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Abstract Theory for the convergence order of the convex relaxations by McCormick
(Math Program 10(1):147–175, 1976) for factorable functions is developed. Convergence
rules are established for the addition, multiplication and composition operations. The con-
vergence order is considered both in terms of pointwise convergence and of convergence in
the Hausdorff metric. The convergence order of the composite function depends on the con-
vergence order of the relaxations of the factors. No improvement in the order of convergence
compared to that of the underlying bound calculation, e.g., via interval extensions, can be
guaranteed unless the relaxations of the factors have pointwise convergence of high order.
The McCormick relaxations are compared with the αBB relaxations by Floudas and cowork-
ers (J Chem Phys, 1992, J Glob Optim, 1995, 1996), which guarantee quadratic convergence.
Illustrative and numerical examples are given.

Keywords Nonconvex optimization · Global optimization · Convex relaxation ·
McCormick · AlphaBB · Interval extensions

1 Introduction

Some of the most successful methods for global optimization of nonconvex programs, e.g.,
[38], rely on the construction of convex/concave relaxations of the objective and constraints.
To ensure finite termination, these relaxations must converge to the nonconvex functions in
the limit, i.e., as the diameter of the host sets vanishes (reduction to singleton), e.g., through
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branching or subdivision. To limit branching/subdivision and therefore computational time it
is very important to have as tight as possible relaxations. Constructing the convex envelope is
in general as hard as solving the global optimization problem. Therefore, systematic methods
for the construction of underestimators have been proposed.

One of the most established techniques are the McCormick relaxations [24], which con-
sider a factorization of the functions to a finite set of addition, multiplication and composition
operations. Using relaxations for these factors, the relaxation of the function is constructed
via a small set of rules. A similar method is to introduce additional optimization variables
for each factor; this technique is used among others by the well-known solver BARON by
Tawarmalani and Sahinidis [33,38]. Note also the recent solver COUENNE [10]. An alterna-
tive approach is used by the αBB and γ BB relaxations, developed by Floudas and coworkers
[1–6,9,18–23]. These latter methods estimate the Hessian of the nonconvex functions and
add a known convex/concave term to the function.

In addition to ensuring convergence in the limit, it is important to consider also the order
of convergence. This concept from interval extensions [8,28] essentially compares the rate
of convergence of the estimation error to the rate of the decrease of the range of the function.
To motivate the importance of the order of convergence, consider the classical branch-and-
bound (B&B) algorithm applied to minimization problems. B&B employs local solutions
as upper bounds and relaxations as lower bounds. The B&B algorithm is inherently worst-
case exponential in the number of variables and to perform well in practice it must fathom
the majority of the nodes as early as possible. Nodes in the B&B tree are fathomed when
their lower bound is higher than the best upper bound. Since the lower bounds are lower
than the optimal objective value confined to this node, nodes with objective value close to
the optimal objective value can only be fathomed when the relaxations are very tight. The
order of convergence provides a criterion on how small the diameter of the node needs to
be to achieve convergence within a prescribed tolerance. Note also that since the relaxations
often become weaker with the number of variables, worst-case complexity is worse than
exponential, and thus fast convergence is even more important. See also the discussion on
the so-called cluster effect [15,30] and a very recent article [34] considering convergence
of geometric B&B methods. In the following, the convergence order is formally defined,
extending the well-known results from interval arithmetic. The main focus of this article is to
consider the McCormick relaxations and determine how the convergence order propagates
through addition, multiplication and composition.

In Sect. 2 basic concepts are repeated for the sake of completeness, followed by the for-
malization of convergence order in Sect. 3. In Sect. 4 lower and upper bounds are established
for the convergence order for the McCormick relaxations. The basic assumption made for
the bounds developed is Lipschitz continuity of the factors. Moreover, simple illustrative
examples are given, demonstrating that the developed bounds are sharp. In Sect. 5 the known
(quadratic) convergence order of the αBB relaxations is formalized. Section 6 uses the results
from Sect. 5 to prove a positive result for the convergence order of envelopes. Finally, in
Sect. 7 numerical examples are presented comparing the two alternative methods in terms of
convergence, and in Sect. 8 conclusions and potential for future work are discussed.

2 Basic concepts

Definition 1 (Relaxation of Functions) Given a convex set Z ⊂ R
nz and a function h : Z →

R, a convex function hu : Z → R is a convex relaxation (or convex underestimator) of h on
Z if
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hu(z) ≤ h(z), ∀z ∈ Z

and a concave function ho : Z → R is a concave relaxation (or concave overestimator) of h
on Z if

ho(z) ≥ h(z), ∀z ∈ Z .

The convex envelope hu,env : Z → R of h on Z is a convex relaxation of h on Z such
that for any convex relaxation hu of h on Z

hu(z) ≤ hu,env(z), ∀z ∈ Z .

Similarly, the concave envelope ho,env : Z → R of h on Z is a concave relaxation of h on Z
such that for any concave relaxation ho of h on Z

ho,env(z) ≤ ho(z), ∀z ∈ Z .

Definition 2 (Diameter of a Set) Let Z ⊂ R
nz . The diameter of Z , denoted w(Z) is the

maximal distance between two points in Z

w(Z) = sup
z1,z2∈Z

‖z1 − z2‖,

where ‖ · ‖ is the Euclidean norm in R
nz .

Definition 3 (Lipschitz Continuous Function) A function f : Z → R is a Lipschitz contin-
uous function with Lipschitz constant M if, for any two points z1, z2 of Z , it follows that
| f (z1) − f (z2)| ≤ M‖z1 − z2‖, and M is the smallest value for which the inequality holds.

2.1 Interval extensions

Let IR denote the set of closed intervals of R. We define the Hausdorff metric between
intervals of IR as follows.

Definition 4 Let X = [
x L , xU

]
and Y = [

yL , yU
]

be two bounded intervals in IR. The
Hausdorff metric q(X, Y ) is given by:

q(X, Y ) ≡ max
{∣∣∣x L − yL

∣∣∣ ,
∣∣∣xU − yU

∣∣∣
}

.

The following is an equivalent definition of the Hausdorff metric between intervals (see,
e.g., [29]).

Proposition 1 Let X = [
x L , xU

]
and Y = [

yL , yU
]

be two bounded intervals in IR. The
Hausdorff metric q(X, Y ) is equal to

q(X, Y ) = max

{

sup
x∈X

inf
y∈Y

|x − y| , sup
y∈Y

inf
x∈X

|x − y|
}

. (1)

Definition 5 (Image and Inclusion Function) Consider a continuous function h : Z → R,
where Z is an nz-dimensional interval defined as

Z =
[
zL

1 , zU
1

]
× · · · ×

[
zL

nz
, zU

nz

]
=

[
zL , zU

]
.
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The image of Z under h is denoted by the scalar interval h̄(Z) = [
hL(Z), hU (Z)

]
. Consider

also an interval-valued function

H : Z → IR

Y 
→
[

H L(Y ), HU (Y )
]
.

H is an inclusion function for h on Z if the following relation holds
[
hL(Y ), hU (Y )

]
= h̄(Y ) ⊂ H(Y ) =

[
H L(Y ), HU (Y )

]
, ∀Y ∈ IR

nz : Y ⊂ Z .

The natural interval extension is an example of such an inclusion function [28,31]. The
tightness of inclusion functions can be quantified using the Hausdorff metric q(h̄(Z), H(Z)).
It is well-known that the natural interval extensions have first-order convergence rate (linear
convergence), while there are different methods, such as Taylor models (standard or opti-
mally-centered forms) with second-order convergence rate (quadratic convergence) [8]. The
latter schemes are typically more expensive to evaluate. To achieve convergence of the inclu-
sion function over the entire range of the function, subdivision can be employed. A formal
definition of convergence order is given in the following.

2.2 Convex relaxation

Many deterministic global optimization algorithms rely on the construction of convex relax-
ations. Given a nonlinear program involving nonconvex functions g : Z → R

m , with Z =
[zL , zU ] ⊂ R

n the goal is to construct a convex relaxation, i.e., a program with convex
constraints and a convex objective function, whose optimal objective value underestimates
the optimal solution value of the nonconvex NLP. Convex and concave envelopes or tight
relaxations are known for a variety of simple nonlinear terms [3,35,37] and these can be used
for the construction of convex and concave relaxations. Several methods have been proposed,
e.g, [4,16,24,35], which all rely on a few key ideas and elements. McCormick’s theorems [24]
enables the relaxation of factorable functions. Floudas and coworkers [1–6,9,18–23] have
proposed convex relaxations for twice continuously differentiable functions by the addition
of a simple, sufficiently negative function that is known to be convex.

3 Convergence rate of estimators

We are interested in studying the convergence of different convex and concave relaxations.
To do so, we formalize the concept of approximating functions on intervals.

Definition 6 Let Z ⊂ R
n be a nonempty convex set, and let f : Z → R be a continu-

ous function. Assume that, for every interval Y ∈ IR
n, Y ⊂ Z , we know two functions

f u
Y , f o

Y : Y → IR such that

1. the function f u
Y is a convex underestimator of f in Y ,

2. the function f o
Y is a concave overestimator of f in Y .

We call the set of functions
(

f u
Y , f o

Y

)
Y⊂Z a scheme of estimators of f in Z . We call such a

scheme continuous if f u
Y , f o

Y are continuous for all Y .

A scheme of estimators of a function f defines an inclusion function for f in a natural
way.
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Definition 7 Let Z ⊂ R
n be a nonempty convex set, and let f : Z → R be a continuous

function. Let
(

f u
Y , f o

Y

)
Y⊂Z be a scheme of estimators of f in Z . The inclusion function H f

associated to this scheme is as follows.

H f : Y ∈ IR
n, Y ⊂ Z → IR

H f (Y ) =
[

inf
z∈Y

f u
Y (z), sup

z∈Y
f o
Y (z)

]
.

We next define the order of Hausdorff convergence of an inclusion function (cf. [31]).

Definition 8 Let f : Z ⊂ R
n → R be a continuous function, and let H f be an inclusion

function of f on Z . The inclusion function H f has Hausdorff convergence of order β > 0
if there exists a constant τ > 0 such that, for any interval Y ∈ IR

n, Y ⊂ Z ,

q
(

f̄ (Y ), H f (Y )
) ≤ τw(Y )β .

Note that the constants τ and β depend on Z but not on the intervals Y . An equivalent
definition of order of Hausdorff convergence (also given in [31]) is the following.

Definition 9 Let f : Z ⊂ R
n → R be a continuous function, and let H f be an inclusion

function of f on Z . The inclusion function H f has Hausdorff convergence of order β > 0
if there exists a constant τ̂ > 0 such that, for any interval Y ∈ IR

n, Y ⊂ Z ,

w(H(Y )) − w( f̄ (Y )) ≤ τ̂w(Y )β .

