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Abstract In this paper, we present sufficient conditions for the existence of Henig efficient
solutions, superefficient solutions and Henig globally efficient solutions of a vector equilib-
rium problem in topological vector spaces, using a well-known separation theorem in infinite
dimensional spaces. As an application, using a scalarization technique, existence results for
proper efficient solutions of generalized vector variational inequalities are given.
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1 Introduction

The study of equilibrium problems received a great attention, ever since the paper of Blum
and Oettli appeared. They introduced the scalar equilibrium (E P), which consists in finding:

ā ∈ A such that f (ā, b) ≥ 0 for all b ∈ B,

where A is a nonempty subset of a real topological vector space E , B a nonempty set and
f : A × B → R. This problem includes as particular cases optimization problems, saddle-
point problems/minimax problems, variational inequalities, complementarity problems (see,
for instance [5]).

In [3] and [4], the scalar equilibrium (E P) was extended to vector-valued bifunctions in
the following way:

(V E P) find ā ∈ A such that ϕ(ā, b) /∈ −C \ {0} for all b ∈ B,

where ϕ : A × B → Z is a given bifunction and C is a convex cone of a real topological
vector space Z . We refer to this problem as the strong vector equilibrium problem. A point
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ā ∈ A which satisfies the upper relation is called an efficient solution to (V E P). Denote by
Vef f (ϕ) the set of efficient solutions to (V E P). For existence results of (vector) equilibrium
problems and their particular cases, as well as for properties of the set of solutions we refer
the reader to [1,2,6–10,12,13,23,24] and [32].

Recently, Gong introduced in [18,19] and [21] different concepts of proper efficient solu-
tions of the equilibrium problem (V E P) and stated existence results for proper efficient
solutions, using scalarization techniques and Ky Fan’s Lemma (see [14]). In this paper, we
extend the existence results from [6], obtained for weak efficient solutions of (V E P) to
existence results of proper efficient solutions of (V E P).

The paper is organized as follows. In the remaining part of the introduction, we recall
some notions and properties considered in the past and necessary for our investigations.

In Sect. 2 we present existence theorems for Henig efficient solutions, superefficient
solutions and Henig globally efficient solutions of (V E P), using the well-known Eidelheit’s
separation theorem in infinite dimensional spaces. After that, we give some corollaries which
deal with stronger assumptions, and some of them are given for the ordering cone C . When
we reduce the space Z to R, and take C to be the set of positive real numbers, the considered
proper solutions collapse into solutions of (E P), and we recover an earlier existence result
of Kassay and Kolumban [25] for scalar equilibrium problems.

Motivated by the lack of results for the existence results of strong vector variational
inequalities, as Chen and Hou mentioned in [12], in Sect. 3, using a scalarization technique,
we present an application to generalized vector variational inequality problems, where we
state existence results for proper efficient solutions. Whenever C� �= ∅ and E is equipped
with the weak topology, by Theorem 5 we recover Theorem 3.1 from [18].

Throughout this paper E and Z are considered to be real topological vector spaces, until
something else is supposed, A ⊆ E is a nonempty subset, B is a nonempty set, and C ⊆ Z
is a convex cone.

Recall that a subset C ⊆ Z is called cone if λC ⊆ C for every λ ≥ 0. The cone C is said
to be:

(i) solid, if int C �= ∅;
(ii) pointed, if C ∩ (−C) = {0}.

Let D be a nonempty subset of Z . The conic hull of D is defined as:

cone (D) = {td | t ≥ 0, d ∈ D}.
Let Z∗ be the topological dual space of Z , and

C∗ = {
z∗ ∈ Z∗ | z∗(c) ≥ 0 for all c ∈ C

}

be the positive dual cone of C . The quasi-interior of C∗ is

C� = {
z∗ ∈ C∗ | z∗(c) > 0 for all c ∈ C\{0}}.

We refer the reader to [16] for the fact that C� �= ∅ if and only if C has a base, i.e. there is B
a nonempty convex subset of the cone C such that C = cone (B) and 0 /∈ cl (B).

A neighborhood U of zero is said to be balanced, if λU ⊆ U for each scalar with | λ |≤ 1.

Lemma 1 If z∗ ∈ C∗ is a nonzero functional, then z∗(z) > 0 for all z ∈ int C.

Let B be a base of C and let

C� = {
z∗ ∈ C� | there is t > 0 such that z∗(b) ≥ t for all b ∈ B}

.
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The above notion, introduced by Zheng [33], satisfies the inclusion C� ⊆ C�. Since B is a
base for C , we have 0 /∈ cl (B). So, by the Tukey’s separation theorem (see for instance [27])
we get the existence of a nonzero functional z∗ ∈ Z∗ such that

r = inf {z∗(b) | b ∈ B} > z∗(0) = 0.

Thus, C� �= ∅.
Set

VB =
{

z ∈ Z | |z∗(z)| <
r

2

}
.

Hence, VB is a balanced neighborhood of zero in Z . For each convex neighborhood U of
zero with the property U ⊆ VB, B + U is a convex set and 0 /∈ cl (B + U ). Therefore
CU (B) = cone (U + B) is a pointed convex cone and C\{0} ⊆ int CU (B).

Gong showed in [17] and [18] that solutions of a (V E P) can be characterized and com-
puted as solutions of an appropriate scalar equilibrium problem. Let us recall the next solution
concepts.

Definition 1 A vector a ∈ A is said to be:

(i) a Henig efficient solution to (V E P) if there exists some neighborhoods U of zero
with U ⊆ VB such that

ϕ(a, B) ∩ (−int CU (B)) = ∅.

(ii) a superefficient solution to (V E P) if, for each neighborhood V of zero, there exists
some neighborhood U of zero such that

cone (ϕ(a, B)) ∩ (U − C) ⊆ V .

(iii) a Henig globally efficient solution to (V E P) if there exists a pointed convex cone
K ⊆ Z , with C\{0} ⊆ int K , such that

ϕ(a, B) ∩ (−K\{0}) = ∅.

