquisition criteria (i.e. infill sample criteria) that are invariant to vertical
shifting and scaling of the objective function. This makes the conclusions of our empiri-
cal study more general, since we would obtain the same results for all shifted and scaled
versions of our test functions.

Using these ideas, we present the first large empirical study of response surface methods
and investigate the influence of three properties—parameter estimation, exploration level,
and gradient information—on the performance of response surface methods:

– We show how model parameter estimation based on maximum a posteriori (MAP) model
selection can improve performance over maximum likelihood estimation when we have
limited objective function data. Along the way, we show that an initial Latin hypercube
design may be unnecessary if we are only to collect a small number of points, and we show
that a more accurate response surface model results in better optimization performance,
which is an important but unverified tacit assumption in the field.

– We show how the amount of exploration present in the acquisition criterion affects per-
formance, and suggest appropriate settings for the exploration parameter of two acqui-
sition criteria. We find that, using our invariant criteria, the same amount of exploration
works well in a wide variety of problems with different dimensions, length scales, and
difficulties.

– We show how the use of gradient information in response surface methods can improve
performance using standard acquisition criteria. We show that with proper tuning, the
expected improvement criterion performs better than a state-of-the-art local search
method, in terms of accuracy achieved after a fixed number of function evaluations.

While we base these conclusions on results from large set of test problems, we of course
cannot claim that they hold in general for all optimization problems. The types of test prob-
lems we consider here are motivated by our previous work in robot gait optimization (Lizotte
et al. 2007). In particular, we focus on global optimization of deterministic functions whose
domains are box-constrained subsets of R

d . Furthermore, we are interested in problems where
the total number of objective evaluations is limited by a budget constraint, that is, we are
interested in how well an optimization procedure performs after a fixed number of objective
evaluations rather than how many evaluations it takes to achieve a specified error tolerance.
The budgeted setting makes intuitive sense when the cost of evaluating the objective is orders
of magnitude larger than the cost of determining the next acquisition point, and is particularly
salient when one has six hours in which to learn a good robot walking gait before a soccer
match (Chernova and Veloso 2004). Although our particular empirical study is geared toward
our problems of interest, the ideas behind the design of the study can be adapted to other
scenarios as well, as we discuss in Sect. 6.

We begin in Sect. 2 by reviewing the main ideas behind response surface optimization,
and we describe the viewpoint we will use in our work. Section 3 introduces a notion of
problem difficulty based on results from the geometry of random fields, and illustrates how
two common acquisition criteria can be made shift- and scale-invariant. Section 4 describes
the specific choices we made for our empirical study, and Sect. 5 reports the results of our
investigation. Finally, we summarize and discuss advantages and limitations of our approach
in Sect. 6.
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2 Probabilistic response surface optimization

Throughout this work, we will only consider probabilistic response surface methods, i.e.
methods whose response surface model provides both a prediction of the value of the objec-
tive along with a measure of the uncertainty in that prediction. A probabilistic response sur-
face method for optimization has two main components: The probabilistic generative model
that describes the objective function, and the acquisition criterion1 function that determines
how to choose the domain point where we next evaluate the objective, based on the predic-
tions and uncertainty of the model. This potentially gives response surface methods a major
advantage: One hopes that an end-user can improve algorithm performance by modeling the
objective function well, as opposed to describing a solution algorithm well, which is much
more difficult for a non-expert.

Work on probabilistic response surface methods has been steady over the past 40 years
(Kushner 1964; Perttunen et al. 1989; Stuckman 1989; Mockus 1989; Sacks et al. 1989; Elder
1992; Cox and John 1995; Schonlau 1997; Jones and Schonlau 1998; Gutmann 2001; Sasena
2002; Santner et al. 2003; Boyle 2006; Regis 2007; Lizotte 2008). Jones’ Taxonomy (2001)
provides a useful overview, and the review by Floudas and Gounaris (2009) lists more recent
work. All of the response surface models used in the aforementioned works, whether based
on Brownian motion models, thin-plate splines, radial basis functions, or Kriging, can be
interpreted as Gaussian process regression models (Rasmussen and Williams 2006 d). This
Bayesian viewpoint assumes a Gaussian process prior over possible objective functions, and
computes the posterior model using Bayes’s rule and the observed data. The acquisition cri-
teria used with these models are then functions of the mean and variance of the posterior
process. This framework is described in detail below.

2.1 Gaussian processes

A Gaussian process (GP) (Rasmussen 2004) is a collection2 of random variables
{Fx1 , Fx2 , ...} for which any finite subset of the variables has a joint multivariate
Gaussian distribution. The variables are indexed by elements x of a set X , the domain of
the process. We will restrict our attention to X ⊂ R

d , but this is not necessary; X could be
the space of integers or trees or strings, for example. For any finite length vector of indices
x = [x1, x2, ..., xn]T , we have a corresponding vector Fx = [Fx1 , Fx2 , ..., Fxn ]T of random
variables that have a joint multivariate Gaussian (or normal) distribution,

Fx ∼ N {μ0(x), k(x, x)} , (1)

where the elements of μ0(x) are given by a prior mean function, and k is the kernel or covari-
ance function (Shawe-Taylor and Cristiani 2004). The kernel takes two indices xi and x j ,
and gives the covariance between their corresponding variables Fxi and Fx j . Given vectors of
indices x and z, the function k returns the matrix of covariances between all pairs of variables
where the first in the pair comes from Fxi and the second from Fz j . The result of k(x, x)

must be an n × n, symmetric positive semi-definite matrix for any x in order for k to be a
valid kernel (Shawe-Taylor and Cristiani 2004). Note that each Fxi is marginally Gaussian,
with mean μ0(xi ) and variance k(xi , xi ).

1 This function is given various names in previous work, including the ‘infill sample criterion’ and the ‘acqui-
sition criterion’ (Sasena 2002).
2 All of our GPs will have an uncountable number of variables, but we will abuse notation and “list” them
occasionally.
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2.2 Gaussian process regression

Suppose we have a function f (x) that we would like to model. Furthermore, suppose that
we cannot observe f directly, but that we can observe a random variable Fx that is indexed
by the domain of f and whose expected value is f , i.e., ∀x ∈ X , E[Fx ] = f (x). In partic-
ular, we assume that our prior belief about the function f conforms to a Gaussian process
with prior mean μ0 and kernel k, as described above, and that the observed variable Fx

is an observation of f (x) that has been corrupted by zero-mean, i.i.d. Gaussian noise, i.e.,
Fx = f (x) + ε, where ε ∼ N (0, σ 2

ε ). Hence, f (x) is a hidden variable whose posterior
distribution we can infer after observing samples of Fx at various locations in the domain.
The resulting inference is called Gaussian process regression.

Let x be the list of domain points and f be a vector of corresponding real-valued obser-
vations. We want to compute the posterior distribution at some new point z ∈ X . This
distribution will be Gaussian with mean and variance given by

μ(Fz |Fx = f ) = μ0(z) + k(z, x)(k(x, x) + σ 2
ε I)−1 ( f − μ0(x)) (2)

σ 2(Fz |Fx = f ) = k(z, z) − k(z, x)(k(x, x) + σ 2
ε I)−1k(x, z). (3)

Note that the inverse applies to the kernel matrix of observed domain points (plus a diag-
onal term), and so can be computed once and used to evaluate the posterior at many points
in the domain.3

Gaussian process regression is a generalization of least squares linear regression that allows
for more complex regression functions, and provides information about the uncertainty of the
regression model at different domain points.4 The posterior mean function μ(Fz |Fx = f )

consists of the prior mean function μ0(z), which is frequently taken to be constant, plus a
term involving the kernel function between the query point z and each observed data point.
The second part of the second term, (k(x, x)+σ 2

ε I)−1 ( f − μ0(x)), is a weight vector inde-
pendent of z; therefore, the posterior mean is a weighted sum of kernel functions between
each observed data point and the query point. In other words, the posterior mean function
is a linear combination of n copies of the kernel function, each one centered at an observed
data point. From this construction, one can see that the shape of the difference between the
posterior mean function and the prior mean function is governed by k, the kernel function.
Depending on the choice of kernel and parametric form for the prior mean function, one can
recover models used in “Kriging” (Bakker 2000) in geostatistics, as well as the thin-plate
spline and Brownian motion models.

The specification of a Gaussian Process prior involves choosing the prior mean function
μ0(x) and the covariance function or kernel k(x, x). These functions are usually chosen to
have a particular parametric form and then the parameters of k and μ0 are chosen to optimize
some function of the data, typically the likelihood. We will choose μ0 from the set of constant
functions, and we will examine two classes of kernel function to choose k. It is common to

3 In practice, the matrix will be Cholesky factored instead of inverted. Additionally, methods have been devel-
oped (Csató and Opper 2001; Lawrence et al. 2003) for reducing this computational burden that could be
directly applied to response surface optimization.
4 For X ⊂ R

k and k(xi , x j ) = xi ·x j , this formulation is equivalent to linear ridge regression with regularizer

σ 2
ε .
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choose k to be a function of the weighted difference between points, i.e.5 k(x, z) = k(r(x, z))
where r is the vector given by

ri (xi , zi ) = xi − zi

�i
, �i > 0, i = 1 . . . d. (4)

The �i parameters introduced here are referred to as length scales. Covariance functions
defined in terms of r typically assign a larger covariance to pairs of points with small ||r ||,
and small covariance to pairs with large ||r ||, that is, domain points that are near to each other
will have associated random variables that are strongly correlated. This expresses a belief
that underlying function f is smooth. We allow the amount of smoothness of each dimension
to be different by assigning a length scale �i to each one. The length scales give us some idea
of the importance of each dimension for optimization: If �i is very large, then we expect that
moving along the i th dimension will not have a large effect on f .

