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Abstract This paper mainly concerns the study of a large class of variational systems
governed by parametric generalized equations, which encompass variational and hemi-
variational inequalities, complementarity problems, first-order optimality conditions, and
other optimization-related models important for optimization theory and applications. An
efficient approach to these issues has been developed in our preceding work (Aragón
Artacho and Mordukhovich in Nonlinear Anal 72:1149–1170, 2010) establishing qualita-
tive and quantitative relationships between conventional metric regularity/subregularity and
Lipschitzian/calmness properties in the framework of parametric generalized equations in
arbitrary Banach spaces. This paper provides, on one hand, significant extensions of the
major results in op.cit. to partial metric regularity and to the new hemiregularity property.
On the other hand, we establish enhanced relationships between certain strong counterparts
of metric regularity/hemiregularity and single-valued Lipschitzian localizations. The results
obtained are new in both finite-dimensional and infinite-dimensional settings.
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1 Introduction

In this paper we study a broad class of parametric variational systems defined by

0 ∈ f (x, y) + Q(y), (1.1)

where y ∈ Y is a decision variable, x ∈ X is a parameter, f : X × Y → Z is a single-val-
ued “base” mapping, and Q : Y ⇒ Z is a set-valued “field” mapping/multifunction between
arbitrary Banach spaces. Models of this type have been introduced and studied by Robinson in
the late 1970s (see [11] and its references) under the name of “generalized equations.” Since
then, they have been extensively developed and applied to numerous issues of variational
analysis, optimization, equilibria, etc.; see, e.g., the books [4,6,8] and the bibliographies
therein.

It has been well recognized that the generalized equation model (1.1) is a common and con-
venient framework for studying particular classes of parametric variational systems. We men-
tion variational inequalities corresponding to the normal cone mapping Q(y) = N (y;�) to
a convex set � in (1.1), hemivariational inequalities with Q(y) = ∂ϕ(y) defined by a subdif-
ferential of some function ϕ, complementarity problems with � = IRn+ in the above normal
cone description, KKT systems (first-order optimality conditions) in parametric nonlinear
programming, etc.

Associated with (1.1), define the parameter-dependent solution map S : X ⇒ Y by

S(x) := {
y ∈ Y

∣
∣ 0 ∈ f (x, y) + Q(y)

}
. (1.2)

In [1], we established various qualitative and quantitative relationships between fundamental
metric regularity properties of the solution maps (1.2) and Lipschitzian properties of the field
mappings Q of the generalized equations (1.1), and vice versa. Note that metric regularity,
Lipschitzian stability, and related well-posedness properties of set-valued mappings play a
central role in many aspects of nonlinear analysis and optimization; see, e.g., [6,8,9] and the
references therein.

This paper continues our study in two major directions. On one hand, we extend some
important results of [1] to partial metric regularity and a new hemiregularity property of
the solution and field mappings in (1.1) and illuminate their connections to the correspond-
ing Lipschitzian/calmness behavior. On the other hand, we consider certain strong counter-
parts of the aforementioned metric regularity/hemiregularity properties, establishing their
qualitative and quantitative relationships with single-valued Lipschitzian/calmness localiza-
tions.

The rest of the paper is organized as follows. Section 2 contains some preliminary mate-
rial, mostly based on [1], needed in what follows. In Sect. 3 we introduce the notion of partial
regularity for set-valued mappings and use it to extend some major results of [1]. Section 4
is devoted to the study and applications of the notions of strong metric regularity and strong
metric subregularity and their qualitative and quantitative relationships with single-valued
Lipschitzian localizations in the framework of the parametric variational systems (1.1). The
final Sect. 5 concerns new notions of metric hemiregularity and strong metric hemiregularity
and the corresponding Lipschitzian/calmness properties in the variational setting of (1.1).
In several cases what is marked as proofs in Sects. 4 and 5 contain actually addenda to the
proofs of the corresponding statements in Sect. 3.

Our notation is basically standard in variational analysis, expect new symbols defined in
the appropriate places. Recall that B and Bα(x) stand, respectively, for the closed unit ball
and the closed ball centered at x with radius α > 0 in the space in question, that L(X, Y )
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stands for the collection of linear bounded operators A : X → Y between Banach spaces,
and that IN := {1, 2, . . .} is the set of natural numbers. Unless otherwise stated, we use the
standard sum norm on products of Banach spaces.

2 Background material

Let us first recall some notions used in what follows. We refer the reader to [1,4,8] for more
details, discussions, and references regarding these and related notions of variational analysis.

A set-valued mapping F : X ⇒ Y between Banach spaces is said to be metrically regular
around a point (x, y) ∈ gph F from its graph

gph F := {
(x, y) ∈ X × Y

∣
∣ y ∈ F(x)

}

with constant κ > 0 if there are neighborhoods U ⊂ X of x and V ⊂ Y of y such that

d
(
x, F−1(y)

) ≤ κd (y, F(x)) for all x ∈ U and y ∈ V, (2.1)

where d(·;�) stands for the distance function associated with a set �. The infimum of κ > 0
over all the combinations (κ, U, V ) for which (2.1) holds is called the exact regularity
bound of F around (x, y) and is denoted reg F(x, y).

We say that F is metrically subregular at (x, y) ∈ gph F with constant κ > 0 if there is
a neighborhood U of x such that

d
(
x, F−1(y)

) ≤ κd (y, F(x)) for all x ∈ U. (2.2)

The infimum of κ > 0 over all the combinations (κ, U ) for which (2.2) holds is called the
exact subregularity bound of F at (x, y) and is denoted subreg F(x, y).

Recall further that a single-valued mapping f : X × Y → Z is (partially) Lipschitz con-
tinuous around (x, y) with respect to x uniformly in y if there are neighborhoods U of x and
V of y along with a constant η ≥ 0 such that

‖ f (x, y) − f (x ′, y)‖ ≤ η‖x − x ′‖ whenever x, x ′ ∈ U and y ∈ V . (2.3)

The infimum of η over all such combinations of η, U , and V in (2.3) is called the (exact)
partial uniform Lipschitz modulus of f in x around (x, y) and is denoted l̂ip x f (x, y). The
corresponding Lipschitz property of f with respect to y and the modulus l̂ip y f (x, y) are
defined similarly.

A set-valued mapping F : X ⇒ Y is Lipschitz-like around (x, y) ∈ gph F (or it has the
Aubin property around this point) with constant � ≥ 0 if there are a neighborhood U of x
and a neighborhood V of y such that we have

F(x) ∩ V ⊂ F(x ′) + �‖x − x ′‖B for all x, x ′ ∈ U. (2.4)

The infimum of � ≥ 0 over all the combinations (�, U, V ) for which (2.4) holds is called
the exact Lipschitzian bound of F around (x, y) and is denoted lip F(x, y). Similarly
to (2.3) we define the partial Lipschitz-like property of F : X × Y ⇒ Z and its exact bound.

It is said that F is calm at (x, y) ∈ gph F with constant � ≥ 0 if there are neighborhoods
U of x and V of y such that

F(x) ∩ V ⊂ F(x) + �‖x − x‖B for all x ∈ U. (2.5)

The infimum of � ≥ 0 over all the combinations (�, U, V ) for which (2.5) holds is called the
exact bound of calmness for F at (x, y) and is denoted clm F(x, y).
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Similarly to (2.3) we define the corresponding versions of the partial calmness properties
of f : X × Y → Z with moduli ĉlmx f (x, y) and ĉlmy f (x, y), respectively.

The following result was obtained in [1] by using a certain modification of the
Lyusternik-Graves iterative process.

Theorem 2.1 (implicit multifunctions) Let f : X × Y → Z be a mapping between Banach
spaces, let (x, y) ∈ X ×Y and let U × V be some neighborhood of (x, y). Given a surjective
linear operator A ∈ L(X, Z), suppose that there are μ ≥ 0 and γ > reg A satisfying the
relationships μγ < 1 and

‖ f (x, y) − f (x ′, y) − A(x − x ′)‖ ≤ μ‖x − x ′‖ for all x, x ′ ∈ U and y ∈ V . (2.6)

Given further a mapping g : W → Z between Banach spaces, consider a set-valued mapping

 : Y × W ⇒ X defined by


(y, w) := {x ∈ X | f (x, y) + g(w) = 0} . (2.7)

The following assertions hold:

(i) If f is locally Lipschitzian with respect to y uniformly in x with constant η ≥ 0 on
U × V and g is locally Lipschitzian around w ∈ W with constant λ, then there is
α > 0 such that for every (y, w), (y′, w′) ∈ Bα(y) × Bα(w) we have the inclusion


(y′, w′) ∩ Bα(x) ⊂ 
(y, w) + γ

1 − γμ

(
η‖y − y′‖ + λ‖w − w′‖) B. (2.8)

The latter implies, when g(w) = − f (x, y), that 
 is Lipschitz-like around ((y, w), x)

with the following upper estimate of the exact Lipschitzian bound:

lip 
 ((y, w), x) ≤ reg A · max
{
l̂ip y f (x, y), lip g(w)

}

1 − μ · reg A
. (2.9)

(ii) If f is locally calm with respect to y uniformly in x with constant η ≥ 0 at (x, y) and
g is locally calm at w ∈ W with constant λ, then there is α > 0 such that


(y, w) ∩ Bα(x) ⊂ 
(y, w) + γ

1 − γμ

(
η‖y − y‖ + λ‖w − w‖

)
B (2.10)

for every (y, w) ∈ Bα(y) × Bα(w).
(iii) If g is locally Lipschitzian around w ∈ W with constant λ, then there is α > 0 such

that


(y, w′) ∩ Bα(x) ⊂ 
(y, w) + γ

1 − γμ
λ‖w − w′‖B (2.11)

for all y ∈ Bα(y) and w,w′ ∈ Bα(w).

