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Abstract We first establish sufficient conditions ensuring strong duality for cone con-
strained nonconvex optimization problems under a generalized Slater-type condition. Such
conditions allow us to cover situations where recent results cannot be applied. Afterwards,
we provide a new complete characterization of strong duality for a problem with a single
constraint: showing, in particular, that strong duality still holds without the standard Slater
condition. This yields Lagrange multipliers characterizations of global optimality in case
of (not necessarily convex) quadratic homogeneous functions after applying a generalized
joint-range convexity result. Furthermore, a result which reduces a constrained minimization
problem into one with a single constraint under generalized convexity assumptions, is also
presented.
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1 Introduction and formulation of the problem

Let X be a real locally convex topological vector space; Y be a normed space; P ⊆ Y be a
closed convex cone with possibly empty interior, and C be a subset of X . Given f : C → R

and g : C → Y , let us consider the cone constrained minimization problem

μ
.= inf

g(x)∈−P
x∈C

f (x). (P)

Thus, the constraint set may be described by inequality and equality constraints. The
Lagrangian dual problem associated to (P) is

ν
.= sup

λ∗∈P∗
inf
x∈C

[ f (x) + 〈λ∗, g(x)〉], (D)

where P∗ is the non negative polar cone of P . We say Problem (P) has a (Lagrangian)
zero duality gap if the optimal values of (P) and (D) coincide, that is, μ = ν. The Problem
(P) is said to have strong duality if it has a zero duality gap and Problem (D) admits a solu-
tion. To characterize this property is one of the most important problems in optimization, and
certainly the lack of convexity makes the task an interesting challenge in mathematics. To
that purpose, some constraints qualification (CQ) are needed, which may be of Slater-type,
or interior-point condition, and in some other situation it requires a closed-cone CQ. Such
CQ often restrict some applications.

More precisely, when X = R
n and P = [0,+∞[ with g being a quadratic function that is

not identically zero, the authors in [15] prove that, (P) has strong duality for each quadratic
function f if, and only if there exists x̄ ∈ R

n such that g(x̄) < 0.
Similarly, when g is P-convex (see 3.8) and continuous, it is proven in [4] that (P)

has strong duality for each f ∈ X∗ if, and only if a certain CQ holds. This CQ involves
the epigraph of the support function of C and the epigraph of the conjugate of the function
x 	→ 〈λ∗, g(x)〉. This CQ is also equivalent to (P) has strong duality for each continuous and
convex function f [14]. Stable zero duality gaps in convex programming (g is continuous,
P-convex, and f is lower semicontinuous proper convex function), that is, strong duality
for each linear perturbation of f , were characterized in terms of a similar CQ as above, see
[16,18] for details.

Apart from these characterizations several sufficient conditions of the zero duality gap
have been established in the literature, see [1,2,4,6,7,12,27].

Our goal in this paper is, firstly, to derive conditions for (P) to have strong duality under
no convexity assumptions. Unlike some of the above results, which involve conditions on
g and C that guarantee (P) has strong duality for every f in a certain class of functions,
our approach allows us to derive conditions on the pair, f and g jointly, that ensure (P) has
strong duality, under no convexity assumptions; this result can be used to situations where
none of the results in [4–7,12,14,16], for instance, is applicable. Secondly, we provide a new
characterization of strong duality in case we have a single constraint.

By assuming that x0 is a solution to problem (P), the authors in [6, Corollary 3.1] prove
that strong duality holds if and only if condition

T (M̃; ( f (x0), 0)) ∩ (] − ∞, 0[×{0}) = ∅ (S)

is satisfied, where T (A; x) stands for the contingent cone to A at x ∈ A, and
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M̃
.= ( f, g)(C\K ) + (R+ × P), K

.= {x ∈ C : g(x) ∈ −P},

with, ( f, g)(C \ K )
.= {( f (x), g(x)) ∈ R × Y : x ∈ C \ K }. Condition (S) has its origin

in [9]. Since in most problems a solution to (P) is unknown, such an equivalent formula-
tion, though interesting, has some disadvantages. Therefore, throughout this paper we do not
assume that (P) has solution, no convexity assumption is imposed, and we use topological
interior, allowing us to deal with cones possibly with empty interior.

The paper is organized as follows. In Sect. 2 some basic notations and preliminaries
are collected. Section 3 establishes our first main theorems on strong duality for (P) via
topological interior; such theorems cover situations where recent results cannot be applied,
see Example 3.4; in addition, we present sufficient conditions allowing us to formulate (P)

into one with a single inequality constraint; this result generalizes that due to Luenberger
[20], valid when P is the usual non negative orthant, R

n+, and each component of g is
convex. A new complete characterization of strong duality when the constrained set is deter-
mined by a single inequality, is established in Sect. 4; in particular, it is showed that strong
duality holds without the standard Slater condition. Section 5 presents a Lagrange multipliers
characterization for global optimality in case of quadratic homogeneous functions. Here, a
generalized joint-range convexity result due to Jeyakumar, Lee and Li will play an important
role.

2 Basic notations and preliminares

Throughout the paper, Y is a real normed vector space, its topological dual space is Y ∗,
and 〈·, ·〉 denotes the duality pairing between Y and Y ∗. Given x, y ∈ Y we set [x, y] =
{t x + (1 − t)y : t ∈ [0, 1]}. The segments ]x, y] etc are defined analogously.