We note that this second definition of Hausdorff convergence order appears with a typo
in recent articles [11,12,27].

We say that a scheme of estimators
(

f u
Y , f o

Y

)
of f has Hausdorff convergence of order β

when its associated inclusion function has Hausdorff convergence of order β. This notion of
convergence bounds the distance between the infima of f and f u

Y on Y and the suprema of
f and f o

Y on Y . However, it does not give much information about the difference of f with
f u
Y and f o

Y for given points in Y . We next introduce a stronger notion of convergence based
on the maximum difference of f with f u

Y and f o
Y on all points of Y .

Definition 10 Let f : Z ⊂ R
n → R be a continuous function. Let

(
f u
Y , f o

Y

)
Y⊂Z be a scheme

of estimators of f in Z . The scheme has pointwise convergence of order γ if there exists a
constant τ > 0 such that, for any interval Y ∈ IR

n, Y ⊂ Z ,

sup
z∈Y

| f (z) − f u
Y (z)| ≤ τw(Y )γ ,

and

sup
z∈Y

| f (z) − f o
Y (z)| ≤ τw(Y )γ .

In the rest of the paper we will analyze the behavior of schemes of estimators under these
two definitions of convergence (Definitions 8 and 10). The next theorem shows that pointwise
convergence is indeed stronger than Hausdorff convergence, that is, the inclusion function
associated with a scheme with pointwise convergence of a certain order has also Hausdorff
convergence of the same order.

Theorem 1 Let
(

f u
Y , f o

Y

)
Y⊂Z be a scheme of estimators of a continuous function f in Z. If

the scheme has pointwise convergence of order γ , its associated inclusion function H f has
Hausdorff convergence of order β ≥ γ .
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Proof Let τ > 0 be the constant of Definition 10. Let Y be an interval of Z . Let z∗
Y ∈ Y and

ẑ∗
Y ∈ Y be points where f and f u

Y attain their minimum in Y respectively.
Since f attains its minimum at z∗

Y

f
(
z∗

Y

) ≤ f
(
ẑ∗

Y

)
,

and therefore

inf f (Y ) − inf f u(Y ) = f
(
z∗

Y

) − f u (
ẑ∗

Y

) ≤ f
(
ẑ∗

Y

) − f u (
ẑ∗

Y

)
.

The scheme has pointwise convergence of order γ . Therefore, by Definition 10,

f
(
ẑ∗

Y

) − f u (
ẑ∗

Y

) ≤ τw(Y )γ .

Combining the last two inequalities we obtain

inf f (Y ) − inf f u(Y ) ≤ τw(Y )γ .

Note also that 0 ≤ inf f (Y ) − inf f u(Y ) since f u underestimates f . Then,

0 ≤ inf f (Y ) − inf f u(Y ) ≤ τw(Y )γ .

A similar argument shows that 0 ≤ sup f o(Y ) − sup f (Y ) ≤ τw(Y )γ , and thus H f has
at least Hausdorff convergence of order β = γ . �


On the other hand, pointwise convergence is more restrictive than Hausdorff convergence:
a scheme of estimators of a smooth, nonlinear function, cannot have pointwise convergence
of order greater than two over the whole domain of the function. The reason is that, for
a smooth function, pointwise convergence of order greater than two implies that both the
convex underestimator and the concave overestimator must have the same curvature as the
function, and that is not possible if the function has nonzero curvature. The next theorem
formalizes this argument. Note also the minimal convergence order of envelopes for smooth
functions, Theorem 10.

Theorem 2 Let Z ⊂ R
n be a nonempty open interval, and let f : Z → R be a nonlinear,

C2 function. Let
(

f u
Y , f o

Y

)
Y⊂Z be a scheme of estimators of f in Z. Then, the pointwise

convergence order of the scheme is at most 2.

Proof Recall that the Hessian H of f is given by
(

∂2 f
∂xi ∂x j

)

1≤i, j≤n
. Since f is a nonlin-

ear C2 function, there exists a point x0 ∈ Z such that the Hessian of f evaluated at
x0 is nonzero: H(x0) �= 0. In particular, there exists a vector v such that vT H(x0)v =
∑

1≤i, j≤n
∂2 f

∂xi ∂x j

∣∣∣
x0

viv j �= 0. Without loss of generality, we can assume that ‖v‖ = 1.

Let us assume that vT H(x0)v > 0; the proof for the negative case is similar and thus
omitted. Since f is C2, there exists an interval Z ′ ⊂ Z such that x0 ∈ Z ′, and so that
M := infy∈Z ′ vT H(y)v > 0.

Let x be the function

x : R → R
n,

x(t) = x0 + tv.

Let I ⊂ R be an interval containing 0, and small enough so that the image of I under x is
contained in Z ′. By applying the Taylor theorem of order 1 to the composite function f ◦ x,
for any t ∈ I the following equality holds

f (x(t)) = f (x0) + ∇ f (x0)tv + 1

2
t2vT H(x(ξt ))v, for some ξt ∈ (0, t).
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For any t ∈ I , the point x(ξt ) belongs to Z ′. Therefore, the following inequality holds.

f (x(t)) = f (x0) + ∇ f (x0)tv + 1

2
t2vT H(x(ξt ))v ≥ f (x0) + ∇ f (x0)tv + 1

2
t2 M. (2)

Let ε > 0 be small enough such that

Yε := {y ∈ R
n : ‖y − x0‖∞ ≤ ε} ⊂ Z ′, and

[−ε, ε] ⊂ I.

By definition, w(Yε) = 2ε, and the values x(t) = x0 + tv belong to Yε for any t ∈ [−ε, ε].
The function f o

Yε
of the scheme

(
f u
Y , f o

Y

)
Y⊂Z is a concave overestimator of f on Yε; in

particular, the following inequalities hold.

f o
Yε

(x(−ε)) ≥ f (x(−ε)) ≥ f (x0) − ε∇ f (x0)v + 1

2
ε2 M, and

f o
Yε

(x(ε)) ≥ f (x(ε)) ≥ f (x0) + ε∇ f (x0)v + 1

2
ε2 M.

Combining these two inequalities, and since f o
Yε

is concave, the following inequalities hold.

f o
Yε

(x0) = f o
Yε

(x(0)) ≥ f o
Yε

(x(−ε)) + f o
Yε

(x(ε))

2
≥ f (x0) + 1

2
ε2 M.

In other words, for any ε > 0 such that [−ε, ε] ⊂ I ,

sup
y∈Yε

| f o
Yε

(y) − f (y)| ≥ | f o
Yε

(x0) − f (x0) | ≥ 1

2
ε2 M = M

w(Yε)
2

8
.

Since this inequality holds for any small enough ε > 0, the pointwise convergence of the
scheme

(
f u
Y , f o

Y

)
Y⊂Z is at most quadratic. �


As the previous theorem shows, a smooth, nonlinear function cannot be approximated
over its domain of definition by a scheme with pointwise convergence greater than two.
However, this result does not rule out the existence of schemes with better than quadratic
convergence on particular points of the domain. For example, the function f : [−1, 1] →
R, f (z) = z4 is smooth, nonlinear, and can be approximated by a scheme

(
f u
Y , f o

Y

)
Y⊂[−1,1]

defined as follows. For each interval Y = [zL , zU ] ⊂ [−1, 1], let f u
Y (z) = f (z), and let

f o
Y (z) = max

{
f (Y L), f (Y U )

}
. This scheme has convergence of order four on the origin

(which is also the minimizer of f on [−1, 1]). However, at the point z = 1, the convergence
order is not fourth order, as can be seen by the interval [1 − ε, 1].

4 McCormick relaxations

McCormick [24,25], introduced a method to generate convex underestimators and concave
overestimators of factorable functions. In this section, we restate this method in terms of
schemes of estimators and study its convergence rate. Note that in deviation of the original
proposal we do not require the envelopes of the factors.

4.1 Relaxation of sum of two functions

We state McCormick’s relaxation of the sum of two functions in terms of scheme of estimators.
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Proposition 2 (Relaxation of Sum) Let Z ⊂ R
n be a nonempty convex set, and let g1, g2, g :

Z → R be functions so that g(z) = g1(z)+ g2(z). Let (gu
1,Y , go

1,Y )Y⊂Z and (gu
2,Y , go

2,Y )Y⊂Z

be schemes of estimators of g1 and g2 respectively in Z. For each interval Y ⊆ Z, let
gu

Y , go
Y : Y → R be the functions gu

Y (z) = gu
1,Y (z)+ gu

2,Y (z) and go
Y (z) = go

1,Y (z)+ go
2,Y (z).

Then,
(
gu

Y , go
Y

)
Y⊂Z is a scheme of estimators of g on Z.

Having schemes of estimators of g1 and g2 with Hausdorff convergence order β does not
imply that the McCormick relaxation scheme for addition has the same convergence order,
as the next example shows.

Example 1 Let Z = [−1, 1], and let g1(z) = z, g2(z) = −z, and g(z) = g1(z)+g2(z) ≡ 0.
For each interval Y = [

zL
Y , zU

Y

] ⊂ Z , let gu
1,Y (z) = zL

Y and let go
1,Y (z) = zU

Y . Then,
(gu

1,Y , go
1,Y )Y⊂Z is a scheme of estimators of g1 of arbitrarily high Hausdorff convergence

order. Similarly, for each interval Y = [zL
Y , zU

Y ] ⊂ Z , let gu
2,Y (z) = −zU

Y and let go
2,Y (z) =

−zL
Y . The scheme (gu

2,Y , go
2,Y )Y⊂Z of estimators of g2 also has arbitrarily high Hausdorff

convergence order. For each interval Y = [−ε, ε] ⊂ Z , the corresponding McCormick’s
estimators gu

Y and go
Y of g are as follows:

gu
Y (z) = gu

1,Y (z) + gu
2,Y (z) = −ε − ε = −2ε,

and

go
Y (z) = go

1,Y (z) + go
2,Y (z) = ε + ε = 2ε.

Note that the Hausdorff distance between ḡ(Y ) = [0, 0] and Hg(Y ) = [(gu
Y

)L
(Y ),

(
go

Y

)U
(Y )] = [−2ε, 2ε] is q(ḡ(Y ), Hg(Y )) = 2ε = w(Y ). In other words, the measure of

the error between ḡ(Y ) and Hg(Y ) is linear on w(Y ). Since this relationship holds for any
0 < ε < 1, it then follows that the Hausdorff convergence order of

(
gu

Y , go
Y

)
Y⊂Z is at most

linear in this example.

On the other hand, the McCormick sum estimator preserves pointwise convergence order,
as the following Theorem shows.

