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Abstract This paper studies the canonical duality theory for solving a class of quadri-
nomial minimization problems subject to one general quadratic constraint. It is shown that
the nonconvex primal problem in R

n can be converted into a concave maximization dual
problem over a convex set in R

2, such that the problem can be solved more efficiently. The
existence and uniqueness theorems of global minimizers are provided using the triality theory.
Examples are given to illustrate the results obtained.

Keywords Nonconvex optimization · Canonical duality · Triality theory ·
NP-hard problem · Global optimization

1 Introduction

In this paper, we focus on the following quadrinomial minimization problem and call it a
primal problem:

The content of this article was presented in the 4th Conference of Optimization and Control with
Applications held in Harbin, 6–11 June, 2009.
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(P) : min
x∈Rn

P(x) = 1

2
xT Ax + 1

2
α

(
1

2
‖x‖2 − β

)2

− fT x

s.t.
1

2
xTBx + bT x � c. (1)

Where A and B are two symmetric matrices in R
n×n, f and b are two vectors in R

n, α ≥
0, β ≥ 0 and c are real numbers, and ‖ · ‖ is the l2 norm. Except for specially mentioned
cases, the norm used in this manuscript is the l2 norm.

Let us denote the feasible domain of Problem (P) by

X =
{

x ∈ R
n | 1

2
xTBx + bT x � c

}
(2)

and assume it is nonempty with c being large enough.
Notice that

W (x) = 1

2
α

(
1

2
‖x‖2 − β

)2

, (3)

is a fourth-order canonical polynomial in R
n (see [11]). In a continuous system, this func-

tion is called the double-well potential, which was first studied by van der Waals in fluids
mechanics in 1895. In the two dimensional space R

2, W (x1, x2) is called the Mexican hat
function in cosmology and theoretical physics (see [11]). If we select α = 1, β = 2, Fig. 1
shows the double-well function in one and two dimensional cases.

The Legendre transformation-based duality theory for nonconvex optimization and cal-
culus of variations was studied by Ivar Ekeland ([1–3]). However, except for some special
cases, using the Legendre dual to solve nonconvex systems remains an open territory ([2]).
Canonical duality theory was originally developed by Gao and his colleagues for nonconvex
analysis ([9,16]). This theory has shown its power in solving a large class of difficult global
optimization problems ([4,5,7–16]).The goal of this paper is to apply the canonical duality
theory for solving the proposed problem. We show that the constrained nonconvex primal
problem (P) in R

n can be reformulated as an unconstrained convex dual problems in R
2 with

no duality gap, which can be solved, under certain conditions, by well-developed nonlinear
programming methods. In the next section, a “perfect dual problem” is formulated, which
is equivalent to the primal problem in the sense that they share the same KKT points. The
existence and uniqueness of a global minimizer is studied in Sect. 3. Some special cases and
examples are given in Sect. 4 to illustrate the results obtained. Concluding remarks are given
in the last section.

2 Canonical duality approach

Following the standard procedure of the canonical duality theory developed in ([9–11]), the
geometrical operator for the primal problem (P) can be defined as the following vector-valued
mapping: �(x) = {ρ(x), y(x)} : R

n → R
2, where

ρ(x) = 1

2
xTBx + bT x,

y(x) = 1

2
‖x‖2 − β.
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Fig. 1 Graphs of double-well potential W (x)

Also define that

Dρ = {ρ ∈ R| ρ � c},
Dy = {y ∈ R| y � −β}.

The indicator function I : R → {0} ∪ {+∞} of Dρ is defined by

I(ρ) =
{

0 if ρ ∈ Dρ,

+∞ otherwise.

It is convex and lower semi-continuous on R. Consequently, the primal problem (P) takes
the following unconstrained canonical form:

(P) : min
x∈Rn

{
I(ρ(x)) + V (y(x)) + 1

2
xT Ax − fT x

}
, (4)

where V (y) = 1
2αy2. Since I(ρ) is lower semi-continuous and convex on R and V (y) is a

canonical (quadratic) function on Dy , the corresponding canonical dual variables ρ∗ and y∗
satisfy the following duality relations:

ρ∗ ∈ ∂−I(ρ) ⇔ ρ ∈ ∂−I∗(ρ∗) ⇔ I(ρ) + I∗(ρ∗) = ρρ∗, (5)

y∗ = DV (y) ⇔ y = DV ∗(y∗) ⇔ V (y) + V ∗(y∗) = yy∗, (6)

where ∂−I(ρ) is the sub-differential of I, DV (y) is the Gâteaux derivative of V with respect
to y, I∗(ρ∗) is Fenchel sup-conjugate of I defined by

I∗(ρ∗) = sup
ρ∈R

{〈ρ, ρ∗〉 − I(ρ)} =
{

cρ∗ if ρ∗ � 0,

+∞ otherwise,

and V ∗(y∗) is the Legendre conjugate of V given by [11]

V ∗(y∗) = 1

2α
(y∗)2.