A set P ⊆ Y is said to be a cone if t P ⊆ P,∀ t ≥ 0; by P∗ we mean the (non-negative)
polar cone of P , i.e., P∗ = {z ∈ Y ∗ : 〈z, p〉 ≥ 0, ∀ p ∈ P} Given A ⊆ Y, cone(A) stands
for the smallest cone containing A, that is,

cone(A) =
⋃

t≥0

t A,

whereas cone(A) denotes the smallest closed cone containing A: obviously cone(A) =
cone(A), where A denotes the closure of A. Additionally, we set

cone+(A)
.=

⋃

t>0

t A.

Evidently, cone(A) = cone+(A) ∪ {0} and therefore cone(A) = cone+(A). Furthermore, a
(not necessarily convex) cone K ⊆ Y is called “pointed” (see for instance [23]) if x1 +· · ·+
xk = 0 is impossible for x1, x2, . . . , xk in K unless x1 = x2 = · · · = xk = 0.

It is easy to see that a cone K is pointed if, and only if co(K ) ∩ (−co(K )) = {0} if, and
only if 0 is a extremal point of co(K ).

In subsequent sections, the notations co(A), int A, stand for the convex hull of A which is
the smallest convex set containing A, and topological interior of A, respectively. We denote
R+

.= [0,+∞[, R++
.= ]0,+∞[, R−− = −R++.
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3 Lagrangian strong duality and reducing to one single constraint

Given a real locally convex topological vector space X , a nonempty set C ⊆ X , a mapping
f : C → R, let us consider the following cone constrained minimization problem

μ
.= inf

x∈K
f (x), (3.1)

where g : C → Y , with Y as before, K
.= {x ∈ C : g(x) ∈ −P} with P ⊆ Y being

a convex cone with possibly empty topological interior. This means that P may have the
form P = Q × {0}, in which case, the constraint set is described by inequality and equality
constraints.
Let us introduce, as usual, the Lagrangian

L(γ ∗, λ∗, x) = γ ∗ f (x) + 〈λ∗, g(x)〉.
Obviously,

γ ∗μ ≥ inf
x∈C

L(γ ∗, λ∗, x), ∀ λ∗ ∈ P∗, ∀ γ ∗ ≥ 0. (3.2)

As pointed out in the introduction, our main concern is to find sufficient conditions ensur-
ing strong duality for problem (3.1), that is, that there exists λ∗

0 ∈ P∗ such that

inf
x∈K

f (x) = inf
x∈C

L(1, λ∗
0, x). (3.3)

Throughout this section we do not assume that (3.1) has solution, and we will look for
sufficient conditions implying strong duality, under no convexity assumption.

To that end, some constraint qualifications (CQ) are needed, which involve interior-point
conditions, say Slater-type conditions. In addition, some regularity conditions will be also
imposed. It is well known the standard Slater condition (SC) prevents to deal with inequality
and equality constraints, since the cone involved has empty interior: for instance, Theorem
4.1 of [6] cannot be applied if the constraint set is determined by inequalities and equalities.
The last part of this section establishes a result which reduces problem (3.1) into one with
a single constraint, for a quasiconvex function f , a generalized convex mapping g, and a
Slater-type condition. Such a result generalizes that due to Luenberger [20], valid when P is
the usual non negative orthant and each component of g is convex. Set

F(C)
.= ( f, g)(C) = {( f (x), g(x)) ∈ R × Y : x ∈ C}.

3.1 Lagrangian strong duality: the general case

We obtain various equivalent formulations to have an equality in (3.2) for some (γ ∗, λ∗). This
preliminary result will allow us to get strong duality for problem (3.1) under a generalized
Slater assumption.

Theorem 3.1 Let us consider problem (3.1). Assume that μ is finite and

int(co(F(C)) + (R+ × P)) �= ∅.

The following assertions are equivalent:

(a) there exist Lagrange multipliers (γ ∗
0 , λ∗

0) ∈ R+ × P∗, (γ ∗
0 , λ∗

0) �= (0, 0), such that

γ ∗
0 inf

x∈K
f (x) = inf

x∈C
L(γ ∗

0 , λ∗
0, x);
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(b) cone(int(co(F(C)) − μ(1, 0) + (R+ × P))) is pointed;
(c) (0, 0) �∈ int(co(F(C)) − μ(1, 0) + (R+ × P)));
(d) cone(F(C) − μ(1, 0) + int(R+ × P)) is pointed, provided int P �= ∅.

Proof (b) �⇒ (c): This is straightforward since otherwise, we had

cone(int(co(F(C)) − μ(1, 0) + (R+ × P))) = R × Y.

(c) �⇒ (a): We apply a standard convex separation theorem to obtain the existence of
γ ∗

0 ≥ 0 and λ∗
0 ∈ P∗, not both zero, satisfying

γ ∗
0 f (x) + 〈λ∗

0, g(x)〉 ≥ γ ∗
0 μ ∀ x ∈ C. (3.4)

This implies

inf
x∈C

L(γ ∗
0 , λ∗

0, x) ≥ γ ∗
0 μ.