One common choice that gives large covariance to nearby points is to define k to be a
“squared exponential” (SE) or Gaussian kernel.

k(r) = σ 2
f · e− ||r ||2

2 (5)

Another commonly used kernel is the Matérn kernel (Rasmussen and Williams 2006c),
which consists of an exponential kernel multiplied by a polynomial. This class of kernels
can be parameterized by the same length scales �i as the SE kernel, along with an addi-
tional real parameter ν > 0. For half-integer values of ν, the kernel has a simple form. Two
commonly-used values of ν are

kν=3/2(r) = σ 2
f ·

(
1 + √

3||r ||
)

· e−√
3||r || (6)

kν=5/2(r) = σ 2
f ·

(
1 + √

5||r || + 5

3
||r ||2

)
· e−√

5||r || (7)

As ν → ∞ the Matérn kernel function converges uniformly to the squared exponential
kernel (Rasmussen and Williams 2006c).

2.3 Maximum likelihood parameter estimation

When there is a lack of a priori knowledge about how to select a kernel or its parameters,
it is common to use a maximum likelihood criterion to select the functional form of k and
estimate any free parameters k may have.6 The likelihood function for a Gaussian process
with prior mean function μ0(x) and kernel k is given by

log p(Fx = f ) = −1

2
( f − μ0)

T K−1 ( f − μ0) − 1

2
log |K| − n

2
log 2π (8)

where K = k(x, x) + σ 2
ε I. In the above equation, x, f , and n are uniquely determined by

the data. The quantities σ 2
ε and μ0 and the �i and σ 2

f that parameterize k, are free model
parameters, which are chosen to maximize (8). (In our work we will assume determinis-
tic observations and therefore fix σε to a very small positive value for numerical stability.)
In Sect. 5.1 we will examine modifications to (8) that reflect prior beliefs about kernel
parameters.

5 We make the following notational abuse throughout: If k has two parameters, the parameters are domain
points. If k has one parameter, that parameter is a weighted difference of two domain points.
6 Note that cross validation can also be used for model selection in this way; see (Rasmussen and Williams
2006b) for further details.
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We want our optimization procedure to be invariant to additive scaling, which we describe
in Sect. 3.2. To this end, we will always choose the best constant μ0 for our data and substitute
it into the likelihood equation, effectively removing μ0 as a parameter by optimizing it out
to maximize likelihood. We can find this most likely constant μ0 by defining μ0(x) = μc,
implying μ0 = 1 · μc. We then take the derivative with respect to μc and equate it to zero,
which gives the maximum likelihood constant prior mean

μ0 = μ∗ =
(

1TK−1 f

1TK−11

)
1

where 1 is the vector of all ones. Furthermore, since

( f − μ∗)TK−1( f − μ∗) = f TK−1 f − 2 f TK−1μ∗ + μ∗TK−1μ∗

= f TK−1 f − 2 f TK−11

(
1TK−1 f

1TK−11

)
+ 1TK−11

(
1TK−1 f

1TK−11

)2

= f TK−1 f +
−2 f TK−11

(
1TK−1 f

)
+ (1TK−1 f )2

1TK−11

= f TK−1 f − (1TK−1 f )2

1TK−11

it follows that if we use μ∗ for the mean, the likelihood function can be written

log p(Fx = f ) = −1

2
f TK−1 f − 1

2
log |K| − n

2
log 2π − 1

2

(1TK−1 f )2

1TK−11
(9)

The first three terms of this expression represent the likelihood assuming μ0 = 0, and the
last term accounts for our maximizing to find μ∗. Therefore, when we take a partial derivative
with respect to a kernel parameter θ , we can use the usual form (Rasmussen and Williams
2006b) of the likelihood gradient plus an extra term to account for our optimization of μ.
The derivative of the last term above is

∂

∂θ

(1TK−1 f )2

1TK−11

= −2(1TK−11)(1TK−1 f )(1TK−1 ∂K
∂θ

K−1 f ) + (1TK−1 f )2(1TK−1 ∂K
∂θ

K−11)

(1TK−11)2

= 1

(1TK−11)2
·

×
(
−2(1TK−11)(1TK−1 f ) f TK−1 + (1TK−1 f )2 1TK−1

)
· ∂K

∂θ
· (K−11)

so if we define α = K−1 f , and γ = K−11, the derivative of the likelihood function is
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∂

∂θ
log p(Fx = f ) = 1

2
tr

[
(ααT − K−1)

∂K

∂θ

]

−1

2

1

(γ T1)2

(
−2(γ T1)(αT1) αT + (αT1)2 γ T

)
· ∂K

∂θ
· (γ ) (10)

Note that we only use kernels for which ∂k(x, z)/∂θ exists for all x and z in the domain
of f , and for all θ we are interested in.

2.4 Gaussian processes as generative models

As seen in Eq. (1), a priori, Fx is multivariate Gaussian with mean given by the prior mean
function and variance given by the kernel. Thus, for any specified set of domain points x, we
may draw a sample from Fx . If every point z in the domain is sufficiently close to one of
the x, then the value of Fz is almost completely determined, since it will be very highly
correlated with nearby Fx and its posterior variance will be very low. Thus we can sample
a function from the Gaussian process prior by sampling the vector Fx , conditioning on the
resulting data, and using the posterior mean to interpolate for z /∈ x. By repeatedly drawing
different Fx for sufficiently large sets x, we can sample different functions from the Gaussian
process prior.

If the prior mean is taken to be zero, the properties of the sampled functions will be
determined entirely by the kernel. The �i in a kernel control how quickly a function sampled
from the GP varies along each dimension: Sampled functions will vary quickly along dimen-
sions with small �, and will vary slowly along dimensions with large �. Figure 1 illustrates
this using a 2D example. The functional form of the kernel also determines other measures
of smoothness. For example, the squared exponential kernel produces processes that are
infinitely mean-square differentiable, whereas the Matérn kernel with ν = 3/2 produces
processes that are mean-square differentiable exactly once.

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−1

−0.8

−0.6

−0.4
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0
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0.4

0.6

0.8

1

Fig. 1 Contour plot of a function sampled from a Gaussian process over R
2 with μ0(z) = 0 and squared

exponential kernel with horizontal length scale �1 = 0.13, and vertical length scale �2 = 0.41. This function
was constructed by drawing 500 domain points x uniformly randomly, drawing a vector f from the multivar-
iate normal N {0, k(x, x)}, and plotting μ(Fz |F f = f ). Note how the function varies more rapidly along
the horizontal dimension than along the vertical dimension
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Our empirical study will evaluate the performance of response surface methods on
sampled functions from different Gaussian process priors with different dimensionality,
length scales, and kernel family.

3 A measure of problem difficulty and invariant acquisition criteria

We now give two extensions to response surface optimization that are useful for develop-
ing large empirical studies. First we review the expected Euler characteristic of a Gaussian
process, give a polynomial time algorithm for computing it, and offer an interpretation that
is relevant for assessing the difficulty of optimization problems drawn from a GP. We then
describe how the two most common acquisition criteria can be modified so that the resulting
points chosen by them are invariant to vertical shifting and scaling of the objective function.

3.1 The difficulty of a global optimization problem

Common test problems used in research on response-surface methods fall into two common
types of problems, the “mountain-range” problems and the “needle-in-a-haystack” problems.
Mountain-range problems have several local optima whose basins of attraction are similarly
sized, and whose function values are not far from the value at the global optimum. For this type
of problem, good performance can be achieved by finding one of the local optima whose
value is near the global optimum. Needle-in-a-haystack problems have a global optimum
whose basin of attraction is very small, and whose value is much more extreme than the rest
of the function. For this type of problem, performance will be poor unless our algorithm
correctly determines the location of the “needle”—a scenario we feel is not representative
of most real-world problems. (On these problems, nothing short of exhaustive search will
perform well.) Depending on the kernel, functions sampled from a Gaussian process can
have either of these characteristics: If the domain is too large or length scales are too small or
the dimension is too high, then we will produce needle-in-a-haystack test functions that are
hopeless for any reasonable optimization method. We must quantify this difficulty to ensure
that the test functions we generate are reasonable surrogates for real-world problems.