Proof Assertions (i) and (ii) can be found in [1, Lemma 3.1 and Remark 3.2]. To prove
assertion (iii) observe that removing the Lipschitz assumption on f from the proof of
[1, Lemma 3.1], we get instead (2.8) the inclusion (2.11). 
�

The next result is taken from [1, Theorem 5.1]

Theorem 2.2 (Lipschitz-like property of solution maps via metric regularity of fields in
generalized equations) Let f : X × Y → Z be a mapping between Banach spaces that is
Lipschitz continuous on a neighborhood U × V of (x, y) ∈ X × Y , and let Q : Y ⇒ Z be
a set-valued field mapping with z := − f (x, y) ∈ Q(y) such that the graph of Q is locally
closed around (y, z). The following assertions hold:
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(i) Assume that A ∈ L(X, Z) is a surjective linear operator satisfying (2.6) with some
μ ≥ 0. If the solution map S : X ⇒ Y in (1.2) is Lipschitz-like around (x, y) and if
the condition

reg A · [
μ + lip S(x, y) · l̂ip y f (x, y)

]
< 1

is fulfilled, then Q is metrically regular around (y, z) with the exact bound estimate

reg Q(y, z) ≤ lip S(x, y) · reg A

1 − reg A · [
μ + lip S(x, y) · l̂ip y f (x, y)

] . (2.12)

(ii) Conversely, assume that Q is metrically regular around (y, z) and that the condition

l̂ip y f (x, y) · reg Q(y, z) < 1

is satisfied. Then S is Lipschitz-like around (x, y) with the exact bound estimate

lip S(x, y) ≤ reg Q(y, z) · l̂ip x f (x, y)

1 − reg Q(y, z) · l̂ip y f (x, y)
. (2.13)

The following well known result (Milyutin’s theorem; see, e.g., [8, Theorem 4.25] and
the references therein) on the preservation of metric regularity under Lipschitzian perturba-
tions can be proved as a consequence of assertion (ii) of Theorem 2.2 by taking f (x, y) =
−x + g(y) and Q = F .

Theorem 2.3 (metric regularity under Lipschitzian perturbations) Let F : X ⇒ Y be a set-
valued mapping between Banach spaces with locally closed graph around (x, y) ∈ gph F.
Assume that F is metrically regular around (x, y) with constant κ > 0 and consider a single-
valued mapping g : X → Y Lipschitz continuous around x with constant λ ≥ 0 satisfying
λ < κ−1. Then F + g is metrically regular around (x, y + g(x)) with constant κ/(1 − κλ).

3 Partial metric regularity and its applications

In this section we study the notion of partial metric regularity and apply it to establishing
various extensions of the aforementioned results from [1].

Definition 3.1 (partial metric regularity) A set-valued mapping F : X × Y ⇒ Z is said to
be metrically regular with respect to x uniformly in y around ((x, y), z) ∈
gph F if there are neighborhoods U of x, V of y, and W of z as well as a constant κ > 0
such that

d
(
x, F−1(·, y)(z)

) ≤ κd (z, F(x, y)) for all x ∈ U, y ∈ V and z ∈ W, (3.1)

where F−1(·, y)(z) = {
x ∈ X

∣
∣ z ∈ F(x, y)

}
. The infimum of κ > 0 over all the combina-

tions (κ, U, V, W ) for which (3.1) holds is called the exact partial uniform regularity
bound of F in x around (x, y) and is denoted r̂eg x F ((x, y), z).

To the best of our knowledge, partial metric regularity was first introduced in [5] and then
studied in [2,3] under the name of “uniform metric regularity.” In what follows we obtain
new results for this notion in the general single-valued and set-valued settings and present
their applications to implicit multifunctions and generalized equations.
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Observe that a mapping F : X × Y ⇒ Z is metrically regular around ((x, y), z) if F is
metrically regular with respect to x uniformly in y around this point, since

d
(
(x, y), F−1(z)

) ≤ d
(
x, F−1(·, y)(z)

)
.

By symmetry we can define the metric regularity of F : X × Y ⇒ Z with respect to y uni-
formly in x around ((x, y), z) ∈ gph F and its exact bound r̂eg y F ((x, y), z) and make the
same observation.

The next result provides sufficient conditions for the partial metric regularity of non-
smooth mappings with an upper estimate of the exact regularity bound via approximating
linear operators. It can also be derived from [3, Corollary 3.2].

Proposition 3.2 (sufficient conditions for partial metric regularity) Let f : X × Y → Z be
a mapping between Banach spaces continuous at (x, y) ∈ X × Y , and let z := f (x, y).
Given a surjective linear operator A ∈ L(X, Z), suppose that there are neighborhoods U of
x and V of y and a number μ ≥ 0 such that μ · reg A < 1 and condition (2.6) holds. Then
f is metrically regular with respect to x uniformly in y around ((x, y), z) with the following
upper estimate of the exact bound:

r̂eg x f (x, y) ≤ reg A

1 − μ · reg A
. (3.2)

Proof Pick a number γ > reg A with μγ < 1, take g(z) := −z, and apply Theorem 2.1(iii).
In this way we find a constant α > 0 such that


(y, z′) ∩ Bα(x) ⊂ 
(y, z) + γ

1 − γμ
‖z − z′‖B for all y ∈ Bα(y) and z, z′ ∈ Bα(z),

where 
(y, z) := {
x ∈ X

∣
∣ f (x, y) = z

}
. By the continuity of f at (x, y) we get a positive

number β with β ≤ α for which

‖ f (x, y) − z‖ ≤ α whenever (x, y) ∈ Bβ(x) × Bβ(y).

Fix further x ∈ Bβ(x), y ∈ Bβ(y), and z ∈ Bα(z). Since x ∈ 
 (y, f (x, y)) ∩ Bα(x), there
is x ′ ∈ 
(y, z) satisfying the estimate

‖x − x ′‖ ≤ γ

1 − γμ
‖z − f (x, y)‖.

Thus we arrive at the inequality

d
(
x, f −1(·, y)(z)

) ≤ ‖x − x ′‖ ≤ γ

1 − γμ
‖z − f (x, y)‖,

which clearly implies the metric regularity of f with respect to x uniformly in y around
((x, y), z) with constant γ /(1 − γμ). Since γ > 0 was chosen arbitrarily close to reg A, we
get the upper estimate (3.2) and complete the proof of the proposition. 
�
Remark 3.3 (partial metric regularity for nonsmooth functions) There are examples of map-
pings that are metrically regular with respect to x uniformly in y around some point but
such that they do not satisfy the hypotheses of Proposition 3.2. For instance, consider the
real-valued function f : IR × IR → IR defined by

f (x, y) =
{√

x + y for x ≥ 0,

−√−x + y for x < 0.
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It is easy to check that this function is metrically regular with respect to x uniformly in y
around the origin while for any linear operator A ∈ L(IR, IR) we have l̂ip x g(0, 0) = ∞ for
g(x, y) := f (x, y) − Ax .

The phenomenon observed in Remark 3.3 is due to the nonsmoothness of the function
under consideration. For (partially) strictly differentiable mappings we can take by an approx-
imate linear operator A in Proposition 3.2 the corresponding partial derivative and show
that the partial metric regularity of f reduces in fact to the usual metric regularity of the
partial derivative around the point in question.; cf. [2, Theorem 2]. Recall that a mapping
f : X × Y → Z is strictly partially differentiable at (x, y) with respect to x uniformly in y
with the partial derivative ∇x f (x, y) if

lim
x,x ′→x

x �=x ′

f (x, y) − f (x ′, y) − 〈∇x f (x, y), x − x ′〉
‖x − x ′‖ = 0 for all y ∈ Y near y. (3.3)

Proposition 3.4 (partial metric regularity of partially smooth mappings) Consider a map-
ping f : X × Y → Z between Banach spaces, and let (x, y) ∈ X × Y be such that f is
continuous at (x, y) and strictly partially differentiable at this point with respect to x uni-
formly in y. Assume that the partial derivative operator ∇x f (x, y) : X → Z is surjective.
Then we have

r̂eg x f (x, y) = reg ∇x f (x, y) = ∥
∥ (∇x f (x, y)∗

)−1 ∥
∥. (3.4)

Proof The second equality in (3.4) follows from the well-known fact (see, e.g., [8, Corol-
lary 1.58]) that a linear bounded operator A ∈ L(X, Y ) is metrically regular around every
point x ∈ X if and only if it is surjective; in this case the exact regularity bound of A is
computed by

reg A = ‖(A∗)−1‖. (3.5)

The strict partial differentiability of f with respect to x ensures the equality

lip ( f (·, y) − ∇x f (x, y)) (x) = 0,

and applying Proposition 3.2, we obtain

r̂eg x f (x, y) ≤ reg ∇x f (x, y).