This together with (3.2) yield the desired result.
(a) �⇒ (b): From (a), (3.4) holds, and this amounts to writing

〈(γ ∗
0 , λ∗

0), ( f (x) − μ, g(x))〉 ≥ 0 ∀ x ∈ C. (3.5)

Set A
.= F(C) − μ(1, 0). Since cone(int(co(A) + (R+ × P))) is convex, we have to show

that whenever x,−x ∈ cone(int(co(A) + (R+ × P))), then x = 0. Assume that x �= 0.
Then, we can write x = t1ξ1, −x = t2ξ2, ti > 0, ξi ∈ int(co(A) + (R+ × P)), i = 1, 2. By
(3.5), 〈(γ ∗

0 , λ∗
0), ξ 〉 ≥ 0 ∀ ξ ∈ co(A) + (R+ × P). Given any y ∈ R × Y , we can choose

δ > 0 such that

ξi + λy ∈ co(A) + (R+ × P), ∀ |λ| < δ, ∀ i = 1, 2.

Then, by setting p∗ .= (γ ∗
0 , λ∗

0), we obtain

〈p∗, ξi + λy〉 ≥ 0, ∀ |λ| < δ, ∀ i = 1, 2.

It follows that 〈p∗, λy(t1 + t2)〉 ≥ 0, which implies that 〈p∗, y〉 = 0 for all y ∈ R × Y .
Hence (γ ∗

0 , λ∗
0) = p∗ = 0, a contradiction.

(b) ⇐⇒ (d): Since K + int Q = int(K + Q) (see [8,25]) and cone(co(K )) = co(cone(K )),
for every convex cone Q with nonempty interior and every set K , we obtain that
cone(int(co(A) + P)) = co(cone(A + int P)). Taking into the account that pointedness
of any cone is equivalent to pointednes of its convex hull, the result follows. ��

In order to have strong duality, we need the non-verticality of the linear functional (γ ∗
0 , λ∗

0),
that is, we must have γ ∗

0 > 0. It holds whenever a Slater-type condition is imposed as the
following corollary shows.

Corollary 3.2 Let us consider problem (3.1). Assume that μ is finite,

int(co(F(C)) + (R+ × P)) �= ∅
and the generalized (SC) that cone(g(C) + P) = Y holds. The following assertions are
equivalent:

(a) there exists a Lagrange multiplier λ∗
0 ∈ P∗, such that

inf
x∈K

f (x) = inf
x∈C

L(1, λ∗
0, x); (3.6)

123



190 J Glob Optim (2012) 53:185–201

(b)

inf
x∈K

f (x) = max
λ∗∈P∗ inf

x∈C
L(1, λ∗, x);

(c) cone(int(co(F(C)) − μ(1, 0) + (R+ × P))) is pointed;

Proof (a) ⇐⇒ (b): One implication is obvious. From (a) it follows that

μ ≤ max
λ∗∈P∗ inf

x∈C
L(λ∗, x),

which together with (3.2) imply (b).
(c) ⇐⇒ (a): One implication follows from the preceding theorem. If γ ∗

0 = 0, then
0 �= λ∗

0 ∈ P∗ and 〈λ∗
0, g(x)〉 ≥ 0 for all x ∈ C . This implies that λ∗

0 = 0, by the generalized
Slater condition, which is a contradiction. Thus, we may suppose γ ∗

0 = 1 in (3.4), and
therefore (a) holds. ��

Some comments are in order. We compare our previous result with that given in
[7, Theorem 4.4] where quasi relative interior is employed but at the expenses of requir-
ing the convexity of F(C) + (R+ × P), which implies the convexity of g(C) + P . More
precisely, with the same notations as in the mentioned paper, such a theorem is the following.

Theorem 3.3 [7, Theorem 4.4] Suppose that F(C)+(R+ × P) is convex, 0 ∈ qi(g(C)+ P)

and (0, 0) �∈ qri[co((F(C) − μ(1, 0) + R+ × P) ∪ {(0, 0)})]. Then, there exists λ∗
0 ∈ P∗

such that (3.6) holds.

Here, given a convex set A, by qri(A) and qi(A) we mean the quasi relative interior and
the quasi interior of A, see [3,7]. In order to prove the previous theorem, the authors show
first that “Fenchel and Lagrange duality” are equivalent (so, some convexity assumptions are
imposed) generalizing an earlier result due to Magnanti [21]. Then, from such an equivalence
Theorem 3.3 is obtained.
As a by-product we observe that Theorems 4.2 and 4.4 in [7] are identical. Indeed, since
cone A = cone A, and cone(A − A) = cone A − cone A provided A is convex and 0 ∈ A,
we obtain

cone ((g(C) + P − (g(C) + P)) = cone(g(C) + P) − cone(g(C) + P).

From this, by assuming that g(C) + P is convex, one immediately gets

0 ∈ qi(g(C) + P) ⇐⇒ 0 ∈ qi(g(C) + P − (g(C) + P)) and 0 ∈ qri(g(C) + P).

Our Corollary 3.2 may be applied to problems of minimizing a non quasiconvex function
with equality and inequality constraints. It is illustrated in the following example. Notice that
no result from [4,5,12,14,16], neither [6, Theorem 4.1], [13, Theorem 4.3], or [7, Theorem
4.4] can be applied, since we are dealing with an objective non-convex function and the
mapping g is such that g(C) + P is not convex.