(iv) a weak efficient solution to (V E P) if the cone C is solid and

ϕ(a, B) ∩ (−int C) = ∅.

The sets of Henig efficient solutions, superefficient solutions, respectively Henig globally
efficient solutions are denoted by VH (ϕ), VS(ϕ), respectively VG(ϕ).

For the solution sets we have that VG(ϕ) ⊆ Vef f (ϕ) and, if C has a base, then VS(ϕ) ⊆
VH (ϕ) ⊆ Vef f (ϕ). To see that the set of Henig efficient solutions is greater than the set of
superefficient solutions we give an example.

Example 1 Let Z = R
2, C = R

2+, A = [−2,−1], B = [1, 2] and let f : [−2,−1] × [1, 2] →
R

2 be defined by

f (x, y) =
{

(−2, 0), if (x, y) = (−2, 2)

(x, y), otherwise.

Take z∗ = (1, 1) and the base B to be the set

{(x, y) ∈ R
2+ | x + y = 2}.

We observe that the base is a closed convex subset of R
2. Moreover, we find

r = inf {z∗(b) | b ∈ B} = 2.
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For each balanced neighborhood U = B(0, ε) of zero, which has a radius ε ≤ 1, and for
every a ∈ [−2,−1] we obtain that

ϕ(a, B) ∩ (−int CU (B)) = ∅,

which means that all a ∈ [−2,−1] are Henig efficient solutions of the vector equilibrium
problem (V E P).

On the other part, each point a ∈ (−2,−1] is a superefficient solution of (V E P). Hence,
we have VS( f ) = (−2,−1] ⊆ [−2,−1] = VH ( f ).

Let z∗ ∈ C∗\{0}. A vector a ∈ A is said to be a z∗-efficient solution to (V E P) if

z∗(ϕ(a, b)) ≥ 0 for all b ∈ B.

Denote by Vz∗(ϕ) the set of all z∗-efficient solutions to (V E P).
The sets

ω =
{

n⋂

i=1

{z∗ ∈ Z∗ | sup
z∈Di

| z∗(z) |< r} | Di (i ∈ {1, . . . , n}) are bounded

subsets of Z , r > 0, n ∈ N

}

form a base of neighborhoods of zero with respect to the strong topology β(Z∗, Z).

Lemma 2 (see [19,22]) If the closed convex cone C has a bounded closed base B, then

int C∗ = C�(B),

where int C∗ is the interior of the dual cone C∗ with respect to the strong topology β(Z∗, Z).

In [21], the author gave a characterization of those proper efficient solutions in a partic-
ular framework. He considered E to be a real Hausdorff topological vector space, Z a real
locally convex Hausdorff topological vector space and A = B. We say that a set D ⊆ Z is a
C-convex set, if D + C is a convex set in Z .

Theorem 1 [21] Assume that, for each a ∈ A, ϕ(a, A) is a C-convex set. If C has a base B,
then:

(i) VG(ϕ) = ⋃
z∗∈C� Vz∗(ϕ);

(ii) VH (ϕ) = ⋃
z∗∈C� Vz∗(ϕ);

(iii) If C has a closed bounded base, then:

VS(ϕ) =
⋃

z∗∈int C∗
Vz∗(ϕ).

2 Sufficient conditions for proper efficient solutions of (VEP)

In this section we give sufficient conditions for the existence of proper solutions of (V E P)

in a general framework. Let us begin with a definition.

Definition 2 [30] A function f : E → Z is said to be C-upper semicontinuous at x ∈ E
(C-usc in short) if it satisfies the following condition:

1◦ For any neighborhood V f (x) ⊂ Z of f (x), there exists a neighborhood Ux ⊂ E of x
such that f (u) ∈ V f (x) − C for all u ∈ Ux .
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The function f is said to be C-usc on E if, it is C-usc at every point x ∈ E

Remark 1 In [30] Tanaka characterized the above notion, in the hypothesis of a convex cone
C with int C �= ∅. Thus, relation 1◦ is equivalent to:

2◦ For any k ∈ int C , there exists a neighborhood Ux ⊂ E of x such that f (u) ∈
f (x) + k − int C for all u ∈ Ux .

Notice that in [26], this notion was termed −C-continuous function at x .

Theorem 1 Let A be a compact set, C a convex cone with a base B, and let ϕ : A × B → Z
be a bifunction such that

(i) for each b ∈ B and U ⊂ VB the function ϕ(·, b) : A → Z is CU (B)-usc on A;
(ii) for each a1, . . . , am ∈ A, λ1, . . . , λm ≥ 0 with λ1 + · · · + λm = 1, b1, . . . , bn ∈ B

and U ⊆ VB there exists u∗ ∈ C∗
U (B)\{0} such that

min
1≤ j≤n

m∑

i=1

λi u
∗ (

ϕ(ai , b j )
) ≤ sup

a∈A
min

1≤ j≤n
u∗ (

ϕ(a, b j )
) ;

(iii) there is U0 ⊆ VB such thatfor each b1, . . . , bn ∈ B and z∗
1, . . . , z∗

n ∈ C∗
U0

(B) not all
zero one has

sup
a∈A

n∑

j=1

z∗
j

(
ϕ(a, b j )

) ≥ 0.

Then the equilibrium problem (V E P) admits a Henig efficient solution.

Proof Suppose by contradiction that (V E P) has no Henig efficient solution, i.e. for each
a ∈ A and U ⊆ VB there exists b ∈ B with the property ϕ(a, b) ∈ −int CU (B). This means
that, for each a ∈ A and U ⊆ VB there exists b ∈ B and k ∈ int CU (B) such that

ϕ(a, b) + k ∈ −int CU (B).

Consider the sets

Ub,k := {a ∈ A | ϕ(a, b) + k ∈ −int CU (B)},
where b ∈ B and k ∈ int CU (B). In what follows we show that the family of these sets forms
an open covering of the compact set A.