Therefore, we present a property of Gaussian processes of arbitrary dimension that gives
insight into whether functions sampled from a GP have the mountain-range or the needle-
in-a-haystack properties. To do this, we review what is known about the excursion sets of
functions sampled from GPs, which are sets Au( f ) = {x : f (x) ≥ u}. An example of
an excursion set in two dimensions is shown in Fig. 2. For a smooth function f with a
unique global maximum, the excursion set Au for u = supX f − δ for some small enough
δ > 0 will consist of a connected, nearly ellipsoid-shaped closed set of points containing
x∗ = argmaxX f (x). To see this, note that by Taylor’s theorem, if f is twice differentiable
at the point x∗, the behavior of f near x∗ will be very nearly quadratic within a small enough
radius, and that the level sets of a quadratic function are ellipsoids. As we decrease u, the size
of Au will grow, and new components will appear around other local maxima that u crosses
on its descent. The excursion set Au will become more and more connected until it consists
of most of the domain X , but with holes surrounding the locations of extreme local minima.

We now consider what we can tell about a function from looking at its excursion sets to try
to give an idea of their potential in studying extrema. First, it is easy to see that the number
of connected components of Au gives a lower bound on the number of local maxima that
exceed level u. Second, if we somehow knew that a Gaussian process would produce either a
single local maximum above u or none at all, then the number of components of Au for any
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Contour plot of a 2D Function
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Fig. 2 Example of an excursion set for a two-dimensional function f . The shaded area in the graph on the
right is the excursion set A0.5—the set of domain points where f > 0.5—has four components, none of
which have holes. Therefore χ(A0.5) = 4 for this function

sampled function will be zero or one, and the expected number of components of Au would
be equal to p(supx∈X Fx ≥ u), which we call the excursion probability of F above u. It turns
out that the best asymptotic approximations known for excursion probabilities (and they are
very good for moderate to large u/σ f , i.e. u/σ f > 1.5) are related to counting connected
components of excursion sets (Adler and Taylor 2007).

The number of connected components of a closed set is an example of a topological
invariant. That is, the quantity is the same for all sets that are homeomorphic—sets between
which there exists a continuous, one-to-one, and onto mapping. Less formally, a topological
invariant property of two sets will be the same if one set can be smoothly deformed into the
other, like a doughnut and a coffee cup, but not a doughnut and a bowling ball.7 The Euler
characteristic χ(S) of a set S is the most widely known topological invariant.8 Precisely
defining the Euler characteristic is a lengthy process, so we instead give a few of its properties
that are relevant to our discussion.

χ(Bd) = 1 where Bd is the unit ball in R
d

χ(U ∪ V) = χ(U) + χ(V) if U ∩ V = ∅
Any set that is homeomorphic to Bd , for example the ellipsoid-shaped components of

excursion sets around local maxima that we mentioned above, counts for 1 when computing
the Euler characteristic. Furthermore, the characteristic is additive, so if Au consists of some
number of disjoint components that are each homeomorphic to Bd , then the χ(Au) will be
the number of components of Au . We have of course left out all of the sets which are not
homeomorphic to Bd ; here are a few examples of these:

7 The problem here is continuity—to map the bowling ball back to the doughnut, there will have to be points
that are nearby on the bowling ball that map to points that are far apart on the original doughnut, and vice
versa. This is caused by the hole in the doughnut (Or by the absence of a hole through the bowling ball).
8 Along with genus, which is defined for surfaces. The orientable genus g of a surface can be defined as
g = 1 − χ/2.
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χ(Kd,h) = 1 + h · (−1)d

χ(K̄d,h) = 1 − h

Here, Kd,h is Bd with h non-intersecting d-dimensional holes drilled through it, and K̄d,h

is Bd with h “handles” attached to it. Envisioning a d-dimensional sphere with d-dimensional
handles attached to it is taxing at best, but the important thing to note is that χ(S) is not
simply the number of connected components of S.

We now come to the single most important formula governing the extrema of Gaussian
processes.

Theorem 1 Adler and Taylor (2007). For a stationary Gaussian process with zero mean, we
have

E[χ(Au)] = e−u2/2σ 2
f

d∑
k=1

∑
J ∈Ek

μL (J )|�J |1/2

(2π)(k+1)/2σ k
f

Hk−1

(
u

σ f

)
+ �

(
u

σ f

)
(11)

where the process is over the set X , a rectangle in R
d with one vertex at the origin. The

Ek are collections of the k-dimensional facets of the boundary of X that contain the ori-
gin, of which there are

(d
k

)
. For example, if X ⊂ R

3, then E1 would be the three line seg-
ments that border X and touch the origin, E2 would be the three 2-dimensional rectangles
that border X and touch the origin, and E3 would be X itself. In the sum, J ranges over
these

(d
k

)
facets. �J is the matrix of spectral moments of the process when restricted to the

facet J , whose elements are given by λi j = ∂2k(r)
∂ri ∂r j

∣∣∣
r=0

. σ f is the process variance. μL(J )

is the (k-dimensional) Lebesgue measure of the facet J , and �(x) is the standard Gauss-
ian right tail probability p(X > x), X ∼ N (0, 1). Hk−1(·) is the k − 1st “probabilist’s”
Hermite polynomial, defined in “Appendix B”.

The preceding formula is important not only because it is interesting to know the expected
Euler characteristic of excursion sets, but because it provides the state-of-the-art approxima-
tion to excursion probabilities of Gaussian processes:

|p {sup F(x) ≥ u} − E[χ(Au)]| < O
(

e−αu2/2σ 2
f

)
(12)

for α > 1. Furthermore, it provides insight in to how the spectral moments—and therefore
the length-scales—of a process influence its supremum distribution. To see this more clearly,
we give a more specialized version of Eq. (11).

Corollary 1 For an axis-scaled isotropic Gaussian process over the hyper-rectangle X =
[0, w1] × [0, w2] × · · · × [0, wd ], if we let D(J ) represent the set of indices of the k axes
that are included in a boundary set (i.e. facet) J ∈ Ek , the expected Euler characteristic is
given by

E[χ(Au)] = e−u2/2σ 2
f

d∑
k=1

∑
J ∈Ek

[∏
i∈D(J ) wi

]
· [∏i∈D(J )

√
λi i ]

(2π)(k+1)/2σ k
f

Hk−1

(
u

σ f

)

+�

(
u

σ f

)
(13)

Proof This corollary uses two main properties: First, for an axis-scaled isotropic pro-
cess, since λi j :i �= j = 0, we have |�J |1/2 = ∏

i∈D(J )

√
λi i . Furthermore, since the domain

123



J Glob Optim (2012) 53:699–736 711

is a hyper-rectangle, the k-dimensional Lebesgue measure of each facet J is given by
μL(J ) = ∏

i∈D(J ) wi . �(x) is the standard Gaussian right tail probability p(X > x),

X ∼ N (0, 1). ��
Recall from (11) that there are

(d
k

)
such boundary sets J for each k ∈ {1, 2, ..., d}.

Therefore, a naïve expansion of the sum in (13) would involve
∑d

i=1

(d
k

) = 2d terms, making
use of this approximation prohibitively expensive. We now give a novel re-formulation of
(11) that takes O(d2) time to evaluate.

Theorem 2 For an axis-scaled isotropic Gaussian process as defined in Corollary 1, the
expected Euler characteristic is also given by

E[χ(Au)] = e−u2/2σ 2
f

d∑
k=1

Sk

(2π)(k+1)/2σ k
f

Hk−1

(
u

σ f

)
+ �

(
u

σ f

)
(14)

where

Sk =
∑k

j=1(−1) j+1Sk− j · S[ j]

k
(15)

S0 = 1 (16)

S[ j] =
d∑

i=1

(wi

√
λi i )

j (17)

This alternate factorization, in terms of S, generates the necessary sums for each dimen-
sion k in O(d) time, for a total run time of O(d2). Each of σ 2

f , wi , λi i , H and � are defined

as in Corollary 1. Note that the λi i only enter into the computation via each S[ j].

Proof See “Appendix A”.

The value Sk is the evaluation of the kth elementary symmetric polynomial in d vari-
ables, at the point (w1

√
λ11, w2

√
λ22, ..., wd

√
λdd). These polynomials are symmetric

in all d variables, which implies that the ordering of the axes of the domain does not
matter—so long as the wi

√
λi i remain the same, the excursion sets of sampled functions

will have the same expected Euler characteristics. They are also linear in each wi and
√

λi i ,
since there are no exponents greater than one. This means that if we fix u, σ f , and wi , then
E[χ(Au)] = c1 · √

λi i + c0 for some constants c1 and c0.
For example, suppose we had a zero-mean Gaussian process with covariance given by the

Matérn kernel with ν = 3/2 as defined in Eq. (6). To use Theorem 2, we need to know σ 2
f ,

which is part of the definition of the process, the wi , which are the widths of each axis of the
domain, and the λi i which are derived from the kernel function. Recall that for this Matérn
kernel,

kν=3/2(r) = σ 2
f ·

(
1 + √

3||r ||
)

· e−√
3||r ||

where

ri (xi , zi ) = xi − zi

�i
, i = 1 . . . d

From the definition of the second spectral moments, we have

λi i = − ∂2k(r)

∂r2
i

∣∣∣∣∣
r=0

= − ∂2

∂r2
i

[
σ 2

f ·
(

1 + √
3||r ||

)
· e−√

3||r ||]
∣∣∣∣∣
r=0

= σ 2
f · 3

�2
i

(18)
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From this, we see that the spectral moments λi i depend only on the process variance and
the length scales. (Incidentally, if we had used a squared exponential kernel for k instead,
we would have λi i = σ 2

f /�
2
i .) This shows that decreasing the length scale along dimension i

increases the spectral moment for that dimension, pushing more power into higher frequen-
cies relative to the other dimensions, and making dimension i “bumpier” than the others.
Using σ f , wi , and λi i with Theorem 2, we can compute E[χ(Au)] for this kernel with arbi-
trary length scales and any value of u. Furthermore, since E[χ(Au)] is linear in each of
the λi i , it is a smooth function with respect to �i and σ 2

f , and derivatives with respect to these
quantities are easily computed using the chain rule. We will require these derivatives later
when we use E[χ(Au)] in a prior over the �i that favours simple functions.