Example 3.4 Notice this example shows our approach applies even if int P = ∅.
Take C = R, P = R+ × {0},

f (x) =
{

1, if x = 0,

0 if x �= 0.

g1(x) =
⎧
⎨

⎩

x if x ≤ −1,

−1 if − 1 < x < 0,

0 if x ≥ 0.

g2(x) =
{

x + 1 if x < 0,

0 if x ≥ 0,
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and consider the problem

μ
.= min{ f (x) : g1(x) ≤ 0, g2(x) = 0, x ∈ R}.

Thus, P∗ = R+ × R and μ = 0. Setting F(x) = ( f (x), g1(x), g2(x)), x ∈ C , we obtain

F(x) =

⎧
⎪⎪⎨

⎪⎪⎩

(0, x, x + 1) if x ≤ −1,

(0,−1, x + 1) if − 1 < x < 0,

(1, 0, 0) if x = 0,

(0, 0, 0) if x > 0.

It follows that

F(C) − μ(1, 0, 0) + (R+ × P)

= {(x, y, z) : x ≥ 0, y ≥ −1, 0 ≤ z < 1} ∪ {(x, y, z) : x ≥ 0, z ≤ y + 1, z ≤ 0}.
Then, int(co(F(C)) − μ(1, 0, 0) + (R+ × P)) �= ∅ and

cone(int (co(F(C)) − μ(1, 0, 0) + R+ × P)) = {(0, 0, 0)} ∪ {(x, y, z) : x > 0, y, z ∈ R}
is pointed. Moreover,

(g1, g2)(x) = (g1(x), g2(x)) =
⎧
⎨

⎩

(x, x + 1) if x ≤ −1,

(−1, x + 1) if − 1 < x < 0,

(0, 0) if x ≥ 0.

Thus,

(g1, g2)(C) + P = {
(x, y) ∈ R

2 : 0 ≤ y < 1, x ≥ −1
} ∪ {(x, y) ∈ R

2 : y ≤ 0, y ≤ x + 1},
which is not convex. This yields

cone((g1, g2)(C) + P) = R
2,

that is, the generalized Slater condition is satisfied. On the other hand, given λ = (λ1, λ2) ∈
R+ × R, we obtain

L(λ, x) =

⎧
⎪⎪⎨

⎪⎪⎩

(λ1 + λ2)x + λ2 if x ≤ −1,

λ2x + λ2 − λ1 if − 1 < x < 0,

1 if x = 0,

0 if x > 0.

Hence, for λ1 ≥ 0 and λ2 ∈ R, we get

inf
x∈R

L(λ, x) =
{

λ2 − λ1 if λ1 + λ2 ≤ 0,

−∞ if λ1 + λ2 > 0,

and therefore,

max
(λ1,λ2)∈P∗ inf

x∈R

L(λ, x) = max
λ1+λ2≤0,

λ1≥0,λ2∈R

inf
x∈R

L(λ, x) = max
λ1+λ2≤0,

λ1≥0,λ2∈R

(λ2 − λ1) = 0 = μ.

inf
x∈R

L(λ∗, x) = 0, λ∗ = (0, 0).
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Example 3.5 This instance is discussed in [6, Example 3.1] for a different purpose and shows
that a generalized SC is necessary to have strong duality.
Let f (x1, x2) = −√

x1, g1(x1, x2) = −x1−x2, g2(x1, x2) = x1, C = R+×R, P = R+×{0}.
Thus, P∗ = R+ × R and μ = 0. It is not difficult to see that (g1, g2)(C) + (R+ × {0}) =
R × R+, which implies that cone((g1, g2)(C) + P) �= R

2. Moreover, setting F(C) =
{( f (x), g1(x), g2(x)) : x ∈ C}, we obtain

F(C) + (R2+ × {0}) =
⋃

x1>0
x2∈R

{
(−√

x1,−x1 − x2, x1) + (R2+ × {0})}

∪
⋃

x2∈R

{
(0,−x2, 0) + (R2+ × {0})} .

Then, int[co(F(C)) + (R2+ × {0})] �= ∅ and

cone
(
int[co(F(C)) + (R2+ × {0})]) is pointed.

If there exists (λ1, λ2) ∈ R+ × R such that

−√
x1 + λ1(−x1 − x2) + λ2x1 ≥ 0, ∀ (x1, x2) ∈ R+ × R,

then, setting x1 = 0, we get λ1 = 0. Thus, the previous inequality reduces

−√
x1 + λ2x1 ≥ 0, ∀ x1 ≥ 0,

which is impossible. Hence, strong duality does not hold.

3.2 Reducing a constrained problem into one with a single inequality constraint

We now establish an important result ensuring that problem (3.1) can be reformulated with a
single constraint under generalized convexity assumptions and a Slater-type condition. Here,
we restrict to the case int P �= ∅. In addition, we consider the assumption

∀p∗ ∈ P∗, the restriction of 〈p∗, g(·)〉 on any line segment of C is lower semicontinuous.