Theorem 3 Let Z ⊂ R
n be a nonempty convex set, and let g1, g2, g : Z → R be func-

tions so that g(z) = g1(z) + g2(z). Let (gu
1,Y , go

1,Y )Y⊂Z and (gu
2,Y , go

2,Y )Y⊂Z be schemes
of estimators of g1 and g2 respectively in Z and assume that the schemes have pointwise
convergence of order γ1, γ2 > 0 respectively. Then, the scheme (gu

Y , go
Y )Y⊂Z of estimators

of g on Z constructed from (gu
1,Y , go

1,Y ) and (gu
2,Y , go

2,Y ) as in Proposition 2 has pointwise
convergence of order min{γ1, γ2}.
Proof Let Y ⊂ Z be an interval, and let z be a point of Y . Using the triangle inequality, we
can bound the distance between g(z) and gu

Y (z) as follows.
∣∣g(z) − gu

Y (z)
∣∣ = ∣∣(g1(z) + g2(z)) − (

gu
1,Y (z) + gu

2,Y (z)
)∣∣

≤ ∣∣g1(z) − gu
1,Y (z)

∣∣ + ∣∣g2(z) − gu
2,Y (z)

∣∣

≤ τg1w(Y )γ1 + τg2w(Y )γ2 ,

for two constants τg1 and τg2 that do not depend on z or Y .
Consider now γ = min {γ1, γ2} and two constants τ̂g1 = τg1 max

{
1, w(Z)γ1−γ

}
and

τ̂g2 = τg2 max
{
1, w(Z)γ2−γ

}
. We obtain directly

τg1w(Y )γ1 ≤ τ̂g1w(Y )γ and τg2w(Y )γ2 ≤ τ̂g2w(Y )γ ,
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and thus
∣
∣g(z) − gu

Y (z)
∣
∣ ≤ τ̂g1w(Y )γ + τ̂g2w(Y )γ = (

τ̂g1 + τ̂g2

)
w(Y )γ .

A similar bound holds for the distance between g(z) and go
Y (z); since τ̂g1 + τ̂g2 does not

depend on z or Y , it then follows that the scheme
(
gu

Y , go
Y

)
Y⊂Z has pointwise convergence

of order γ . �


4.2 Relaxation of product of two functions

We state McCormick’s relaxation of the product of two functions in terms of scheme of
estimators, see also [7,32].

Proposition 3 (Relaxation of Products) [24,26] Let Z ⊂ R
n be a nonempty convex set,

and let g1, g2 : Z → R be two continuous functions. Let (gu
1,Y , go

1,Y) and (gu
2,Y , go

2,Y)

be schemes of estimators of g1 and g2 respectively in Z. For each interval Y ⊆ Z, let
gL

1,Y , gU
1,Y , gL

2,Y , gU
2,Y ∈ R such that

gL
1,Y ≤ g1(z) ≤ gU

1,Y , ∀z ∈ Y,

gL
2,Y ≤ g2(z) ≤ gU

2,Y , ∀z ∈ Y.

Consider the following intermediate functions ga1,Y , ga2,Y , gb1,Y , gb2,Y , gc1,Y , gc2,Y , gd1,Y ,

gd2,Y : Y → R,

ga1,Y (z) = min
{

gL
2,Y gu

1,Y (z), gL
2,Y go

1,Y (z)
}

, ga2,Y (z) = min
{

gL
1,Y gu

2,Y (z), gL
1,Y go

2,Y (z)
}

gb1,Y (z) = min
{

gU
2,Y gu

1,Y (z), gU
2,Y go

1,Y (z)
}

, gb2,Y (z) = min
{

gU
1,Y gu

2,Y (z), gU
1,Y go

2,Y (z)
}

gc1,Y (z) = max
{

gL
2,Y gu

1,Y (z), gL
2,Y go

1,Y (z)
}

, gc2,Y (z) = max
{

gU
1,Y gu

2,Y (z), gU
1,Y go

2,Y (z)
}

gd1,Y (z) = max
{

gU
2,Y gu

1,Y (z), gU
2,Y go

1,Y (z)
}

, gd2,Y (z) = max
{

gL
1,Y gu

2,Y (z), gL
1,Y go

2,Y (z)
}

.

Then, ga1,Y , ga2,Y , gb1,Y and gb2,Y are convex on Y while gc1,Y , gc2,Y , gd1,Y and gd2,Y are
concave on Y . Moreover, gu

Y , go
Y : Y → R such that

gu
Y (z) = max

{
ga1,Y (z) + ga2,Y (z) − gL

1,Y gL
2,Y , gb1,Y (z) + gb2,Y (z) − gU

1,Y gU
2,Y

}
,

go
Y (z) = min

{
gc1,Y (z) + gc2,Y (z) − gU

1,Y gL
2,Y , gd1,Y (z) + gd2,Y (z) − gL

1,Y gU
2,Y

}
,

are respectively a convex and concave relaxation of g1g2 on Y . In other words,
(
gu

Y , go
Y

)
Y⊂Z

is a scheme of estimators of g1g2 on Z.

Having schemes of estimators of g1 and g2 with Hausdorff convergence of order β1, β2

does not guarantee that the relaxation of the product has the same convergence order. In
fact, it may not have better than linear convergence. The next example is an extreme case
for the product rule: in it, g1 and g2 are such that their minima and maxima on an interval
Y centered at 0 are attained at the extreme points of the interval, but the maximum of the
product is obtained at 0. The schemes that approximate g1 and g2 are chosen so that they
have arbitrarily high convergence order, but they do not approximate well points other than
the minima and maxima of g1 and g2, and in particular they do a poor job at 0, where the
maximum of g1g2 is attained. In Proposition 4, we show that, in this particular example, the
scheme of McCormick’s product rule has Hausdorff convergence order at most linear.
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Example 2 Let Z be the interval [−1, 1]. Let g1, g2, g : [−1, 1] → R be the functions
g1(z) = 1 + z, g2(z) = 1 − z, and g(z) = g1(z)g2(z) = (1 + z)(1 − z) = 1 − z2. For each
interval Y = [zL

Y , zU
Y ] ⊂ [−1, 1], let gu

1,Y , go
1,Y , gu

2,Y , go
2,Y : Y → R be the functions

gu
1,Y (z) = 1 + zL

Y , go
1,Y (z) = 1 + zU

Y ,

gu
2,Y (z) = 1 − zU

Y , go
2,Y (z) = 1 − zL

Y .

We note that, since g1 and g2 are linear functions, we could have taken gu
1,Y (z) = go

1,Y (z) =
g1(z) and gu

2,Y (z) = go
2,Y (z) = g2(z); instead, we chose an extreme case of bad relaxations.

Similarly, for each interval Y = [zL
Y , zU

Y ] ⊂ [−1, 1], let gL
1,Y , gU

1,Y (gL
2,Y , gU

2,Y ) be the
minimum and maximum values of g1 (g2) in Y , namely,

gL
1,Y = gL

1 (Y ) = 1 + zL
Y , gU

1,Y = gU
1 (Y ) = 1 + zU

Y ,

gL
2,Y = gL

2 (Y ) = 1 − zU
Y , gU

2,Y = gU
2 (Y ) = 1 − zL

Y . (3)

We next prove that, for this example, the McCormick scheme for the product g1g2 obtained
from the functions gu

1,Y , go
1,Y , gu

2,Y , go
2,Y and the bounds gL

1,Y , gU
1,Y , gL

2,Y , gU
2,Y has Hausdorff

convergence order at most linear.

Proposition 4 In Example 2, gL
1,Y , gU

1,Y , gL
2,Y , gU

2,Y , the lower and upper bounds of g1 and
g2, define the following inclusion functions of g1 and g2:

H1, H2 : Y ∈ IR
n, Y ⊂ [−1, 1] → IR

H1(Y ) =
[
gL

1,Y , gU
1,Y

]
,

H2(Y ) =
[
gL

2,Y , gU
2,Y

]
.

These inclusion functions are also the ones associated with the scheme of estimators
(gu

1,Y , go
1,Y)Y⊂[−1,1] and (gu

2,Y , go
2,Y)Y⊂[−1,1] of g1 and g2 respectively. These inclusion

functions have Hausdorff convergence of order β1, β2, with β1, β2 arbitrarily high. Let(
gu

Y , go
Y

)
Y⊂[−1,1] be the scheme of estimators of g(z) = g1(z)g2(z) defined accord-

ing to McCormick’s relaxation of products. The inclusion function Hg associated with(
gu

Y , go
Y

)
Y⊂[−1,1] has at most linear Hausdorff convergence.

Proof Since for each interval Y ⊆ [−1, 1], the intervals H1(Y ), H2(Y ) are equal to
[gL

1,Y , gU
1,Y ] and [gL

2,Y , gU
2,Y ] respectively, it follows that the inclusion functions H1(Y ), H2(Y )

have essentially Hausdorff convergence of order infinity.
On the other hand, to show that the Hausdorff convergence order of Hg is at most one, it is

enough to analyze what happens on intervals centered at 0. Let Y = [−ε, ε] ⊂ [−1, 1] be such
an interval. For this interval, the functions gu

1,Y , go
1,Y , gu

2,Y , go
2,Y , and gL

1,Y , gU
1,Y , gL

2,Y , gU
2,Y ,

the lower and upper bounds of g1 and g2, are equal to
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gu
1,Y (z) = gL

1,Y = 1 − ε, go
1,Y (z) = gU

1,Y = 1 + ε,

gu
2,Y (z) = gL

2,Y = 1 − ε, go
2,Y (z) = gU

2,Y = 1 + ε.

We note that the z-dependence of the functions gu
1,Y , go

1,Y , gu
2,Y , go

2,Y is lost due to the chosen
relaxations.

The corresponding intermediate functions ga1,Y , ga2,Y , gb1,Y , gb2,Y , gc1,Y , gc2,Y , gd1,Y ,

gd2,Y : Y → R of Proposition 3 are equal to

ga1,Y (z) = min {(1 − ε)(1 − ε), (1 − ε)(1 + ε)} = (1 − ε)2,

ga2,Y (z) = min {(1 − ε)(1 − ε), (1 − ε)(1 + ε)} = (1 − ε)2,

gb1,Y (z) = min {(1 + ε)(1 − ε), (1 + ε)(1 + ε)} = 1 − ε2,

gb2,Y (z) = min {(1 + ε)(1 − ε), (1 + ε)(1 + ε)} = 1 − ε2,

gc1,Y (z) = max {(1 − ε)(1 − ε), (1 − ε)(1 + ε)} = 1 − ε2,

gc2,Y (z) = max {(1 + ε)(1 − ε), (1 + ε)(1 + ε)} = (1 + ε)2,

gd1,Y (z) = max {(1 + ε)(1 − ε), (1 + ε)(1 + ε)} = (1 + ε)2,

gd2,Y (z) = max {(1 − ε)(1 − ε), (1 − ε)(1 + ε)} = 1 − ε2.