Theorem 2 allows the expected Euler characteristic to be used for the first time in a com-
putational setting when working with Gaussian processes over hyper-rectangles with more
than a few dimensions. We now discuss the interpretation of the Expected Euler Character-
istic (EEC) of excursion sets of a GP in relation to the difficulty of optimizing test objectives
sampled from that GP.

3.1.1 Interpreting the expected euler characteristic

The Euler characteristic χ(A) of a set A is equal to the number of connected components
in A if these components are each homeomorphic to the d-dimensional ball. The excursion
set Au of a function above level u consists of all points in the domain where the function
exceeds u. For sufficiently large u, the excursion sets become the union of small disjoint
convex sets surrounding the local maxima of the function in question and therefore the Euler
characteristic counts the number of local maxima above u. We propose the expected Euler
characteristic of excursion sets as a measure of the difficulty of optimizing functions drawn
from a particular Gaussian process model—the higher the E[χ(Au)] for large u, the more
difficult the optimization problems. Most practitioners would agree that functions with many
local maxima are difficult to optimize, assuming no special structure is known about the prob-
lem. In addition to this argument, the expected Euler characteristic allows us to say something
about the “mountain-range” and “needle-in-a-haystack” properties discussed earlier.

To see how EEC influences difficulty, as a thought experiment we consider the performance
of a naïve algorithm that evaluates any objective at the same fixed set of n domain points and
returns the best result. If we test this algorithm for n = 1 on functions drawn from a GP, then a
priori, the probability that the evaluation exceeds 3.0σ f is the Gaussian right tail probability
P(X > 3.0) , X ∼ N (0, 1), which we write as �(3.0) = 0.0013. If for n = 30, the proba-
bility that the best result is greater than 3.0σ f is less than 1 − (1 − �(3.0))30 = 0.0383, and
the probability the best result is greater than 2.0σ f is less than 1− (1−�(2.0))30 = 0.4986.
These simple bounds hold regardless of the correlation structure of the process induced by
the kernel (they assume independence) and therefore they hold regardless of the underlying
domain X and the dimension of the problem.

Suppose we knew that E[χ(A3.0σ f )] = 1.0, meaning that there is a very high probability
that somewhere in the domain we could achieve a value of 3.0σ f or greater—the needle
in the haystack. The fixed strategy sampling 30 points achieves this level with only small
probability, and furthermore misses the mark by at least one standard deviation more than
half of the time. Thus, on average over sampled functions, performance will be poor.

On the other hand, suppose E[χ(A3.0σ f )] is very low, say around 0.01. Then the average
performance of the fixed strategy should be much better, because it is unlikely that in any
given sampled function there exists a needle in the haystack somewhere in the domain.
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Fig. 3 Performance of two GP-based optimization methods, the DIRECT algorithm, and a random Latin
hypercube allocation scheme on test problems with varying values of E[χ(A3.0σ f )]. Each test problem was
drawn from a 2D GP prior using a squared exponential kernel with length scales set so as to generate problems
with a set value of E[χ(A3.0σ f )]. Each group of 5 boxplots gives the absolute error of a particular method after
1, 25, or 50 acquisitions for each level of EEC. The left-to-right order of the groups matches the top-to-bottom
order of the legend. Note that as EEC increases, problems become more difficult and the methods all show a
decrease in performance (i.e. an increase in median absolute error)

Figure 3 shows performance of four optimization methods on a suite of test problems
ranging in difficulty from E[χ(A3.0σ f )] = 0.1 to E[χ(A3.0σ f )] = 0.5. As expected, we see
a decrease in performance with increasing E[χ(A3.0σ f )]; in our examples this holds true
for two GP-based optimization methods, the DIRECT method (Jones et al. 1993), and Latin
hypercube sampling.

For our empirical study, we are interested in a moderate difficulty level when examin-
ing the effect of different dimensions and length scale ratios on performance; therefore, we
have chosen to use GPs with E[χ(A3.0σ f )] = 0.2. Figure 4 shows two examples of these
functions. Setting E[χ(A3.0σ f )] = 0.2 means that in approximately 1/5 of our sampled test
functions there will be a rather extreme maximum that is unlikely to be found by the fixed
strategy. At this level of difficulty, on average approximately 30 samples are needed by the
GP-based methods to achieve an absolute error less than 0.01. To explore how problem
difficulty in terms of EEC interacts with the exploration parameter ξr (defined below), we
will also consider test functions drawn from a 2D Gaussian process with EEC ranging from
0.1 to 0.5.

3.2 Invariant acquisition criteria

The choice of acquisition criterion used to select where next to evaluate the objective clearly
has an enormous impact on response surface method performance. Here, we present a
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Fig. 4 Two example test functions, one drawn from a GP with a squared exponential kernel, and the other
from a GP with a Matérn kernel

modification to the two most common criteria that renders them invariant to shifting and
scaling of the objective function. This is both intuitively appealing, since should not care
whether our test function is f (x) or a f (x) + b, and useful for our empirical study, since we
can immediately generalize our conclusions to functions that are shifted and scaled versions
of our test functions.

There are several choices for the acquisition criterion for Gaussian process optimization,
and development and analysis of criteria is ongoing (Srinivas et al. 2010). We have cho-
sen to examine two popular acquisition criteria here: The Maximum Expected Improvement
(MEI) criterion (Mockus 1989), which selects the point at the maximum of the Expected
Improvement (EI) function,

EI(x, ξ) = E[(Fx − (μmax + ξ))+] (19)

= (μ(x) − (μmax + ξ))�

(
μ(x) − (μmax + ξ)

σ (x)

)
(20)

+σ(x)φ

(
μ(x) − (μmax + ξ)

σ (x)

)
(21)

and the Maximum Probability of Improvement (MPI) criterion (Kushner 1964) which selects
the point at the maximum of the Probability of Improvement (PI) function,

PI(x, ξ) = P[Fx ≥ μmax + ξ ] (22)

= 1 − �

(
μ(x) − (μmax + ξ)

σ (x)

)
(23)

≡
(

μ(x) − (μmax + ξ)

σ (x)

)
(24)

We use ≡ to indicate that the function given by Eq. (24) is equivalent to the MPI criterion,
since removing the � and negating is a monotonic transformation and therefore the maxima
and minima do not change location. Recall that μ(x) and σ(x) are the posterior mean and
standard deviation of Fx , and μmax = maxx μ(x).

Both of these criteria prefer points with higher posterior mean and higher posterior vari-
ance, but the tradeoff between these two quantities is qualitatively different for the different
criteria. This is tradeoff is controlled by the parameter ξ > 0. For PI, the tradeoff is straight-
forward; for a fixed σ , PI increases linearly in μ. For fixed μ, it increases like −1/σ since
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the numerator in (24) is always negative by definition. This brings up an important point:
PI is bounded above by 0, and PI = 0 is achieved only when ξ = 0 and μ(x) = μmax,
regardless of the value of σ(x). It is easy to see therefore that we can can make MPI purely
“greedy” by setting ξ = 0. In this case, using MPI will always acquire the maximum point
of the posterior mean. This is undesirable as it can lead to the method getting stuck at a local
optimum of the objective.

On the other hand, EI is bounded below by 0 by definition, and MEI = 0 is only attained
when ξ = 0, μ(x) = μmax and σ(x) = 0—that is, at the current maximum posterior mean in
the noise-free setting. Therefore MEI avoids this point and is not “greedy” in this sense even
when ξ = 0. Furthermore, the tradeoff MEI makes between μ and σ is more complicated
than that of MPI, although the marginal preference for higher μ and σ is maintained.

We wish to make our optimization procedure invariant to any additive shift, motivated
by the knowledge that such scaling does not change the location of optima of the objective
function. We achieve this by choosing the maximum likelihood constant mean: When we
do this, the EI and PI functions become invariant to any additive constant in the data, which
we will show shortly. We present modifications to the MEI and MPI criteria that make them
invariant to multiplicative scaling also.

