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Abstract This paper introduces the notion of projection onto a closed convex set associ-
ated with a convex function. Several properties of the usual projection are extended to this
setting. In particular, a generalization of Moreau’s decomposition theorem about projecting
onto closed convex cones is given. Several examples of distances and the corresponding
generalized projections associated to particular convex functions are presented.
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1 Introduction

Let C ⊂ R
n be a nonempty closed convex set and f : R

n → R be a convex function. Then,
the classical constrained convex optimization problem is

min{ f (x) : x ∈ C}.
In this paper, we deal with the properties of the solution set for particular cases of this
problem. Let us introduce the particular problem which we are interested in. The projection
onto a convex set is obtained by minimizing the distance function on the considered convex
set. Specifically, given a distance function d and a nonempty closed convex set C in the
Euclidean space R

n , the projection of the point x ∈ R
n onto C with respect to d , is the set

This work was done while the first author was visiting the second author at the School of Mathematics in
The University of Birmingham, during the period of January 2010 to July 2010.

O. P. Ferreira (B)
IME/UFG, Campus II - Caixa Postal 131, Goiânia, GO 74001-970, Brazil
e-mail: orizon@mat.ufg.br

S. Z. Németh
School of Mathematics, The University of Birmingham, The Watson Building, Edgbaston,
Birmingham B15 2TT, United Kingdom
e-mail: nemeths@for.mat.bham.ac.uk

123



832 J Glob Optim (2012) 52:831–842

PC (x) := {p ∈ C : d(x, p) ≤ d(x, y), ∀ y ∈ C}; (1)

that is, the minimizer set of the function C � y �→ d(x, y). In this sense, for each fixed
distance function we have an associated projection set. This view point allows the study of
the notion of projection in several different contexts. Works dealing with projections associ-
ated to different distances include Carrizosa and Plastria [6], Censor and Elfving [7], Censor
et al. [9], Mangasarian [19,20], Dax [11,12], Plastria and Carrizosa [27] and Scolnik et al.
[30].

The interest in the subject of projection arises from several situations, having a wide range
of applications in pure and applied mathematics such as Functional Analysis (see e.g. [33]),
Convex Analysis (see e.g. [15]), Optimization (see e.g. [2,8,9,26,28,30,32]), Numerical
Linear Algebra (see e.g. [31]), Statistics (see e.g. [4,13]), Computer Graphics (see e.g. [14])
and Ordered Vector Spaces (see e.g. [16,17,22,24,25]).

Several distance functions defined in Euclidean spaces are convex functions. For instance,
the distances associated with the Euclidean norm ‖ · ‖ is defined by

d(x, y) = ‖x − y‖, x, y ∈ R
n,

and therefore, the convexity of d(x, ·) : R
n → R, the distance function from the point x ,

is a consequence of the positive homogeneity and triangle inequality property of the norm.
Since the projection of the point x ∈ R

n onto a closed convex set C is the minimizer set of
the distance function from the point x on the convex set C , see (1), it is natural to extend the
concept of projection as the minimizer set of positive convex functions. Therefore, we study
the minimizer set of the following problem:

min{ϕ(x − y) : y ∈ C},
where x ∈ R

n, ϕ : R
n → R is a convex function and C is a nonempty closed convex set.

This extension facilitates deriving several important properties of the projection associated
to different distances in a unified manner.

Using this general approach, we will study properties of the projection onto a convex set
associated with a convex function. We present several characterizations of the projection onto
a convex set associated with a convex function, which extends the usual characterizations of
Zarantonello for projections [33]. Although most of the results hold in general Hilbert spaces
too, for simplicity of the ideas we will present them in Euclidean spaces only. In particular,
we will extend the Moreau’s theorem for projections onto convex cones (see [21]) to this
more general setting.

It is worth to remark that in applications, several other distance-like notions and projec-
tions were considered (see e.g. proximity mappings, Bregman distance [5], Kullback–Leibler
divergence, Csiszars f-divergence [10] , etc.) Most of these are also generalizations of the
Euclidean distance. Our approach is different since it focuses on the generalization of the
Euclidean norm (hence it is translation invariant in contrast to some of the above mentioned
extensions). Of course, various questions occurs with respect to the behavior of these projec-
tions which constitute topics for the geometry of normed spaces, abstract best approximation
theory (in the case of norms the history goes back to the nineteenth century), etc. Our view
lies in the fact that we are searching for extensions of geometrical properties of Euclidean
projections.