Employing finally Theorem 2.3, we conclude that

reg ∇x f (x, y) = reg f (·, y)(x) ≤ r̂eg x f (x, y),

which justifies (3.4) and thus completes the proof of the proposition. 
�
Having in mind the results of Proposition 3.2 and Remark 3.3, we obtain now the following

extension of Theorem 2.1 on Lipschitzian behavior of implicit multifunctions.

Theorem 3.5 (Lipschitzian properties of implicit multifunctions under partial metric regu-
larity) Let f : X × Y → Z be a mapping between Banach spaces, and let (x, y) ∈ X × Y be
such that f is metrically regular with respect to x uniformly in y around (x, y) with constant
κ > r̂eg x f (x, y). Suppose further that f is locally Lipschitzian with respect to y uniformly
in x with constant η ≥ 0 around (x, y). Given a mapping g : W → Z between Banach spaces
with g(w) = − f (x, y) for some w ∈ W and such that g is locally Lipschitzian around w with
constant λ ≥ 0, consider the set-valued mapping 
 : Y × W ⇒ X (implicit multifunction)
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defined in (2.7). Then there is α > 0 such that for every (y, w), (y′, w′) ∈ Bα(y) × Bα(w)

we have the inclusion


(y′, w′) ∩ Bα(x) ⊂ 
(y, w) + κ
(
η‖y − y′‖ + λ‖w − w′‖) B. (3.6)

The latter implies that 
 is Lipschitz-like around ((y, w), x) and that its exact Lipschitzian
bound satisfies the upper estimate

lip 
 ((y, w), x) ≤ r̂eg x f (x, y) · max
{
l̂ip y f (x, y), lip g(w)

}
. (3.7)

Proof Choose some constant κ ′ with κ > κ ′ > r̂eg x f (x, y). Take a positive constant a such
that

‖g(w) − g(w′)‖ ≤ λ‖w − w′‖ for all w,w′ ∈ Ba(w),

‖ f (x, y) − f (x, y′)‖ ≤ η‖y − y′‖ for all x ∈ Ba(x) and y, y′ ∈ Ba(y),

d
(
x, f −1(·, y)(z)

) ≤ κ ′‖z

− f (x, y)‖ for all x ∈ Ba(x), y ∈ Ba(y) and z ∈ Ba ( f (x, y)).

Further, let 0 < α ≤ a be such that λα ≤ a. Pick (y, w), (y′, w′) ∈ Bα(y)×Bα(w) and then
take x ′ ∈ 
(y′, w′) ∩ Bα(x). We get

‖ − g(w) − f (x, y)‖ ≤ λ‖w − w‖ ≤ λα ≤ a,

which implies the estimate

d
(
x ′, f −1(·, y) (−g(w))

) ≤ κ ′‖ f (x ′, y) + g(w)‖.
Hence there is x ∈ 
(y, w) such that

‖x − x ′‖ ≤ κ‖ f (x ′, y) + g(w)‖ ≤ κ
(‖ f (x ′, y) − f (x ′, y′)‖ + ‖g(w) − g(w′)‖)

≤ κ
(
η‖y − y′‖ + λ‖w − w′‖) .

The latter yields the estimate (3.7) and thus completes the proof of the theorem. 
�
Using the new implicit multifunction result of Theorem 3.5 instead of the one of

Theorem 2.1, we can extend several relationships between metric regularity and Lips-
chitzian properties in the framework of generalized equations (1.1) established in [1]. In
particular, we get the following equivalencies under milder assumptions in comparison
with [1, Theorem 3.3].

Theorem 3.6 (metric regularity of solution maps via Lipschitzian properties of fields in
generalized equations) Let f : X × Y → Z be a mapping between Banach spaces, and let
(x, y) ∈ X × Y be such that f is Lipschitz continuous on some neighborhood of (x, y).
Assume also that f is metrically regular with respect to x uniformly in y around (x, y). Let
Q : Y ⇒ Z be a set-valued field mapping with z := − f (x, y) ∈ Q(y). Then the following
assertions are satisfied:

(i) The solution map S in (1.2) is metrically regular around (x, y) if and only if the field Q
in (1.1) is Lipschitz-like around (y, z). Moreover, we have the exact bound relationships

reg S(x, y) ≤ r̂eg x f (x, y) · [
lip Q(y, z) + l̂ip y f (x, y)

]
, (3.8)

lip Q(y, z) ≤ l̂ip x f (x, y) · reg S(x, y) + l̂ip y f (x, y). (3.9)
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(ii) The solution map S is metrically subregular at (x, y) if and only if the field Q is calm
at (y, z). Furthermore, we have the exact bound relationships

subreg S(x, y) ≤ r̂eg x f (x, y) · [
clm Q(y, z) + l̂ip y f (x, y)

]
,

clm Q(y, z) ≤ l̂ip x f (x, y) · subreg S(x, y) + l̂ip y f (x, y).

Proof Follows that of [1, Theorem 3.3] by using Theorem 3.5 instead of Theorem 2.1. 
�
The next theorem provides extensions of the results in [1] establishing relationships

between Lipschitzian properties of solutions maps and metric regularity of field mappings in
systems (1.2).

Theorem 3.7 (Metric regularity of solution maps via Lipschitz-like property of fields in
generalized equations) Let f : X × Y → Z be a mapping between Banach spaces contin-
uous in a neighborhood of (x, y) ∈ X × Y and such that f is locally Lipschitzian with
respect to y uniformly in x around (x, y). Assume also that f is metrically regular with
respect to x uniformly in y around (x, y). Let Q : Y ⇒ Z be a set-valued field mapping
with z := − f (x, y) ∈ Q(y) such that the graph of Q is locally closed around (y, z). If the
solution map S : X ⇒ Y in (1.2) is Lipschitz-like around (x, y) and if the condition

r̂eg x f (x, y) · l̂ip y f (x, y) · lip S(x, y) < 1 (3.10)

is fulfilled, then Q is metrically regular around (y, z) with the exact bound estimate

reg Q(y, z) ≤ r̂eg x f (x, y) · lip S(x, y)

1 − r̂eg x f (x, y) · l̂ip y f (x, y) · lip S(x, y)
. (3.11)

Proof Follows that of [1, Theorem 5.1] with using the improved implicit multifunction result
of Theorem 3.5 instead of the one in Theorem 2.1. 
�

Now we establish a converse statement to Theorem 3.5, which derives the partial metric
regularity of the base mapping f in (2.7) from the (partial) Lipschitz-like property of the
implicit multifunction 
 around the corresponding points.

Theorem 3.8 (partial metric regularity of base mappings from Lipschitzian properties of
implicit multifunctions) Let f : X × Y → Z be a mapping between Banach spaces contin-
uous at (x, y) ∈ X × Y . Given a mapping g : W → Z between Banach spaces such that
g(w) = − f (x, y) for some w ∈ W , assume that g is metrically regular around (w, g(w)).
Suppose also that the implicit multifunction 
 defined in (2.7) is Lipschitz-like with respect to
w uniformly in y around ((y, w), x). Then f is metrically regular with respect to x uniformly
in y around (x, y) with the following upper estimate of the exact partial regularity bound:

r̂eg x f (x, y) ≤ l̂ip w
 ((y, w), x) · reg g(w). (3.12)

Proof Take any � > l̂ip w
 ((y, w), x) and κ > reg g(w) and then pick α > 0 such that

d
(
w, g−1(z)

) ≤ κ‖z − g(w)‖ and


(y, w) ∩ Bα(x) ⊂ 
(y, w′) + �‖w − w′‖B

for every y ∈ Bα(y), w,w′ ∈ Bα(w), and z ∈ Bα (g(w)). Select further a constant 0 < a ≤ α

with

(κ + 1) (a + 2‖ f (x, y) − f (x, y)‖) ≤ α whenever x ∈ Ba(x), y ∈ Ba(y). (3.13)
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Fix 0 < ε < 1, x ∈ Ba(x), y ∈ Ba(y), and z ∈ Ba ( f (x, y)). It follows from (3.13) that
− f (x, y) ∈ Bα (g(w)), and thus there is w ∈ g−1 (− f (x, y)) satisfying

‖w − w‖ ≤ (κ + ε)‖ − f (x, y) − g(w)‖ ≤ α.