(3.7)

Next theorem extends and generalizes that of [20] valid for finite dimensional spaces and
P-convex functions g. The latter means that, given a convex set C and x, y ∈ C , one has

g(t x + (1 − t)y) ∈ tg(x) + (1 − t)g(y) − P, ∀ t ∈ ]0, 1[. (3.8)

We recall a larger class of vector functions. According to [19] (where it was used to derive
a Gordan-type alternative theorem), given a convex set C ⊆ X with X as before, a map-
ping g : C → Y is called ∗-quasiconvex if 〈p∗, g(·)〉 is quasiconvex for all p∗ ∈ P∗.
Independently, the author in [26] says that g is naturally P-quasiconvex if for all x, y ∈ C ,
g([x, y]) ⊆ [g(x), g(y)] − P . Both classes coincide as shown in [10, Proposition 3.9],
[11, Theorem 2.3] (it is still valid if P has empty interior) under assumption (3.7).

It is known from, Corollary 3.11 in [10], that every naturally P-quasiconvex function
g : C → Y satisfying (3.7), is such that g(C)+ P is convex, so that g(C ′)+ P is also convex
for every convex set C ′ ⊆ C .
A real-valued function h : C → R is said to be semistrictly quasiconvex if

x, y ∈ C, h(x) < h(y) �⇒ h(ξ) < h(y), ∀ ξ ∈ ]x, y[.
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Theorem 3.6 Let us consider problem (3.1) with f being quasiconvex and upper semicon-
tinuous along lines of C. Assume that μ is finite and g is naturally P-quasiconvex such that
for all p∗ ∈ P∗\{0}, x ∈ C 	→ 〈p∗, g(x)〉 is semistrictly quasiconvex and lsc along any line
segment of C. If, in addition, the Slater-type condition that for some x̄ ∈ C, 〈y∗, g(x̄)〉 < 0
for all y∗ ∈ P∗\{0} holds, that is, g(x̄) ∈ −int P, then, there exists p∗ ∈ P∗\{0} such that

inf
g(x)∈−P

x∈C

f (x) = inf〈p∗,g(x)〉≤0
x∈C

f (x). (3.9)

Hence, every solution to (3.1) is also a solution to the problem of right hand-side of (3.9).

Proof Let us consider

M
.= g(C0) + P, C0

.= {x ∈ C : f (x) < μ}.
Since C0 is convex and g is naturally P-quasiconvex on any convex subset C ′ of C , the set
M is convex by Corollary 3.11 in [10]. We can assume that M is nonempty since otherwise
any p∗ ∈ P∗ verifies (3.9). Evidently, M ∩ (−P) = ∅, for if not, there exists z0 ∈ −P
such that z0 ∈ M , that is, there is x0 ∈ C0 satisfying z0 − g(x0) ∈ P . It turns out that
g(x0) ∈ −P, x0 ∈ C, f (x0) < μ, which cannot happen. We apply a convex separation
theorem to obtain the existence of p ∈ P∗, p∗ �= 0, α ∈ R, such that

〈p∗, z〉 ≥ α ∀ z ∈ M, 〈p∗, u〉 ≤ α, ∀ u ∈ −P.

Hence,

p∗ ∈ P∗ and 〈p∗, g(x)〉 ≥ 0, ∀ x ∈ C0. (3.10)

Let x ∈ C, 〈p∗, g(x)〉 ≤ 0. In case f (x) < μ, that is, x ∈ C0, we get g(x) ∈ M and thus
〈p∗, g(x)〉 = 0. Set xt = t x̄+(1−t)x . By the upper semicontinuity of f, f (xt ) < μ for some
t ∈ ]0, 1[, and therefore xt ∈ C0. Thus, by semistrict quasiconvexity, 0 ≤ 〈p∗, g(xt )〉 < 0,
a contradiction. Whence f (x) ≥ μ. This implies

inf〈p∗,g(x)〉≤0
x∈C

f (x) ≥ inf
g(x)∈−P

x∈C

f (x).

The reverse inequality is trivial. ��

The previous theorem allows us to reduce a problem with several quasiconvex constraints
to a problem having a single quasiconvex constraint. If x̄ solves the problem

inf〈p∗,g(x)〉≤0
x∈C

f (x), (3.11)

we cannot assure that it necessarily solves (3.1) or satisfies 〈p∗, g(x̄)〉 = 0. The latter is
essentially due to the fact that relative minima need not be global minima.

Theorem 3.7 Let us consider problem (3.1). Assume that x0 solves problem (3.1) (μ =
f (x0)) and that all the assumptions of Theorem 3.6 are fulfilled. Then, either

(a) there is x̄ ∈ C, g(x̄) ∈ −int P and f (x̄) = μ, or
(b) there is p∗ ∈ P∗ such that x0 solves problem (3.11) and 〈p∗, g(x0)〉 = 0.
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Proof Assume that (a) does not hold. Then, 0 �∈ B+int P , where B
.= g(C1)+P, C1 = {x ∈

C : f (x) ≤ μ}. By assumption, B is convex and therefore, there exists p∗ ∈ Y ∗, p∗ �= 0,
such that

0 ≤ 〈p∗, ξ 〉 ∀ ξ ∈ B + int P.

this implies that p∗ ∈ P∗ and 0 ≤ 〈p∗, g(x)〉 for all x ∈ C1. Hence, 〈p∗, g(x0)〉 = 0, and
by the previous theorem, x0 solves problem (3.11). ��

4 Characterizing strong duality: the case with a single inequality constraint

In this situation, we describe completely the pointedness of the cone appearing in Theorem
3.1; and as a consequence, a new characterization of strong duality is obtained, covering
situations where a Slater-type condition may fail.
Here, K = {x ∈ C : g(x) ≤ 0}, thus K = S−

g (0) ∪ S=
g (0), where

S−
g (0)

.= {x ∈ C : g(x) < 0}, S=
g (0)

.= {x ∈ C : g(x) = 0},
S+

g (0)
.= {x ∈ C : g(x) > 0}.