Hence the so-called total complementary function can be written in the following form:

�(x, ρ∗, y∗) = ρ(x)ρ∗ + y(x)y∗ − I∗(ρ∗) − V ∗(y∗)+1

2
xT Ax − fT x, (7)
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which is well defined on R
n × R+ × Dy∗ with Dy∗ = {y∗ ∈ R| y∗ � −αβ}. With this total

complementary function, the canonical dual function

Pd(ρ∗, y∗) = −1

2
(f − bρ∗)T G(ρ∗, y∗)−1(f − bρ∗)− 1

2α
(y∗)2 − cρ∗ − β y∗ (8)

is defined on the dual feasible domain

Y∗ = {(ρ∗, y∗) ∈ R × Dy∗ | ρ∗ � 0, det G(ρ∗, y∗) �= 0}, (9)

where G(ρ∗, y∗) = A + ρ∗B + y∗I.
The extremal values of Pd(ρ∗, y∗) depend on the property of G(ρ∗, y∗). If G(ρ∗, y∗) 
 0,

the unique supreme value can be checked out in the domain; If G(ρ∗, y∗) ≺ 0, both local
min and local max can be identified by the triality theory under certain conditions [17]; If
G(ρ∗, y∗) is indefinite, this becomes the worst case, but we can find boundary infimum
values and all local optimal values corresponding to the stationary points.

In this paper, we restrict our attention on the dual feasible domain

Y∗+ = {(ρ∗, y∗) ∈ Y∗| G(ρ∗, y∗) 
 0}. (10)

Therefore, the canonical dual problem (Pd ) associated with the problem (P) is proposed as

(Pd) : max
{

Pd(ρ∗, y∗)| (ρ∗, y∗) ∈ Y∗+
}

. (11)

Theorem 1 The problem (Pd ) is canonically (or perfectly) dual to the primal problem (P)

in the sense that if (ρ̄∗, ȳ∗) is a KKT point of (Pd ), then

x̄ = (A + Bρ̄∗ + ȳ∗I)−1(f − bρ̄∗) (12)

is a feasible solution to the primal problem (P) and

P(x̄) = Pd(ρ̄∗, ȳ∗). (13)

Proof If (ρ̄∗, ȳ∗) is a KKT point of (Pd ), we have

1

2
‖X̄‖2 − 1

α
ȳ∗ − β = 0,

0 � ρ̄∗ ⊥ 1

2
x̄T Bx̄ + bT x̄ − c � 0, (14)

where x̄ = (A + ρ̄∗B + ȳ∗I)−1(f − bρ̄∗). The complementarity condition (14) means that
x̄ is a KKT point of the problem (P), and it is feasible. From the complementarity condition
(14), we further have

cρ̄∗ = 1

2
ρ̄∗x̄T Bx̄ + ρ̄∗bT x̄.

Considering the Legendre-Young equality

1

2α
(ȳ∗)2 + β ȳ∗ = (ȳ + β)ȳ∗ − 1

2
α ȳ2 = 1

2
x̄T x̄ ȳ∗ − 1

2
α

(
1

2
x̄T x̄ − β

)2

,
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we have

Pd(ρ̄∗, ȳ∗) = −1

2
(f − bρ∗)T G(ρ̄∗, ȳ∗)−1G(ρ̄∗, ȳ∗)

×G(ρ̄∗, ȳ∗)−1(f − bρ∗) − 1

2α
(ȳ∗)2 − β ȳ∗ − cρ̄∗

= −1

2
x̄T G(ρ̄∗, ȳ∗)x̄ −

(
1

2α
(ȳ∗)2 + β ȳ∗

)
− 1

2
x̄T Bρ̄∗x̄ − x̄T bρ̄∗

= −1

2
x̄T Ax̄ + 1

2
α

(
1

2
x̄T x̄ − β

)2

− x̄T x̄ ȳ∗ − x̄T Bρ̄∗x̄ − x̄T bρ̄∗,

= −1

2
x̄T Ax̄ + 1

2
α

(
1

2
x̄T x̄ − β

)2

+ x̄T (Ax̄ − f ),

= 1

2
x̄T Ax̄ + 1

2
α

(
1

2
x̄T x̄ − β

)2

− fT x̄,

= P(x̄).