The structure of this paper is as follows. In Sect. 2 we define the distance and the projection
with respect to a convex function. We also present several examples of convex functions,
which generate distances and projections, along with establishment several properties of the

123



J Glob Optim (2012) 52:831–842 833

distance and the projection onto a convex set and, in particular, onto a convex cone and onto
a hyperplane. We conclude this paper by making some final remarks in Sect. 3.

2 Generalized projection

In this section we define the distance and the projection with respect to a convex function.
Several examples of convex functions which generate distances and projections will be pre-
sented. Besides, we will establish several properties of the projection onto a convex set and,
in particular, onto a convex cone and onto a hyperplane.

Throughout the paper we suppose that ϕ : R
n → R is a convex function satisfying the

following two conditions:

H1. ϕ(0) = 0;
H2. ϕ(x) ≥ 0, for all x ∈ R

n .

We also consider the following two conditions on the function ϕ, which will be considered
to hold only when explicitly stated:

H3. ϕ(x) = ϕ(−x), for all x ∈ R
n ;

H3. ϕ(λx) = λϕ(x), for all λ ≥ 0.

Remark 1 Rockafellar [29] called a convex function ϕ : R
n → R satisfying conditions H1,

H2 and H4 a gauge function, and these functions are characterized as

ϕ(x) = inf{t ≥ 0 : x ∈ t Bϕ}, Bϕ = {x ∈ R
n : ϕ(x) ≤ 1}.

Note that condition H3 together with H4 is equivalent to ϕ(λx) = |λ|ϕ(x), for all x ∈ R
n and

λ ∈ R. All convex functions ϕ satisfying H4 are subadditive; that is, ϕ(x + y) ≤ ϕ(x)+ϕ(y),
for all x, y ∈ R

n (see, Theorem 4.7 page 30 of [29]). Thus, if ϕ is positive everywere except
at the origin and satisfies H1, H2, H3 and H4, then ϕ is a norm (see, page 131 of [29]).

Let C ⊂ R
n be a nonempty closed convex set. The distance function dϕ(·,C) : R

n→R to C
with respect to ϕ is defined by

dϕ(x,C) := inf{ϕ(x − y) : y ∈ C}, (2)

and the projection mapping PϕC (·) : R
n � C with respect to ϕ onto the set C is defined by

PϕC (x) := {p ∈ C : ϕ(x − p) ≤ ϕ(x − y), ∀ y ∈ C} . (3)

Conditions H1 and H2 imply that ϕ has 0 as a minimizer. As a consequence, z ∈ PϕC (z) for
all z ∈ C . Using the previous two equalities, we conclude that

dϕ(x,C) = ϕ(x − p), ∀ p ∈ PϕC (x). (4)

If the function C � y �→ ϕ(x − y) has exactly one minimizer for each x ∈ R
n then the

projection mapping PϕC is single valued. In this case, the last equality becomes

dϕ(x,C) = ϕ
(
x − PϕC (x)

)
.

Remark 2 The projection mappings associated with the convex functions ϕ : R
n → R sat-

isfying conditions H1, H2, H2 and H4 are in general multivalued. In general, the projection
mapping associated with the 1-norm and the +∞-norm onto a convex cone is not single
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valued. However, the projection mapping associated with the 1-norm onto the cone R
n+ is

single valued, whereas the projection mapping associated with +∞-norm onto the cone R
n+

is not.

Remark 3 A convex set C is strictly convex if its boundary bdC does not contain any line
segment. Formally this means that for each x, y ∈ bdC with x �= y there is no 0 < λ < 1
such that λx + (1 − λ)y ∈ bdC . A function f : R

n → R is called strongly quasiconvex if
for each 0 < λ < 1 and each x, y ∈ R

n with x �= y we have

f (λx + (1 − λ)y) < max{ f (x), f (y)}.
All strictly convex functions are strongly quasiconvex, but there exist strongly quasiconvex
functions, which are not strictly convex (for example the Euclidean norm). It follows from
the definition that the function ϕ is strongly quasiconvex if and only if all of its nonempty
sublevel sets {x ∈ R

n : ϕ(x) ≤ L} for L ∈ R, are strictly convex (remember that ϕ is
continuous). Moreover, for each x ∈ R

n the function C � y �→ ϕ(x − y) has only one
minimizer, see Theorem 3.5.9 of [3]. Consequently, the projection mapping associated with
a strongly quasiconvex function is single valued.