Similarly, we define

S−
f (μ)

.= {x ∈ C : f (x) < μ}, S+
f (μ)

.= {x ∈ C : f (x) > μ},

S=
f (μ)

.= {x ∈ C : f (x) = μ}.

Set R
2++

.= int R
2+, F = ( f, g) and F(C)

.= {( f (x), g(x)) ∈ R
2 : x ∈ C}. By writting

F(C) − μ(1, 0) + R
2++ = �1 ∪ �2 ∪ �3, it follows that

cone(F(C) − μ(1, 0) + R
2++) = cone(�1) ∪ cone(�2) ∪ cone(�3), (4.1)

where

�1
.=

⋃

x∈argminK f ∩S=
g (0)

[(0, g(x)) + R
2++] ∪

⋃

x∈argminK f ∩S−
g (0)

[(0, g(x)) + R
2++];

�2
.=

⋃

x∈K\argminK f

[( f (x) − μ, g(x)) + R
2++];

�3
.=

⋃

x∈C\K
[( f (x) − μ, g(x)) + R

2++] = �1
3 ∪ �2

3 ∪ �3
3,

with

�1
3 =

⋃

x∈S+
g (0)∩S−

f (μ)

[( f (x) − μ, g(x)) + R
2++]; �2

3 =
⋃

x∈S+
g (0)∩S=

f (μ)

[(0, g(x)) + R
2++],

�3
3 =

⋃

x∈S+
g (0)∩S+

f (μ)

[( f (x) − μ, g(x)) + R
2++].
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On the other hand, whenever S−
g (0) ∩ S+

f (μ) �= ∅ and S+
g (0) ∩ S−

f (μ) �= ∅, we set

α
.= inf

x∈S−
g (0)∩S+

f (μ)

g(x)

f (x) − μ
, β

.= sup
x∈S+

g (0)∩S−
f (μ)

g(x)

f (x) − μ
.

Evidently, −∞ ≤ α < 0,−∞ < β ≤ 0 and;

C = K ⇐⇒ S+
g (0) = ∅;

argminK f ∩ S−
g (0) = ∅ and S−

g (0) ∩ S+
f (μ) = ∅ ⇐⇒ S−

g (0) = ∅;

S−
g (0) ∩ S+

f (μ) = ∅ ⇐⇒ S−
g (0) ⊆ argminK f.

The previous discussion along with (4.1) yield Figs. 1, 2 and 3. Such figures allow us to visu-
alize the pointedness of cone(F(C) − μ(1, 0) + R

2++), which is expressed in the following
theorem.

Theorem 4.1 Let us consider problem (3.1) such that K �= ∅ and μ is finite.

(a) Assume that argminK f �= ∅. Then, cone(F(C) − μ(1, 0) + R
2++) is pointed if, and

only if any of the following circumstances holds:
(a1) argminK f ∩ S−

g (0) �= ∅ and, either S+
g (0) = ∅ or [S+

g (0) ∩ S−
f (μ) = ∅,

S+
g (0) �= ∅];

(a2) argminK f ∩ S−
g (0) = ∅, argminK f ∩ S=

g (0) �= ∅ and K = argminK f ;
(a3) argminK f ∩ S−

g (0) = ∅, argminK f ∩ S=
g (0) �= ∅, S−

g (0) ∩ S+
f (μ) �= ∅,

−∞ < α < 0 and, either S+
g (0) = ∅ or [S+

g (0) ∩ S−
f (μ) �= ∅, β ≤ α], or

[S+
g (0) ∩ S−

f (μ) = ∅, S+
g (0) �= ∅];

(a4) argminK f ∩ S−
g (0) = ∅, argminK f ∩ S=

g (0) �= ∅, S−
g (0) ∩ S+

f (μ) �= ∅,

α = −∞ and, either S+
g (0) = ∅ or [S+

g (0) ∩ S−
f (μ) = ∅, S+

g (0) �= ∅];
(a5) argminK f ∩ S−

g (0) = ∅, argminK f ∩ S=
g (0) �= ∅, S−

g (0) ∩ S+
f (μ) = ∅ and

S=
g (0) ∩ S+

f (μ) �= ∅.

(b) Assume that argminK f = ∅. Then, cone(F(C) − μ(1, 0) + R
2++) is pointed if, and

only if any of the following instances holds:
(b1) S−

g (0) ∩ S+
f (μ) �= ∅, −∞ < α < 0 and, either S+

g (0) = ∅ or [S+
g (0) ∩ S−

f (μ) �=

Fig. 1 Visualizing Theorem 4.1
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Fig. 2 Visualizing Theorem 4.1

Fig. 3 Visualizing Theorem 4.1

∅, β ≤ α] or [S+
g (0) ∩ S−

f (μ) = ∅, S+
g (0) �= ∅];

(b2) S−
g (0) ∩ S+

f (μ) �= ∅, α = −∞ and, either S+
g (0) = ∅ or [S+

g (0) ∩ S−
f (μ) = ∅,

S+
g (0) �= ∅];

(b3) S−
g (0) ∩ S+

f (μ) = ∅, S=
g (0) ∩ S+

f (μ) �= ∅.