By taking the inclusion −z ∈ Bα (− f (x, y)) = Bα (g(w)) into account, we find w′ ∈
g−1(−z) with

‖w − w′‖ ≤ (κ + ε)‖ − z − g(w)‖ = (κ + ε)‖z − f (x, y)‖.
The latter implies the estimates

‖w′ − w‖ ≤ ‖w′ − w‖ + ‖w − w‖ ≤ (κ + ε) (‖z − f (x, y)‖ + ‖ f (x, y) − f (x, y)‖)
≤ (κ + ε) (a + 2‖ f (x, y) − f (x, y)‖) ≤ α.

It now follows from x ∈ 
(y, w) ∩ Bα(x) that there is x ′ ∈ 
(y, w′) satisfying

‖x − x ′‖ ≤ �‖w − w′‖ ≤ (κ + ε)�‖z − f (x, y)‖.
Remembering that the positive numbers ε, κ , and � were chosen to be arbitrarily close
to zero, reg g(w), and l̂ip w
 ((y, w), x), respectively, we complete the proof of the
theorem. 
�

Next we obtain the following specifications of the results above in the case of (partially)
strictly differentiable mappings f and g in the framework of implicit multifunctions (2.7).

Proposition 3.9 (implicit multifunctions in partially smooth settings) Let f : X × Y → Z
be a mapping between Banach spaces, and let (x, y) ∈ X × Y be such that f is locally
Lipschitzian around (x, y) and strictly partially differentiable at this point with respect to x
uniformly in y. Let further g : W → Z be a mapping between Banach spaces strictly differen-
tiable at w ∈ W with the surjective derivative ∇g(w) and such that g(w) = − f (x, y). Then
the set-valued mapping 
 : Y × W ⇒ X defined by (2.7) is Lipschitz-like around ((y, w), x)

if and only if the partial derivative operator ∇x f (x, y) is surjective. In this case we have the
relationships

l̂ip y
 ((y, w), x) ≤ ∥
∥ (∇x f (x, y)∗)−1

∥
∥ · ∥

∥∇y f (x, y)
∥
∥,

l̂ip w
 ((y, w), x) ≤ ∥
∥ (∇x f (x, y)∗)−1

∥
∥ · ∥

∥∇g(w)
∥
∥,

r̂eg x f (x, y) = ∥
∥ (∇x f (x, y)∗)−1

∥
∥ ≤ l̂ip w
 ((y, w), x) · ∥

∥ (∇g(w)∗)−1
∥
∥.

Proof This follows directly from (3.6) in Theorem 3.5, Theorem 3.8, and Proposition 3.4.

�

Define now the relative condition number of F : X ⇒ Y at (x, y) ∈ gph F by

C (F; (x, y)) := reg F(x, y) · lip F(x, y) = reg F(x, y) · reg F−1(y, x) (3.14)

with the convention that C (F; (x, y)) := ∞ when either F or F−1 is not metrically regular
around the point. It follows from definition (3.14) and [4, Exercise 3E.11] that C (F; (x, y)) ≥
1 when (x, y) �∈ int gph F . The reader is referred to [10] for more information on condition
numbers for single-valued mappings and their applications to numerical aspects of optimi-
zation.
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Corollary 3.10 (precise formulas for exact bounds) Under the assumptions of Proposi-
tion 3.9 we have the equalities

l̂ip w
 ((y, w), x) = reg ∇x f (x, y) · lip g(w) =
∥
∥
∥
(∇x f (x, y)∗

)−1
∥
∥
∥ · ‖∇g(w)‖ (3.15)

provided that the relative condition number of g : W → Z at w is

C(g;w) = ‖∇g(w)‖ ·
∥
∥
∥
(∇g(w)∗

)−1
∥
∥
∥ = 1. (3.16)

In particular, for g(z) := −z and f : X → Y satisfying l̂ip y f (x, y) ≤ 1 we get the rela-
tionship

lip 
(y, x) = reg ∇x f (x, y). (3.17)

Proof Both equalities in (3.15) follow from the estimates of Proposition 3.9 and definition
(3.14) under assumption (3.16) on the relative condition number of the smooth mapping g.
This immediately implies (3.17) in the particular case under consideration. 
�

4 Strong regularity/subregularity and Lipschitzian localization

In this section we study the notion of strong regularity (known also as strong metric regu-
larity) introduced by Robinson [11] for variational inequalities and then widely applied in
many publications to sensitivity analysis and numerical methods for optimization-related
and equilibrium problems. In parallel we pay attention to the corresponding notion of strong
subregularity; see [4] and the references therein. Our main results in this section concern
qualitative and quantitative relations between strong metric regularity/subregularity and sin-
gle-valued Lipschitzian/calmness localizations in the framework of the parametric variational
systems (1.1).

Recall that a mapping F : X ⇒ Y is strongly metrically regular (or just strongly regular)
around (x, y) with constant κ > 0 if there are neighborhoods U ⊂ X of x and V ⊂ Y of y
such that the set F−1(y) ∩ U is a singleton for every y ∈ V and that

d
(
x, F−1(y)

) ≤ κd (y, F(x)) for all x ∈ U and y ∈ V . (4.1)

A mapping F : X ⇒ Y is strongly metrically subregular (or just strongly subregular) at
(x, y) with constant κ > 0 if there is a neighborhood U of x such that

‖x − x‖ ≤ κd (y, F(x)) for all x ∈ U. (4.2)

A graphical localization of a mapping F : X ⇒ Y around (x, y) ∈ gph F is a mapping
F̃ : X ⇒ Y such that gph F̃ = (U × V ) ∩ gph F for some neighborhood U × V of (x, y).
We say as usual that a set-valued mapping admits a single-valued (graphical) localization
around some point if there is a graphical localization around it which is single-valued. It
follows from the well-known equivalence between metric regularity (resp. subregularity) of
F and the Lipschitz-like (resp. calmness) property of F−1 and the definitions above that this
line of equivalence also holds between the strong versions of metric regularity/subregularity
of arbitrary mappings F and the corresponding single-valued Lipschitzian localizations of
their inverses.

The next result establishes two-sided qualitative and quantitative relationships between
the single-valued Lipschitzian localization of the solution map (1.2) and the strong regularity
of the field in the generalized equation (1.1) under appropriate assumptions.
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Theorem 4.1 (relationships between single-valued Lipschitzian localization of solution
maps and strong regularity of fields in generalized equations) Let f : X × Y → Z be a
mapping between Banach spaces continuous in a neighborhood of (x, y) ∈ X × Y , and let
Q : Y ⇒ Z be a set-valued field mapping in (1.1) with z := − f (x, y) ∈ Q(y) such that the
graph of Q is locally closed around (y, z). The following assertions hold:

(i) Assume that f is locally Lipschitzian with respect to y uniformly in x around (x, y), and
suppose also that f is metrically regular with respect to x uniformly in y around (x, y).
If the solution map S : X ⇒ Y in (1.2) admits a single-valued Lipschitzian localization
around (x, y) and if condition (3.10) is satisfied, then Q is strongly metrically regular
around (y, z) with the exact bound upper estimate (3.11).

(ii) Conversely, assume that f is Lipschitz around (x, y), that Q is strongly metrically
regular around (y, z), and that condition

l̂ip y f (x, y) · reg Q(y, z) < 1 (4.3)

is satisfied. Then the solution map S admits a single-valued Lipschitzian localization
around (x, y) with the exact bound estimate (2.13).

Proof To justify assertion (i), choose � > lip S(x, y), κ > r̂eg x f (x, y), and ηy >

l̂ip y f (x, y) with �κηy < 1. Then find a positive constant α and a mapping s : X → Y
such that s(x) = S(x) ∩ Bα(y) for x ∈ Bα(x) and that

‖s(x) − s(x ′)‖ ≤ �‖x − x ′‖ for all x, x ′ ∈ Bα(x). (4.4)

By Theorem 3.5 with 
(y, z) := {
x ∈ X

∣
∣ f (x, y) + z = 0

}
we can make α > 0 smaller if

necessary to ensure the inclusion


(y′, z′) ∩ Bα(x) ⊂ 
(y, z) + κ
(
ηy‖y − y′‖ + ‖z − z′‖) B (4.5)

for all (y, z), (y′, z′) ∈ Bα(y) × Bα(z). On the other hand, it follows from Theorem 3.7 that
Q is metrically regular around (y, z) with the exact bound estimate (3.11). Hence it remains
to prove that Q−1 admits a single-valued localization.

To proceed, pick a positive constant a ≤ α for which we have the condition

(3ηy + 1)κa ≤ α.