Recall the likelihood function we are using is given by

log p(Fx = f ) = −1

2
( f − μ∗)TK−1( f − μ∗) − 1

2
log |K| − n

2
log 2π

μ∗ =
(

1TK−1 f

1TK−11

)
1

and note that if we shift the data by a constant c, we have

μ∗[c] =
(

1TK−1( f + c · 1)

1TK−11

)
1 =

(
1TK−1 f

1TK−11
+ c

)
1 = μ∗ + c · 1 (25)

therefore shifting the data by a constant c shifts the maximum likelihood mean by c, which
means that ( f −μ∗) remains the same, as does the rest of the likelihood function. Therefore
if we are maximizing likelihood and we shift the data additively, estimates of all the other
parameters remain the same, and the posterior mean

μ(x) = μ∗(x) + k(x, z) K−1 ( f − μ∗)

is also shifted by c. The posterior variance function, which does not involve the observed
data but only the locations of observations, does not change. Now, note that

Z = μ(x) − (μmax + ξ)

σ (x)

It is clear now that if we shift the data by c then μ(x) and μmax also shift by c, so we have
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Z[c] = μ(x) + c − (μmax + c + ξ)

σ (x)

= μ(x) − (μmax + ξ)

σ (x)

= Z (26)

so Z (and PI) are unchanged by an additive shift in the data. It is also immediately clear that
the shifted expected improvement criterion

EI[c] = (μ(x) + c − (μmax + c + ξ))�(Z) + σ(x)φ(Z) (27)

= (μ(x) − (μmax + ξ))�(Z) + σ(x)φ(Z) (28)

= EI[c] (29)

is unaffected. Therefore a global optimization strategy based on a maximum likelihood
estimate of the constant mean that uses either of these criteria will select the same points to
acquire regardless of any additive shift in the data.

We now consider the effect of a multiplicative scaling s > 0 of the data. First, it is easy
to see what happens to the original μ∗:

μ∗[s] =
(

1TK−1(s · f )

1TK−11

)
1 = s ·

(
1TK−1 f

1TK−11

)
1 = s · μ∗ (30)

Unsurprisingly, μ∗ is scaled by the amount s. Next we address what happens to the max-
imum likelihood estimate of the signal variance σ 2

f , which we denote σ̂ 2
f . For convenience,

we define the following quantities:

ρ(x, z) = 1

σ 2
f

k(x, z)

R = 1

σ 2
f

k(x, x) = 1

σ 2
f

K

Note that k depends linearly on σ f , so ρ does not depend on σ f . (The kernel k gives the
covariance between domain points, and ρ gives the correlation.) Using these definitions, we
can write the likelihood function as

log p(Fx = f ) = − 1

2σ 2
f

( f − μ∗)TR−1( f − μ∗) − n

2
log σ 2

f − 1

2
log |R| − n

2
log 2π

and, by taking derivatives with respect to σ 2
f and equating to zero, we can find the maximum

likelihood estimate

σ̂ 2
f = 1

n
( f − μ∗)TR−1( f − μ∗) (31)

We can substitute this back into the likelihood function to get

log p(Fx = f ) = −n

2
− n

2
log σ̂ 2

f − 1

2
log |R| − n

2
log 2π
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If we scale the data by a factor s, we have

σ̂ 2
f [s] = 1

n
(s · f − s · μ∗)TR−1(s · f − s · μ∗) (32)

= 1

n
s2 · ( f − μ∗)TR−1( f − μ∗) (33)

= 1

n
s2 · σ̂ 2

f (34)

implying that

log p(Fx = f ) = −n

2
− n

2
σ̂ 2

f [s] − 1

2
log |R| − n

2
log 2π

= −n

2
− n

2
log

s2 · σ̂ 2
f

n
− 1

2
log |R| − n

2
log 2π

= −n

2
− n

2
log σ̂ 2

f − 1

2
log |R| − n

2
log 2π − n

2
log s2 + n

2
log n

and since − n
2 log s2 and n

2 log n are constant with respect to all model parameters, this
objective equivalent to the un-scaled objective. This means that when we scale the data, the
only effect is to scale σ̂ 2

f and μ∗, since the other kernel parameters (i.e. length scales) only

influence the − 1
2 log |R| term, which is unaffected by scaling. In other words, the length

scales estimated from the data vector f will be identical to those estimated from data vector
s · f .

We now turn our attention back to the acquisition criteria, starting with the quantity Z,
which can be written

Z = μ(x) − (μmax + ξ)

σ (x)

=
(σ̂ 2

f ρ(x, z)) 1
σ̂ 2

f
R−1( f − μ∗) − (μmax + ξ)

√
σ̂ 2

f ρ(x, x) − (σ̂ 2
f ρ(x, z)) 1

σ̂ 2
f
R−1(σ̂ 2

f ρ(z, x))

= 1

σ̂ f
· ρ(x, z)R−1( f − μ∗) − (μmax + ξ)√

ρ(x, x) − ρ(x, z)R−1ρ(z, x)
(35)

We arrive at Eq. (35) by substituting the Gaussian process formulae in for μ(x) and σ(x).
This illustrates an important point: If the data are scaled by an amount s, then

Z[s] = 1

s · σ̂ f
· s · ρ(x, z)R−1( f − μ∗) − (s · μmax + ξ)√

ρ(x, x) − ρ(x, z)R−1ρ(z, x)

= 1

σ̂ f
· ρ(x, z)R−1( f − μ∗) − (μmax + ξ/s)√

ρ(x, x) − ρ(x, z)R−1ρ(z, x)

Because of the ξ in the numerator, Z is not invariant to scaling. For example, scaling by
a factor s < 1 is equivalent to increasing ξ by a factor of 1/s, meaning that the MPI and
MEI criteria will shift in focus toward points of higher variance, even though such a scaling
would not change the location of the optimum of the objective function.
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We now present a new alternative to Z that is scale invariant. Consider the following
modified objective, denoted Zr . The subscript r indicates that the objective is “relative” to
the scale of the objective function.

Zr = μ(x) − (μmax + σ̂ f · ξ)

σ (x)

= 1

σ̂ f
· ρ(x, z)R−1( f − μ∗) − (μmax + σ̂ f · ξr )√

ρ(x, x) − ρ(x, z)R−1ρ(z, x)
(36)

Suppose we now scale the data f by an amount s. Then this new objective becomes

Z[s] = 1

s · σ̂ f
· s · ρ(x, z)R−1( f − μ∗) − (s · μmax + s · σ̂ f · ξr )√

ρ(x, x) − ρ(x, z)R−1ρ(z, x)

= 1

σ̂ f
· ρ(x, z)R−1( f − μ∗) − (μmax + σ̂ f · ξr )√

ρ(x, x) − ρ(x, z)R−1ρ(z, x)

therefore changing the scale of the data does not affect the quantity Zr .
Furthermore, if we modify MEI in a similar way, we obtain

EIr = (ρ(x, z)R−1( f − μ∗) − (μmax + σ̂ f · ξr ))�(Zr ) + σ(x)φ(Zr ) (37)

= (ρ(x, z)R−1( f − μ∗) − (μmax + σ̂ f · ξr ))�(Zr )

+ (σ̂ f ·
√

ρ(x, x) − ρ(x, z)R−1ρ(z, x))φ(Zr ) (38)

and again if we scale the data by s and maximize likelihood, we get

EIr [s] = (s · ρ(x, z)R−1( f − μ∗) − (s · μmax + s · σ̂ f · ξr ))�(Zr )

+ (s · σ̂ f ·
√

ρ(x, x) − ρ(x, z)R−1ρ(z, x))φ(Zr ) (39)

= s · [(ρ(x, z)R−1( f − μ∗)) − (μmax + σ̂ f · ξr )�(Zr )

+ (σ̂ f ·
√

ρ(x, x) − ρ(x, z)R−1ρ(z, x))φ(Zr )] (40)

= s · EIr (41)

Consequently, while EIr is not invariant to scaling, the effect of scaling the data by s is
simply to scale the EIr function by the same amount. Therefore the optima of EIr remain
the same, and any strategy relying on maximum likelihood estimates μ∗ and σ̂ f and using
the EIr criterion to select points will select the same points regardless of any multiplicative
scaling of the objective function. Furthermore, the PIr and EIr functions are also invariant to
additive shifts by the same arguments used for PI and EI, simply by re-writing ξ = σ̂ 2

f · ξr .

3.2.1 Heuristics for criterion optimization

To use either of these criteria, we must maximize them over the domain of f , and both EI
and PI can be complicated, multi-modal functions. For processes with many dimensions, it
will be impossible to guarantee finding the global maximum, and various methods have been
tried for optimizing surrogates effectively (Bardenet and Kegl 2010). Nevertheless, we can
take advantage of properties of these functions to at least find points where the criteria are
large, if not maximal.

We note that both criteria can be written as functions of

Z = μ(x) − (μmax + ξ)

σ (x)
(42)
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With this definition we have,

EI = (μ(x) − (μmax + ξ))�(Z) + σ(x)φ(Z) (43)

PI = Z (44)

Each of these functions has properties that make them difficult to maximize in certain
situations.

For areas where Z is small, EI and its gradient become numerically zero because � and φ

fall off exponentially as we decrease Z. In Matlab 2010a, for example, these functions9 are
numerically zero for Z ≤ −40. This causes problem when optimizing EI by hill-climbing,
since if we start at a point that is very poor then we cannot make any progress.

For PI, the problem is the opposite. Particularly when ξ is small, maxima of Z can become
very flat since it is bounded above by 0. From a practical standpoint, this problem is less
severe than the problem of maximizing if we fail to accurately find the domain point that
maximizes PI, we can definitely make progress from poor points because the function and
its gradient are not bounded below, thus allowing us to find a search direction that improves
PI from such points.