This shows that there is no duality gap between the problems (P) and (Pd). ��

3 Global extrema

The triality theory of [9,11] charaterizes the global extrema of the primal problem (P) as
follows.

Theorem 2 (Global Extrema) Assume that (ρ̄∗, ȳ∗) is a KKT point of (Pd ) and x̄ =
G(ρ̄∗, ȳ)−1(f − bρ̄∗). If (ρ̄∗, ȳ∗) ∈ Y∗+, then (ρ̄∗, ȳ∗) is a global maximizer of Pd on Y∗+,
while the vector x̄ is a global minimizer of P on X , and

P(x̄) = min
x∈X

P(x) = max
(ρ∗,y∗)∈Y∗+

Pd(ρ∗, y∗) = Pd(ρ̄∗, ȳ∗). (15)

Proof The total complementarity function �(x, ρ∗, y∗) can be written as

�(x, ρ∗, y∗) = 1

2
xT Bρ∗x + bT ρ∗x + 1

2
xT y∗x + 1

2
xT Ax − fT x − 1

2α
(y∗)2 − cρ∗ − βy∗,

= 1

2
xT G(ρ∗, y∗)x + (bρ∗ − f)T x − 1

2α
(y∗)2 − cρ∗ − βy∗. (16)

If (ρ̄∗, ȳ∗) ∈ Y∗+, then �(x, ρ̄∗, ȳ∗) : R
n �→ R is convex and �(x̄, ρ∗, y∗) : R+×Dy∗ �→

R is concave. According to Theorem 1, (x̄, ρ̄∗, ȳ∗) is a saddle point of �(x, ρ∗, y∗). Hence
we have

P(x̄) = min
x∈X

max
(ρ∗,y∗)∈Y∗+

�(x, ρ∗, y∗) = max
(ρ∗,y∗)∈Y∗+

min
x∈X

�(x, ρ∗, y∗)

= Pd(ρ̄∗, ȳ∗).

��
Similar ideas can be traced back to [11–15].
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3.1 Special case 1: quadratic programming over a sphere

Consider a special case of the primal problem. We select α = 0, B = I, b = 0, c > 0. Then
the primal problem becomes

(P) :min
x∈Rn

P(x) = 1

2
xT Ax − fT x

s.t.
1

2
‖x‖2 � c, (17)

which is a quadratic programming problem with one quadratic (spherical) constraint [12].
Its canonical dual problem (Pd

s ) becomes

(Pd
s ) : max

ρ∗∈R

{
Pd(ρ∗) = −1

2
fT (A + ρ∗I)−1f − cρ∗

}
(18)

s.t. ρ∗ � 0, det(A + ρ∗I) �= 0.

The primal-dual relationship is given by

x̄ = (A + ρ∗I)−1f .

Following the ideas of reference [12], suppose that the symmetric matrix A has p (a positive
integer less than or equal to n) distinct eigenvalues, and id (a positive integer � p) of them
are negative such that

a1 < a2 < · · · < aid < 0 � aid+1 < · · · < ap.

Then for a given vector f �= 0 ∈ R
n and a sufficiently large parameter c > 0, the canonical

dual problem (Pd
s ) has at most 2id + 1 KKT points ρ̄∗

i , i = 1, 2, . . . , 2id + 1, satisfying the
following distribution1

ρ̄∗
1 > −a1 > ρ̄∗

2 � ρ̄∗
3 > −a2 > · · · > −aid > ρ̄∗

2id
� ρ̄∗

2id+1 > 0.

For a given sufficiently large parameter c > 0, the problem (Pd
s ) has at most 2id + 1 KKT

points on the boundary of the sphere. In practice, they can be obtained by solving the following
algebraic equation

1

2
fT (A + ρ∗I)−2f = c.

Therefore, the global minimizer is

x̄1 = (A + ρ̄∗
1 I)−1f .

3.2 Special case 2: unconstrained double-well optimization

In this special case, B = 0, b = 0, and c > 0. Then we have

(P) : min
x∈Rn

P(x) = 1

2
xT Ax + 1

2
α

(
1

2
‖x‖2 − β

)2

− fT x.