Suppose further that y, y′ ∈ Q−1(z) ∩ Ba(y) for some z ∈ Ba(z). Then by (4.5) there is
some x ∈ 
(y, z) satisfying the estimates

‖x − x‖ ≤ κ
(
ηy‖y − y‖ + ‖z − z‖) ≤ (ηy + 1)κa ≤ α,

which give x ∈ 
(y, z) ∩ Bα(x). Employing (4.5) again, we find x ′ ∈ 
(y′, z) such that

‖x − x ′‖ ≤ κηy‖y − y′‖.
The latter readily implies the relationships

‖x ′ − x‖ ≤ ‖x − x ′‖ + ‖x − x‖ ≤ 2aκηy + κ(ηy + 1)a = (3ηy + 1)κa ≤ α,

and therefore y ∈ S(x) ∩ Bα(y) = s(x) and y′ ∈ S(x ′) ∩ Bα(y) = s(x ′). Now we get
from (4.4) that

‖y − y′‖ = ‖s(x) − s(x ′)‖ ≤ �‖x − x ′‖ ≤ �κηy‖y − y′‖.
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It yields, since �κηy < 1, that y = y′ and thus completes the proof of assertion (i).

In order to prove assertion (ii), suppose that Q is strongly regular around (y, z). Take
some constants κ > reg Q(y, z), ηx > l̂ip x f (x, y), and ηy > l̂ip y f (x, y) with κηy < 1.
By Theorem 2.2 we know that S is Lipschitz-like around (x, y) with the exact bound esti-
mate (2.13). Hence it remains to prove that there is a graphical localization of S around x
that is nowhere multivalued, being thus single-valued due to its Lipschitz-like property.

To proceed, choose a constant α > 0 and a mapping g : Z → Y such that g(z) =
Q−1(z) ∩ Bα(y) for z ∈ Bα(z) with the estimates

‖g(z) − g(z′)‖ ≤ κ‖z − z′‖ for all z, z′ ∈ Bα(z) and

‖ f (x, y) − f (x ′, y′)‖ ≤ ηx‖x − x ′‖ + ηy‖y − y′‖ for all (x, y), (x ′, y′) ∈ Bα(x) × Bα(y).

Take further a positive constant a ≤ α satisfying (ηx + ηy)a ≤ α and suppose that there are
y, y′ ∈ S(x) ∩ Ba(y) for some x ∈ Ba(x). Then we get

z := − f (x, y) ∈ Q(y) and z′ := − f (x, y′) ∈ Q(y′).

It follows from the estimates

‖z − z‖ = ‖ f (x, y) − f (x, y)‖ ≤ ηx‖x − x‖ + ηy‖y − y‖ ≤ α

that y ∈ Q−1(z) ∩ Bα(y) = g(z) and similarly y′ = g(z′). It holds furthermore that

‖y − y′‖ = ‖g(z) − g(z′)‖ ≤ κ‖z − z′‖ = κ‖ f (x, y) − f (x, y′)‖ ≤ κηy‖y − y′‖.
Since κηy < 1, we conclude that y = y′ and thus complete the proof of the theorem. 
�

As a direct consequence of Theorem 4.1 we get the following result concerning the pres-
ervation of strong metric regularity under Lipschitzian perturbations, i.e., a localized single-
valued version of Theorem 2.3. A proof based on the contracting mapping principle can be
found in [4, Theorem 5F.1].

Corollary 4.2 (strong regularity under Lipschitzian perturbations) Let F : X ⇒ Y be a set-
valued mapping between Banach spaces with locally closed graph around (x, y) ∈ gph F,
and let F be strongly metrically regular around (x, y) with constant κ > 0. Consider a
mapping g : X → Y Lipschitz continuous around x with constant λ ≥ 0 such that λ < κ−1.
Then the mapping F + g is strongly metrically regular around (x, y + g(x)) with constant
κ/(1 − κλ).

Proof Apply Theorem 4.1 with f (x, y) = −x + g(y) and Q = F. 
�
A simple example presented in [1, Remark 5.5(ii)] illustrates that the metric subregularity

of field mappings Q in (1.1) does not generally imply the calmness property of solution maps
S in (1.2). Let us now show (Theorem 4.3) that such an implication holds in the case of strong
metric subregularity of Q and isolated calmness of S in the general framework of (1.1). This
gives an appropriate one-point counterpart of Theorem 4.1(ii) above.

Recall that a set-valued mapping F : X ⇒ Y has the isolated calmness property at (x, y)

with constant � ≥ 0 if there are neighborhoods U of x and V of y such that

F(x) ∩ V ⊂ y + �‖x − x‖B for all x ∈ U. (4.6)

We have the following important relationship between the isolated calmness of solution maps
and strong subregularity of fields in the framework of generalized equations (1.1).
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Theorem 4.3 (isolated calmness of solution maps from strong subregularity of fields in
generalized equations) Let the base mapping f : X × Y → Z in (1.1) be calm at (x, y),
and let the field mapping Q : Y ⇒ Z be strongly metrically subregular at (y, z) with z :=
− f (x, y) ∈ Q(y). Assume in addition the fulfillment of the condition

clmy f (x, y) · subreg Q(y, z) < 1. (4.7)

Then the solution map S has the isolated calmness property at (x, y) with the exact bound
estimate

clm S(x, y) ≤ subreg Q(y, z) · ĉlmx f (x, y)

1 − subreg Q(y, z) · clmy f (x, y)
. (4.8)

Proof Take any κ> subreg Q(y, z), ηx>ĉlmx f (x, y), and ηy> clmy f (x, y) with κηy < 1
by (4.7). Choose further some positive constant a so that

‖y − y‖ ≤ κd (z, Q(y)) for all y ∈ Ba(y) and

‖ f (x, y) − f (x, y)‖ ≤ ηx‖x − x‖ + ηy‖y − y‖ for all (x, y) ∈ Ba(x) × Ba(y).

Picking then x ∈ Ba(x) and y ∈ S(x) ∩ Ba(y), we get the inequalities

‖y − y‖ ≤ κd (z, Q(y)) ≤ κ‖ f (x, y) − f (x, y)‖ ≤ κ
(
ηx‖x − x‖ + ηy‖y − y‖) ,

which imply in turn that

‖y − y‖ ≤ κηx

1 − κηy
‖x − x‖.

By the arbitrary choice of the constants (κ, ηx , ηy) as above, we arrive at the upper estimate
(4.8) and thus complete the proof of the theorem. 
�

Similarly to Definition 3.1 we say that a set-valued mapping F : X × Y ⇒ Z is strongly
metrically regular with respect to x uniformly in y around ((x, y), z) ∈ gph F with constant
κ > 0 if there are neighborhoods U of x, V of y, and W of z such that estimate (3.1) holds
and the mapping (y, z) �→ F−1(·, y)(z) ∩ U is not multivalued on V × W .

The next proposition establishes a strong partial metric regularity counterpart of Theo-
rem 3.8.

Proposition 4.4 (strong partial metric regularity of base mappings from Lipschitzian prop-
erties of implicit multifunctions) In addition to the assumptions of Theorem 3.8, suppose that
the implicit multifunction 
 in (2.7) admits a single-valued Lipschitzian localization around
((y, w), x). Then f is strongly metrically regular with respect to x uniformly in y around
(x, y).

Proof Without loss of generality, assume that the set 
(y, w)∩Bα(x) is a singleton for every
y ∈ Bα(y) and w ∈ Bα(w), for α > 0 chosen as in the proof of Theorem 3.8. Fix y ∈ Ba(y)

and z ∈ Ba ( f (x, y)) and pick any x, x ′ ∈ f −1(·, y)(z) ∩ Ba(x), with 0 < a ≤ α verify-
ing (3.13). Following now the proof of Theorem 3.8, we find w ∈ g−1 (− f (x, y)) ∩ Bα(w).
This gives x, x ′ ∈ 
(y, w) due to f (x, y) = z = f (x ′, y). The latter implies in turn that
x = x ′ by the local single-valuedness of 
 and thus completes the proof of the proposition.


�
Now we complement Proposition 3.2 with a natural condition ensuring the strong partial

metric regularity of nonsmooth single-valued mappings.
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Proposition 4.5 (sufficient conditions for strong partial metric regularity) In addition to the
assumptions of Proposition 3.2, suppose that A is invertible. Then f is strongly metrically
regular with respect to x uniformly in y around (x, y).

Proof Take β > 0 from the proof of Proposition 3.2, then pick y ∈ Bβ(y) and x, x ′ ∈ Bβ(x)

such that f (x, y) = f (x ′, y). Since A is invertible, we have the equalities

x = −A−1 (
f (x, y) − f (x ′, y) − Ax

)
and x ′ = A−1 (

Ax ′),

which yield the relationships

‖x − x ′‖ = ‖ − A−1 (
f (x, y) − f (x ′, y) − A(x − x ′)

) ‖
≤ ‖A−1‖ · ‖ f (x, y) − f (x ′, y) − A(x − x ′)‖
≤ μ · reg A‖x − x ′‖,

This implies in turn that x = x ′ by μ·reg A < 1. Hence the mapping (y, z) �→ f −1(·, y)(z)∩
Bβ(x) is not multivalued on Bβ(y) × Z . Then we are done due to Proposition 3.2. 
�

When f is strictly differentiable with respect to x uniformly in y at the reference point,
we have the following characterization of strong partial metric regularity.