Again, these functions are constant because of the chosen relaxations. Then, the convex and
concave relaxations of g on Y are as follows:

gu
Y (z) = max

{
(1 − ε)2 + (1 − ε)2 − (1 − ε)2, (1 − ε2) + (1 − ε2) − (1 + ε)2}

= max
{
1 − 2ε + ε2, 1 − 2ε − 3ε2} = 1 − 2ε + ε2,

go
Y (z) = min

{
(1 − ε2)+(1+ε)2−(1+ε)(1 − ε), (1 − ε2) + (1 + ε)2 − (1 − ε)(1 + ε)

}

= min
{
(1 + ε)2, (1 + ε)2} = (1 + ε)2.

The inclusion function Hg = [inf gu
Y (Y ), sup go

Y (Y )] evaluated on Y = [−ε, ε] is equal
to

[
1 − 2ε + ε2, 1 + 2ε + ε2

]
. The interval ḡ([−ε, ε]) is equal to [1 − ε2, 1], and so

q
(
ḡ([−ε, ε]), Hg([−ε, ε])) = max

{
(1 − ε2) − (1 − 2ε + ε2), (1 + 2ε + ε2) − 1

}

= max
{
2ε − 2ε2, 2ε + 2ε2} ≥ 2ε = w(Y ).

In other words, the measure of the error between ḡ and Hg on intervals Y = [−ε, ε] is at
least the size of Y . Since this lower bound on the error holds for any 0 ≤ ε ≤ 1, the inclusion
function Hg has linear Hausdorff convergence at best. �


In the example just analyzed, the relaxation functions gu
1 , go

1 , gu
2 , go

2 do not satisfy point-
wise convergence, and that causes the loss of the convergence rate. In the next theorem we
show a positive convergence result of the relaxation of products with pointwise convergence.
If the schemes of estimators (gu

1,Y , go
1,Y ), (gu

2,Y , go
2,Y ) of g1 and g2 respectively have point-

wise convergence of order γ1, γ2 ≥ 1 respectively, and if the schemes of constant estimators
(gL

1,Y , gU
1,Y ), (gL

2,Y , gU
2,Y ) converge to g1 and g2 respectively with order β1 ≥ 1 and β2 ≥ 1,

then
(
gu

Y , go
Y

)
, the scheme of estimators of g1g2 constructed on Proposition 3 has pointwise

convergence of order γ = min{γ1, γ2, 2}. This result has some loss of the convergence rate;
even if the pointwise convergence of (gu

1,Y , go
1,Y ), (gu

2,Y , go
2,Y ) is greater than 2, the pointwise

convergence order of the product scheme is quadratic. In Example 4 we will show that.
Because of Theorem 1, under the hypothesis of the following theorem, the convergence

of the product scheme in the Hausdorff metric (in the sense of Definition 8) is of order
β = γ = min{γ1, γ2, 2} too, even when the image estimates have convergence order 1. In
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other words, the product scheme can improve on the convergence order of the estimates if
the schemes for the factors have high pointwise convergence order.

We first prove a Lemma that bounds the size of the range of a Lipschitz continuous
function.

Lemma 1 Let f : Z ⊂ R
n → R be a Lipschitz continuous function with Lipschitz constant

M ∈ R. Let Y be a subset of Z. Then,

w( f̄ (Y )) ≤ Mw(Y ).

Proof By definition of the Lipschitz constant we obtain for any y1, y2 ∈ Y

| f (y1) − f (y0)| ≤ M‖y1 − y0‖
and since ‖y1 − y0‖ ≤ w(Y ) we also have | f (y1) − f (y0)| ≤ Mw(Y ). It then follows that

w
(

f̄ (Y )
) = sup

y0,y1∈Y
| f (y1) − f (y0)| ≤ Mw(Y ).

�


Theorem 4 Let Z ⊂ R
n be a nonempty convex set, and let g1, g2 : Z → R be

two Lipschitz continuous functions with Lipschitz constants M1 and M2 respectively. Let
(gu

1,Y , go
1,Y )Y⊂Z and (gu

2,Y , go
2,Y )Y⊂Z be schemes of estimators of g1 and g2 respectively in

Z. Let (gL
1,Y , gU

1,Y )Y⊂Z and (gL
2,Y , gU

2,Y )Y⊂Z be schemes of constant estimators of g1 and
g2 respectively in Z. Assume that (gu

1,Y , go
1,Y )Y⊂Z and (gu

2,Y , go
2,Y )Y⊂Z have pointwise con-

vergence of order γ1, γ2 ≥ 1 respectively. Furthermore, assume that (gL
1,Y , gU

1,Y )Y⊂Z and

(gL
2,Y , gU

2,Y )Y⊂Z have convergence of order at least 1. Let
(
gu

Y , go
Y

)
Y⊂Z be the scheme of

estimators of g1g2 constructed in Proposition 3. Then, the scheme
(
gu

Y , go
Y

)
Y⊂Z has also

pointwise convergence of order min{γ1, γ2, 2}.

Proof Let Y ⊆ Z be an interval. We will show that, for any z ∈ Y , the distance between
g1(z)g2(z) and ga1,Y (z)+ga2,Y (z)−gL

1,Y gL
2,Y is at most C0w(Y )2 +C1w(Y )γ1 +C2w(Y )γ2

for constants C0, C1, C2 > 0 that do not depend on Y . We note that such a bound can be
further estimated as Cw(Y )min{γ1,γ2,2} for a constant C that does not depend on Y . Since gu

Y
underestimates g1g2, and since by definition gu

Y is at least ga1,Y (z) + ga2,Y (z) − gL
1,Y gL

2,Y ,
it will then follow that

|g1(z)g2(z) − gu
Y (z)| ≤

∣∣∣g1(z)g2(z) −
(

ga1,Y (z) + ga2,Y (z) − gL
1,Y gL

2,Y

)∣∣∣

≤ C0w(Y )2 + C1w(Y )γ1 + C2w(Y )γ2 . (4)

In order to bound
∣∣∣g1(z)g2(z) −

(
ga1,Y (z) + ga2,Y (z) − gL

1,Y gL
2,Y

)∣∣∣, it is convenient to

rewrite g1(z)g2(z) as follows.

g1(z)g2(z) =
(

g1(z) − gL
1,Y

) (
g2(z) − gL

2,Y

)
+ gL

1,Y g2(z) + gL
2,Y g1(z) − gL

1,Y gL
2,Y .

Then, the distance between g1(z)g2(z) and (ga1,Y (z) + ga2,Y (z) − gL
1,Y gL

2,Y ) satisfies the
following inequalities.
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∣
∣∣g1(z)g2(z) −

(
ga1,Y (z) + ga2,Y (z) − gL

1,Y gL
2,Y

)∣
∣∣

=
∣
∣
∣
(

g1(z) − gL
1,Y

) (
g2(z) − gL

2,Y

)
+

(
gL

1,Y g2(z) − ga2,Y (z)
)

+
(

gL
2,Y g1(z) − ga1,Y (z)

)∣
∣
∣

≤
∣
∣
∣
(

g1(z) − gL
1,Y

) (
g2(z) − gL

2,Y

)∣
∣
∣ +

∣
∣
∣gL

1,Y g2(z) − ga2,Y (z)
∣
∣
∣ +

∣
∣
∣gL

2,Y g1(z) − ga1,Y (z)
∣
∣
∣ .

(5)

We next bound the three terms of the right hand side of Inequality (5).

We claim that the term
∣
∣
∣(g1(z) − gL

1,Y )(g2(z) − gL
2,Y )

∣
∣
∣ is at most C0w(Y )2 for a constant

C0 > 0 that does not depend on Y . Let gL
1 (Y ) = inf g1(Y ). Since g1 is a Lipschitz function

with Lipschitz constant M1, the following bound holds: ‖g1(z) − gL
1 (Y )‖ ≤ w(ḡ1(Y )) ≤

M1w(Y ) (Lemma 1). Moreover, since (gL
1,Y , gU

1,Y ) converges to g1 with order 1, the
following inequalities hold:

∣
∣
∣g1(z) − gL

1,Y

∣
∣
∣ =

∣
∣
∣(g1(z) − gL

1 (Y )) +
(

gL
1 (Y ) − gL

1,Y

)∣
∣
∣

≤
∣
∣
∣g1(z) − gL

1 (Y )

∣
∣
∣ +

∣
∣
∣gL

1 (Y ) − gL
1,Y

∣
∣
∣

≤ M1w(Y ) + τ1w(Y ) = (M1 + τ1)w(Y ), (6)

where M1 > 0 and τ1 > 0 do not depend on Y . Similarly,
∣∣∣g2(z) − gL

2,Y

∣∣∣ ≤ (M2 + τ2)w(Y )

for constants M2 > 0 and τ2 > 0. Therefore, the first term of the right hand side of Inequality
(5) has second order, namely,

∣∣∣
(

g1(z) − gL
1,Y

) (
g2(z) − gL

2,Y

)∣∣∣ ≤ (M1 + τ1)(M2 + τ2)w(Y )2 = C0w(Y )2. (7)

We next bound
∣∣∣gL

1,Y g2(z) − ga2,Y (z)
∣∣∣. We note that, by definition, the function ga2,Y (z) is

either gL
1,Y gu

2,Y (z) or gL
1,Y go

2,Y (z). In either case, we can bound
∣∣∣gL

1,Y g2(z) − ga2,Y (z)
∣∣∣ as

follows.
∣∣∣gL

1,Y g2(z) − ga2,Y (z)
∣∣∣ ≤ |gL

1,Y | max
{|g2(z) − gu

2,Y (z)|, |g2(z) − go
2,Y (z)|} . (8)

Since the scheme of constants (gL
1,Y , gU

1,Y ) converges to g1 with order at least 1, the value

|gL
1,Y | is at most ‖g1‖∞ + τ1w(Y ) ≤ ‖g1‖∞ + τ1w(Z). We remark that this bound does not

depend on Y or on z.
Since the scheme (gu

2,Y , go
2,Y ) converges to g2 pointwise with order γ2, the term

max
{
|g2(z) − gu

2,Y (z)|, |g2(z) − go
2,Y (z)|

}
is at most τ̂2w(Y )γ2 . Combining these bounds

with Inequality (8), we have that
∣∣∣gL

1,Y g2(z) − ga2,Y (z)
∣∣∣ ≤ C2w(Y )γ2 , (9)

for a constant C2 > 0 that does not depend on Y . A similar bound holds for∣∣∣
(

gL
2,Y g1(z) − ga1,Y (z)

)∣∣∣, the third term of the right hand side of Inequality (5):

∣∣∣gL
2,Y g1(z) − ga1,Y (z)

∣∣∣ ≤ C1w(Y )γ1 . (10)

Combining Eqs. 5, 7, 9, and 10, we proved that the distance between g1(z)g2(z)
and ga1,Y (z) + ga2,Y (z) − gL

1,Y gL
2,Y is at most C0w(Y )2 + C1w(Y )γ1 + C2w(Y )γ2 ≤

Cw(Y )min{γ1,γ2,2} for a constant C > 0 that does not depend on the point z ∈ Y or Y
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itself. By Inequality (4), this also implies that the distance between g1(z)g2(z) and gu
Y (z) is

at most Cw(Y )min{γ1,γ2,2}.
A similar argument shows that the distance between g1(z)g2(z) and go

Y (z) is at most
C ′w(Y )min{γ1,γ2,2} for a constant C ′ > 0 that does not depend on the point z ∈ Y
or Y itself, and therefore, the scheme

(
gu

Y , go
Y

)
converges to g1g2 pointwise with order

min{γ1, γ2, 2}. �

The next two examples show that the bounds on the convergence order in Theorem 4 are

sharp, i.e., the pointwise convergence order of a product may be as low as min{γ1, γ2, 2}.
Example 3 shows that the convergence order of the relaxations to a product function are
determined by the function with the weaker relaxations, i.e., the relaxations with lower con-
vergence order.