This problem is equivalent to finding the smallest stationary point of P(x).

1 This is a very special case. It is a challenging work that how to present a condition to make sure the canonical
dual solution ρ̄∗

1 > −a1.
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Following [11], the canonical dual problem is to find the smallest stationary point of
Pd(y∗) over Dy∗ such that

(Pd) : min sta

{
Pd(y∗) = −1

2
fT (A + y∗I)−1f − 1

2
α−1 y∗2 − β y∗ | y∗ ∈ Dy∗

}
.

The criticality condition associated with this dual problem is given by

α−1 y∗ + β = 1

2
fT (A + y∗I)−2f .

For a given vector f �= 0 ∈ R
n and α, β > 0, if the symmetric matrix A has m(≤ n)

distinct eigenvalues a1 > a2 > · · · > am , the above algebraic equation has at most 2m + 1
real roots ȳ∗

1 > ȳ∗
2 ≥ ȳ∗

3 ≥ · · · ≥ ȳ∗
2m+1. These dual solutions lead to at most 2m + 1 critical

points of P(x) such that

x̄i = (A + ȳ∗
i I)−1f, i = 1, 2, . . . , 2m + 1.

The vector x̄1 = (A+ ȳ∗
1 I)−1f is a global minimizer of P(x) and x̄2m+1 = (A+ ȳ∗

2m+1I)−1f
is a local maximizer of P(x).

4 Examples

In this section, we use three examples to illustrate the results obtained. In particular, we
show that a global minimizer can be obtained by solving the canonical dual problem using
MATLAB.

Example 1 Consider a one-dimensional double-well minimization problem. If we take A =
a1, f = f1, B = k11, b = b1, the primal problem becomes

min
x∈R

P(x) = 1

2
a1x2 + 1

2
α

(
1

2
x2 − β

)2

− f1x

s.t.
1

2
k11x2 + b1x ≤ c. (19)

The canonical dual problem of (19) becomes

max
(ρ∗,y∗)∈R×R

Pd(ρ∗, y∗) = −1

2

( f1 − b1ρ
∗)2

k11ρ∗ + y∗ + a1
− 1

2α
(y∗)2 − βy∗ − cρ∗

s.t. ρ∗ � 0, y∗ � −αβ, k11ρ
∗ + y∗ � −a1. (20)

The objective function in (20) is concave when k11ρ
∗ + y∗ � −a1 and the dual problem has

a unique solution in the feasible domain.
Let a1 = −0.4, α = 1, β = 0.45, f1 = −0.3, k11 = 1, b1 = 1, c = 1, the minimization

problem becomes

min
x∈R

P(x) = −0.2x2 + 1

2

(
1

2
x2 − 0.45

)2

+ 0.3x

s.t.
1

2
x2 + x ≤ 1. (21)
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Fig. 2 Graphs of P(x)
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Fig. 3 Three dimensional contour of the canonical dual function Pd (ρ∗, y∗)

Its dual problem is

max
(ρ∗,y∗)∈R×R

Pd(ρ∗, y∗) = −1

2

(
(−0.3 − ρ∗)2

ρ∗ + y∗ − 0.4

)
− 1

2
(y∗)2 − 0.45y∗ − ρ∗

s.t. ρ∗ � 0, y∗ � −0.45, ρ∗ + y∗ � 0.4. (22)

Figure 2 shows the graph of the primal objective function. The three dimensional contours
of the canonical dual objective function is shown in Fig. 3.

Notice that the dual problem has a unique solution

ρ̄∗ = 0, ȳ∗ = 0.6064.

The optimal solution of the primal problem can be obtained by

x̄ = f1 − b1ρ̄∗
ρ̄∗ + ȳ∗ − 0.4

= −0.3

0.6064 − 0.4
= −1.4535.

It is easy to verify that

P(x̄) = −0.6748 = Pd(ρ̄∗, ȳ∗).
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Fig. 4 Graph of �(ρ∗, y∗) and level surface � = c

ρ̄∗ = 0 indicates that the solution x̄ is in the interior of the feasible domain of the primal
problem.