Corollary 4.6 (characterization of strong partial metric regularity of partially smooth map-
pings) Let f : X × Y → Z be a mapping between Banach spaces, and let (x, y) ∈ X × Y
be such that f is continuous at (x, y) and strictly partially differentiable at this point with
respect to x uniformly in y. Then f is strongly metrically regular with respect to x uniformly
in y around (x, y) if and only if ∇x f (x, y) : X → Z is invertible with X and Z isomorphic.
In this case we have the relationships

r̂eg x f (x, y) = reg ∇x f (x, y) = ∥
∥(∇x f (x, y))−1

∥
∥. (4.9)

Proof To justify the “only if” part, we follow the proof of Proposition 3.4 using Corollary 4.2
instead of Theorem 2.3. The converse is a consequence of Proposition 4.5. 
�

The next proposition complements Theorem 3.5 providing an additional condition that
ensures that the Lipschitzian implicit (multi) function (2.7) is in fact locally single-valued.

Proposition 4.7 (Lipschitzian implicit functions) Suppose in addition to the assumptions of
Theorem 3.5 that the base mapping f is strongly metrically regular with respect to x uniformly
in y around (x, y). Then 
 in (2.7) admits a Lipschitz continuous single-valued localization
around ((y, w), x) with the exact bound estimate (3.7). That is, the inverse mapping 
−1 is
strongly metrically regular around (x, (y, w)).

Proof Observe that if there is some positive constant a such that mapping (y, z) �→
f −1(·, y)(z) ∩ Ba(x) is not multivalued on Ba(y) × Ba ( f (x, y)), then the implicit mul-
tifunction 
 must admit a nowhere multivalued graphical localization. The rest follows from
Theorem 3.5. 
�

The following consequence of Theorem 3.8 and Proposition 4.7 characterizes the local
single-valuedness of Lipschitzian multifunctions in (2.7).

Corollary 4.8 (characterizing single-valued Lipschitzian localization of implicit multifunc-
tions) Let f : X ×Y → Z be a mapping between Banach spaces continuous at (x, y) ∈ X ×Y
and such that f is locally Lipschitzian with respect to y uniformly in x on some neighborhood
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of (x, y). Given a mapping g : W → Z between Banach spaces with g(w) = − f (x, y) for
some w ∈ W , suppose that C(g;w) < ∞ for the relative condition number (3.14), i.e., g
is both Lipschitz continuous and metrically regular around w. Then the set-valued mapping

 : Y × W ⇒ X defined by (2.7) admits a Lipschitzian single-valued localization around
((y, w), x) if and only if f is strongly metrically regular with respect to x uniformly in y. In
this case we have the exact bound estimates (3.7) and (3.12).

Proof Follows directly from Theorem 3.8 and Proposition 4.7. 
�
Finally in this section, we establish two-sided relationships between (conversely to The-

orem 4.1) strong metric regularity of solution maps and Lipschitzian single-valued localiza-
tions of field mappings in the framework of generalized equations (1.1).

Theorem 4.9 (strong regularity of solution maps via single-valued Lipschitzian localization
of fields in generalized equations) Let f : X ×Y → Z be a mapping between Banach spaces,
and let (x, y) ∈ X × Y be such that f is Lipschitz continuous around this point and metri-
cally regular with respect to x uniformly in y around it. Consider a set-valued field mapping
Q : Y ⇒ Z with z := − f (x, y) ∈ Q(y). Then the following assertions are satisfied:

(i) If the solution map S in (1.2) is strongly metrically regular around (x, y), then the
field mapping Q in (1.1) has a Lipschitzian single-valued localization around (y, z)
with the exact bound estimate (3.9).

(ii) The converse implication holds when f is strongly regular with respect to x uniformly
in y around (x, y): if Q has a Lipschitzian single-valued localization around (y, z),
then S is strongly metrically regular around (x, y) with the exact bound estimate (3.8).

Proof Observe first that the assumptions made in the theorem ensure the fulfillment of all
the requirements of Theorem 3.5 with W = Z and g(z) = z. Thus for any ηy > l̂ip y f (x, y)

and κ > r̂eg x f (x, y) there is a positive constant α such that


(y′, z′) ∩ Bα(x) ⊂ 
(y, z) + κ
(
ηy‖y − y′‖ + ‖z − z′‖) B (4.10)

whenever (y, z), (y′, z′) ∈ Bα(y) × Bα(z). To justify assertion (i), suppose that the solu-
tion map S is strongly regular around (x, y) with a positive constant ν and neighborhoods
U = Ba(x) and V = Ba(y) for some 0 < a ≤ α. Due to Theorem 3.6(i) it is sufficient to
prove the existence of a positive constant b such that the mapping y �→ Q(y) ∩ Bb(z) is not
multivalued on Bb(y). To proceed, select b > 0 such that

κ(ηy + 1)b ≤ a

and suppose that z, z′ ∈ Q(y) ∩ Bb(z) for some y ∈ Bb(y). By (4.10) we find x ∈ 
(y, z)
satisfying

‖x − x‖ ≤ κ
(
ηy‖y − y‖ + ‖z − z‖) ≤ a,

and hence x ∈ S−1(y) ∩ Ba(x). Employing further the same arguments gives us x ′ ∈
S−1(y) ∩ Ba(x). This ensures that x = x ′ due to the single-valuedness property entailed by
the strong regularity of S and therefore justifies assertion (i).

To prove (ii), take ηx > l̂ip x f (x, y) and suppose that y �→ Q(y) ∩ Ba(z) is not multi-
valued on Ba(y), where a is a positive constant with

‖ f (x, y)− f (x ′, y′)‖ ≤ ηx‖x−x ′‖+ηy‖y−y′‖ for all (x, y), (x ′, y′) ∈ Ba(x) × Ba(y).
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Make a > 0 smaller if necessary so that the mapping (y, z) �→ f −1(·, y)(z) ∩ Ba(x)

is not multivalued on Ba(y) × Ba(−z). Take further a positive constant b ≤ a such that
(ηx + ηy)b ≤ a and let x, x ′ ∈ S−1(y) ∩ Bb(x) for some y ∈ Bb(y). Then we get the
inequalities

‖ − f (x, y) − z‖ ≤ ηx‖x − x‖ + ηy‖y − y‖ ≤ (ηx + ηy)b ≤ a.

The latter gives − f (x, y) ∈ Q(y) ∩ Ba(z). Similarly we obtain − f (x ′, y) ∈ Q(y) ∩ Ba(z)
having hence z := f (x, y) = f (x ′, y). Since x, x ′ ∈ f −1(·, y)(z) ∩ Ba(x) and (y, z) ∈
Ba(y) × Ba(−z), it follows that x = x ′. Applying now Theorem 3.6(i), we complete the
proof of this theorem. 
�
Remark 4.10 (relationships between strong regularity of base and solution maps in general-
ized equations) It is important to observe that the strong regularity assumption (or invertibility
of ∇x f (x, y) when f is strictly differentiable at (x, y) with respect to x) is not a superflu-
ous condition. To illustrate this, consider a function f : IR2 × IR → IR and a mapping
Q : IR ⇒ IR defined by

f ((x1, x2), y) := α(x1 + x2 + y) as α > 0 and Q :≡ 0.

Then f is smooth everywhere with the surjective (but not invertible) partial derivative with
respect to x = (x1, x2). Also this function is Lipschitz continuous with constant α, which
can be chosen arbitrarily small. We can see furthermore that the mapping Q is Lipschitzian
with modulus 0, while the solution map S(x1, x2) = −x1 − x2 is not strongly regular around
the origin.

5 Metric hemiregularity and strong hemiregularity

In this concluding section we define and study another useful version of metric regularity,
where the domain point x is fixed in (2.1) instead of the range point y as in the case of
subregularity (2.2). The new property and its subsequent partial and strong counterparts are
important for a number of well-posedness issues in variational analysis and optimization,
particularly for quantitative stability of solution maps to the parametric variational systems
considered in what follows.

Definition 5.1 (metric hemiregularity of set-valued mappings) Given a set-valued mapping
F : X ⇒ Y between Banach spaces and a point (x, y) ∈ gph F , we say that F is metrically
hemiregular at (x, y) with constant κ > 0 if there is a neighborhood V ⊂ Y of y such that

d
(
x, F−1(y)

) ≤ κ‖y − y‖ for all y ∈ V . (5.1)

The infimum of κ > 0 over all the combinations (κ, V ) for which (5.1) holds is called the
exact hemiregularity bound of F at (x, y) and is denoted hemreg F(x, y).