Remark 4 Different functions can generate the same projection mapping. Indeed, taking
s > 1 the function ψ = ϕs is convex, satisfies H1, H2 and H3. Moreover, we have

dψ(·,C) = (dϕ(·,C))s , PψC = PϕC .

As a consequence, the new optimization problems defining the distance functions, may
become differentiable and therefore easier to handle. For instance, if a norm comes from
a scalar product, then its square is differentiable everywhere and the projection with respect
to the square of the norm is equal to the projection with respect to the norm.

2.1 Properties of the generalized projection

In this section we present some basic properties of the projection mapping with respect to a
convex function. We begin by giving a characterization of the projection onto C with respect
to ϕ.

Proposition 1 Let C ⊂ R
n be a nonempty closed convex set, x ∈ R

n and p ∈ C. Then, the
following statements are equivalent:

(i) p ∈ PϕC (x);
(ii) there exists u ∈ ∂ϕ(x − p) such that 〈u, q − p〉 ≤ 0, for all q ∈ C.

Proof It is easy to see, that for each x ∈ R
n the function R

n � y �→ ϕx (y) = ϕ(x − y) is
convex and ∂ϕx (y) = −∂ϕ(x − y). Hence, applying the optimality condition for the opti-
mization problem in (2) (see Theorem 3.4.3 of [3]) and taking in account the definition of
the projection in (3) the equivalence of items (i) and (ii) follows. ��

Corollary 2 Let C ⊂ R
n be a nonempty closed convex set, x ∈ R

n and p ∈ C. If ϕ is
differentiable at x − p, then the following statements are equivalent:
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(i) p ∈ PϕC (x);
(ii) 〈∇ϕ(x − p), q − p〉 ≤ 0, for all q ∈ C.

Moreover, if the function ϕ is differentiable at x − y for every y ∈ C then:

(iii) 〈∇ϕ(x − q), q − p〉 ≤ 0, for all q ∈ C,

is equivalent to items (i) and (ii).

Proof The equivalence of items (i) and (ii) follows directly from Proposition 1.
Since the function R

n � y �→ ϕ(x − y) is convex and we are assuming differentiability
at x − y for every y ∈ C , we conclude that the gradient is monotonous and continuous at
x − y for every y ∈ C (see Theorem 25.5 on page 246 of [29]). Using the monotonicity and
continuity of the gradient, the equivalence of items (ii) and (iii) follows from Lemma 1.5 of
[18]. ��

By using Proposition 1, in the next proposition, we present a property of the generalized
projection mapping associated with generalized distances, extending Theorem 1.1 of [33].
This theorem is an important tool in spectral theory of metric projections (see [33]).

Proposition 3 Let C ⊂ R
n be a nonempty closed convex set and P : R

n � C be a surjective
mapping. Then, the following statements are equivalent:

(i) P(x) ⊂ PϕC (x), for all x ∈ R
n;

(ii) for all x ∈ R
n and all p ∈ P(x), there exists u ∈ ∂ϕ(x − p) such that 〈u, q − p〉 ≤ 0,

for all q ∈ P(y) and all y ∈ R
n.

Proof Let x ∈ R
n and p ∈ P(x). Since P(x) ⊂ PϕC (x) and P(y) ⊂ C for all y ∈ R

n , by
using Proposition 1, we conclude that item (i) implies item (ii).

In order to prove that item (ii) implies item (i), take x ∈ R
n and p ∈ P(x) arbitrarily.

Since the mapping P is surjective, it follows that for each q ∈ C , there exists y ∈ R
n , such

that q ∈ P(y). Thus, using item (ii), we conclude that there exists u ∈ ∂ϕ(x − p) such that

〈u, q − p〉 ≤ 0, ∀ q ∈ C,

and using Proposition 1 we conclude that p ∈ PϕC (x). Hence P(x) ⊂ PϕC (x), for all x ∈ R
n .