If we let c = −0.45 and keep other parameters the same, the dual solution becomes ρ̄∗ =
0.8831, ȳ∗ = 0.4159. It indicates that the primal solution x̄ = −0.3−0.8831

0.8831+0.4159−0.4 = −1.3161

is a boundary point of the interval defined by 1
2 x2 + x ≤ −0.45. Consequently, we can obtain

a dual solution by solving the following algebraic equations

⎧⎨
⎩

1
2

(−0.3−ρ̄∗)2

(ρ̄∗+ȳ∗−0.4)2 + −0.3−ρ̄∗
ρ̄∗+ȳ∗−0.4 = −0.45,

Dȳ∗ Pd(ρ̄∗, ȳ∗) = 1
2

(−0.3−ρ̄∗)2

(ρ̄∗+ȳ∗−0.4)2 − ȳ∗ − 0.45 = 0.
(23)

We can select a solution pair such that ρ̄∗ ≥ 0 and ȳ∗ ≥ −0.45.
If we let

�(ρ̄∗, ȳ∗) = 1

2

(−0.3 − ρ̄∗)2

(ρ̄∗ + ȳ∗ − 0.4)2 + −0.3 − ρ̄∗

ρ̄∗ + ȳ∗ − 0.4
,

the graph of �(ρ∗, ȳ∗) and the surface of � = c are shown in Fig. 4.

Example 2 Consider a two-dimensional double-well potential minimization problem by tak-
ing

A =
(

a1 0
0 a2

)
, f =

(
f1

f2

)
, B =

(
k11 0
0 k22

)
, b =

(
b1

b2

)
.

The primal problem becomes

min
(x1,x2)∈R2

P(x1, x2) = 1

2

(
a1x2

1 + a2x2
2

) + 1

2
α

(
1

2

(
x2

1 + x2
2

) − β

)2

− f1x1 − f2x2

s.t.
1

2

(
k11x2

1 + k22x2
2

) + b1x1 + b2x2 ≤ c. (24)
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The canonical dual problem of (24) is

max
(ρ∗,y∗)∈R2

Pd(ρ∗, y∗) = −1

2

(
( f1 − b1ρ

∗)2

k11ρ∗ + y∗ + a1
+ ( f2 − b2ρ

∗)2

k22ρ∗ + y∗ + a2

)

− 1

2α
(y∗)2 − βy∗ − cρ∗ (25)

s.t.ρ∗ � 0, y∗ � −αβ,

k11ρ
∗ + y∗ � −a1, k22ρ

∗ + y∗ � −a2.

The canonical dual objective function is concave when k11ρ
∗+y∗ � −a1, k22ρ

∗+y∗ � −a2,
and the dual problem has a unique solution in the feasible domain.

If we let a1 = −0.4, a2 = −0.2, α = 1, β = 0.45, f1 = f2 = −0.3, k11 = 2, k22 =
4, b1 = 2, b2 = 2.4, c = −0.72, the minimization problem becomes

min
(x1,x2)∈R2

P(x1, x2) = −0.2x2
1 − 0.1x2

2 + 1

2

(
1

2
(x2

1 + x2
2 ) − 0.45

)2

+ 0.3x1 + 0.3x2

s.t.x2
1 + 2x2

2 + 2x1 + 2.4x2 ≤ −1.65. (26)

The corresponding dual problem is

max
(ρ∗,y∗)∈R2

Pd(ρ∗, y∗) = −1

2

(
(−0.3 − 2ρ∗)2

2ρ∗ + y∗ − 0.4
+ (−0.3 − 2.4ρ∗)2

4ρ∗ + y∗ − 0.2

)

−1

2
(y∗)2 − 0.45y∗ + 1.65ρ∗ (27)

s.t.ρ∗ � 0, y∗ � −0.45,

2ρ∗ + y∗ � 0.4, 4ρ∗ + y∗ � 0.2.

The dual problem has a unique solution

ρ̄∗ = 0.2314, ȳ∗ = 0.5499.

The solution of the primal problem can be obtained as

x̄1 = f1 − b1ρ̄∗
¯k11ρ∗ + ȳ∗ + a1

= −0.3 − 2 ∗ 0.2314

2 ∗ 0.2314 + 0.5499 − 0.4
= −1.2450,

x̄2 = f2 − b2ρ̄∗
¯k22ρ∗ + ȳ∗ + a2

= −0.3 − 2.4 ∗ 0.2314

4 ∗ 0.2314 + 0.5499 − 0.2
= −0.6706.

It is easy to verify that

P(x̄) = −0.7785 = Pd(ρ̄∗, ȳ∗).