Example 3 Let Z be the interval [0, 1]. Let g1 : [0, 1] → R be the constant function
g1(z) = 1. For each interval Y = [

zL
Y , zU

Y

] ⊂ [0, 1], let gu
1,Y , go

1,Y : Y → R be a con-
vex (concave) underestimator (overestimator) of g1 defined as

∀z ∈ Y : gu
1,Y (z) = go

1,Y (z) = 1.

For each interval Y = [
zL

Y , zU
Y

] ⊂ [0, 1], let gL
1,Y , gU

1,Y ∈ R be 1.

Let g2 : [0, 1] → R be the function g2(z) = z. For each interval Y = [
zL

Y , zU
Y

] ⊂ [0, 1],
let gu

2,Y , go
2,Y : Y → R be a convex (concave) underestimator (overestimator) of g2 defined as

gu
2,Y (z) = zL

Y , go
2,Y (z) = zU

Y .

For each interval Y = [
zL

Y , zU
Y

] ⊂ [0, 1], let gL
2,Y , gU

2,Y ∈ R be gL
2,Y = zL

Y , gU
2,Y = zU

Y .

The function g1 and the functions of the scheme (gu
1,Y , go

1,Y )Y⊂Z are all equal to 1, so the
scheme (gu

1,Y , go
1,Y )Y⊂Z has pointwise convergence order γ1 arbitrarily high. The bounds of

(gL
1,Y , gU

1,Y )Y⊂Z are also equal to 1, and therefore the corresponding scheme has convergence
arbitrarily high.

On the other hand, the scheme (gu
2,Y , go

2,Y )Y⊂Z has pointwise convergence γ2 = 1, since,

for each Y = [zL
Y , zU

Y ] ⊂ Z :

sup
z∈Y

∣∣g2(z) − gu
2,Y

∣∣ =
∣∣∣zU

Y − zL
Y

∣∣∣ = w(Y ),

sup
z∈Y

∣∣g2(z) − go
2,Y

∣∣ =
∣∣∣zL

Y − zU
Y

∣∣∣ = w(Y ).

The product function g(z) = g1(z)g2(z) is equal to g(z) = z. By Proposition 3 (McCormick’s
relaxation of product), it follows that, for each interval Y ⊂ Z , the resulting approximation
functions gu

Y , go
Y (z) are equal to gu

Y (z) = gL
2,Y and go

Y (z) = gU
2,Y respectively. In other

words, the function g is equal to g2, and the product scheme
(
gu

Y , go
Y

)
Y⊂Z is the scheme

(gu
2,Y , go

2,Y )Y⊂Z which has linear pointwise convergence.

In the next example the pointwise convergence of McCormick’s product scheme is qua-
dratic although the estimation schemes for the composing functions are exact. Recall that by
Theorem 4 the scheme of estimators for smooth nonlinear functions have at most quadratic
pointwise convergence.

Example 4 Let Z be the interval [−1, 1]. Let g1, g2, g : [−1, 1] → R be the functions
g1(z) = g2(z) = z, and g(z) = g1(z)g2(z) = z2. For each interval Y = [

zL
Y , zU

Y

] ⊂ [−1, 1],
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let gu
1,Y , go

1,Y , gu
2,Y , go

2,Y : Y → R be convex (concave) underestimators (overestimators) of
g1 and g2

gu
1,Y (z) = go

1,Y (z) = gu
2,Y (z) = go

2,Y (z) = z.

Similarly, for each interval Y = [
zL

Y , zU
Y

] ⊂ [−1, 1], let gL
1,Y , gU

1,Y

(
gL

2,Y , gU
2,Y

)
be the

lower and upper bounds respectively, of g1 (g2) in Y , namely,

gL
1,Y = zL

Y , gU
1,Y = zU

Y , gL
2,Y = zL

Y , gU
2,Y = zU

Y .

The estimators gu
1,Y , go

1,Y , gu
2,Y , go

2,Y are equal to g1, g2, the functions they estimate. Then,
the schemes of estimators (gu

1,Y , go
1,Y ) and (gu

2,Y , go
2,Y ) converge to g1 and g2 pointwise with

order γ1 and γ2, for any γ1, γ2 > 0. For any interval Y ⊂ Z , the lower and upper bounds
gL

1,Y , gU
1,Y , gL

2,Y , gU
2,Y agree with the minima and maxima of g1 and g2 on Y .

We will show that the scheme of estimators of Proposition 3 converge to g pointwise with
convergence order at most quadratic. To show this, it is enough to prove a quadratic lower
bound of the distance between g and gU

1,Y on intervals centered at the origin.
Let Y = [−ε, ε] be an interval of Z . For this interval, the intermediate functions

ga1,Y , ga2,Y , gb1,Y , gb2,Y of Proposition 3 are equal to

ga1,Y (z) = min
{

gL
2,Y gu

1,Y (z), gL
2,Y go

1,Y (z)
}

= min {−εz,−εz} = −εz,

ga2,Y (z) = min
{

gL
1,Y gu

2,Y (z), gL
1,Y go

2,Y (z)
}

= min {−εz,−εz} = −εz,

gb1,Y (z) = min
{

gU
2,Y gu

1,Y (z), gU
2,Y go

1,Y (z)
}

= min {εz, εz} = εz,

gb2,Y (z) = min
{

gU
1,Y gu

2,Y (z), gU
1,Y go

2,Y (z)
}

= min {εz, εz} = εz. (11)

The convex underestimator of g in Y of Proposition 3 is equal to

gu
Y (z) = max

{
ga1,Y (z) + ga2,Y (z) − gL

1,Y gL
2,Y , gb1,Y (z) + gb2,Y (z) − gU

1,Y gU
2,Y

}

= max
{−2εz − ε2, 2εz − ε2} .

The value of the underestimator function on the origin is gu
Y (0) = −ε2. Since g(0) = 0, it

then follows that the pointwise convergence of gu
Y to g is at most quadratic on the size of Y :

sup
z∈Y

|g(z) − gu
Y (z)| ≥ |g(0) − gu

Y (0)| = ε2 = w(Y )2

4
.

4.3 McCormick’s relaxation of composition of functions

McCormick [24,25] provided a relaxation result for composition of functions. In what fol-
lows, we use the following function: given three numbers a ≤ b ≤ c ∈ R, we define
mid{a, b, c} = b.

Theorem 5 (McCormick’s Composition Theorem) [24,26]. Let Z ⊂ R
n and X ⊂ R be two

nonempty convex sets. Consider the composite function g = F ◦ f where f : Z → R is con-
tinuous, F : X → R, and let f (Z) ⊂ X. Suppose that a convex underestimator f u : Z → R

and a concave overestimator f o : Z → R of f on Z are known. Let Fu : X → R be a
convex underestimator of F on X, let Fo : X → R be a concave overestimator of F on X.
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Let xmin ∈ X be a point at which Fu attains its minimum on X, and let xmax ∈ X be a point
at which Fo attains its maximum on X. Then, gu : Z → R,

gu(z) = Fu (
mid

{
f u(z), f o(z), xmin})

is a convex underestimator of g on Z. Moreover, go : Z → R

go(z) = Fo (
mid

{
f u(z), f o(z), xmax})

is a concave overestimator of g on Z.

We now restate McCormick’s Composition Theorem in terms of schemes of estimators.

Theorem 6 Let Z ⊂ R
n and X ⊂ R be two nonempty convex sets. Consider the composite

function g = F ◦ f where f : Z → R is continuous, F : X → R, and let f (Z) ⊂ X. Let(
f u
Y , f o

Y

)
Y⊂Z be a scheme of continuous estimators of f in Z, and let H f be the inclusion func-

tion associated with this scheme. Assume that an inclusion function T : Y ⊂ Z → Q ⊂ X
of f is known. Moreover, assume that T is conservative enough so as to estimate H f (Y )

also, that is, H f (Y ) ⊂ T (Y ) for any Y ∈ IR
n, Y ⊂ Z.

Let
(

Fu
Q, Fo

Q

)

Q⊂X
be a scheme of estimators of F on X. For each interval Q ⊂ X, let

xmin
Q ∈ Q be a point at which Fu

Q attains its minimum on Q, and let xmax
Q ∈ Q be a point at

which Fo
Q attains its maximum on Q.

For each Y ∈ IR
n, Y ⊂ Z we define the following functions gu

Y : Y → R and go
Y : Y → R:

gu
Y (z) = Fu

T (Y )

(
mid

{
f u
Y (z), f o

Y (z), xmin
T (Y )

})
,

and

go
Y (z) = Fo

T (Y )

(
mid

{
f u
Y (z), f o

Y (z), xmax
T (Y )

})
.

Then, for each Y ∈ IR
n, Y ⊂ Z, the function gu

Y (go
Y ) is a convex underestimator (concave

overestimator resp.) of g in Y . In other words, the set of functions
(
gu

Y , go
Y

)
Y⊂Z is a scheme

of estimators of g in Z.

The assumption that the inclusion function T also estimates H f is required to exclude a
domain violation of gu

Y or go
Y , see Example 3.1 of [26]. Moreover, we note that this assumption

also implies that the Hausdorff convergence order of H f is at least the Hausdorff convergence
order of T .