Estimate (5.1) was mentioned in [6, p. 10] as the “Lipschitz lower semicontinuity” of the
inverse mapping while, to the best of our knowledge, it has not been much studied and/or
applied. We can easily see that the metric hemiregularity of F yields the inner/lower semicon-
tinuity of the inverse mapping F−1: for every neighborhood U of x there is a neighborhood
V of y such that

F−1(y) ∩ U �= ∅ for all y ∈ V .
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Note also that, as we learned after this paper was completed and submitted for publica-
tion, the property of hemiregularity was independently examined in [7] under the name of
“semiregularity,” where the result of Theorem 6(i) implies our Proposition 5.2.

It follows immediately from the definitions that the metric regularity of F around (x, y)

always implies the metric hemiregularity of F at this point, but not vice versa. We show now
that for linear bounded operators both notions agree, with the same exact (hemi)regularity
bound.

Proposition 5.2 (hemiregularity of linear bounded operators) A linear bounded operator
A ∈ L(X, Y ) is metrically hemiregular at every point x ∈ X if and only if it is surjective. In
this case we have the relationships

hemreg A = reg A = ∥
∥(A∗)−1

∥
∥, (5.2)

where hemreg A stands for the common exact hemiregularity bound of A at all the points
x ∈ X.

Proof Observe first the obvious lower estimate

hemreg A(x) ≤ reg A for every point x ∈ X.

On the other hand, for any κ > hemreg A(x) there is some a > 0 such that

d
(
x, A−1(y)

) ≤ κ‖y − y‖ for all y ∈ Ba(y)

with y := Ax . Then we have that w := ay + y ∈ Ba(y) for all y ∈ B, and hence

a d
(
0, A−1(y)

) = d
(
x, A−1(ay + Ax)

) = d
(
x, A−1(w)

) ≤ κ‖w − y‖ = κa.

The latter implies in turn that

reg A = sup
y∈B

d
(
0, A−1(y)

) ≤ κ.

Since κ > hemreg A(x) was chosen arbitrarily, we get the upper estimate hemreg A(x) ≥
reg A and thus justify the first equality in (5.2). The second one and the surjectivity
characterization of metric regularity are well known; cf. equality (3.5) in the proof of
Proposition 3.4. 
�

Consider now a partial version of metric hemiregularity for mappings of two variables.

Definition 5.3 (partial metric hemiregularity) A set-valued mapping F : X×Y ⇒ Z is met-
rically hemiregular with respect to x uniformly in y at ((x, y), z) ∈ gph F
with constant κ > 0 if there are neighborhoods V of y and W of z such that

d
(
x, F−1(·, y)(z)

) ≤ κd (z, F(x, y)) for all y ∈ V and z ∈ W. (5.3)

The infimum of κ > 0 over all the combinations (κ, V, W ) for which (5.3) holds is called
the exact partial uniform hemiregularity bound of F in x at (x, y) and is denoted
ĥemregx F ((x, y), z).

Let us show that the property of (partial) hemiregularity for base mappings of the paramet-
ric generalized equations (1.1) is helpful to establish the converse assertion to Theorem 4.3.
First we present a hemiregularity counterpart of Theorem 3.5 on implicit multifunctions,
which is certainly of its independent interest.

123



J Glob Optim (2011) 50:145–167 163

Theorem 5.4 (implicit multifunctions under hemiregularity) Let f : X × Y → Z be a map-
ping between Banach spaces, and let (x, y) ∈ X ×Y be such that f is metrically hemiregular
with respect to x uniformly in y at (x, y) with constant κ > ĥemregx f (x, y), and that f is
locally calm with respect to y with constant η ≥ 0 at (x, y). Given a mapping g : W → Z
between Banach spaces with g(w) = − f (x, y) for some w ∈ W , consider the implicit mul-
tifunction mapping 
 : Y × W ⇒ X defined in (2.7). Assume further that g is locally calm at
w ∈ W with constant λ ≥ 0. Then there is α > 0 such that for every (y, w) ∈ Bα(y)×Bα(w)

there exists x ∈ 
(y, w) satisfying

‖x − x‖ ≤ κ (η‖y − y‖ + λ‖w − w‖).
The latter implies that 
−1 is metrically hemiregular at (x, (y, w)) with the following upper
estimate of the exact hemiregularity bound:

hemreg 
−1 (x, (y, w)) ≤ ĥemregx f (x, y) · max
{
clmy f (x, y), clm g(w)

}
. (5.4)

Proof Follows the one in Theorem 3.5 with x ′ = x, y′ = y, and w′ = w therein. Note that
in this setting only the calmness and hemiregularity assumptions are needed in comparison
with the Lipschitz-like and regularity properties in Theorem 3.5. 
�

Now we are ready to formulate and prove the aforementioned converse to Theorem 4.3.

Theorem 5.5 (strong subregularity of fields via isolated calmness of solution maps in gen-
eralized equations) Let f : X × Y → Z be a base mapping of (1.1) in the arbitrary Banach
space framework, let (x, y) ∈ X × Y , and let Q : Y ⇒ Z be a set-valued field mapping with
z := − f (x, y) ∈ Q(y). Assume that f is locally calm with respect to y at (x, y), and that
f is metrically hemiregular with respect to x uniformly in y at (x, y). Then the field Q is
strongly metrically subregular at (y, z) provided that the solution map S : X ⇒ Y in (1.2)
has the isolated calmness property at (x, y) and that the condition

ĥemregx f (x, y) · clm S(x, y) · clmy f (x, y) < 1 (5.5)

is satisfied. In this case we have the exact bound estimate

subreg Q(y, z) ≤ ĥemregx f (x, y) · clm S(x, y)

1 − ĥemregx f (x, y) · clm S(x, y) · clmy f (x, y)
. (5.6)

Proof By (5.5), take � > clm S(x, y), ηy > clmy f (x, y), and κ > ĥemregx f (x, y) with
�κηy < 1. Then choose a positive constant a such that

S(x) ∩ Ba(y) ⊂ y + �‖x − x‖B for all x ∈ Ba(x).

Consider the implicit multifunction


(y, z) = {
x ∈ X

∣
∣ f (x, y) + z = 0

}
(5.7)

and employ Theorem 5.4 to conclude that the inverse mapping 
−1 is metrically hemireg-
ular at (x, (y, z)). Make a > 0 smaller if necessary in order to ensure, for every (y, z) ∈
Ba(y) × Ba(z), the existence of x ∈ 
(y, z) such that

‖x − x‖ ≤ κ
(
ηy‖y − y‖ + ‖z − z‖). (5.8)

Pick further y ∈ Ba(y) and z ∈ Q(y) ∩ Ba(z) observing that we are done if such z does
not exist. Then there is some x ∈ 
(y, z) satisfying (5.8). Hence y ∈ S(x) ∩ Ba(y), and
therefore

‖y − y‖ ≤ �‖x − x‖ ≤ �κ
(
ηy‖y − y‖ + ‖z − z‖).
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The latter implies the estimate

‖y − y‖ ≤ �κ

1 − �κηy
‖z − z‖. (5.9)

Taking finally into account that the positive numbers �, ηy , and κ can be chosen arbitrarily

close to the exact bounds clm S(x, y), clmy f (x, y), and ĥemregx f (x, y), respectively, we
conclude from (5.9) that the field Q is strongly metrically subregular at (y, z) with the exact
bound estimate (5.6). This completes the proof of the theorem. 
�

Next we consider strong counterparts of the metric hemiregularity notion and its partial
version.

Definition 5.6 (strong hemiregularity) Given a set-valued mapping F : X ⇒ Y and a point
(x, y) ∈ gph F , we say that F is strongly metrically hemiregular at (x, y)(or
strongly hemiregular at this point) with constant κ > 0 if there are neighborhoods
U ⊂ X of x and V ⊂ Y of y such that (5.1) holds and that F−1 admits a single-valued
localization on V × U (i.e., the mapping y �→ F−1(y) ∩ U is single-valued on V ).

Definition 5.7 (partial strong hemiregularity) A set-valued mapping F : X ×Y ⇒ Z is said
to be partially strongly hemiregular with respect to x uniformly in y at ((x, y), z) ∈
gph F with constant κ > 0 if there are neighborhoods U of x, V of y, and W of z such that
estimate (5.3) holds and the mapping (y, z) �→ F−1(·, y)(z)∩U is single-valued on V × W .

It is easy to see that strong hemiregularity is weaker than strong regularity. Furthermore,
we have the following equivalence relationships between the strong hemiregularity of the
mapping in question and the calm single-valued localization of its inverse.