Therefore, the statements are equivalent. ��
Now, using Corollary 2 we present several equivalences related with the generalized pro-

jection mapping associated with generalized distances, extending Theorem 1.1, Lemma 1.2
and Theorem 1.2 of [33]. All these results are important tools in spectral theory of metric
projections (see [33]). Therefore these results would be a good starting point for developing
a spectral theory for more general projection mappings.

Proposition 4 Let C ⊂ R
n be a nonempty closed convex set and P : R

n � C a surjective
mapping. If ϕ is differentiable in R

n\{0}, then the following two statements are equivalent.

(i) P(x) ⊂ PϕC (x), for all x ∈ R
n.

(ii) 〈∇ϕ(x − p), q − p〉 ≤ 0, for all x, y ∈ R
n, all p ∈ P(x) with p �= x, and all

q ∈ P(y).

If z ∈ P(z) for all z ∈ C and ϕ is differentiable in R
n, then items (i) and (ii) are equivalent

to the statements
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(iii) 〈∇ϕ(x − p) − ∇ϕ(y − q), p − q〉 ≥ 0, for all x, y ∈ R
n, all p ∈ P(x), and all

q ∈ P(y).

(iv) ∇ϕ(P−1 − I ) is monotone, where the multivalued mapping ∇ϕ(P−1 − I ) : C � R
n

is defined by

∇ϕ(P−1 − I )(p) := {∇ϕ(x − p) : x ∈ R
n, p ∈ P(x)}. (5)

Furthermore, if z ∈ P(z) for all z ∈ C and ϕ is differentiable in R
n, then items (i), (ii), (iii)

and (iv) are equivalent to

(v) 〈∇ϕ(x − q), q − p〉 ≤ 0, for all x, y ∈ R
n, all p ∈ P(x), and all q ∈ P(y).

Proof The equivalence of items (i) and (ii) follows from Proposition 3.
In order to prove that item (i) implies item (iii), take x, y ∈ R

n , p ∈ P(x) and q ∈ P(y).
Since P(z) ⊂ PϕC (z) ⊂ C , for all z ∈ R

n , Corollary 2 gives

〈∇ϕ(x − p), q − p〉 ≤ 0, 〈∇ϕ(y − q), p − q〉 ≤ 0.

Using the last two inequalities, some simples algebraic manipulations yields

〈∇ϕ(x − p)− ∇ϕ(y − q), p − q〉 ≥ 0.

As the last inequality holds for all x, y ∈ R
n , p ∈ P(x) and q ∈ P(y) the implication is

proved. In order to that item (iii) implies item (i), take x ∈ R
n and p ∈ P(x). Since we

assume q ∈ P(q) for all q ∈ C , taking y = q in item (iii), we conclude that

〈∇ϕ(x − p)− ∇ϕ(0), p − q〉 ≥ 0, ∀ q ∈ C.

Since 0 is a minimizer of ϕ we have ∇ϕ(0) = 0. Thus the above inequality implies

〈∇ϕ(x − p), q − p〉 ≤ 0, ∀ q ∈ C.

Thus, using Corollary 2 we have p ∈ PϕC (x) and the implication follows, in effect, when
z ∈ P(z) for all z ∈ C items (iii) and (i) are equivalent.

Next we prove the equivalence of items (iii) and (iv). Preliminarily, note that the definition
of the multivalued mapping ∇ϕ(P−1 − I ) in (5) implies

∇ϕ(P−1 − I )(p)− ∇ϕ(P−1 − I )(q)

= {∇ϕ(x − p)− ∇ϕ(y − q) : x, y ∈ R
n, p ∈ P(x), q ∈ P(y)}.

Therefore, the equivalence is an immediate consequence of the definition of monotonicity
and the above equality. Consequently, items (i), (ii), (iii) and (iv) are equivalent.

In order to conclude the proof, it suffices to show that item (i) and item v are equivalent.
Take x, y ∈ R

n , p ∈ P(x) and q ∈ P(y). Since P(x) ⊂ PϕC (x) and P(y) ⊂ C we have
p ∈ PϕC (x) and q ∈ C . Using that item (i) in Corollary 2 implies item (iii) of it, we conclude
that

〈∇ϕ(x − q), p − q〉 ≤ 0.