In order to associate an inclusion function to the scheme of estimators
(
gu

Y , go
Y

)
Y⊂Z , we

note that, for each interval Y and each point z ∈ Y , the points mid
{

f u
Y (z), f o

Y (z), xmin
T (Y )

}
and

mid
{

f u
Y (z), f o

Y (z), xmax
T (Y )

}
are between f u

Y (z) and f o
Y (z), and therefore they belong to the

interval H f (Y ). Then, we can associate an inclusion function Hg to the scheme of estimators(
gu

Y , go
Y

)
Y⊂Z as follows.

Hg : Y ∈ IR
n, Y ⊂ Z → IR

Hg(Y ) = HFT (Y )

(
H f (Y )

)
.

In Theorems 7 and 8 we analyze the convergence order of the schemes defined by
McCormick’s composition method. In their proofs we make use of the following two
Lemmata.
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Lemma 2 Let f : Z ⊂ R → R be a Lipschitz continuous function with Lipschitz constant
M ∈ R. Let A, B ∈ IR be two subsets of Z. Then

q
(

f̄ (A), f̄ (B)
) ≤ Mq (A, B) ,

where q (X, Y ) denotes the Hausdorff metric.

Proof In what follows we use the equivalent definition of Hausdorff metric between two
sets X and Y given in Proposition 1, Eq. (1). We can express the distance between f̄ (A) and
f̄ (B) as follows.

q
(

f̄ (A), f̄ (B)
) = max

{

sup
c∈ f̄ (A)

inf
d∈ f̄ (B)

|c − d| , sup
d∈ f̄ (B)

inf
c∈ f̄ (A)

|c − d|
}

= max

{
sup
a∈A

inf
b∈B

| f (a) − f (b)| , sup
b∈B

inf
a∈A

| f (a) − f (b)|
}

. (12)

Since f is Lipschitz continuous on Z with constant M , for any a∈A and b∈B,

| f (a) − f (b)| ≤ M |a − b|. Applying this bound to the right-hand side of Equality (12),
we bound q

(
f̄ (A), f̄ (B)

)
as follows.

q
(

f̄ (A), f̄ (B)
) = max

{
sup
a∈A

inf
b∈B

| f (a) − f (b)| , sup
b∈B

inf
a∈A

| f (a) − f (b)|
}

≤ M max

{
sup
a∈A

inf
b∈B

|a − b| , sup
b∈B

inf
a∈A

|a − b|
}

= Mq(A, B).

�

Lemma 3 Let Z ∈ IR

n be a bounded interval. Let f : Z ⊂ R
n → R be a Lipschitz con-

tinuous function with Lipschitz constant M ∈ R. Let H f : Y ⊂ Z → IR be an inclusion
function of f on Z with Hausdorff convergence order β f ≥ 1. Then, there exists a constant
C > 0 such that, for any interval Y ⊂ Z , w(H f (Y )) ≤ Cw(Y ).

Proof Since H f has Hausdorff convergence of order β f , there exists a constant τ f > 0
such that, for any interval Y ⊂ Z , q(H f (Y ), f̄ (Y )) ≤ τ f w(Y )β f . In particular, H f (Y ) ⊂
f̄ (Y ) + [−τ f w(Y )β f , τ f w(Y )β f ]. This inclusion between intervals implies that

w(H f (Y )) ≤ w
( ¯f (Y ) + [−τ f w(Y )β f , τ f w(Y )β f

])

≤ w
( ¯f (Y )

) + w
([−τ f w(Y )β f , τ f w(Y )β f

])

≤ w
( ¯f (Y )

) + 2τ f w(Y )β f . (13)

Since f is Lipschitz continuous on Z with constant M , Lemma 1 implies that w( f̄ (Y )) ≤
Mw(Y ). Combining this bound with Inequality (13), we obtain

w(H f (Y )) ≤ Mw(Y ) + 2τ f w(Y )β f

= (
M + 2τ f w(Y )β f −1) w(Y ) ≤ (

M + 2τ f w(Z)β f −1) w(Y ),

where in the last inequality β f − 1 ≥ 0 is used. We note that the constant C ≡(
M + 2τ f w(Z)β f −1

)
depends on Z but not on Y , and therefore the inequality

w
(
H f (Y )

) ≤ Cw(Y )

holds for any interval Y ⊂ Z . �
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4.3.1 Convergence in the Hausdorff metric

We next show that the Hausdorff convergence order of the composite inclusion function
Hg is equal to the Hausdorff convergence order of the range estimator T or of the outer
estimator HF , whichever is smaller. In this result, the Hausdorff convergence order of Hg

does not depend on the Hausdorff convergence order of the inner estimator H f ; this is so
since, under the assumption that the inclusion function T also estimates H f , the Hausdorff
convergence order of T dominates, i.e., is weaker than, the Hausdorff convergence order of
H f .

Theorem 7 Let Z ⊂ R
n and X ⊂ R be two nonempty convex sets. Let f : Z → X and

F : X → R be two Lipschitz continuous functions with Lipschitz constants M f and MF

respectively, and such that f (Z) ⊂ X. Let
(

f u
Y , f o

Y

)
Y⊂Z be a scheme of continuous esti-

mators of f in Z. Let T be an inclusion function of f in Z. Assume furthermore that T
also overestimates the range of the scheme

(
f u
Y , f o

Y

)
Y⊂Z , namely, H f (Y ) ⊂ T (Y ) for any

Y ⊂ Z. Let
(

Fu
Q, Fo

Q

)

Q⊂X
be a scheme of continuous estimators of F on X. Furthermore,

assume the following:

1. The inclusion function T of f in Z has a Hausdorff convergence order β f,T ≥ 1.

2. The inclusion function HF of F in X associated to
(

Fu
Q, Fo

Q

)

Q⊂X
has a Hausdorff

convergence order βF .

Let g = F ◦ f be the composite function of F and f . Let
(
gu

Y , go
Y

)
Y⊂Z be the scheme of

McCormick’s estimators of g in Z constructed from the schemes
(

f u
Y , f o

Y

)
Y⊂Z and(

Fu
Q, Fo

Q

)

Q⊂X
, and the inclusion function T as in Theorem 6, and let Hg be its corre-

sponding inclusion function. Then, Hg has a Hausdorff convergence order min
{
β f,T , βF

}
.

Proof Let Y ⊂ Z be an interval. We are interested in bounding the term q
(
Hg(Y ), ḡ(Y )

) =
q

(
HFT (Y )

(H f (Y )), F̄( f̄ (Y ))
)
.

We first observe that, since H f (Y ) ⊂ T (Y ), it follows that HFT (Y )
(H f (Y )) ⊂

HFT (Y )
(T (Y )). Moreover, since F̄( f̄ (Y )) ⊂ HFT (Y )

(H f (Y )), it follows that

q
(
HFT (Y )

(H f (Y )), F̄( f̄ (Y ))
) ≤ q

(
HFT (Y )

(T (Y )), F̄( f̄ (Y ))
)
.

We next bound q
(
HFT (Y )

(T (Y )), F̄( f̄ (Y ))
)
. Applying the triangle inequality to the

Hausdorff metric q ,

q
(
HFT (Y )

(T (Y )), F̄( f̄ (Y ))
) ≤ q

(
HFT (Y )

(T (Y )), F̄(T (Y ))
) + q

(
F̄(T (Y )), F̄( f̄ (Y ))

)
.

(14)

We next bound the two terms of the right hand side of this inequality.
The inclusion function HF converges to F with order βF , and therefore

q
(
HFT (Y )

(T (Y )), F̄(T (Y ))
) ≤ τF (w(T (Y )))βF . (15)

By hypothesis, T converges to f on Z with order β f,T . In particular, Lemma 3 implies that
w(T (Y )) ≤ CT w(Y ) for some constant CT that does not depend on Y . Therefore, we can
bound Inequality (15) as follows

q
(
HFT (Y )

(T (Y )), F̄(T (Y ))
) ≤ τF CβF

T (w(Y ))βF . (16)
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Now we bound the second term of the right hand side of Inequality (14). Since F is a
Lipschitz function with constant MF , Lemma 2 implies that

q
(
F̄(T (Y )), F̄( f̄ (Y ))

) ≤ MF q
(
T (Y ), f̄ (Y )

)
. (17)

Since T converges to f on Z with order β f,T , it then follows that

q
(
F̄(T (Y )), F̄( f̄ (Y ))

) ≤ MFτT (w(Y ))β f,T . (18)

Combining Inequality (14) with the bounds of Inequalities (16) and (18), we prove that
Hg has Hausdorff convergence of order min{β f,T , βF }, namely,

q
(
HFT (Y )

(T (Y )), ḡ(Y )
) ≤ τF CβF

T (w(Y ))βF + MFτT (w(Y ))β f,T . �


In other words, McCormick’s composition method is determined by the smallest of the
Hausdorff convergence orders of the outer scheme and of the inclusion function T , and the
convergence order of the inner scheme is irrelevant. In particular, having inner and outer
schemes with high convergence order is not enough to guarantee a high convergence order
of the composition scheme when the convergence order of the inclusion function T is not
high enough.

The following example, based on a well-known result from interval extensions [8] shows
that indeed, the convergence order of the inclusion function T determines the convergence
order of the composition scheme.

Example 5 Consider Z = [0, 1] and g : Z → R, g(z) = |z − z2 − 0.25|. A natural decom-
position is g(z) = F( f (z)) with f : Z → R, f (z) = z − z2 − 0.25 and F : X →
R, F(x) = |x |, with X ⊂ R. We will consider the convergence rate for the intervals Y ⊂ Z ,
s.t., Y = [0.5 − ε1, 0.5 + ε1]. The image of the inner function is f̄ (Y ) = [−ε2

1, 0
]

and
therefore the image of the composite function is ḡ(Y ) = [

0, ε2
1

]
.

The inner function f is a variation of a well-known example [8] for which natu-
ral interval extensions have a convergence of first order and give the inclusion function
T (Y ) = [−2ε1 − ε2

1, 2ε1 − ε2
1

]
. In contrast, natural interval extensions for the centered

form fcen(z) = −(z −0.5)2 have a convergence of second order, giving T ′(Y ) = [−ε2
1, ε2

1

]
.

As a consequence, natural interval extension gives linear convergence for the composite
function, whereas the centered form gives the exact range.

Consider now the McCormick relaxations. The inner function is itself a sum of monomi-
als, and therefore the McCormick relaxation is the sum of the relaxations. The concavity is
identified, and the relaxations are the envelopes. For Y = [0.5− ε1, 0.5+ ε1] these are given
by f cv(z) = −ε2

1 and f cc(z) = z − z2 − 0.25. As a consequence the scheme of McCormick
estimators is exact in the Hausdorff metric and has a quadratic pointwise convergence. The
outer function | · | is convex and univariate. Therefore, the convex underestimator is the
function itself, and the concave overestimator the secant. The associated scheme of estima-
tors is exact in the Hausdorff metric but has only linear pointwise convergence for intervals
containing zero.