Figure 5 shows the graph of the primal objective function and Fig. 6 shows its three-dimen-
sional contour.

If c = −0.72, the dual solution becomes ρ̄∗ = 0, ȳ∗ = 0.6315, and the primal solution
is x̄1 = −1.2959, x̄2 = −0.6952. The global minimizer becomes
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Fig. 5 Graph of P(x1, x2)
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Fig. 6 Canonical dual figure

P(−1.2959,−0.6952) = −0.7822 = Pd(0, 0.6315).

In fact, c = −1.6143 is a critical value such that ρ̄∗ = 0 when c ≥ −1.6143 and ρ̄∗ �= 0
when c ≤ −1.6143. The canonical dual solution can be obtained by solving the following
algebraic equations

⎧⎨
⎩

(2ρ∗+0.3)2

(2ρ∗+y∗−0.4)2 + 2(2.4ρ∗+0.3)2

(4ρ∗+y∗−0.2)2 + 2(−2ρ∗−0.3)
2ρ∗+y∗−0.4 + 2.4(−2.4ρ∗−0.3)

4ρ∗+y∗−0.2 = c,
1
2

(
(2ρ∗+0.3)2

(2ρ∗+y∗−0.4)2 + 2(2.4ρ∗+0.3)2

(4ρ∗+y∗−0.2)2

)
− y∗ − 0.45 = 0.

Graph of �(ρ̄∗, ȳ∗) and the level surface � = c are shown in Fig. 7.
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Fig. 7 Graph of �(ρ∗, y∗) and level surface of � = c

Example 3 Consider a three-dimensional double-well potential minimization problem by
taking

A =
⎛
⎝ a1 0 0

0 a2 0
0 0 a3

⎞
⎠ , f =

⎛
⎝ f1

f2

f3

⎞
⎠ , B =

⎛
⎝ k11 0 0

0 k22 0
0 0 k33

⎞
⎠ , b =

⎛
⎝ b1

b2

b3

⎞
⎠ .

The primal problem becomes

min
(x1,x2,x3)∈R3

P(x1, x2, x3) = 1

2

(
3∑

i=1

ai x2
i

)
+ 1

2
α

(
1

2

(
3∑

i=1

x2
i

)
− β

)2

−
3∑

i=1

fi xi

s.t.
1

2

(
3∑

i=1

kii x2
i

)
+

3∑
i=1

bi xi ≤ c. (28)

The canonical dual problem of (28) is

max
(ρ∗,y∗)∈R2

Pd(ρ∗, y∗) = −1

2

(
3∑

i=1

( fi − biρ
∗)2

kiiρ∗ + y∗ + ai

)
− 1

2α
(y∗)2 − βy∗ − cρ∗

s.t.ρ∗ � 0, y∗ � −αβ, kiiρ
∗ + y∗ ≥ −ai , i = 1, 2, 3. (29)

Note that the canonical objective function is concave, if kiiρ
∗ + y∗ ≥ −ai for i = 1, 2, 3

and the dual problem has a unique solution in the feasible domain.
If we let a1 = −0.6, a2 = −0.4, a3 = −0.2, α = 1, β = 0.45, f1 = f2 = f3 =

−0.3, k11 = 2, k22 = 4, k33 = 0, b1 = 2, b2 = 2, b3 = −1, c = 1, the primal problem
becomes

min
(x1,x2,x3)∈R3

P(x1, x2, x3) = −(0.3x2
1 + 0.2x2

2 + 0.1x2
3 ) + 1

2

(
1

2

3∑
i=1

x2
i − 0.45

)2

+0.3
3∑

i=1

xi

s.t.x2
1 + 2x2

2 + 2x1 + 2x2 − x3 ≤ 1. (30)
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Fig. 8 Graph of the quadratic constrain x2
1 + 2x2

2 + 2x1 + 2x2 − x3 ≤ 1. The black dot denotes the global
minimal point (−1.3459,−0.7094,−0.4816) of P(x)

The feasible set determined by the constraint is the inner part of paraboloid as shown in
Fig. 8.

The canonical dual problem becomes

max
(ρ∗,y∗)∈R2

Pd(ρ∗, y∗) = −0.5

(
(−0.3 − 2ρ∗)2

2ρ∗ + y∗ − 0.6
+ (−0.3 − 2ρ∗)2

4ρ∗ + y∗ − 0.4
+ (−0.3 + ρ∗)2

y∗ − 0.2

)

−0.5(y∗)2 − 0.45y∗ − ρ∗ (31)

s.t.ρ∗ � 0, y∗ � −0.45,

2ρ∗ + y∗ > 0.6, 4ρ∗ + y∗ > 0.4, y∗ > 0.2.