Since the last inequality holds for all x ∈ R
n , p ∈ P(x) and q ∈ P(y), we obtain that item (i)

implies item v. Conversely, take x ∈ R
n , p ∈ P(x). Since the mapping P is surjective, for

each q ∈ C there exists y ∈ R
n such that q ∈ P(y). Hence, from item v it follows that

〈∇ϕ(x − q), q − p〉 ≤ 0, ∀ q ∈ C.

123



J Glob Optim (2012) 52:831–842 837

Using that item (iii) in Corollary 2 implies item (i) of it, we obtain p ∈ PϕC (x). So, P(x) ⊂
PϕC (x), for all x ∈ R

n , which prove our last implication. ��
Remark 5 If P is single valued and surjective then the condition z ∈ P(z) for all z ∈ C , in
the above proposition, becomes P2 = P .

2.2 Properties of the generalized projection onto a convex cone

In this section we present properties of the projection mapping onto a convex cone with
respect to a convex function, in particular, we present a generalization of Moreau’s theorem
[21] for this new context.

A closed set K ⊂ R
n is called a closed convex cone if λx ∈ K and x + y ∈ K for all

x, y ∈ K and λ > 0. Let K ⊂ R
n be a closed convex cone. The polar cone of K is the set

K ◦ := {x ∈ R
n | 〈x, y〉 ≤ 0, ∀ y ∈ K }.

The next result is a generalization of Moreau’s theorem, see [21] (see also Theorem 3.2.5 of
[15]).

Theorem 5 Let K ⊂ R
n be a closed convex cone, x ∈ R

n and p ∈ K . Then, p ∈ PϕK (x) if
and only if there exists u ∈ ∂ϕ(x − p) such that

u ∈ K ◦, 〈u, p〉 = 0.

Proof Let x ∈ R
n and p ∈ PϕK (x). From Proposition 1 it follows that there exists u ∈

∂ϕ(x − p) such that

〈u, q − p〉 ≤ 0, ∀ q ∈ K . (6)

Since K is a cone, in the last inequality we can replace q with λq , where λ > 0 to obtain
〈u, λq − p〉 ≤ 0, for all q ∈ K . Since λ > 0, the latter inequality is equivalent to 〈u, q −
p/λ〉 ≤ 0, for all q ∈ K . Thus, letting λ → +∞ we obtain

〈u, q〉 ≤ 0, ∀ q ∈ K ,

which implies that u ∈ K ◦. For proving 〈u, p〉 = 0, we use (6) with q = 0 and q = 2p
together with the assumption that K is a cone.

Conversely, let x ∈ R
n , p ∈ K , and u ∈ ∂ϕ(x − p) such that u ∈ K ◦, 〈u, p〉 = 0. Since

u ∈ K ◦, 〈u, q〉 ≤ 0, for all q ∈ K , which together with 〈u, p〉 = 0 imply

〈u, q − p〉 ≤ 0, ∀ q ∈ K .

As p ∈ K and u ∈ ∂ϕ(x − p), the latter inequality and Proposition 1 imply that p ∈ PϕK (x)
and therefore the proof of the theorem is concluded. ��

In particular, if η = ‖ · ‖ is the Euclidean norm and ϕ = η2, then we obtain the following
well known characterization of the projection mapping (see for example Proposition 3.2.3
on page 120 of [15]). p = PηK (x) = PϕK (x) if and only if

p ∈ K , x − p ∈ K ◦, 〈x − p, p〉 = 0.

This characterization is equivalent (see Proposition 3.2.3 on page 120 and Theorem 3.2.5 on
page 121 of [15]) to Moreau’s decomposition theorem (see [21]):

Theorem (Moreau). Let K ⊂ R
n be a closed convex cone and η = ‖ · ‖ the Euclidian

norm. For x, p, q ∈ R
n, the following statement are equivalent:
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(i) x = p + q, p ∈ K , q ∈ K ◦ and 〈p, q〉 = 0;
(ii) p = PηK (x) and q = PηK ◦(x).

The next lemma is an immediate consequence of H3, H4 and the definition of the subdiffer-
ential.

Lemma 6 The following statements are true:

(i) If ϕ satisfies H3, then ∂ϕ(x) = −∂ϕ(−x), for all x ∈ R
n;

(ii) If ϕ satisfies H4, then ∂ϕ(x) = ∂ϕ(λx), for all x ∈ R
n and λ > 0.