In accordance with Theorem 7 the convergence order of the scheme of McCormick esti-
mators for the composite function is linear when natural interval extensions are used for
the calculation of the inclusion function of the inner function f . When the centered form is
used for the inner function f , the McCormick estimators of the composite function g are
exact.
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4.3.2 Pointwise convergence

We next analyze the pointwise convergence order of McCormick’s composition scheme.

Theorem 8 Let Z ⊂ R
n and X ⊂ R be two nonempty convex sets. Let f : Z → X and

F : X → R be two Lipschitz continuous functions with Lipschitz constants M f and MF

respectively, such that f (Z) ⊂ X. Let
(

f u
Y , f o

Y

)
Y⊂Z be a scheme of continuous estimators of

f in Z as defined in Definition 6. Let T be an inclusion function of f in Z. Assume furthermore
that T also overestimates the range of the scheme

(
f u
Y , f o

Y

)
Y⊂Z , namely, H f (Y ) ⊂ T (Y )

for any Y ⊂ Z. Let
(

Fu
Q, Fo

Q

)

Q⊂X
be a scheme of continuous estimators of F on X as in

Definition 6. Furthermore, assume the following:

1. The scheme
(

f u
Y , f o

Y

)
Y⊂Z has pointwise convergence of order γ f .

2. The inclusion function T of f on Z has a Hausdorff convergence order β f,T ≥ 1.

3. The scheme
(

Fu
Q, Fo

Q

)

Q⊂X
has pointwise convergence of order γF .

Let g = F ◦ f be the composite function of F and f . Let
(
gu

Y , go
Y

)
Y⊂Z be the scheme of esti-

mators of g in Z constructed from the schemes
(

f u
Y , f o

Y

)
Y⊂Z and

(
Fu

Q, Fo
Q

)

Q⊂X
, and from T ,

as in Theorem 6. Then,
(
gu

Y , go
Y

)
Y⊂Z has also pointwise convergence of order min{γ f , γF }.

Proof We will show that there exists a constant τg > 0 such that, for any interval Y ⊂ Z
and any point z ∈ Y, |g(z) − gu

Y (z)| ≤ τgw(Y )min{γ f ,γF }. A similar bound will hold for
|g(z) − go

Y (z)|, and therefore the proof of this case is omitted.
Let Y ⊂ Z . Let z be a point of Y . To simplify notation, we denote by xmid(z) the point

xmid(z) ≡ mid
{

f u
Y (z), f o

Y (z), xmin
T (Y )

}
, and so gu

Y (z) = Fu
T (Y )

(
xmid(z)

)
. We note that xmid(z)

also depends on T (Y ) and Fu
T (Y ), but to keep the notation simple we omit these dependencies.

We bound the distance between g(z) and gu
Y (z) as follows.

|g(z) − gu
Y (z)| = ∣∣(g(z) − F

(
xmid(z)

)) + (
F(xmid(z)) − gu

Y (z)
)∣∣

≤ ∣∣g(z) − F
(
xmid(z)

)∣∣ + ∣∣F
(
xmid(z)

) − gu
Y (z)

∣∣ . (19)

We next bound each term of the right hand side of this inequality.
We note that, by definition, xmid(z) is between min{ f u

Y (z), f o
Y (z)} and max{ f u

Y (z), f o
Y (z)}.

In particular,

|xmid(z) − f (z)| ≤ max
{| f u

Y (z) − f (z)|, | f o
Y (z) − f (z)|}.

Since the scheme
(

f u
Y , f o

Y

)
has pointwise convergence of order γ f , there exists a constant

τ f > 0 that does not depend on Y such that

| f u
Y (z) − f (z)| ≤ τ f w(Y )γ f , and

| f o
Y (z) − f (z)| ≤ τ f w(Y )γ f .

Therefore,

|xmid(z) − f (z)| ≤ τ f w(Y )γ f . (20)

Since F is a Lipschitz continuous function with Lipschitz constant MF , and because of
Inequality (20), the first term of the right hand side of (19) is at most

∣∣g(z) − F
(
xmid(z)

)∣∣ = ∣∣F( f (z)) − F
(
xmid(z)

)∣∣

≤ MF
∣∣ f (z) − xmid(z)

∣∣ ≤ MFτ f w(Y )γ f . (21)
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Since the scheme
(

Fu
Q, Fo

Q

)
has pointwise convergence of order γF , we can bound the

second term of the right hand side of (19) as follows.
∣
∣F

(
xmid(z)

) − gu
Y (z)

∣
∣ =

∣
∣
∣F

(
xmid(z)

) − Fu
T (Y )

(
xmid(z)

)∣∣
∣ ≤ τF (w(T (Y )))γF .

The inclusion function T converges to f with order β f,T ≥ 1, and therefore, by Lemma 3,
w(T (Y )) ≤ Cw( f̄ (Y )) for a constant C > 0 that does not depend on Y . Moreover, since f
is a Lipschitz continuous function with Lipschitz constant M f , the term w( f̄ (Y )) is at most
M f w(Y ) (see Lemma 1), and therefore

∣
∣F

(
xmid(z)

) − gu
Y (z)

∣
∣ ≤ τF (C M f )

γF w(Y )γ3 . (22)

Combining the bounds of (21) and (22), it then follows that |g(z) − gu
Y (z)| is at most

MFτ f w(Y )γ f + τF (C M f )
γF w(Y )γF = τgw(Y )min{γ f ,γF },

for a constant τg that does not depend on z or on Y . A similar bound holds for |g(z)− go
Y (z)|,

and therefore,
(
gu

Y , go
Y

)
Y⊂Z has pointwise convergence of order min{γ f , γF }. �


The following example is a variation of Example 5 in which the McCormick estimators
result in an improvement of the convergence order compared to natural interval extensions.
The distinguishing difference is the quadratic pointwise convergence order of the outer func-
tion estimators.

Example 6 Consider Z = [0, 1] and g : Z → R, g(z) = (z − z2 − 0.25)2. A natu-
ral decomposition is g(z) = F( f (z)) with f : Z → R, f (z) = z − z2 − 0.25 and
F : X → R, F(x) = x2, with X ⊂ R. Similarly to Example 5 we will consider the conver-
gence rate for the intervals Y ⊂ Z , s.t., Y = [0.5 − ε1, 0.5 + ε1]. The image of the inner
function is f̄ (Y ) = [−ε2

1, 0] and therefore the image of the composite function is ḡ = [0, ε4
1].

Recall the discussion on the inner function and its estimators based on interval arithmetic
and McCormick relaxations. The outer function (·)2 is convex and univariate. Therefore, the
convex underestimator is the function itself, and the concave overestimator the secant. The
associated scheme of estimators is exact in the Hausdorff metric and has quadratic pointwise
convergence for symmetric intervals around zero.

In accordance with Theorem 8 the convergence order of the scheme of McCormick esti-
mators for the composite function is superlinear even when natural interval extensions are
used for the calculation of the inclusion function of the inner function f . When the centered
form is used for the inner function f , the McCormick estimators of the composite function
g are exact in the Hausdorff metric.

5 αBB relaxations

Floudas and coworkers [1–4,9,18–23] introduced the αBB relaxations of a function, which
is an alternative method for constructing convex and concave estimators of functions. Given
a C2 function f : Z ⊂ R

n → R, its αBB relaxation consists of adding a (nonpositive)
quadratic term to get a convex underestimator of f . Note also the extension by Zlobec [39]
to Lipschitz continuous functions. For a sufficiently large αu ≥ 0, the Hessian of the function

f u,α(z) = f (z) + αu
n∑

i=1

(
zi − zL

i

) (
zi − zU

i

)
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is positive semidefinite on Z and therefore f u,α(z) is a convex function. In particular, since
the added terms are nonpositive on Z , it is a convex underestimator of f in Z . Similarly, for
a sufficiently large αo ≥ 0, the function

f o,α(z) = f (z) − αo
n∑

i=1

(
zi − zL

i

) (
zi − zU

i

)

is a concave overestimator of f in Z . For the theory developed, we assume αu = αo = α,
without loss of generality. For the numerical examples separate constants are calculated.

Here, the simpler variant of αBB is assumed using the same α for all components of z.
This results in general in weaker relaxations than possible. Also, the function f is taken as
a whole without decomposing it in terms such as bilinear, univariate concave, etc., as done
in the original work by Floudas and coworkers.

Note that the Hessian of the relaxations f u,α(z) and f o,α(z) do not explicitly depend on
the values of zL and zU , but typically depend implicitly by the calculation of α. We can restate
the αBB relaxations in terms of scheme of estimators as follows. Note that we consider a
constant α and thus the analysis is conservative.

Definition 11 Let f : Z ⊂ R
n → R be a C2 function. Let Ii j denote the elements of the

identity matrix in R
n ×R

n . Let α > 0 be such that the matrices
(

∂2 f
∂zi ∂z j

+ 2α Ii j

)

1≤i, j≤n
and

(
∂2 f

∂zi ∂z j
− 2α Ii j

)

1≤i, j≤n
are positive semidefinite and negative semidefinite respectively for

any z in Z . For each interval Y = [zL
Y , zU

Y ] of Z , let the αBB relaxations f u,α
Y (z) : Y → R

and f o,α
Y (z) : Y → R be given by:

f u,α
Y (z) = f (z) + α

n∑

i=1

(
zi − zL

Y,i

) (
zi − zU

Y,i

)
,

and

f o,α
Y (z) = f (z) − α

n∑

i=1

(
zi − zL

Y,i

) (
zi − zU

Y,i

)
.

Let
(

f u,α
Y , f o,α

Y

)
Y⊂Z be the scheme of estimators of f in Z defined by these functions.

In [22] it is stated that the αBB relaxation has quadratic convergence. In the next theorem,
we prove a similar result, namely that the αBB scheme of estimators has pointwise quadratic
convergence.

Theorem 9 Let f : Z ⊂ R
n → R be a C2 function. Let

(
f u,α
Y , f o,α

Y

)
Y⊂Z be a scheme

of estimators defined as in Definition 11. Then, the scheme
(

f u,α
Y , f o,α

Y

)
converges to f

pointwise with order 2.

Proof Let Y = [zL
Y , zU

Y ] be a fixed interval of Z . For any vector z ∈ Y , we can bound the
distance between f (z) and f u,α

Y (z) as follows.