Let a0 ∈ Ub,k and k ∈ int CU (B). Since a0 ∈ Ub,k we have

ϕ(a0, b) + k ∈ −int CU (B) that is, −ϕ(a0, b) − k ∈ int CU (B).

Denote k
′ := −ϕ(a0, b) − k, so k

′ ∈ int CU (B). Since the function ϕ(·, b) is CU (B)-usc
at a0 ∈ A, we obtain for this k

′
that there exists a neighborhood Ua0 ⊂ E of a0 such that

ϕ(u, b) ∈ ϕ(a0, b) + k
′ − int CU (B) = ϕ(a0, b) − ϕ(a0, b) − k − int CU (B)

= −k − int CU (B), for all u ∈ Ua0 .

Hence we obtained that ϕ(u, b)+k ∈ −int CU (B) for all u ∈ Ua0 , which means that Ub,k

is an open set.
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Since, for each U ⊆ VB the family {Ub,k} is an open covering of the compact set A, we
can select a finite subfamily which covers the same set A, i. e. there exist b1, . . . , bn ∈ B
and k1, . . . , kn ∈ int CU (B) such that

A ⊆
n⋃

j=1

Ub j ,k j . (1)

For these k1, . . . , kn ∈ int CU (B), we have that there exist V1, . . . , Vn balanced neigh-
borhoods of the origin of Z such that k j + Vj ⊂ CU (B) for all j ∈ {1, . . . , n} (see e.g.
[28]).

Define V := V1 ∩ · · · ∩ Vn , thus V is a balanced neighborhood of the origin of the space
Z . Let k0 ∈ V ∩ int CU (B), so we have −k0 ∈ V . Hence,

k j − k0 ∈ k j + V ⊆ k j + Vj ⊆ CU (B), for all j ∈ {1, . . . , n},
which gives

k j − k0 ∈ CU (B), for all j ∈ {1, . . . , n}. (2)

Now define the vector-valued function F : A → Zn by

F(a) := (ϕ(a, b1) + k0, . . . , ϕ(a, bn) + k0).

Assert that

co F(A) ∩ (int CU (B))n = ∅, (3)

where co F(A) denotes the convex hull of the set F(A). Supposing the contrary, there exist
a1, . . . , am ∈ A and λ1, . . . , λm ≥ 0 with λ1 + · · · + λm = 1 such that

m∑

i=1

λi F(ai ) ∈ (int CU(B))n, or equivalently,

m∑

i=1

λiϕ(ai , b j ) + k0 ∈ int CU (B) for each j ∈ {1, . . . , n}. (4)

Let u∗ ∈ C∗
U (B) be a nonzero functional for which (ii) holds. Applying u∗ to the relation

above and taking into account Lemma 1 we obtain that

m∑

i=1

λi u
∗ (

ϕ(ai , b j )
) + u∗(k0) > 0.

Passing to the minimum over j we have

min
1≤ j≤n

m∑

i=1

λi u
∗ (

ϕ(ai , b j )
)

> −u∗(k0), (5)

thus, assumption (ii) and relation (5) imply that

sup
a∈A

min
1≤ j≤n

u∗ (
ϕ(a, b j )

)
> −u∗(k0). (6)

For each a ∈ A, by relation (1) we have that there exists j0 ∈ {1, . . . , n} such that
a ∈ Ub j0 ,k j0

, i.e.ϕ(a, b j0) + k j0 ∈ −int CU (B). This, together with (2) imply that

ϕ(a, b j0) + k0 ∈ −k j0 + k0 − int CU (B) ⊆ −int CU (B).
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By Lemma 1 and using the fact that u∗ ∈ C∗
U (B) we obtain

u∗ (
ϕ(a, b j0)

) + u∗(k0) < 0.

Thus for each a ∈ A

min
1≤ j≤n

u∗ (
ϕ(a, b j )

)
< −u∗(k0),

and passing to supremum over a we get a contradiction to (6).
By the separation theorem of convex sets of Eidelheit (see for instance [27]), we have that

for each U ⊆ VB there exists z∗ ∈ (Zn)∗ a nonzero functional such that

z∗(u) ≤ 0, for all u ∈ co F(A) and (7)

z∗(c) ≥ 0, for all c ∈ (int CU (B))n . (8)

Using the representation z∗ = (z∗
1, . . . , z∗

n), by a standard argument we deduce that z∗
j ∈

C∗
U (B) for all j ∈ {1, . . . , n}.

In particular, for each U ⊆ VB there are z∗
1, . . . , z∗

n ∈ C∗
U (B) not all zero such that

z∗(u) ≤ 0 for all u ∈ F(A). This means that for any a ∈ A, z∗(F(a)) ≤ 0, or equivalently,

n∑

j=1

z∗
j

(
ϕ(a, b j ) + k0

) ≤ 0.

Taking into account the linearity of z∗
j ∈ C∗

U (B) for all j ∈ {1, . . . , n}, Lemma 1 and the
fact that not all z∗

j are zero we obtain

n∑

j=1

z∗
j

(
ϕ(a, b j )

) ≤ −
n∑

j=1

z∗
j (k0) < 0.

Passing to supremum over a ∈ A in the upper relation we deduce that

sup
a∈A

n∑

j=1

z∗
j

(
ϕ(a, b j )

)
< 0,

which is a contradiction to assumption (iii). This completes the proof. ��
Assumption (ii) of Theorem 1 is a kind of generalized concavity of the bifunction ϕ in

its first variable. To see that, we recall the notions of C-subconcavelikeness, respectively
C-concavelikeness of a bifunction is its first variable, which originates from [6], respectively
[20].