In view of these properties, we use the following heuristic for finding the MPI point: Since
it is easy to make progress from poor points, we evaluate PI at a small number of uniform
random domain points (we used 100) and run a quasi-Newton hill-climber from the best of
these (we used 5). There are certainly more intelligent and complicated heuristics that could
be used here; however we have found that even with this simple approach the PI criterion
performs well in experiments; see Sect. 5 for details.

Since EI is sometimes difficult to maximize from very poor points, as described above,
we modify the heuristic slightly for this criterion. Again we use a small number of uniform
random domain points (again 100) and run a quasi-Newton hill-climber from the best of these
(again 5). However, we also always run the hill-climber from the point found by MPI, since
this typically has a high Z and therefore EI has a nonzero gradient, allowing us to improve
the point further.

4 Experimental setup

Our experiments are constructed as follows: For each experiment, we fix a test model, which
is a Gaussian process with fixed parameters and kernel from which we draw multiple test
functions.

4.1 Models

For the test models, we consider Gaussian processes over a rectangle X = [−1, 1]d , each
with a zero constant prior mean μ0(x) = 0 and unit signal variance σ 2

f = 1.0. We do not
vary these parameters because the criteria we are assessing, MEIr and MPIr , are invariant to
additive shifts and multiplicative scaling. Therefore our test model distribution is completely
determined by the kernel of the GP and its length scale parameters.

9 They are named normcdf and normpdf, respectively, in this software.
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4.1.1 Kernels

The kernels we consider are the squared exponential kernel and its relative, the Matérn kernel
with ν = 3/2. (We will henceforth refer to this simply as the “Matérn” kernel.) The main dif-
ference between these two kernels is in their smoothness. Two test function examples—one
drawn from a process with each type of kernel—are shown in Fig. 4.

The squared exponential kernel produces processes that are mean square continuous and
infinitely mean square differentiable, whereas the Matérn kernel with ν = 3/2 produces
processes that are mean square continuous but mean square differentiable only once. As
such, they represent extremes of this kind of “average smoothness” among processes with
twice-differentiable posterior mean and variance functions. (Though the smoothness of the
processes produced by these two kernels differs in this way, all posterior means and variances
are twice differentiable, since these are expressed as weighted sums of kernel functions, and
both of these kernel functions are twice differentiable.) Twice-differentiable posterior means
and variances are required for our approach, since we use hill-climbing to optimize the MEIr

and MPIr .
Using EEC as our criterion for selecting test models allows us to generate models

that have different length scale configurations—even different dimensions—but that are of
similar difficulty. We have chosen to use test kernels with E[χ(A3.0)] = 0.2. (All EEC values
mentioned in this work are in fact E[χ(A3.0)], so we will use “EEC” to mean E[χ(A3.0)],
even though it could be more general.)

Each test function is drawn by choosing 500 uniformly randomly drawn points in [−1, 1]d ,
sampling function values for these points, and then treating them as observed values of an
underlying function. The posterior mean given these function values is the test function. All
experiments that have the same kernel and length scales use the same set of 500 test functions.

For each sampled function, we run each algorithm for 30 acquisition steps, starting from
the origin.10 GP-based methods that take a parameter ξr have this fixed for the duration of
the experiment. We use 6 different test kernels, which generate a total of 3,000 test functions.
Each of these is optimized using the MEIr and MPIr criteria at 5 different levels of ξr each,
and using at least 4 different methods for estimating kernel parameters (described below.)
This resulted in more than 120,000 optimization test runs.

Performance is measured by absolute error, assuming each algorithm reports the best
function value it has observed so far. The true maximum of the test function is estimated by
hill-climbing using Newton’s method (i.e. with the true Hessian of the test function) starting
from the location of the best of the test function’s 500 observed function values.

We use test models with different dimensionality, kernel choice, and length scale in our
experiments, as described in Table 1. With this set of models, we have tried to cover several
different scenarios, some where all dimensions are equally important some where they differ,
some with the smooth squared exponential kernel and some with the rougher Matérn kernel.
When comparing these characteristics, all of the models have an expected Euler characteris-
tic of 0.2, in an attempt to keep their complexity approximately the same even though their
length scales, kernel, and dimension may differ. We also examine the effect of varying EEC
between 0.1 and 0.5 when drawing test functions from a prior based on the 2D Squared
Exponential Kernel.

10 Before seeing data, none of these algorithms has a prior preference on where to acquire points. Therefore
the first point of each run is at the origin in order to reduce variance across methods.

123



J Glob Optim (2012) 53:699–736 721

Table 1 Dimensionality, kernel choice, and log length scales for test models

Dimensions Kernel Log length scales

2 Squared exponential −1.4917, −1.4917

2 Squared exponential −2.0524, −0.9018

2 Matérn −0.9424, −0.9424

2 Matérn −1.5031, −0.3525

8 Squared exponential −0.3739, −0.3739, −0.3739, 3.0000, 3.0000...

32 Squared exponential −0.1408, −0.1408, −0.1408, 4.0000, 4.0000...

5 Empirical investigations

We now present the results of our empirical study. We investigate the impact of three fac-
tors: the effect of different kernel parameter estimation methods, the effect of exploration as
controlled by ξr , and the effect of providing gradient information.

5.1 Model parameter estimation

As we noted in Sect. 2.3, kernel parameters are commonly estimated by maximizing the log
likelihood of the data. However, researchers have noted problems caused by using maximum
likelihood to determine the length scales of Gaussian processes when there are few data points
(Jones 2001). Indeed, we will see that optimization procedures that use maximum likelihood
model selection can perform significantly worse than a uniform random strategy when data
are sparse. In this situation, the likelihood function can be very flat along certain dimensions,
or worse yet, it can be monotonically increasing in certain directions, causing length scales
to head toward zero or infinity. Besides hurting performance, this can also produce a kernel
matrix that is numerically ill-conditioned and difficult to work with.

To ensure that maximum likelihood estimation succeeds, previous approaches to response
surface optimization (Jones and Schonlau 1998; Sasena 2002) have included an initial pre-
acquisition of points in a Latin hypercube design. When using such a design, 10 · d points
are acquired using Latin hypercube (LHC) sampling before the Gaussian process model and
acquisition criterion are used to choose observation points. This ensures there is enough data
for the maximum likelihood procedure to perform adequately. This initial design is not in
any way dependent on incoming data. In such a design, n points are chosen by first dividing
each dimension into n bins. For each dimension, the bins are permuted and dimension i of
point j is drawn uniformly from within the j th bin in the i th permutation.

We will see from our experiments that this strategy is not necessary to ensure reasonable
model fitting, and we will attempt to avoid the expense of pre-acquisition altogether, achiev-
ing much better performance over the first 10 · d points acquired. To accomplish this, we
assume that, a priori, one believes that all the variables for a given problem may have some
importance; if we did not hold this prior belief, it seems we would not have included those
variables in the first place. (Note that it is frequently natural to believe that only a subset of
the variables are important, particularly in high dimensions, which motivates techniques like
variable selection. However, a priori, we typically do not know which subset this is.) Our
approach is similar in spirit to the penalized kriging models of Li and Sudjianto (2005) in
the field of computer experiments, however their work is focused on accurately estimating
parameters, and we are concerned primarily with achieving good optimization performance.
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We investigate two types of priors that encode the belief that, a priori, all input variables
might influence the value of the objective. One prior has a simple preference for moderate
length scales, while the other is based on a dimension-independent measure of mean problem
difficulty. Note that under these priors, the invariant properties of MPIr and MEIr still hold.

5.1.1 MAP-based parameter estimation

We now present two possibilities for priors on model parameters, one that prefers shorter
length scales but does not take into account dimensionality, and another that prefers easier
problems as measured by the EEC.

Independent Log-Normal Prior This prior is designed simply to prevent estimated length-
scales from being very large or very small. For the independent log-normal (ILN) prior, we
place a normal distribution with mean 0 and standard deviation 10 on the logarithm of each
of the length-scales. This is a very vague prior; for example it asserts that there is a 95%
probability of finding a length-scale between 7.18 × 10−8 and 1.39 × 107. We simply add
the logs of these probabilities to the likelihood function (8) to obtain our new objective

log p(Fx = f ) = −1

2
( f − μ∗)T K−1 ( f − μ∗) − 1

2
log |K| − n

2
log 2π

+
d∑

i=1

(
− log(�i )

2

2 · 102 − log 10
√

2π

)
(45)

Recall that the �i in Eq. (45) are the length scales from the kernel as defined in Eqs. (4, 5)
and (6). These appear explicitly in (45) in the prior part, and implicitly in K. In practice we
work with log(�i ) for convenience, which makes the derivatives simpler and allows us to use
an unconstrained optimizer. To compute the gradient of (45) with respect to the log length
scales, we therefore simply add the gradient of the likelihood from Eq. (10) to the gradient
of the last term of (45), which is

∂

∂ log(� j )

[
d∑

i=1

(
− log(�i )

2

2 · 102 − log 10
√

2π

)]
= − log(� j )

102

We will need this gradient for computing MAP estimates of the �i , discussed below.