∣∣ f (z) − f u,α
Y (z)

∣∣ =
∣∣∣∣∣
α

n∑

i=1

(
zi − zL

Y,i

) (
zi − zU

Y,i

)
∣∣∣∣∣
≤ α

n∑

i=1

∣∣∣zi − zL
Y,i || zi − zU

Y,i

∣∣∣

≤ αn max
1≤i≤n

{∣∣∣zU
Y,i − zL

Y,i

∣∣∣
}2 ≤ αnw(Y )2.
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The constant αn > 0 does not depend on z or Y , and therefore,
(

f u,α
Y , f o,α

Y

)
converges to f

pointwise with order 2. �


Since pointwise convergence implies Hausdorff convergence (Theorem 1), we have the
following Corollary.

Corollary 1 Let f : Z ⊂ R
n → R be a C2 function. Let

(
f u,α
Y , f o,α

Y

)
Y⊂Z be a scheme of

αBB estimators defined as in Definition 11. Then, the associated inclusion function H f of f
has Hausdorff convergence of order 2.

Note also that the estimates on α become tighter for decreasing diameter of Y and there-
fore the Hausdorff convergence can have higher than quadratic order. Note however, that by
Theorem 2 the order of pointwise convergence cannot be higher than quadratic.

6 Convergence order of envelopes

The following Theorem uses the properties of αBB relaxations to give a positive result for
the convex envelopes.

Theorem 10 Let Z ⊂ R
n be a convex set and f : Z → R. Assume that f is a C2 function.

Then, the scheme associated to the convex and concave envelopes has (at least) quadratic
pointwise convergence.

Proof Since f is a C2 function we can construct the αBB relaxations, Definition 11. By The-
orem 9 the scheme associated with these relaxations has quadratic pointwise convergence
order, i.e., there exists τ > 0, such that for any Y ⊂ Z :

sup
z∈Y

f (z) − f u,α(z) ≤ τ(w(Y ))2, sup
z∈Y

f o,α(z) − f (z) ≤ τ(w(Y ))2.

By definition, the convex/concave envelopes are at least as tight as the αBB relaxations

∀z ∈ Z : f u,env(z) ≥ f u,α(z), f o,env(z) ≤ f o,α(z)

and therefore for the chosen τ and any Y ⊂ Z

sup
z∈Y

f (z) − f u,env(z) ≤ τ(w(Y ))2, sup
z∈Y

f o,env(z) − f (z) ≤ τ(w(Y ))2,

and thus the scheme associated to the convex and concave envelopes has quadratic pointwise
convergence. �


Consequently, envelopes of smooth functions have at least quadratic convergence order
in the Hausdorff metric. This implies that for factorable functions involving only smooth
factors, one can ensure that the McCormick relaxations have quadratic convergence by uti-
lizing the convex/concave envelopes of each factor. Note that this is the original proposal by
McCormick [24]. As shown in Example 5 nonsmooth functions such as the absolute func-
tion can lead to linear pointwise convergence. Recall also, that by Theorem 2 the pointwise
convergence order of a smooth nonlinear function cannot be higher than quadratic.
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Fig. 1 Convergence in the Hausdorff metric of estimators for Example 7 in regular and double logarithmic
scale

7 Numerical examples

In this section the convergence of the McCormick and αBB relaxations is studied numeri-
cally for a few small-scale problems. The McCormick relaxations are calculated by libMC
[13,26], now superseded by MC++ [14]. The required constant α in the αBB relaxations
is calculated via interval extensions of the Hessian using Gerschgorin’s theorem, also via
libMC. The entries of the Hessian are calculated analytically in Maple. Two subcases for
the αBB relaxations are considered, namely for a uniform α, calculated for the entire host
set Z , and for α calculated as a function of Y ⊂ Z . The alternative definition of convergence
order, Definition 9 is used, i.e., using w(H(Y ))−w( f̄ (Y )) as a metric. The numerical exam-
ples illustrate the results developed and provide insight into the properties of the relaxation
methods, but are not meant as a definitive comparison between these.

Example 7 Let Z = [0.3, 0.7] and Y ⊂ Z , s.t. Y = [0.5− ε, 0.5+ ε] and consider f : Z →
R, f (z) = (z − z2) (log(z) + exp(−z)). Recall the discussion in the preceding examples
and in [8] on the convergence order for the term z − z2. Figure 1 shows the convergence in
the Hausdorff metric of the estimators to the true function as ε → 0. The αBB relaxation is
tighter than the McCormick relaxations, which is not the case for larger Z . This suggests that
the αBB relaxations converge faster. The double logarithmic plot suggests a linear conver-
gence for the interval extension, quadratic for the McCormick relaxations and higher than
quadratic for αBB.

Example 8 Let Z = [−1, 1] and Y ⊂ Z , s.t. Y = [−ε, ε] and consider f : Z → R, f (z) =
exp(1− z2). To mimic the weak propagation of relaxations through complicated expressions
the function is coded as f (z) = exp((1 − x)(1 − x)). See also the discussion on relaxations
of products of univariate functions in Maranas and Floudas [23]. As shown in Fig. 2, the
αBB relaxations with a fixed α are weaker than the McCormick relaxations. The αBB relax-
ations with a variable α become exact for ε1 � 0.35 since concavity is recognized. This
is a well-known advantage of αBB relaxations, e.g., [16]. Moreover, for 0.35 � ε � 0.5
the αBB relaxations are not exact, but tighter than the McCormick estimators, suggesting a
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Fig. 2 Convergence in the Hausdorff metric of estimators for Example 8 in regular and double logarithmic
scale

higher convergence order. The double logarithmic plot suggests a linear convergence in the
Hausdorff metric for the interval extension, quadratic for the McCormick relaxations and the
αBB with fixed α, but higher than quadratic for αBB with variable α.

Example 9 This example is problem 4 in Gatzke et al. [16], originally from Goldstein and
Price [17]. Let Z = [−1, 1]2 and Y ⊂ Z , s.t., Y = [−ε, ε]2 and consider f : Z → R, s.t.,

f (z) = (
1 + (z1 + z2)

2 (
19 − 14z1 + 3z2

1 − 14(z2 − 1) + 6z1 (z2 − 1) + 3(z2 − 1)2))

× (
30 + (2z1 − 3(z2 − 1))2 (

18 − 32z1 + 12z2
1 + 48(z2 − 1)

− 36z1(z2 − 1) + 27(z2 − 1)2)) .

Note that x is replaced by z1 and y by z2 − 1, i.e., the second variable is shifted to be sym-
metric around 0. Recall that the simpler variant of αBB is assumed using the same α for all
components of z.

The behavior is very similar to Example 8. As shown in Fig. 3 for large host sets, the αBB
relaxations are much weaker than McCormick, but they converge faster. If α is calculated
for ε � 0.0375 then the αBB relaxations are tighter than the McCormick relaxations. Note
that the values for α are positive, suggesting that the tightness is due to a higher convergence
order in the Hausdorff metric as opposed to recognizing convexity/concavity. The double log-
arithmic plot suggests a linear convergence for the interval extension and quadratic for the
McCormick relaxations and the αBB with fixed α. For αBB with variable α the convergence
is higher than quadratic for ε ∈ [0.001, 1].

8 Conclusions and future work

Theory for the convergence order is developed for the well-known convex relaxations by
McCormick [24], based on the corresponding theory of interval inclusion functions. Point-
wise convergence and convergence in the Hausdorff metric are considered. The framework is
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Fig. 3 Convergence in the Hausdorff metric of estimators for Example 9 in double logarithmic scale

also used to formalize the quadratic order of convergence for the αBB relaxations. Moreover,
it is shown that the convergence order of the envelopes is at least quadratic pointwise. How-
ever, it is also demonstrated that any convex relaxations of nonsmooth nonlinear functions
cannot have higher than quadratic pointwise convergence.

The convergence order of the McCormick relaxations depends on the convergence order
of the relaxations of the factors, as well as the convergence order of the inclusion functions
used to propagate the range of the functions. Table 1 summarizes the rules for the conver-
gence order of the McCormick schemes. To achieve a high order of convergence for the
estimators of a function it is necessary to have either interval inclusions of high convergence
order, or relaxations to the factors with pointwise convergence of high order, e.g., use the
envelopes. In contrast, it is not sufficient to have relaxations of the factors with high order
of convergence in the Hausdorff metric. In a sense the order of relaxations is as weak as the
underlying interval inclusions. This is proved theoretically and demonstrated in examples.

Schemes combining the αBB and the McCormick relaxations can achieve quadratic con-
vergence. In particular, in the work by Gatzke et al. [16] the “simple hybrid reformulation”
achieves quadratic convergence, because it considers the two relaxations simultaneously,
thus selecting the tighter of the two. In other words, this hybrid method converges as fast
as the fastest of αBB and McCormick (lowest curve in Figs. 1–3). Moreover, the “advanced
hybrid reformulation” of Gatzke et al., in which αBB relaxations are used in the factors of
the McCormick relaxations, also achieves quadratic convergence, since αBB has quadratic
pointwise convergence.

It would be interesting to formally consider the convergence order of the relaxations
involving auxiliary variables, [36] as well as for the γ BB relaxations [5,6]. Furthermore, the
implications of the convergence order to the global optimization of standard test problems
should be studied.

The theory developed herein considers convergence in the limit. In the practice of global
optimization it is also important to have tight estimators of nonconvex functions over big host
sets, thus limiting branching early on. It is therefore of interest to “reverse” the convergence
in the limit and consider how the estimation error grows with increasing diameter of the
variable host set.
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Table 1 Convergence order of McCormick schemes assuming Lipschitz continuity of the factors

Convergence order of factors Resulting convergence order

Addition g(z) = f1(z) + f2(z)

Scheme for fi has βi No order propagation, β = 1 possible for βi → ∞
Scheme for fi has γi > 0 γ = min{γ1, γ2}

Multiplication g(z) = f1(z) × f2(z)

Scheme for fi has βi No order propagation, β = 1 possible for βi → ∞
Scheme for fi has γi ≥ 1 γ = min{γ1, γ2, 2}
Inclusions for fi have βi,T ≥ 1

Composition g(z) = F( f (z))

Inclusion of f has β f,T ≥ 1 β = min{β f,T , βF }
Scheme for F has βF

Scheme for f has γ f γ = min{γ f , γF }
Inclusion for f has β f,T ≥ 1

Scheme for F has γF

The factors are characterized by the convergence order in the Hausdorff metric βi and/or the pointwise con-
vergence order γi of the corresponding schemes for i = 1, 2, f, F . The additional subscript T denotes the
inclusion function used to overestimate the range. The convergence order of the resulting scheme is charac-
terized by the convergence order in the Hausdorff metric β and/or the pointwise convergence order γ . The
expressions for β, γ are the smallest that are guaranteed; these bounds are sharp. Pointwise convergence is
stronger than convergence in the Hausdorff metric
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