Definition 3 Let ϕ : A × B → Z be a bifunction and C a convex cone with int C �= ∅. The
bifunction ϕ is said to be:

(i) C-subconcavelike in its first variable if for each l ∈ int C , a1, a2 ∈ A and λ ∈ [0, 1]
there exists ā ∈ A such that

ϕ(ā, b) ≥C λϕ(a1, b) + (1 − λ)ϕ(a2, b) − l for all b ∈ B.

(ii) C-concavelike in its first variable if for all a1, a2 ∈ A and λ ∈ [0, 1] there exists ā ∈ A
such that

ϕ(ā, b) ≥C λϕ(a1, b) + (1 − λ)ϕ(a2, b) for all b ∈ B.
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We observe that, if the cone C is solid, then each C-concavelike bifunction in its first
variable is C-subconcavelike in its first variable. The next corollaries deals with stronger
assumptions than those of Theorem 1.

Corollary 1 Let A be a compact set, C a convex cone with a base B, and let ϕ : A × B → Z
be a bifunction such that

(i) for each b ∈ B and U ⊂ VB the function ϕ(·, b) : A → Z is CU (B)-usc on A;
(ii) for each U ⊆ VB, ϕ is CU (B)-subconcavelike in its first variable;

(iii) there is U0 ⊆ VB such that for each b1, . . . , bn ∈ B and z∗
1, . . . , z∗

n ∈ C∗
U0

(B) not all
zero one has

sup
a∈A

n∑

j=1

z∗
j

(
ϕ(a, b j )

) ≥ 0.

Then the equilibrium problem (V E P) admits a Henig efficient solution.

Proof It is enough to show that assumption (ii) of Theorem 1 is satisfied. Let us prove that the
CU (B)-subconcavelikeness of the bifunction ϕ implies assumption (ii) of the above theorem.

For U ⊆ VB arbitrarily chosen, take a1, . . . , am ∈ A, b1, . . . , bn ∈ B, λ1, . . . , λm ≥ 0
with λ1 + · · · + λm = 1, and u∗ ∈ C∗

U (B)\{0}.
Since ϕ is CU (B)-subconcavelike in its first variable, for each l ∈ int CU (B) there exists

ā ∈ A such that
m∑

i=1

λiϕ(ai , b j ) ≤CU (B) ϕ(ā, b j ) + l for each j ∈ {1, . . . , n}. (9)

Applying u∗ to relation (9), this becomes

m∑

i=1

λi u
∗ϕ(ai , b j ) ≤ u∗ (

ϕ(ā, b j )
) + u∗(l) for each j ∈ {1, . . . , n}.

Passing to minimum over j yields:

min
1≤ j≤n

m∑

i=1

λi u
∗ (

ϕ(ai , b j )
) ≤ min

1≤ j≤n
u∗ (

ϕ(ā, b j )
) + u∗(l)

≤ sup
a∈A

min
1≤ j≤n

u∗ (
ϕ(a, b j )

) + u∗(l).

Since this relation holds for each l ∈ int CU (B) we obtain assumption (ii) of Theorem 1
satisfied. Hence (V E P) admits a Henig efficient solution. ��
Corollary 2 Let A be a compact set, C a convex cone with a base B, and let ϕ : A × B → Z
be a bifunction such that

(i) for each b ∈ B and U ⊂ VB the function ϕ(·, b) : A → Z is C-usc on A;
(ii) it is C-concavelike in its first variable;

(iii) there is U0 ⊆ VB such that for each b1, . . . , bn ∈ B and z∗
1, . . . , z∗

n ∈ C∗
U0

(B) not all
zero one has

sup
a∈A

n∑

j=1

z∗
j

(
ϕ(a, b j )

) ≥ 0.

Then the equilibrium problem (V E P) admits a Henig efficient solution.
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Proof For the proof of this corollary we have to verify if the assumptions of Corollary 1 are
satisfied.

In order to prove this, let U ⊆ VB be arbitrarily chosen. Since ϕ(·, b) is C-usc on A, we
have that for every a ∈ A and each neighborhood V of ϕ(a, b), there exists a neighborhood
U of a such that

ϕ(u, b) ∈ V − C ⊆ V − CU (B) for all u ∈ U.

Hence, ϕ(·, b) is CU (B)-usc for all b ∈ B.
Furthermore, take a1, a2 ∈ A and λ ∈ [0, 1]. By the C-concavelikeness of the bifunction

ϕ in its first variable we have the existence of an element ā ∈ A such that

ϕ(ā, b) ≥C λϕ(a1, b) + (1 − λ)ϕ(a2, b) for all b ∈ B. (10)

We know, that for each balanced neighborhood U of the origin, with the property U ⊆
VB, C\{0} ⊆ int CU (B). Hence, by(10) we obtain

ϕ(ā, b) ≥CU (B) λϕ(a1, b) + (1 − λ)ϕ(a2, b) for all b ∈ B. (11)

Moreover, for each l ∈ int CU (B), by inequality (11) we get

ϕ(ā, b) ≥CU (B) λϕ(a1, b) + (1 − λ)ϕ(a2, b) − l for all b ∈ B.

So, assumption (ii) of Corollary 1 is satisfied and the proof is completed. ��
In what follows, we state existence results for superefficient solutions and Henig globally

efficient solutions.
If C has a closed bounded base B, in view of Lemma 2, we have int C∗ = C�. Moreover,

by Proposition 2 of [17], a ∈ A is a superefficient solution of (VEP) if and only if a ∈ A is
a Henig efficient solution.

By Theorem 1, Corollary 1 and Corollary 2, we have the following results.