Proof We omit the long but easy proof, once we get Figs. 1, 2, and 3. ��

Looking at (4.1) and the expressions for cone(�i ), i = 1, 2, 3 (see, Figs. 1, 2, and 3), we
get the following corollary which establishes a complete description concerning the validity
of strong duality for nonconvex minimization problems with a single constraint. In particular,
we observe that strong duality holds even if the standard Slater condition is not satisfied.
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Corollary 4.2 Let K be non-empty and μ finite.

(a) If either argminK f ∩ S−
g (0) �= ∅ or [S−

g (0) ∩ S+
f (μ) �= ∅ with α = −∞], then

λ∗ ≥ 0, f (x) + λ∗g(x) ≥ μ ∀ x ∈ C �⇒ λ∗ = 0;
consequently,

inf
x∈K

f (x) = inf
x∈C

f (x).

(b) Assume that S+
g (0) = ∅ or [S+

g (0) ∩ S−
f (μ) = ∅, S+

g (0) �= ∅] are satisfied; if either
(a3) or (a5) with argminK f �= ∅, or [(b3) with argminK f = ∅] holds, then, any
(γ ∗, λ∗) ∈ R

2+\{(0, 0)}, verifies

γ ∗( f (x) − μ) + λ∗g(x) ≥ 0 ∀ x ∈ C,

consequently,

γ ∗ inf
x∈K

f (x) = inf
x∈C

L(γ ∗, λ∗, x).

(c) Assume that β ≤ α; if [(a3) with argminK f �= ∅], or [(b1) with argminK f = ∅] hold,
then any λ∗ such that − 1

β
≤ λ∗ ≤ − 1

α
satisfies

f (x) + λ∗g(x) ≥ μ ∀ x ∈ C. (4.2)

(d) Assume that −∞ < β < 0 and S+
g (0) ∩ S−

f (μ) �= ∅ hold; if either (a2) or (a5) with

argminK f �= ∅, or [(b3) with argminK f = ∅], then any λ∗ such that − 1
β

≤ λ∗ verifies
(4.2).

(e) Assume that either S+
g (0) = ∅ or [S+

g (0) ∩ S−
f (μ) = ∅, S+

g (0) �= ∅] are satisfied; if
[(a3) with argminK f �= ∅] or [(b1) with argminK f = ∅], hold, then any λ∗ such that
− 1

α
≥ λ∗ > 0 verifies (4.2).

(f) If S+
g (0) ∩ S−

f (μ) �= ∅ with β = 0, then

γ ∗ ≥ 0, γ ∗( f (x) − μ) + g(x) ≥ 0 ∀ x ∈ C �⇒ γ ∗ = 0.

Figures 4 and 5 provide the geometry of different situations occuring in Corollary 4.2.
The preceding corollary applies to situations where strong duality still holds even if the

Slater condition fails. This is illustrated in the following example.

Example 4.3 Take C = {(x1, x2) : x2 ≤ x1, x1 ≥ 0, x2 ≥ −1}, P = R+. Let

f (x1, x2) = x2
1 + x1x2 − 2x2

2 , g(x1, x2) = x1 − x2.

(a) (b) (c)

Fig. 4 Corollary 4.2(a), (b), (c)
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(d) (e) (f)

Fig. 5 Corollary 4.2(d), (e), ( f )

Thus, K = {(x1, x2) : x1 = x2, x2 ≥ 0}, and there is no x ∈ C such that g(x) < 0, i.e.,
S−

g (0) = ∅. In this case,

cone(F(C) + R
2++) =

{
(u, v) ∈ R

2 : v > −1

2
u, v > 0

}
∪ {(0, 0)}

is pointed; μ = 0, argminK f = K , S+
g (0) = {(x1, x2) ∈ C : x1 > x2} and

S−
f (μ) =

{
(x1, x2) : x2 < −1

2
x1, x2 ≥ −1, x1 ≥ 0

}
.

Thus, S+
g (0) ∩ S−

f (μ) = S−
f (μ), and so β = −1/2. Hence, according to Corollary 4.2(d),

any λ∗ ≥ 2 satisfies f (x) + λ∗g(x) ≥ 0 ∀ x ∈ C , i.e.,

min
g(x)≤0

x∈C

f (x) = min
x∈C

( f (x) + λ∗g(x)), ∀ λ∗ ≥ 2.

Next theorem provides a complete characterization of strong duality for our problem with
a single constraint.

Theorem 4.4 Let K be non-empty and μ finite. The following assertions are equivalent:

(a) strong duality holds;
(b) cone(F(C) − μ(1, 0) + R

2++) is pointed, and either S+
g (0) ∩ S−

f (μ) = ∅ or [S+
g (0) ∩

S−
f (μ) �= ∅ with β < 0] holds.

Proof (a) �⇒ (b): The pointedness follows from Theorem 3.1. Suppose that S+
g (0) ∩

S−
f (μ) �= ∅. By assumption, there exists λ∗

0 ≥ 0 such that f (x)+λ∗
0g(x) ≥ μ for all x ∈ C .