Proposition 7 Let K ⊂ R
n be a closed convex cone. If ϕ satisfies H4, then there holds:

PϕK (λx) = λPϕK (x), ∀ x ∈ R
n, λ > 0.

Proof First of all note that λPϕK (x) = {λp : p ∈ PϕK (x)}. Let x ∈ R
n , p ∈ PϕK (x) and λ > 0.

From Theorem 5 there exists u ∈ ∂ϕ(x − p) such that

u ∈ K ◦, 〈u, p〉 = 0.

Since u ∈ ∂ϕ(x− p), Lemma 6, item (ii) implies that u ∈ ∂ϕ(λx−λp) and by using the above
equality we trivially obtain that 〈u, λp〉 = 0.Thus, as u ∈ K ◦ andλp ∈ K , Theorem 5 implies
that λp ∈ PϕK (λx), which in turn implies that λPϕK (x) = {λp : p ∈ PϕK (x)} ⊂ PϕK (λx).

By putting in the obtained relation 1/λ in place of λ and λx in place of x we obtain the
converse inclusion. ��
Proposition 8 Let K ⊂ R

n be a closed convex cone. If ϕ satisfies H3, then the following
equality holds:

PϕK (−x) = −Pϕ−K (x), ∀ x ∈ R
n .

Proof Let x ∈ R
n and p ∈ PϕK (−x). It follows from Theorem 5 that there exists u ∈

∂ϕ(−x − p) such that

u ∈ K ◦, 〈u, p〉 = 0.

Since u ∈ ∂ϕ(−x − p), Lemma 6, item (i) implies that u ∈ −∂ϕ(x + p). Hence, −u ∈
∂ϕ(x − (−p)) and using the above equality we obtain trivialy that 〈−u,−p〉 = 0. As
(−K )◦ = −K ◦ and u ∈ K ◦ we have −u ∈ (−K )◦. Since −u ∈ ∂ϕ(x−(−p)),−u ∈ (−K )◦
and 〈−u,−p〉 = 0,, it follows from Theorem 5 that −p ∈ Pϕ−K (x); that is, p ∈ −Pϕ−K (x),
which in turn implies that PϕK (−x) ⊂ −Pϕ−K (x).

Whereby by symmetry Pϕ−K (x) ⊂ −PϕK (−x) which is quite the converse of the previous
inclusion, and the proof is complete. ��
2.3 Properties of the generalized projection onto a hyperplane

In this section we present some properties of the projection mapping onto a hyperplane with
respect to a convex function. In particular, following the idea of Mangasarian in [19], we
give an explicit form for the projection mapping onto a hyperplane with respect to a convex
function satisfying conditions H1, H2 and H4. Note that, in this section, we are not supposing
that ϕ satisfies condition H3.

It is an easy exercise to show that the next proposition is a special case of Proposition 1.
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Proposition 9 Let L ⊂ R
n be a hyperplane, x ∈ R

n and p ∈ L. Then, p ∈ PϕL (x) if and
only if there exists u ∈ ∂ϕ(x − p) such that

〈u, q − p〉 = 0, ∀ q ∈ L .

Let ϕ : R
n → R be a nonconstant convex function satisfying the conditions H1, H2 and H4.

The dual function ϕ∗ : R
n → R ∪ {+∞} associated with ϕ is defined by

ϕ∗(y) := sup{〈y, x〉 : ϕ(x) = 1}. (7)

As an immediate consequence of the above definition we obtain Cauchy-Schwarz’s inequality

〈x, y〉 ≤ ϕ∗(y)ϕ(x), x, y ∈ R
n, ϕ(x) �= 0, (8)

and that ϕ∗ is a convex function which also satisfies conditions H1, H2 and H4.

Remark 6 For a convex function ϕ satisfying conditions H1, H2 and H4 Rockafellar [29]
called the function ϕ∗ defined in (7) the polar function of ϕ and ϕ a gauge function. Note
that, if ϕ is positive except in the origin, then ϕ∗ is always finite (see [29]). In this case, we
may omit the condition ϕ(x) �= 0 in (8), that is, the inequality (8) always holds.

Proposition 10 Let ϕ : R
n → R be a convex function satisfying conditions H1, H2 and H4.

