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Abstract  In this paper, we present sufficient conditions for the existence of Henig efficient
solutions, superefficient solutions and Henig globally efficient solutions of a vector equilib-
rium problem in topological vector spaces, using a well-known separation theorem in infinite
dimensional spaces. As an application, using a scalarization technique, existence results for
proper efficient solutions of generalized vector variational inequalities are given.
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1 Introduction

The study of equilibrium problems received a great attention, ever since the paper of Blum
and Oettli appeared. They introduced the scalar equilibrium (E P), which consists in finding:

a € Asuchthat f(a,b) >0 forallb € B,

where A is a nonempty subset of a real topological vector space E, B a nonempty set and
f + A x B — R. This problem includes as particular cases optimization problems, saddle-
point problems/minimax problems, variational inequalities, complementarity problems (see,
for instance [5]).

In [3] and [4], the scalar equilibrium (E P) was extended to vector-valued bifunctions in
the following way:

(VEP) finda € A suchthat¢(a,b) ¢ —C \ {0} forallb € B,

where ¢ : A X B — Z is a given bifunction and C is a convex cone of a real topological
vector space Z. We refer to this problem as the strong vector equilibrium problem. A point
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a € A which satisfies the upper relation is called an efficient solution to (V E P). Denote by
Verr (@) the set of efficient solutions to (V E P). For existence results of (vector) equilibrium
problems and their particular cases, as well as for properties of the set of solutions we refer
the reader to [1,2,6-10,12,13,23,24] and [32].

Recently, Gong introduced in [18,19] and [21] different concepts of proper efficient solu-
tions of the equilibrium problem (V E P) and stated existence results for proper efficient
solutions, using scalarization techniques and Ky Fan’s Lemma (see [14]). In this paper, we
extend the existence results from [6], obtained for weak efficient solutions of (V EP) to
existence results of proper efficient solutions of (V E P).

The paper is organized as follows. In the remaining part of the introduction, we recall
some notions and properties considered in the past and necessary for our investigations.

In Sect. 2 we present existence theorems for Henig efficient solutions, superefficient
solutions and Henig globally efficient solutions of (V E P), using the well-known Eidelheit’s
separation theorem in infinite dimensional spaces. After that, we give some corollaries which
deal with stronger assumptions, and some of them are given for the ordering cone C. When
we reduce the space Z to R, and take C to be the set of positive real numbers, the considered
proper solutions collapse into solutions of (E P), and we recover an earlier existence result
of Kassay and Kolumban [25] for scalar equilibrium problems.

Motivated by the lack of results for the existence results of strong vector variational
inequalities, as Chen and Hou mentioned in [12], in Sect. 3, using a scalarization technique,
we present an application to generalized vector variational inequality problems, where we
state existence results for proper efficient solutions. Whenever C¥ # @ and E is equipped
with the weak topology, by Theorem 5 we recover Theorem 3.1 from [18].

Throughout this paper E and Z are considered to be real topological vector spaces, until
something else is supposed, A € E is a nonempty subset, B is a nonempty set, and C € Z
is a convex cone.

Recall that a subset C C Z is called cone if A\C < C for every A > 0. The cone C is said
to be:

(i) solid, if int C # @;
(i) pointed, if C N (—C) = {0}.

Let D be a nonempty subset of Z. The conic hull of D is defined as:
cone(D)={td | t >0, d € D}.
Let Z* be the topological dual space of Z, and
C*={z"€Z*| z"(c) = 0 forall c € C}
be the positive dual cone of C. The quasi-interior of C* is
C*={z* € C* | Z*(c) > Oforall c € C\{0}}.

We refer the reader to [16] for the fact that C*? # () if and only if C has a base, i.e. there is B
a nonempty convex subset of the cone C such that C = cone (B) and 0 ¢ cl (B).
A neighborhood U of zero is said to be balanced, if AU C U for each scalar with | A |< 1.

Lemma 1 Ifz* € C* is a nonzero functional, then z*(z) > 0 for all z € int C.
Let B be a base of C and let
ct = {z* e Ct | thereis s > 0 such that z*(b) >t forall b € B}.
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The above notion, introduced by Zheng [33], satisfies the inclusion C* < C*. Since Bis a
base for C, we have 0 ¢ cl (B). So, by the Tukey’s separation theorem (see for instance [27])
we get the existence of a nonzero functional z* € Z* such that

r=inf{z*(b) | b € B} > z*(0) = 0.

Thus, C* # @.
Set

Vs = {z €Z| |Z*@)| < %}

Hence, Vj is a balanced neighborhood of zero in Z. For each convex neighborhood U of
zero with the property U € Vg, B+ U is a convex set and 0 ¢ cl (B + U). Therefore
Cy(B) = cone (U + B) is a pointed convex cone and C\{0} < int Cy (B).