Theorem 2 Let E be a real Hausdorff topological vector space, Z a real locally convex
Hausdorff topological vector space, A = B a compact set, C a convex cone with a closed
and bounded base B, and let ϕ : A × B → Z be a bi function such that

(i) for each b ∈ A and U ⊂ VB the function ϕ(·, b) : A → Z is CU (B)-usc on A;
(ii) for each a1, . . . , am ∈ A, λ1, . . . , λm ≥ 0 with λ1 + · · · + λm = 1, b1, . . . , bn ∈ A

and U ⊆ VB there exists u∗ ∈ C∗
U (B)\{0} such that

min
1≤ j≤n

m∑

i=1

λi u
∗ (

ϕ(ai , b j )
) ≤ sup

a∈A
min

1≤ j≤n
u∗ (

ϕ(a, b j )
);

(iii) there is U0 ⊆ VB, such that for each b1, . . . , bn ∈ A, z∗
1, . . . , z∗

n ∈ C∗
U0

(B) not all zero
one has

sup
a∈A

n∑

j=1

z∗
j

(
ϕ(a, b j )

) ≥ 0.

Then the equilibrium problem (V E P) admits a superefficient solution.

Corollary 3 Let E be a real Hausdorff topological vector space, Z a real locally convex
Hausdorff topological vector space, A = B a compact set, C a convex cone with a closed
and bounded base B, and let ϕ : A × B → Z be a bifunction such that
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(i) for each b ∈ A and U ⊂ VB the function ϕ(·, b) : A → Z is CU (B)-usc on A;
(ii) for each U ⊆ VB, ϕ is CU (B)-subconcavelike in its first variable;

(iii) there is U0 ⊆ VB, such that for each b1, . . . , bn ∈ A, z∗
1, . . . , z∗

n ∈ C∗
U0

(B) not all zero
one has

sup
a∈A

n∑

j=1

z∗
j

(
ϕ(a, b j )

) ≥ 0.

Then the equilibrium problem (V E P) admits a superefficient solution.

Corollary 4 Let E be a real Hausdorff topological vector space, Z a real locally convex
Hausdorff topological vector space, A = B a compact set, C a convex cone with a closed
and bounded base B, and let ϕ : A × B → Z be a bifunction such that

(i) for each b ∈ A and U ⊂ VB the function ϕ(·, b):A → Z is C-usc on A;
(ii) it is C-concavelike in its first variable;

(iii) there is U0 ⊆ VB, such that for each b1, . . . , bn ∈ A, z∗
1, . . . , z∗

n ∈ C∗
U0

(B) not all zero
one has

sup
a∈A

n∑

j=1

z∗
j

(
ϕ(a, b j )

) ≥ 0.

Then the equilibrium problem (V E P) admits a superefficient solution.

In the finally part we present sufficient conditions for the existence of Henig globally
efficient solutions of the vector equilibrium problem (V E P).

Theorem 3 Let A be a compact set, K a pointed convex cone with the property C\{0} ⊆ int K,
and let ϕ : A × B → Z be a bifunction such that

(i) for each b ∈ B, the function ϕ(·, b) : A → Z is K -usc on A;
(ii) for each a1, . . . , am ∈ A, λ1, . . . , λm ≥ 0 with λ1 + · · · + λm = 1, b1, . . . , bn ∈ B

there exists u∗ ∈ K ∗\{0} such that

min
1≤ j≤n

m∑

i=1

λi u
∗ (

ϕ(ai , b j )
) ≤ sup

a∈A
min

1≤ j≤n
u∗ (

ϕ(a, b j )
);

(iii) for each b1, . . . , bn ∈ B, z∗
1, . . . , z∗

n ∈ K ∗ not all zero one has

sup
a∈A

n∑

j=1

z∗
j

(
ϕ(a, b j )

) ≥ 0.

Then the equilibrium problem (V E P) admits a Henig globally efficient solution.

Proof Suppose by contradiction that (V E P) has no Henig globally efficient solution, i.e.
for each pointed and convex cone H ⊆ Z with the property C\{0} ⊆ int H , and for each
a ∈ A there exists b ∈ B such that

ϕ(a, b) ∈ −H\{0}.
In particular, this relation holds for the pointed convex cone int K ∪{0}, where K is the cone
from the hypothesis.
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Hence, for each a ∈ A there are b ∈ B and k ∈ int K such that

ϕ(a, b) + k ∈ −int K .

Consider the sets

Ub,k := {a ∈ A | ϕ(a, b) + k ∈ −int K },
where b ∈ B and k ∈ int K . In what follows we show that the family of these sets forms an
open covering of the compact set A.

Let a0 ∈ Ub,k and k ∈ int K . Since a0 ∈ Ub,k we have that

ϕ(a0, b) + k ∈ −int K that is, −ϕ(a0, b) − k ∈ int K .

Denote k
′ := −ϕ(a0, b) − k, so k

′ ∈ int K .Since the function ϕ(·, b) is K -usc at a0 ∈ A,
we obtain for k

′
that there exists a neighborhood Ua0 ⊂ E of a0 such that

ϕ(u, b) ∈ ϕ(a0, b) + k
′ − int K

= ϕ(a0, b) − ϕ(a0, b) − k − int K

= −k − int K for all u ∈ Ua0 .

Hence we have that ϕ(u, b) + k ∈ −int K for all u ∈ Ua0 , which means that Ub,k is an open
set.

Since the family {Ub,k} is an open covering of the compact set A, we can select a finite sub-
family which covers the same set A, i.e., there exist b1, . . . , bn ∈ B and k1, . . . , kn ∈ int K
such that

A ⊆
n⋃

j=1

Ub j ,k j . (12)

For these k1, . . . , kn ∈ int K , we have that there exist V1, . . . , Vn balanced neighborhoods
of the origin of Z such that k j + Vj ⊂ K for all j ∈ {1, . . . , n}.

Define V := V1 ∩ · · · ∩ Vn , thus V is a balanced neighborhood of the origin of the space
Z . Let k0 ∈ V ∩ int K , so we have −k0 ∈ V . Hence,

k j − k0 ∈ k j + V ⊆ k j + Vj ⊆ K for all j ∈ {1, . . . , n},
which gives

k j − k0 ∈ K for all j ∈ {1, . . . , n}. (13)

Now define the vector-valued function F : A → Zn by

F(a) := (ϕ(a, b1) + k0, . . . , ϕ(a, bn) + k0) .