Let a ∈ R and v ∈ R
n such that v �= 0. Consider the hyperplane

H = {y ∈ R
n : 〈v, y〉 = a}.

Let PϕH (x) be the projection with respect to ϕ of the point x ∈ R
n onto the hyperplane

H. Assume that x /∈ H and ϕ(x − y) �= 0, for all y ∈ H. If ϕ(v) �= 0, ϕ(−v) �= 0,
ϕ∗(−v) < +∞ and ϕ∗(v) < +∞ then P(x) ⊂ PϕH (x), where

P(x) :=

⎧
⎪⎪⎨

⎪⎪⎩

{
x − 〈v,x〉−a

ϕ∗(v) w : ϕ∗(v) = 〈v,w〉, ϕ(w) = 1
}
, 〈v, x〉 > a;

{
x − 〈v,x〉−a

ϕ∗(−v) w : ϕ∗(−v) = 〈v,w〉, ϕ(−w) = 1
}
, 〈v, x〉 < a.

(9)

and, as a consequence, the distance with respect to ϕ from the point x ∈ R
n to the hyperplane

H is

dϕ(x, H) := inf{ϕ(x − y) : y ∈ H} =

⎧
⎪⎨

⎪⎩

〈v,x〉−a
ϕ∗(v) , 〈v, x〉 > a;

a−〈v,x〉
ϕ∗(−v) , 〈v, x〉 < a.

(10)

If ϕ(v) = 0 and ϕ(−v) = 0 then x − [〈v, x〉 − a/‖v‖2] v ∈ PϕH (x) and dϕ(x, H) = 0.

Proof First assume that ϕ(v) �= 0, ϕ(−v) �= 0, ϕ∗(−v) < +∞ and ϕ∗(v) < +∞. In this
case, ϕ(v/ϕ(v)) = 1, ϕ(−v/ϕ(−v)) = 1 and the definition of ϕ∗ implies that

0 < ‖v‖2/ϕ(v) = 〈v, v/ϕ(v)〉 ≤ ϕ∗(v), 0 < ‖v‖2/ϕ(−v) = 〈−v,−v/ϕ(−v)〉 ≤ ϕ∗(−v).
Hence, the set P(x) defined in (9) is well defined. If P(x) = ∅, then the statement is
trivial. Thus, assume x ∈ R

n so that P(x) �= ∅ and 〈v, x〉 > a. Take w ∈ R
n such that

ϕ∗(v) = 〈v,w〉 and ϕ(w) = 1. Since ϕ∗(v) = 〈v,w〉, we obtain that
〈
v, x − 〈v, x〉 − a

ϕ∗(v)
w

〉
= 〈v, x〉 − 〈v, x〉 − a

ϕ∗(v)
〈v,w〉 = a,
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which implies that the set P(x) is contained in H . Using assumption H4, we have

ϕ

(
x −

(
x − 〈v, x〉 − a

ϕ∗(v)
w

))
= 〈v, x〉 − a

ϕ∗(v)
ϕ(w). (11)

Since 〈v, y〉 = a, for all y ∈ H and taking into account that ϕ(w) = 1 and ϕ(x − y) �= 0 for
all y ∈ H , the last equality together with Eq. (8) gives

ϕ

(
x −

(
x − 〈v, x〉 − a

ϕ∗(v)
w

))
= 〈v, x − y〉

ϕ∗(v)
≤ ϕ(x − y), ∀ y ∈ H,

and, as P(x) ⊂ H , we conclude that x − [(〈v, x〉 − a)/ϕ∗(v)]w is a minimizer of the
function R

n � y �→ ϕ(x − y) on the hyperplane H . Therefore, P(x) ⊂ PϕH (x). Since
x − [(〈v, x〉 − a)/ϕ∗(v)]w is a minimizer of the function R

n � y �→ ϕ(x − y) on the
hyperplane H , using ϕ(w) = 1, we obtain from the equality in (11) and the definition of the
distance that (10) holds. Hence, the first equalities in (9) and in (10) are proved. The second
equality in (9) and in (10) may be proved by using similar arguments. This concludes the
proof of the first part of our proposition.