Gong showed in [17] and [18] that solutions of a (V E P) can be characterized and com-
puted as solutions of an appropriate scalar equilibrium problem. Let us recall the next solution
concepts.

Definition 1 A vector a € A is said to be:

(i) a Henig efficient solution to (V E P) if there exists some neighborhoods U of zero
with U C Vp such that

¢(a, B) N (—intCy (B)) = 0.

(i) a superefficient solution to (V E P) if, for each neighborhood V of zero, there exists
some neighborhood U of zero such that

cone (p(a, B))N(U —C) C V.

(iii) a Henig globally efficient solution to (V E P) if there exists a pointed convex cone
K C Z, with C\{0} C int K, such that

@(a, B) N (—=K\{0}) = 4.
(iv) a weak efficient solution to (V E P) if the cone C is solid and
o(a, By N (—intC) = ¢.

The sets of Henig efficient solutions, superefficient solutions, respectively Henig globally
efficient solutions are denoted by Vg (¢), Vs(¢), respectively Vg (@).

For the solution sets we have that Vi (¢) € Verr(@) and, if C has a base, then Vs(¢) C
Vi (@) € Verr(@). To see that the set of Henig efficient solutions is greater than the set of
superefficient solutions we give an example.

Example ] LetZ =R, C =R3,A =[-2,—1],B =[1,2]and let f:[-2, —1] x [1,2] —
R? be defined by

1o =[5 e
Take z* = (1, 1) and the base B to be the set
{(.y) eRY | x+y=2).
We observe that the base is a closed convex subset of R2. Moreover, we find

r=inf{z*(b) | b e B} = 2.
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For each balanced neighborhood U = B(0, €) of zero, which has a radius € < 1, and for
every a € [—2, —1] we obtain that

@(a, B) N (=intCy (B)) =¥,

which means that all a € [-2, —1] are Henig efficient solutions of the vector equilibrium
problem (V E P).

On the other part, each point a € (—2, —1] is a superefficient solution of (V E P). Hence,
we have Vg(f) = (=2, —1] C [-2, =1] =V (f).

Let z*¥ € C*\{0}. A vector a € A is said to be a z*-efficient solution to (V E P) if
Z*(¢(a, b)) = 0 forallb € B.

Denote by V_«(¢) the set of all z*-efficient solutions to (V E P).
The sets

n
W= [ﬂ{z* € Z*| sup | z*(z) |< r} | D;i (i €{l,...,n}) are bounded
i=1

zeD;
subsetsof Z, r >0, n € N}

form a base of neighborhoods of zero with respect to the strong topology S(Z*, Z).

Lemma 2 (see [19,22]) If the closed convex cone C has a bounded closed base B, then
int C* = C*(B),

where int C* is the interior of the dual cone C* with respect to the strong topology B(Z*, Z).

In [21], the author gave a characterization of those proper efficient solutions in a partic-
ular framework. He considered E to be a real Hausdorff topological vector space, Z a real
locally convex Hausdorff topological vector space and A = B. We say thataset D C Z is a
C-convex set, if D 4+ C is a convex set in Z.

Theorem 1 [21] Assume that, for each a € A, ¢(a, A) is a C-convex set. If C has a base B,
then:

() Ve (@) = U sece Ve (9);
(i) Vu(p) = Upccn Ver(@);
(iii) If C has a closed bounded base, then:

Vs = |J V(o).

z*eint C*

2 Sufficient conditions for proper efficient solutions of (VEP)

In this section we give sufficient conditions for the existence of proper solutions of (V E P)
in a general framework. Let us begin with a definition.

Definition 2 [30] A function f : E — Z is said to be C-upper semicontinuous at x € E
(C-usc in short) if it satisfies the following condition:

1° For any neighborhood V() C Z of f(x), there exists a neighborhood U, C E of x
such that f(u) € Vi) — C forall u € Uy.
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The function f is said to be C-usc on E if, it is C-usc at every point x € E

Remark 1 In [30] Tanaka characterized the above notion, in the hypothesis of a convex cone
C with int C # . Thus, relation 1° is equivalent to:

2° For any k € intC, there exists a neighborhood Uy C E of x such that f(u) €
fx)+k—intC forall u € Uy.

Notice that in [26], this notion was termed —C-continuous function at x.