Proposition 5.8 (equivalence between strong hemiregularity of mappings and calm single-
valued localization of their inverses) A mapping F : X ⇒ Y is strongly hemiregular at some
point (x, y) ∈ gph F if and only if F−1 admits a calm single-valued localization s(·) at
(y, x). Furthermore, we have the equality between the corresponding exact bounds

hemreg F(x, y) = clm s(y). (5.10)

Proof If F is strongly hemiregular at (x, y)∈gph F with some constant κ> hemreg F(x, y),
then there is a positive number a such that (5.1) holds with V = Ba(y) and the set F−1(y)∩
Ba(x) is a singleton for y ∈ Ba(y). Take a mapping s : Y → X with s(y) = F−1(y)∩Ba(x)

for y ∈ Ba(x). Let ε > 0 and 0 < α ≤ a be selected so that (κ + ε)α ≤ a. For y ∈ Bα(y),
there is x ∈ F−1(y) satisfying

‖x − x‖ ≤ (κ + ε)‖y − y‖ ≤ (κ + ε)α ≤ a,

which gives s(y) = x . Since s(y) = x , we have

‖s(y) − s(y)‖ = ‖x − x‖ ≤ (κ + ε)‖y − y‖,
which justifies the calmness of s(·) and the inequality “≥” in (5.10) by the arbitrary choice
of ε > 0.

Conversely, suppose that there are constants a > 0 and κ ≥ 0 such that F−1(y)∩Ba(x) =
s(y) and the calmness relationship

‖s(y) − s(y)‖ ≤ κ‖y − y‖ whenever y ∈ Ba(y)
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holds. Then for all y ∈ Ba(y) we have the estimates

d
(
x, F−1(y)

) ≤ d
(
x, F−1(y) ∩ Ba(x)

) = ‖s(y) − s(y)‖ ≤ κ‖y − y‖,
which imply the inequality “≤” in (5.10) and thus complete the proof of the proposition. 
�

Now we can get the following strong counterpart of Theorem 5.4.

Proposition 5.9 (implicit multifunctions under strong hemiregularity) In addition to the
assumptions of Theorem 5.4, suppose that f is strongly hemiregular with respect to x uni-
formly in y at (x, y). Then the implicit multifunction 
 in (2.7) admits a calm single-valued
localization at ((y, w), x), that is, 
−1 is strongly hemiregular at (x, (y, w)) with the exact
bound estimate (5.4).

Proof Follows from Theorem 5.4, Definition 5.7, and Proposition 5.8. 
�
Finally in this section, we establish a “one-point” counterpart of Theorem 4.9, where the

(strong) metric hemiregularity assumption on the base mapping in (1.1) plays an essential
role.

Theorem 5.10 (strong subregularity of solution maps via isolated calmness of fields in
generalized equations) Let f : X × Y → Z be a mapping between Banach spaces, and
let (x, y) ∈ X × Y be such that f is calm at this point and metrically hemiregular with
respect to x uniformly in y there. Consider a set-valued field mapping Q : Y ⇒ Z in (1.1)
with z := − f (x, y) ∈ Q(y). Then the following assertions are satisfied:

(i) Suppose that the solution map S in (1.2) is strongly subregular at (x, y). Then the field
Q has the isolated calmness property at (y, z) with the exact bound estimate

clm Q(y, z) ≤ ĉlmx f (x, y) · subreg S(x, y) + clmy f (x, y). (5.11)

(ii) Assume in addition that f is strongly hemiregular with respect to x uniformly in y
around (x, y). Then we have the converse assertion to (i): if Q has the isolated calm-
ness property at (y, z), then S is strongly subregular at (x, y) with the exact bound
estimate

subreg S(x, y) ≤ ĥemregx f (x, y) · [
clm Q(y, z) + clmy f (x, y)

]
. (5.12)

Proof To proceed, apply the hemiregularity implicit multifunction result of Theorem 5.4. In
this way we consider the mapping 
 defined in (5.7) and for any numbers ηy > clmy f (x, y)

and κ > ĥemregx f (x, y) find a positive constant α such that whenever (y, z) ∈ Bα(y) ×
Bα(z) there is x ∈ 
(y, z) satisfying

‖x − x‖ ≤ κ
(
ηy‖y − y‖ + ‖z − z‖). (5.13)

To prove assertion (i) of the theorem, we get by the strong subregularity of the solution map
S at (x, y) some positive constants � and a for which

‖x − x‖ ≤ �d (y, S(x)) whenever x ∈ Ba(x). (5.14)

Take further ηx > ĉlmx f (x, y) and make a > 0 smaller if necessary to have

‖ f (x, y) − f (x, y)‖ ≤ ηx‖x − x‖ + ηy‖y − y‖ for all (x, y) ∈ Ba(x) × Ba(y).

(5.15)

123



166 J Glob Optim (2011) 50:145–167

Next decrease α > 0 if necessary to make sure that

α ≤ a and κ(ηy + 1)α ≤ a.

Then pick y ∈ Bα(y) and z ∈ Q(y) ∩ Bα(z) observing that we are done if no such z exists.
By (5.13) we get x ∈ 
(y, z) such that

‖x − x‖ ≤ κ
(
ηy‖y − y‖ + ‖z − z‖) ≤ κ(ηy + 1)α ≤ a.

Hence y ∈ S(x) by the choice of y and z, which allows us to conclude from (5.14) and (5.15)
that

‖z − z‖ = ‖ f (x, y) − f (x, y)‖ ≤ ηx‖x−x‖+ηy‖y−y‖ ≤ �ηx d (y, S(x)) + ηy‖y − y‖
≤ (�ηx + ηy)‖y − y‖.

Since the constants ηx and ηy above can be chosen arbitrarily close to ĉlmx f (x, y) and
clmy f (x, y), respectively, while � is arbitrarily close to subreg S(x, y), we arrive at the cor-
responding exact bound estimate (5.11) and thus complete the proof of assertion (i) of the
theorem.

To justify now the converse assertion (ii), suppose that Q has the isolated calmness prop-
erty at (y, z), i.e., we have the inclusion

Q(y) ∩ Ba(z) ⊂ z + �‖y − y‖B whenever y ∈ Ba(y) (5.16)

with some constants � ≥ 0 and a > 0. Pick any ηx > ĉlmx f (x, y) and make a smaller if
necessary to ensure (5.15). Taking into account Proposition 5.9 involving the strong hemi-
regularity property of the base mapping f , we choose α > 0 in (5.13) with α ≤ a and such
that the set 
(y, z) ∩ Bα(x) is a singleton for every (y, z) ∈ Bα(y) × Bα(z). Then select
β > 0 satisfying the inequalities

β ≤ α, (ηx + ηy)β ≤ α, and (ηx + 2ηy)κβ ≤ α.

Fix further x ∈ Bβ(x) and y ∈ S(x) ∩ Bβ(y) observing that there is nothing to prove if such
a point y does not exist. Then for z := − f (x, y) we have z ∈ Q(y) and

‖z − z‖ = ‖ f (x, y) − f (x, y)‖ ≤ ηx‖x − x‖ + ηy‖y − y‖ ≤ (ηx + ηy)β ≤ α.

Thus it follows from (5.13) the existence of some x̃ ∈ 
(y, z) satisfying the estimates

‖x̃ − x‖ ≤ κ
(
ηy‖y − y‖ + ‖z − z‖) ≤ (ηx + 2ηy)κβ ≤ α. (5.17)

The latter give that x̃ ∈ 
(y, z) ∩ Bα(x) = {x}, i.e., x̃ = x . Finally, from (5.16) and (5.17)
we get

‖x − x‖ ≤ κ
(
ηy‖y − y‖ + ‖z − z‖) ≤ κ(ηy + �)‖y − y‖,

which implies by the arbitrary choice of κ, ηy , and � as above that the solution map S is
strongly subregular at (x, y) with the exact bound estimate (5.12). This justifies assertion (ii)
and completes the proof of the theorem. 
�

Remark 5.11 (relationships between strong hemiregularity of bases and strong subregularity
of solution maps in generalized equations) It is worth to make the following observations
concerning the assumptions and results obtained in Theorem 5.10.
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(i) Note first that the strong hemiregularity assumption on the base mapping f is essential
for the conclusion in (ii) of the theorem. Indeed, consider a function f : IR2 × IR → IR
as in Remark 4.10(i) and the field mapping Q in (1.1) with gph Q = {(0, 0)}. Then
f is smooth, Lipschitzian while not strongly hemiregular at (0, 0). On the other hand,
the field Q has the isolated calmness property at (0, 0) with modulus 0, but the corre-
sponding solution map

S(x1, x2) =
{

0 if x1 = −x2,

∅ otherwise

is not strongly subregular at ((0, 0), 0), since 0 ∈ S(ε,−ε) for all ε > 0.
(ii) Observe that S can be strongly subregular and Q can have the isolated calmness prop-

erty while f may not be metrically hemiregular with respect to x uniformly in y. This
means that the converse implication like in Proposition 4.4 does not hold. The following
example of (1.1) with f : IR × IR2 → IR2 and Q : IR2 → IR2 given by

f (x, (y1, y2)) = (−x,−x) and Q(y1, y2) = (y1, y2)

illustrates it. Indeed, we have here that the solution map S(x) = (x, x) is strongly
subregular and the field Q has the isolated calmness property around any point of their
graph while

f −1 (·, (y1, y2)) (z1, z2) = ∅ for every z1 �= z2.
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