This implies that λ∗
0 > 0. Indeed, if λ∗

0 = 0, the previous inequality gives f (x) − μ ≥ 0 for
all x ∈ C , which is impossible if S+

g (0) ∩ S−
f (μ) �= ∅.

Now, suppose that β = 0. Then, there exists x̄ ∈ S+
g (0) ∩ S−

f (μ) �= ∅ such that

g(x̄)

f (x̄) − μ
> − 1

λ∗
0
.

It follows that f (x̄) + λ∗
0g(x̄) < μ, yielding a contradiction; this proves that β < 0.

(b) �⇒ (a): This is a consequence of Theorem 4.1 and Corollary 4.2. ��
We observe the condition S+

g (0) ∩ S−
f (μ) = ∅ can be split into the following two expres-

sions:

(1) S+
g (0) = ∅;

(2) S+
g (0) ∩ S−

f (μ) = ∅ and S+
g (0) �= ∅.
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The first gives immediately

inf
x∈K

f (x) = inf
x∈C

f (x).

Furthermore, since (F(C)−μ(1, 0))∩ (−R
2++) = ∅, it is not difficult to see the pointed-

ness of cone(F(C)−μ(1, 0)+R
2++) is equivalent to the convexity of cone(F(C)−μ(1, 0)+

R
2++), or cone(F(C) − μ(1, 0) + R

2++), or cone(F(C) − μ(1, 0)) + R
2++, see for instance

Theorem 4.1 in [10].
As we will see in the next section, the convexity of F(C), and so of cone(F(C)−μ(1, 0)+

R
2++), is guaranteed by an important class of quadratic functions, as a consequence of Dine’s

theorem, see [17].

5 A concrete application: the (non convex) quadratic homogeneous case

We now derive, from Theorem 4.4, a necessary and sufficient optimality condition for a class
of homogeneous programming problems, arising in telecommunications and robust control,
see [22,24].

Let us consider the following homogeneous optimization problem:

μ
.= inf

{
1

2
x� Ax : 1

2
x� Bx ≤ 1, x ∈ C

}
, (5.1)

where C is a regular cone [17, Definition 3.1], that is, C ∪ (−C) is a linear subspace. Setting

f (x) = 1

2
x� Ax, g(x) = 1

2
x� Bx − 1,

where A, B are symmetric matrices, the generalized Dine’s theorem ([17, Theorem 3.2])
ensures that

F(C) − μ(1, 0) =
{(

1

2
x� Ax,

1

2
x� Bx

)
: x ∈ C

}
− (μ, 1) is convex,

and therefore so is cone(F(C) − μ(1, 0) + R
2++), which is equivalent to the pointedness of

cone(F(C) − μ(1, 0) + R
2++). We notice the Slater condition is also satisfied. As a conse-

quence, strong duality always holds for problem (5.1) by Corollary 3.2. We recall that A is
copositive (on C) if x� Ax ≥ 0 for all x ∈ C . Notice that copositivity on C is equivalent
to copositivity on C ∪ (−C). By H⊥ we mean the orthogonal subspace of H ⊆ R

m , that
is, H⊥ = {ξ ∈ R

m : 〈ξ, x〉 = 0 ∀ x ∈ H}. Next theorem, which is new in the literature,
considers non-convex situations.

Theorem 5.1 Let μ finite and x̄ feasible for (5.1). The following assertions are equivalent:

(a) x̄ is a solution to (5.1);
(b) ∃ λ∗ ≥ 0 such that ∇ f (x̄) + λ∗∇g(x̄) ∈ (C ∪ (−C))⊥, λ∗g(x̄) = 0, A + λ∗ B is

copositive (on C)

Proof (a) �⇒ (b): By the remark above, strong duality holds, thus, there exists λ∗ ≥ 0 such
that

f (x̄) + λ∗g(x̄) ≤ f (x̄) = inf
x∈C

( f (x) + λ∗g(x)).
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This implies that λ∗g(x̄) = 0 and x̄ is a minimum for L(x) = f (x) + λ∗g(x) on C , and so
also on C ∪ (−C) since

min{L(x) : x ∈ C } = min{L(x) : x ∈ C ∪ (−C)}.
The necessary optimality condition yields

〈∇ f (x̄) + λ∗∇g(x̄), x − x̄〉 ≥ 0 ∀ x ∈ C ∪ (−C).

We also have f (x) + λ∗g(x) ≥ f (x̄) for all x ∈ C , which gives x�(A + λ∗ B)x ≥ 0 for all
x ∈ C .
(b) �⇒ (a): Setting L(x) = f (x) + λ∗g(x), x ∈ C ∪ (−C), we write

L(x) − L(x̄) = 〈∇ f (x̄) + λ∗∇g(x̄), x − x̄〉 + 1

2
〈(A + λ∗ B)(x − x̄), x − x̄〉.

Since A + λ∗ B is also copositive on C ∪ (−C), and this is a subspace, the previous equality
reduces to

f (x) ≥ L(x) ≥ L(x̄) = f (x̄) + λ∗g(x̄) = f (x̄),

implying f (x) ≥ f (x̄). This proves that x̄ is a solution to (5.1). ��
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