Assert that

co F(A) ∩ (int K )n = ∅, (14)

where co F(A) denotes the convex hull of the set F(A). Supposing the contrary, there exist

a1, . . . , am ∈ A and λ1, . . . , λm ≥ 0 with λ1 + · · · + λm = 1 such that
m∑

i=1

λi F(ai ) ∈
(int K )n, or equivalently,

m∑

i=1

λiϕ(ai , b j ) + k0 ∈ int K for each j ∈ {1, . . . , n}. (15)
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Let u∗ ∈ K ∗ be a nonzero functional for which (ii) holds. Applying u∗ to (12), we obtain

m∑

i=1

λi u
∗ (

ϕ(ai , b j )
) + u∗(k0) > 0.

Passing to the minimum over j we have

min
1≤ j≤n

m∑

i=1

λi u
∗ (

ϕ(ai , b j )
)

> −u∗(k0), (16)

thus, assumption (ii) and relation (16) imply

sup
a∈A

min
1≤ j≤n

u∗ (
ϕ(a, b j )

)
> −u∗(k0). (17)

For each a ∈ A, by relation (12) we have that there exists j0 ∈ {1, . . . , n} such that
a ∈ Ub j0 ,k j0

, i.e. ϕ(a, b j0) + k j0 ∈ −int K . This, together with (13) imply that

ϕ(a, b j0) + k0 ∈ −k j0 + k0 − int K ⊆ −int K .

By Lemma 1 we have

u∗ (
ϕ(a, b j0)

) + u∗(k0) < 0.

Thus for each a ∈ A

min
1≤ j≤n

u∗ (
ϕ(a, b j )

)
< −u∗(k0),

and passing to supremum over a we obtain a contradiction to (17).
By the separation theorem of convex sets of Eidelheit (see for instance [28]), we have that

there exists z∗ ∈ (Zn)∗ a nonzero functional such that

z∗(u) ≤ 0 for all u ∈ co F(A) and (18)

z∗(c) ≥ 0 for all c ∈ (int K )n . (19)

Using the representation z∗ = (z∗
1, . . . , z∗

n), by a standard argument we deduce that
z∗

j ∈ K ∗ for all j ∈ {1, . . . , n}.
In particular, by (18), we have z∗(u) ≤ 0 for all u ∈ F(A). This means that for any a ∈ A,

z∗(F(a)) ≤ 0, or equivalently,

n∑

j=1

z∗
j

(
ϕ(a, b j ) + k0

) ≤ 0.

Taking into account the linearity of z∗
j ∈ K ∗ for all j ∈ {1, . . . , n} and the fact that not all

z∗
j are zero we obtain

n∑

j=1

z∗
j

(
ϕ(a, b j )

) ≤ −
n∑

j=1

z∗
j (k0) < 0.

Passing to supremum over a ∈ A in the upper relation we deduce that

sup
a∈A

n∑

j=1

z∗
j

(
ϕ(a, b j )

)
< 0,

which is a contradiction to assumption (iii). This completes the proof. ��
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The second assumption of Theorem 3, can be replaced by a stronger one, namely a
generalized concavity notion.

Corollary 5 Let A be a compact set, K a pointed convex cone with the property C\{0} ⊆
int K , and let ϕ : A × B → Z be a bifunction such that

(i) for each b ∈ B, the function ϕ(·, b) : A → Z is K -usc on A;
(ii) it is K -subconcavelike in its first variable;

(iii) for each b1, . . . , bn ∈ B, z∗
1, . . . , z∗

n ∈ K ∗ not all zero one has

sup
a∈A

n∑

j=1

z∗
j

(
ϕ(a, b j )

) ≥ 0.

Then the equilibrium problem (V E P) admits a Henig globally efficient solution.

Proof We show that assumption (ii) of Theorem 3 is satisfied. Let us prove that the K -sub-
concavelikeness of the bifunction ϕ implies assumption (ii) of the theorem.

Consider a1, . . . , am ∈ A, b1, . . . , bn ∈ B, λ1, . . . , λm ≥ 0 with λ1 + · · · + λm = 1, and
u∗ ∈ K ∗\{0}.

Since ϕ is K -subconcavelike in its first variable, for each l ∈ int K there exists ā ∈ A
such that

m∑

i=1

λiϕ(ai , b j ) ≤K ϕ(ā, b j ) + l for each j ∈ {1, . . . , n}. (20)

Applying u∗ to relation (20), this becomes

m∑

i=1

λi u
∗ϕ(ai , b j ) ≤ u∗ (

ϕ(ā, b j )
) + u∗(l) for each j ∈ {1, . . . , n}.

Passing to minimum over j yields:

min
1≤ j≤n

m∑

i=1

λi u
∗ (

ϕ(ai , b j )
) ≤ min

1≤ j≤n
u∗ (

ϕ(ā, b j )
) + u∗(l)

≤ sup
a∈A

min
1≤ j≤n

u∗ (
ϕ(a, b j )

) + u∗(l).

Since this relation holds for each l ∈ int K we obtain assumption (ii) of Theorem 1
satisfied. Hence, (V E P) admits a Henig globally efficient solution. ��
Corollary 6 Let A be a compact set, K a pointed convex cone with the property C\{0} ⊆
int K , and let ϕ : A × B → Z be a bi function such that

(i) for each b ∈ B, the function ϕ(·, b) : A → Z is C-usc on A;
(ii) it is C-concavelike in its first variable;

(iii) for each b1, . . . , bn ∈ B, z∗
1, . . . , z∗

n ∈ K ∗ not all zero one has

sup
a∈A

n∑

j=1

z∗
j

(
ϕ(a, b j )

) ≥ 0.

Then the equilibrium problem (V E P) admits a Henig globally efficient solution.
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Proof We show that the assumptions (i), respectively (ii) Corollary 5 are satisfied.Is easy to
see, that the C-upper semicontinuity assumption implies the K -upper semicontinuity of the
function ϕ(·, b), for all b ∈ B.