The unique dual solution is given by

ρ̄∗ = 0, ȳ∗ = 0.8229.

The corresponding solution of the primal problem can be obtained as
⎧⎪⎪⎨
⎪⎪⎩

x̄1 = f1
ȳ∗+a1

= −0.3
0.8229−0.6 = −1.3459;

x̄2 = f2
ȳ∗+a2

= −0.3
0.8229−0.4 = −0.7094;

x̄3 = f3
ȳ∗+a3

= −0.3
0.8229−0.2 = −0.4816.

It is easy to verify that the global minimizer

P(x̄) = −1.0894 = Pd(ρ̄∗, ȳ∗).

The equation of ρ̄∗ = 0 indicates that the primal solution (−1.3459,−0.7094,−0.4816) is
in the interior of the feasible domain defined by x2

1 + 2x2
2 + 2x1 + 2x2 − x3 ≤ 1. Actually,

(−1.3459)2 + 2(−0.7094)2 + 2(−1.3459) + 2(−0.7094) + 0.4816 = −0.8113 < 1, and
c = −0.8113 is a critical value.

If we select c = −0.9 in (28), the corresponding dual solution is

ρ̄∗ = 0.0587, ȳ∗ = 0.7886.
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Fig. 9 The graphes of �(ρ∗, y∗) and surface � = c

The primal solution is obtained as⎧⎪⎪⎨
⎪⎪⎩

x̄1 = f1−b1ρ
∗

k11ρ∗+ȳ∗+a1
= −0.3−2∗0.0587

2∗0.0587+0.8229−0.6 = −1.3641;
x̄2 = f2−b2ρ∗

k22ρ∗+ȳ∗+a2
= −0.3−2∗0.0587

4∗0.0587+0.8229−0.4 = −0.6696;
x̄3 = f3−b3ρ

∗
k33ρ∗+ȳ∗+a3

= −0.3+0.0587
0.8229−0.2 = −0.4100.

It locates on the boundary of x2
1 + 2x2

2 + 2x1 + 2x2 − x3 ≤ −0.9. Actually, we have
(−1.3641)2 + 2(−0.6696)2 + 2(−1.3641) + 2(−0.6696) − 0.4100 = 0.9000.

The global minimizer is

P(x̄) = −1.0869 = Pd(ρ̄∗, ȳ∗).

We see ρ̄∗ = 0, when c > −0.8113, and ρ̄∗ �= 0, when c ≤ −0.8113. The canonical dual
solution can be obtained by the solving the following algebraic equations⎧⎨

⎩
(−0.3−2ρ∗)2

(2ρ∗+y∗−0.6)2 + 2(−0.3−2ρ∗)2

(4ρ∗+y∗−0.4)2 + 2(−0.3−2ρ∗)
2ρ∗+y∗−0.6 + 2(−0.3−2ρ∗)

4ρ∗+y∗−0.4 − 2(−0.3+ρ∗)
y∗−0.2 = c,

1
2 (

(−0.3−2ρ∗)2

(2ρ∗+y∗−0.6)2 + (−0.3−2ρ∗)2

(4ρ∗+y∗−0.4)2 + (−0.3+ρ∗)2

(y∗−0.2)2 ) − y∗ − 0.45 = 0.

Same as previous examples, the graphs of �(ρ̄∗, ȳ∗) and � = c are shown in Fig. 9.
Notice that our examples show that there is no duality gap between the primal problem

and its canonical dual. Higher dimensional examples can also be illustrated using the same
procedure. Over Y∗+, when c is large enough, the canonical dual is strongly concave. After
solving the canonical dual problem by MATLAB, a global minimizer can be found.

5 Concluding remark

In this paper, we have further extended the canonical duality theory to handle a class of quad-
rinomial minimization problems with one general quadratic constraint. Since the double-well
function has its special meanings in physics and mechanics, the study of our problem becomes
useful. Our results show how a global minimizer can be found by solving the canonical dual
problem. Although the existence theorem has not been presented completely, this work begins
to reveal some insights of this type of difficult nonconvex optimization problems. The triality
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theory can also be used to identify both local minimizer and local maximizers. Interested
readers are refereed to the recent work [17].
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