Expected Euler Characteristic Prior This prior is based on the expected Euler characteris-
tic (EEC) of excursion sets drawn from the model GP. The motivation for the expected Euler
characteristic prior is based on the desire for a prior that considers “simple” functions more
likely a priori. This is somewhat true of the independent log normal prior discussed above,
but only for functions of few dimensions. For example, a two-dimensional process with
log length-scale parameters log(�) = [0, 0] and a ten-dimensional process with parameters
log(�) = [0, 0, 0, 0, 0, 0, 0, 0, 0, 0] are both at the mode of the independent log-normal prior
described above, and are both therefore most likely a priori. However, the two-dimensional
process is much simpler, both intuitively and as measured by expected Euler characteristic.
For the two-dimensional process, E[χ(A3.0)] = 0.0070, whereas for the ten-dimensional
process E[χ(A3.0)] = 1.0769. Figure 5 shows that the difference between these two scenar-
ios is striking.

Our EEC-based prior places most of its mass between these two extremes of complexity.
To achieve this, we use a normal prior over E[χ(A3.0)] that places about 97% of its mass
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Fig. 5 Contour plots of two sampled functions, one from a GP with E[χ(A3.0)] = 0.01 and the other with
E[χ(A3.0)] = 1.0. For both, μ(x) = 0 and σ 2

f = 1.0

between 0.0 and 0.5 by using parameters μeec = 0.175 and σeec = 0.0917. Again, we simply
add this penalty to the likelihood function to get

log p(Fx = f ) = −1

2
( f − μ∗)T K−1 ( f − μ∗) − 1

2
log |K| − n

2
log 2π (46)

− (E[χ(A3.0)] − μeec)
2

2σ 2
eec

− log σeec
√

2π

and again, the length scales from the kernels defined in Eqs. 5 and 6 will allow us to compute
both the log likelihood and its gradient, as well as E[χ(A3.0)] and its gradient.

Figure 6 illustrates both the ILN prior and the EEC prior. While both priors prefer log
length-scales near the origin, the EEC prior is also willing to allow one length scale to
become shorter if the other is made longer. This is because if we fix the number of dimen-
sions of the process, there are sub-manifolds of length-scales that produce processes with
the same EEC. The level curves of the EEC prior in Fig. 6 show some examples of these
sub-manifolds for two-dimensional processes; in d dimensions, these manifolds will be d −1
dimensional.

These two objective functions give us a mechanism for estimating the relevant kernel
parameters (i.e. length scales) from data. To do so, we simply maximize (45) or (46) with
respect to the �i , and then use the resulting parameters in our posterior computations. To
maximize these criteria, we use an unconstrained quasi-Newton method, starting from the
mode of the prior. Specifically, we use the BFGS method as implemented in Matlab 2010a.
The method is provided with the value and gradient of the objective function, which we com-
pute analytically as shown above. Examples of the impact of these priors on the estimated
posterior mean function are shown in Fig. 6. One can see that both of these priors produce
reasonable length scales when there are only a few data points.

5.1.2 The effect of parameter priors on performance

A summary of the performance of these different parameter estimation methods is shown in
Figs. 7, 8 and 9. Each chart compares the performance of MEIr , MPIr and Latin hypercube
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Fig. 6 Contour plots of the independent log-normal prior and the expected Euler characteristic prior used in
this work, along with plots of the resulting posterior means. Data points are indicated in the posterior mean
plots by small white ∗. From the lower-left heading clockwise, the function values are −0.5,−1.0, 0.5, 1.0
in all cases. The last plot shows the posterior mean after maximum likelihood estimation. Note that the ver-
tical length scale has effectively gone to infinity in this case, meaning that the resulting model explains the
variability in the function values using only the horizontal dimension. The ILN or EEC priors penalize having
very large length scales, and so produce moderate length scales for both dimensions

sampling after different numbers of acquisitions. The boxplots describe the distribution of
the absolute error achieved by each method combination of prior and acquisition criterion.
The “Prior:None” case corresponds to maximum likelihood estimation, and the “Prior:Exact”
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Fig. 7 Performance of MEIr and MPIr using MAP estimation with different parameter priors. Groups of
boxplots show absolute error after 1, 7, 13, 19, 25, and 30 objective function evaluations. Within each group,
the left-to-right order of the boxes matches the top-to-bottom order of the legend

case assumes the uses the correct kernel parameters throughout. To simplify, we will show
only ξr = 0 for MEIr and ξr = 0.1 for MPIr in our comparisons. (We will see later that
these are good values in all of the situations we tested).
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Fig. 8 Performance of MEIr and MPIr using MAP estimation with different parameter priors. Groups of
boxplots show absolute error after 1, 7, 13, 19, 25, and 30 objective function evaluations. Within each group,
the left-to-right order of the boxes matches the top-to-bottom order of the legend

First, we note that in all cases, knowing the correct kernel parameters gives the best
performance, and there are varying degrees of performance loss associated with having to
estimate them depending on the situation. However, as the number of acquisitions increases,
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Fig. 9 Performance of MEIr and MPIr using MAP estimation with different parameter priors. Groups of
boxplots show absolute error after 1, 7, 13, 19, 25, and 30 objective function evaluations. Within each group,
the left-to-right order of the boxes matches the top-to-bottom order of the legend

performance improves to near that achieved by using the the correct model parameters, i.e.
when we have “exact” priors. Also, in most cases, performance earlier on is no worse than
acquisition on a random Latin hypercube, and can be much better. This is significant because
in previous work Latin hypercube acquisition is commonly used for the first 10 · d acquired
points before acquiring using MPI or MEI begins. Our results show that even using maximum
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likelihood (i.e. with no prior on parameters) from the very beginning, we can achieve better
performance in fewer function evaluations. Note however that we cannot say what the effect
of an initial LHC is on much longer sampling runs intended to acquire a very precise optimal
value—it may be that in this case an initial LHC design is preferable.

Furthermore, there are cases where maximum likelihood estimation can perform as poorly
as randomly choosing domain point. We hypothesize that this is because some of our test
models have quite short length scales, since we have found that maximum likelihood esti-
mation tends to generate very long length scales. Introducing an ILN or EEC prior on length
scales can mitigate this problem. Performance using the EEC prior is similar to using ILN,
being slightly worse or slightly better depending on the situation. In most cases, including
the high and low dimensional settings, performance when using MAP estimation with ILN
priors is not significantly worse than using no priors at all, and is significantly better during
initial sampling in the Matérn kernel example of Fig. 8. Using the ILN or EEC prior when
estimating length scales seems to be a “safe” choice.

5.2 The effect of exploration

We now turn our attention to the effect of ξr on optimization performance. We evaluate the
performance of MEIr and MPIr on each of the test models at a variety of ξr values, with
parameters coming from one of four possible estimation strategies. We give a brief summary
of the results rather than presenting them explicitly. There is a striking uniformity among all
of these results: In all cases, using MEIr with ξr = 0 is never significantly worse than the
choice that gives the best median performance. However, we noted that the optimal value
of ξr for the MPIr criterion seems to vary between 0.1 and 1.0 depending on how many
acquisitions are made, though ξr = 0.1 worked reasonably well in all cases.

As an example of this trend, Fig. 10 shows the results from one test model for the case
where we do not do any parameter estimation, but fix all the kernel parameters to their
correct values. The first three, middle three, and last three acquisitions from five different
experiments are shown. The performance of independently acquiring points using a Latin
hypercube is shown for comparison.

The observation that the best value of ξr for MEIr is independent of the number of acquisi-
tions runs completely counter to conventional wisdom, which would claim that larger values
of ξr would perform better early on and smaller values would perform better later. Indeed,
varying the exploration parameter according to the number of samples acquired been shown
to be useful in some cases (Schonlau 1997; Sasena 2002); however, these conclusions were
drawn using a small number of test functions. Our evidence is certainly not proof that sched-
uling ξr would not improve performance, particularly for MPIr where there seems to be a
slight need to explore more early on; nevertheless, it does not suggest that there are significant
average performance gains to be made by scheduling ξr . Furthermore, the performance of
MEIr and MPIr using the best ξr for each are similar; therefore we believe that in most cases
they are both reasonable choices.

5.2.1 Effect of varying problem difficulty

Consistent good performance at fixed ξr appears to hold even as problem difficulty changes.
In Figs. 11 and 12, we see that whether we draw functions from a prior with EEC = 0.1
or EEC = 0.5, the optimal amount of exploration as governed by ξr remains basically the
same, for both MEIr and MPIr . We have found this to be true for EEC as large as 1.0, and
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Fig. 10 Effect of ξr on the performance of MEI and MPI when priors are correct and fixed. For MEI, using
ξr = 0 is never significantly worse than the choice that gives the best median performance. For MPI, after 30
acquisitions, using ξr = 0.1 provides the best performance. In some cases, however, performance is improved
by using larger ξr for smaller numbers of function evaluations. Within each group of boxplots, the left-to-right
order of the boxes matches the top-to-bottom order of the legend
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Fig. 11 Effect of ξr for on the performance of MEI when priors are correct and fixed for different problem
difficulties: The top graph shows results on problems with EEC = 0.1, and the bottom shows results on
problems with EEC = 0.5. For MEI, using ξr = 0 is never significantly worse than the choice that gives
the best median performance. Within each group of boxplots, the left-to-right order of the boxes matches the
top-to-bottom order of the legend
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Fig. 12 Effect of ξr for on the performance of MPI when priors are correct and fixed for different problem
difficulties: The top graph shows results on problems with EEC = 0.1, and the bottom shows results on
problems with EEC = 0.5. Within each group of boxplots, the left-to-right order of the boxes matches the
top-to-bottom order of the legend. For MPI, using ξr = 0.1 is never significantly worse than the choice that
gives the best median performance
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for all four possible priors on length scale we considered, i.e. the ILN prior, the EEC prior,
no prior (maximum likelihood) and the ‘exact’ prior where parameters are assumed known.