Take a1, a2 ∈ A and λ ∈ [0, 1]. By the C-concavelikeness of the bifunction ϕ in its first
variable we have the existence of an element ā ∈ A such that

ϕ(ā, b) ≥C λϕ(a1, b) + (1 − λ)ϕ(a2, b) for all b ∈ B. (21)

Since C \ {0} ⊆ int K , by (21) we obtain

ϕ(ā, b) ≥K λϕ(a1, b) + (1 − λ)ϕ(a2, b) for all b ∈ B. (22)

Moreover, for each l ∈ int K , by inequality (22) we get

ϕ(ā, b) ≥K λϕ(a1, b) + (1 − λ)ϕ(a2, b) − l for all b ∈ B.

So, assumption (ii) of Corollary 6 is satisfied. ��

Whenever Z = R and C = R+, Theorem1 and Theorem 3 permit us to reobtain an earlier
result of existence of solutions for (E P).

Corollary 7 [25] Let A be a compact set, let B be a nonempty set and let ϕ : A × B → R

be a bi function such that

(i) for each b ∈ B, the function ϕ(·, b) : A → R is usc on A;
(ii) for each a1, . . . , am ∈ A, λ1, . . . , λm ≥ 0 with λ1 +· · ·+λm = 1, and b1, . . . , bn ∈ B

min
1≤ j≤n

m∑

i=1

λiϕ(ai , b j ) sup
a∈A

min
1≤ j≤n

ϕ(a, b j );

(iii) for each b1, . . . , bn ∈ B, μ1, . . . , μn ≥ 0 with μ1 + · · · + μn = 1

sup
a∈A

n∑

j=1

μ jϕ(a, b j ) ≥ 0.

Then the equilibrium problem (E P) admits a solution.

Proof We show that the assumptions of Theorem 1, respectively Theorem 3 are satisfied.
Since for each U ⊆ VB the set cone (U + B) = R+ and choosing K = R+ in Theorem 3,
it is obvious that conditions (i) and (ii) of Theorem 1, respectively Theorem 3 are satisfied
(the latter with u∗ = 1).

Let b1, . . . , bn ∈ B, z∗
1, . . . , z∗

n ∈ R+ not all zero and denote μ j := z∗
j

ν
for all j ∈

{1, . . . , n}, where ν =
∑n

j=1
z∗

j . Thus each μ j ≥ 0 and μ1 + · · · + μn = 1. Hence by

assumption (iii) we obtain

1

ν
sup
a∈A

n∑

j=1

z∗
jϕ(a, b j ) ≥ 0,

i.e. assumption (iii) of Theorem 1, respectively Theorem 3 is satisfied. ��
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3 Applications to vector variational inequalities

The domain of vector variational inequalities received a great attention ever since the paper
of Giannessi [15] appeared and the first existence results for vector variational inequalities
were published in [11]. Most of the research results in this area deal with a weak version of
vector variational inequalities and their generalizations. Hence, the authors of [12] suggested
to study the existence of solutions for strong vector variational inequalities.

In this section we consider Minty and Stampacchia generalized vector variational inequal-
ities, and we state existence results for proper solutions.

Let F : A → LC(A, Z) and q : A → Z be given mappings, where LC(A, Z) denotes
the set of all linear and continuous functionals from A to Z . Taking A = B, we study the
following vector variational inequalities:

(MV I ) find ā ∈ A such that 〈F(b), b − a〉 + q(b) − q(a) /∈ −C \ {0} for all b ∈ A

and

(SV I ) find ā ∈ A such that 〈F(a), b − a〉 + q(b) − q(a) /∈ −C\{0} for all b ∈ A.

By 〈F(a), b − a〉 we understand the value of F(b) at b − a, for all a, b ∈ A.
First, let us recall some definitions concerning the study of vector variational inequalities

(see [18,29,31]).

Definition 4 Let F : A → LC(A, Z) be a given mapping.

(i) F is said to be C-monotone if for each a, b ∈ A, we have

〈F(b) − F(a), b − a〉 ≥C 0.

(ii) Let e∗ ∈ C∗ \ {0}. F is said to be e∗-monotone if for each a, b ∈ A, we have

e∗(〈F(b) − F(a), b − a〉) ≥ 0.

(iii) F is said to be v-hemicontinuous if for each a, b ∈ A and t ∈ [0, 1], the mapping
t �→ 〈F(tb + (1 − t)a), b − a〉 is continuous at 0+.

(iv) Let e∗ ∈ C∗ \ {0}. F is said to be e∗-upper hemicontinuous if for each a, b ∈ A and
t ∈ [0, 1], the mapping t �→ e∗(〈F(tb + (1 − t)a), b − a〉) is upper semicontinuous
at 0+.

It is clear that, if F is C-monotone and v-hemicontinuous on A, then for any e∗ ∈ C∗ \{0},
F is e∗-monotone, respectively e∗-upper-hemicontinuous.

Definition 5 A vector a ∈ A is said to be:

(i) a Henig globally efficient solution to (MV I ) if there exists a pointed convex cone
K ⊆ Z , with C\{0} ⊆ int K , such that

〈F(b), b − a〉 + q(b) − q(a) /∈ −K \ {0} for all b ∈ A.

(ii) a Henig globally efficient solution to (SV I ) if there exists a pointed convex cone
K ⊆ Z , with C\{0} ⊆ int K , such that

〈F(a), b − a〉 + q(b) − q(a) /∈ −K \ {0} for all b ∈ A.
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(iii) a Henig efficient solution to (SV I ) if there exists some neighborhoods U of zero, with
U ⊆ VB, such that

〈F(a), b − a〉 + q(b) − q(a) /∈ −int CU (B) for all b ∈ A.