Now, assume that ϕ(v) = 0 and ϕ(−v) = 0. Hence, if 〈v, x〉 > a then using H4, we have

ϕ

(
x −

(
x − 〈v, x〉 − a

‖v‖2 v

))
= 〈v, x〉 − a

‖v‖2 ϕ(v) = 0, (12)

and if 〈v, x〉 < a then using H4 again, we have

ϕ

(
x −

(
x − 〈v, x〉 − a

‖v‖2 v

))
= 〈v, x〉 − a

‖v‖2 ϕ(−v) = 0, (13)

and the conditions H1 and H2 imply that x − [(〈v, x〉 − a)/‖v‖2]v is a minimizer of the
function R

n � y �→ ϕ(x − y). As x − [(〈v, x〉 − a)/‖v‖2]v ∈ H we conclude that x −
[(〈v, x〉 − a)/‖v‖2]v ∈ PϕH (x). Since x − [(〈v, x〉 − a)/‖v‖2]v is a minimizer of the func-
tion H � y �→ ϕ(x − y), using (12), (13) and the definition of the distance we obtain
dϕ(x, H) = 0, which concludes the proof. ��

For the function ϕ satisfying condition H3 we have ϕ(v) = ϕ(−v) and ϕ∗(v) = ϕ∗(−v).
Therefore, the projection and distance associated with ϕ has a simpler formula. In this case,
last proposition becomes:

Corollary 11 Let ϕ : R
n → R be a convex function satisfying conditions H1, H2, H3 and

H4. Let a ∈ R and v ∈ R
n such that v �= 0. Consider the hyperplane

H = {y ∈ R
n : 〈v, y〉 = a}.

Let PϕH (x) be the projection with respect to ϕ of the point x ∈ R
n onto the hyperplane H.

Assume that x /∈ H and ϕ(x − y) �= 0, for all y ∈ H. If ϕ(v) �= 0 and ϕ∗(v) < +∞ then
P(x) ⊂ PϕH (x), where

P(x) :=
{

x − 〈v, x〉 − a

ϕ∗(v)
w : ϕ∗(v) = 〈v,w〉, ϕ(w) = 1

}
, (14)

and, as a consequence, the distance with respect to ϕ from the point x ∈ R
n to the hyperplane

H is

dϕ(x, H) := inf{ϕ(x − y) : y ∈ H} = |〈v, x〉 − a|
ϕ∗(v)

. (15)

If ϕ(v) = 0 then x − [〈v, x〉 − a/‖v‖2] v ∈ PϕH (x) and dϕ(x, H) = 0.
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Remark 7 If ϕ is positive except at the origin and satisfies H1, H2, H3 and H4 ( that is, if
ϕ is a norm) then for all v ∈ R

n with v �= 0 we have 0 < ϕ(v) and 0 < ϕ∗(v) < +∞.
In this case, if x /∈ H in Proposition 10, then ϕ(x − y) �= 0, for all y ∈ H . Finally, note that
if x ∈ H , then P(x) = {x} ⊂ PϕH (x). Hence, the conclusion of the Proposition 10 holds for
x ∈ H as well.

Using the above proposition we re-obtain, as a particular case, several examples of distances
and associated projections already analyzed in the literature. For instance, the oblique pro-
jections used by Arioli et al. [1], Scolnik et al. [30], Censor and Elfving [7] and Censor et al.
[9] and the projection mapping associated with the 1-norm, +∞-norm and p-norm onto a
hyperplane used by Mangasarian [19,20]. For applications using gauge distances; that is,
distances associated with gauge functions (see Remark 6), as well as distances associated
with different norms see [6,27].

3 Final remarks

In Sect. 2 we introduced the notion of projection with respect to a convex function. This
notion becomes the usual projection when the considered convex function is the Euclidean
norm. Since several important properties of the usual projection come from its nonexpansivity
(see [33]), it would be interesting to characterize the class of convex functions for which the
associated projection is non-expansive.

This paper deals only with Convex Optimization, and only touches slightly more gen-
eral fields (generalized convexity see Remark 3 and max– min systems see [32]). We expect
that the results in this paper constitute a first step towards a more general setting. However,
in general, when solving variational inequalities and complementarity problems, iterative
methods involving projections may be used. Some of those solutions are global solutions of
the corresponding optimization problem, see [23,26] and the references therein. We foresee
further progress along these line in the nearby future.
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