5.3 Gradient information

All the experiments discussed so far assume that we can only observe the value of f (x) at the
points we choose. However, the underlying Gaussian process models we use can condition on
gradient information when such information is available, because the gradient observations
are jointly Gaussian with the function evaluations and with each other. Thus the optimization
procedure remains the same, but each time we acquire the objective f (x), we also acquire its
gradient vector ∇ f (x) at the domain point x . The d + 1 resulting values are all incorporated
in to our response surface model before acquiring the next point; this results in a kernel
matrix of size n · (d + 1) × n · (d + 1) after acquiring n points. This additional information
results in a higher fidelity model and improves optimization performance. For details, we
refer the reader to an overview by Rasmussen and Williams (2006c), and an example in the
response-surface optimization context by Leary et al. (2004). We can use all of the same
techniques for estimating kernel parameters and for choosing acquisition points that we used
previously, augment the model with gradient information, and explore the effects of different
ξr and different parameter priors.

Using gradient information in this way, we again found that the best fixed ξr for the MEIr

criterion does not vary significantly regardless of the number of acquisitions, and again we
use a fixed value of ξr = 0 for all of our comparisons, which is the same as the value we
chose for our function-value-only experiments. However, we found that when using gradient
information, the MPIr criterion seems to have more variable performance depending on the
test kernel and the method of estimating parameters. The best choice of ξr ranges from 0.01
to 1.0. Despite the apparent sensitivity of MPIr , it appears that MEIr performs well at ξr = 0
regardless of test model or parameters, and when estimating parameters performs slightly
better with an EEC prior than with an ILN prior or none at all. Boxplots of the performance
of MEIr using one of the test kernels are shown in Fig. 13.

As another point of comparison, we include data on the performance of using a hill-climber
with random restarts applied directly to the objective function.11 This is an optimization
strategy that is very common in practice when gradient information is available. To make a
comparison with our response-surface approach, we restrict the random-restart hillclimber
to 30 function-plus-gradient observations. The procedure is as follows: Starting from the
origin, the BFGS hill-climbing algorithm is run using the objective function f (x) as input.
If the hill-climber converges to a local optimum before its allotted function-plus-gradient
acquisitions are expended, it is restarted at a uniformly randomly drawn point in the domain.
This continues until 30 function-plus-gradient acquisitions have been made. The reported
value for BFGS after k acquisitions is the best observed value up to that point. Performance
of this approach is denoted BFGSRESTARTS and is shown in green box plots.

The performance of MEIr on test functions is better than BFGS after only a few func-
tion evaluations, and is soon very far ahead: After 15 function evaluations in both test
cases of 500 functions each, 75% of the values found by MEIr are better than the median
performance of BFGSRESTARTS. This is a stunning improvement over a method that is
widely considered state-of-the-art, albeit at a significantly higher computational overhead—
recall that our method actually calls BFGS multiple times as a subroutine. Nonetheless, for

11 Recall we also use a hill-climber as a subroutine in our response-surface method to optimize the acquisition
criterion, but it does not access f (x) directly.
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Fig. 13 Performance of MEIr and MPIr with gradient information, with performance of the BFGS method
with random restarts for comparison. Within each group of boxplots, the left-to-right order of the boxes matches
the top-to-bottom order of the legend

expensive functions, expending the extra effort in order to make fewer function evaluations
may be an attractive tradeoff.

6 Conclusion

We have argued for a more rigorous and informative approach to the evaluation of response
surface methods by introducing an experimental methodology that uses a much larger set of
test functions than previous work. We have shown how to generate test functions that are
interesting and yet tractable, and we have shown how to modify commonly-used acquisition
criteria to help make the conclusions drawn from these experiments more widely applicable.

We have also presented results from the first study of this kind, and have made three
surprising discoveries:

– If the optimization budget is limited and only a small number of points (i.e. < 10 · d) are
to be acquired, an initial Latin hypercube acquisition is unnecessary. Response surface
optimization achieves performance exceeding that of LHC acquisition in fewer than the
10 · d function evaluations typically allocated to the initial LHC sampling. It is advisable
to use an ILN or other prior to ensure that reasonable length scales are estimated when
data are few.

– Performance for MEIr is good at ξr = 0, and performance of MPIr is good at ξr = 0.1.
This is largely independent of the number of samples acquired by the methods, the dimen-
sion of the test problems, and the difficulty of the test problems as measured by EEC.

– When using gradient information, MEIr is preferable to MPIr , since it is more robust to
different ξr and models. Here again, ξr = 0 was effective for MEIr . In terms of number of
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function evaluations, response surface methods perform better than state-of-the-art local
search combined with random restarts.

Our test functions are non-concave and multi-modal, much like the standard synthetic
test functions that have been used in the past, and yet are much more diverse due to their
sheer numbers. However, we acknowledge that our conclusions are limited by our choice of
optimization setting. We have restricted ourselves to deterministic functions whose domains
are box-constrained subsets of R

d . Some may feel that the test problems we chose are not
representative of the real-world problems they are interested in.

For example, one might wish to impose general constraints of the form g(x) < 0 on the
solution, where g(x) is also modelled using a Gaussian process (Schonlau 1997; Audet et al.
2000; Sasena 2002). In this case, we would suggest placing a prior on g and then sampling
a constraint function g for each test problem just as we sampled an objective f for each
problem. Note that the feasible set {x : g(x) < 0} is precisely the excursion set of the func-
tion −g(x) at level u = 0, A0(−g) in our notation. However, it is not clear that the Euler
characteristic of A0(−g) is a good measure of the difficulty of solving a problem subject to
g(x) < 0, since it is related to the number of connected components of A0(−g) and says
nothing about the boundary ∂A0(−g). Intuitively, one would expect optimizing subject to
a constraint set that only has one connected component might still be very difficult if its
boundary is very complex. Thus going forward it will be necessary to identify what priors
on g generate constraint functions that have an appropriate level of test problem difficulty.

The Gaussian process model is very flexible, and it is likely that among the many choices
of kernel and prior mean, a researcher can find a process that generates functions she or
he finds interesting. Our experimental methodology is more flexible and rigorous than the
prevailing approach, and will allow future work to more completely explore the potential of
response surface methods for global optimization.
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Appendix A: Proof of theorem 2

Proof First, note that the denominator inside the inner sum of (13) does not depend on J ,
and so can immediately be factored out. This leaves us with the task of computing

∑
J ∈Ek

⎛
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⎣ ∏

i∈D(J )
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λi i

⎤
⎦ ·
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⎠ =

∑
J ∈Ek

⎛
⎝ ∏

i∈D(J )

qi

⎞
⎠

for each k, where qi = wi
√

λi i . The sum is over all subsets of size k of the index set
{1, 2, ..., d}, so for each k the sum has

(d
k

)
terms that cover all possible monomials of degree

k formed from {q1, q2, ..., qd} that have no exponent greater than 1.
The sequence Sk constructs these sums as follows: at the j th step in the sum in (15) to

construct Sk , all monomials of degree j composed of j distinct variables are generated, along
with some extra monomials that have a j + 1 in the exponent. These are then cancelled by
part of the ( j + 1)st term, but this in turn introduces some monomials with a j + 2 in the
exponent, which are cancelled by the term after that, etc. Finally for j = k, we remove the last
of the extra terms by adding in (−1)k+1S[k]. The amount of computation can be reduced by a
constant factor by noting that Sd can be computed in linear time—it is simply

∏d
i=1 wi

√
λi i .

In practice, we also use the following sequence
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Sk =
∑d−1

j=k (−1) j−k S j+1 · S[−( j−k+1)]

d − k

Sd =
d∏

i=1

wi

√
λi i

S[− j] =
d∑

i=1

(wi

√
λi i )

− j

which begins with Sd and successively removes variables from each monomial, thus intro-
ducing terms with extra negative powers, which are removed in a manner analogous to the
previous sequence. We can save some time by using both sequences and “meeting in the mid-
dle”—we use the first sequence to compute S0...Sd/2 and the second to compute Sd/2+1...Sd .

��

Appendix B: Probabilist’s Hermite polynomials

We define Hk(x) to be the kth “probabilist’s” Hermite polynomial. Some properties of Hk(x)

include:

Hk(x) = (−1)k · ex2/2 · dk

dxk
e−x2/2

H0(x) = 1

H1(x) = x

Hk+1(x) = x Hk(x) − k Hk−1(x)
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