Theorem 4 Let K ⊆ Z be a pointed convex cone, with C\{0} ⊆ int K , e∗ ∈ K �, A a
compact and convex set, and the following assumptions satisfied:

(i) e∗ ◦ q is lower semicontinuous;
(ii) q is K -convex;

(iii) F is e∗-monotone.

Then, (MV I ) admits a Henig globally efficient solution.

Proof For the proof of this theorem, we show that the assumption of Corollary 7 are satisfied.
Define a real-valued bifunction g : A × A → R, by

g(a, b) = e∗(〈F(b), b − a〉 + q(b) − q(a)) for all a, b ∈ A.

The linearity of F(b) in the variable a and assumption (i) assure the upper semicontinuity of
the function g in its first variable.

We observe that g is concave in its first variable, due to assumption (ii). So, assumption
(ii) of Corollary 7 is satisfied.

Now, take b1, . . . , bn ∈ A, μ1, . . . , μn ≥ 0 with μ1 + · · · + μn = 1. Since, F is
e∗-monotone we have

e∗(〈F(b j ), b j − a〉 + q(b j ) − q(a)) ≥ e∗(〈F(a), b j − a〉 + q(b j ) − q(a)) (23)

for all j ∈ {1, . . . , n} and a ∈ A. ��
Summing over j and taking into account assumption (ii), by (23) we obtain

sup
a∈A

n∑

j=1

μ j g(a, b j ) ≥ 0.

So, the assumptions of Corollary 7 are satisfied and, by this, we have the existence of an
ā ∈ A such that

g(ā, b) ≥ 0 for all b ∈ A.

Since e∗ ∈ K � we get

〈F(b), b − ā〉 + q(b) − q(ā) /∈ −K\{0} for all b ∈ A,

i.e. (MV I ) admits a Henig globally efficient solution.
Under the e∗-upper hemicontinuity of the operator F and the convexity assumption on A,

we state existence results for (SV I ).
The next theorem gives existence results for Henig globally efficient solutions of (SV I ),

under additional assumptions than those of Theorem 3.1 from [18], where the author states
existence results for efficient solution of (SV I ), namely that there exists a pointed convex
cone K with the property C\{0} ⊆ int K and K � �= ∅. Such an hypothesis is not very
demanding, since such a cone always exists if we suppose the cone C to admit a base.

Theorem 5 Let K ⊆ Z be a pointed convex cone, with C \ {0} ⊆ int K, e∗ ∈ K�, A a
compact and convex set, and the following assumptions satisfied:
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(i) e∗ ◦ q is lower semicontinuous;
(ii) q is K -convex;

(iii) F is e∗-monotone;
(iv) F is e∗-upper hemicontinuous.

Then, (SV I ) admits a Henig globally efficient solution.

Proof By Theorem 4, we have the existence of a point ā ∈ A such that

e∗(〈F(b), b − ā〉 + q(b) − q(ā)) ≥ 0 for all b ∈ A. (24)

For all t ∈ [0, 1], let b(t) = tb+(1−t)ā which belongs to A, by the convexity assumption
on A. Thus, by (24), for all t ∈ [0, 1] we have

e∗(〈F(b(t)), b(t) − ā〉 + q(b(t)) − q(ā)) ≥ 0. (25)

By assumption (ii) and relation (25), for each t ∈ (0, 1]
e∗(〈F(b(t)), b − ā〉 + q(b) − q(ā)) ≥ 0. (26)

Let {tn}n≥1 be a sequence of positive numbers, such that tn → 0, whenever n → ∞.
Assumption (iv) guarantees for each ε > 0, the existence of n0 ∈ N such that, for all n ≥ n0

holds:

e∗(〈F(b(tn)), b − ā〉 + q(b) − q(ā)) < e∗(〈F(ā), b − ā〉 + q(b) − q(ā)) + ε
′
,

where ε
′ = min {ε, 1}. By this and (26) we have

0 ≤ e∗(〈F(ā), b − ā〉 + q(b) − q(ā)) + ε
′
.

Since the inequality holds for each ε
′

we deduce

e∗(〈F(ā), b − ā〉 + q(b) − q(ā)) ≥ 0.

By this, the vector variational inequality (SV I ) admits a Henig globally efficient solution.
��

In the final part of this section, we give existence results for the Stampacchia vector
variational inequality problem, under stronger assumptions than those of Theorem 5.

Corollary 8 Let K ⊆ Z be a pointed convex cone, with K � �= ∅ such that C \ {0} ⊆ int K ,
A a compact and convex set,and the following assumptions satisfied:

(i) q is K -lower semicontinuous;
(ii) q is K -convex;

(iii) F is K -monotone;
(iv) F is v-hemicontinuous.

Then, (SV I ) admits a Henig globally efficient solution.

Proof It is an easy exercise to verify that for each e∗ ∈ K �, the assumptions of Theorem 5
are satisfied. ��

Assumptions (i), (ii) and (iii) of Corollary 8 are satisfied, if we consider the function q to
be C-lsc, C-convex and the operator F to be C-monotone on A.

Corollary 9 Let C be a cone with a base, A a compact and convex set, and the following
assumptions satisfied:
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(i) q is C-lower semicontinuous;
(ii) q is C-convex;

(iii) F is C-monotone;
(vi) F is v-hemicontinuous.

Then, (SV I ) admits a Henig efficient solution.

Proof Since C admits a base B, then there exists a pointed convex cone CU (B) such that
C\{0} ⊆ int CU (B) and C�

U (B) �= ∅ (see the first section). By the hypothesis, the assumptions
of Corollary 8 are satisfied. So, there exists an element ā ∈ A such that

〈F(ā), b − ā〉 + q(b) − q(ā) /∈ −CU (B)\{0} for all b ∈ A.

By this, we deduce

〈F(ā), b − ā〉 + q(b) − q(ā) /∈ −int CU (B) for all b ∈ A,

i.e. the strong vector variational inequality (SV I ) admits a Henig efficient solution. ��
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