Theorem 1 Let A be a compact set, C a convex cone with a base B, andlet ¢ : A x B — Z
be a bifunction such that

(1) foreach b € B and U C Vg the function ¢(-,b) : A — Z is Cy (B)-usc on A;
(i) foreachay,...,am € A, M,.... kg = 0withiy +---+am =1,by,...,b, € B
and U C Vg there exists u* € C{;(B)\{0} such that

m

min riu* (p(ai, bj)) < sup 1m‘in u* (pa, b)));
acA

1<j<n“ ; <j<n
i=

(iii) there is Uy € Vp such thatfor each by, ..., b, € Band 2}, ...,z € C[*/O(B) not all
zero one has

supZz (ab) > 0.

aeA
Then the equilibrium problem (V E P) admits a Henig efficient solution.

Proof Suppose by contradiction that (V E P) has no Henig efficient solution, i.e. for each
a € Aand U C Vp there exists b € B with the property ¢ (a, b) € —int Cy (3). This means
that, for each a € A and U C Vp there exists b € B and k € int Cy (B) such that

¢(a,b) +k € —int Cy (B).
Consider the sets
Upr:={aecAlopla b)+kec—intCy(B)},

where b € B and k € int Cy (B). In what follows we show that the family of these sets forms
an open covering of the compact set A.
Letag € Up and k € int Cy (B). Since ag € Uy, we have

¢(ap, b) +k € —int Cy(B) thatis, —¢(ag, b) —k € int Cy (B).

Denote k := —@(ag, b) — k, so k eint Cy (B). Since the function ¢(-, b) is Cy (B)-usc
atap € A, we obtain for this k£ that there exists a neighborhood U,, C E of ag such that

o, b) € p(ag, b) +k — int Cy(B) = ¢(ao, b) — ¢(ag, b) — k — int Cyy (B)
= —k —int Cy(B), forallu € Uy,.

Hence we obtained that ¢ (u, b) +k € —int Cy (B) forall u € U,,,, which means that Uj, x
is an open set.
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Since, for each U C Vj the family {Uj x} is an open covering of the compact set A, we
can select a finite subfamily which covers the same set A, i. e. there exist by, ..., b, € B
and kq, ..., k, € int Cy (B) such that

n
A< Uiy M
Jj=1

For these ki, ..., k, € int Cy(B), we have that there exist Vi, ..., V, balanced neigh-
borhoods of the origin of Z such that k; + V; C Cy(B) forall j € {I,...,n} (see e.g.
[28]).

Define V := Vi N--- NV, thus V is a balanced neighborhood of the origin of the space
Z.Letkg € VNint Cy(B), so we have —kg € V. Hence,

kji—koek;+V Ck;+V; CCy(B), forall j €{l,...,n},
which gives
kj —ko € Cy(B), forall je{l,...,n}. 2)
Now define the vector-valued function F : A — Z" by
F(a) == (¢(a, b)) + ko, ..., ¢(a, by) + ko).
Assert that
co F(A) N (int Cy (B)" = ¥, 3)

where co F(A) denotes the convex hull of the set F'(A). Supposing the contrary, there exist
ap,...,am € Aand Ay, ..., Ay = O with Ay 4+ -+ 4+ A;; = 1 such that

m
z AiF(a;) € (intCy(B))", orequivalently,

i=1

m
> higlai bj) + ko € int Cy(B) foreach j e {1,....n}. 4)
i=1
Letu* € Cy;(B) be a nonzero functional for which (ii) holds. Applying u* to the relation
above and taking into account Lemma 1 we obtain that

m
> hiu* (plai. b)) +u* (ko) > 0.
i=1

Passing to the minimum over j we have

m

1rn'in A,-u* (q)((li, bj)) > —u*(ko), (5)
=j=n*

i=

thus, assumption (ii) and relation (5) imply that

sup min u* (p(a,bj)) > —u*(ko). (6)
acA 1<j<n X
For each a € A, by relation (1) we have that there exists jo € {l,...,n} such that

ac U”jo’kjo’ ie.p(a,bj) +kj, € —int Cy(B). This, together with (2) imply that
¢(a,bj)) + ko € —kjy + ko — int Cy (B) S —int Cy (B).
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By Lemma 1 and using the fact that u* € Cf;(3) we obtain
u* ((p(a, bjo)) 4+ u*(ky) < 0.
Thus for eacha € A

min u* (p(a, bj)) < —u*(ko),

I<j=n

and passing to supremum over a we get a contradiction to (6).
By the separation theorem of convex sets of Eidelheit (see for instance [27]), we have that
for each U C Vp there exists z* € (Z™)* a nonzero functional such that
7*(u) <0, forallu € coF(A) and @)
7%(c) = 0, forallc € (int Cy (B))". 8)
Using the representation z* = (zT, ..., 2y), by a standard argument we deduce that z’; €
Cl(B)forall j e{l,...,n}.
In particular, for each U C Vg there are zj,...,z; € C;;(B) not all zero such that
7*(u) < Oforall u € F(A). This means that for any a € A, z*(F (a)) < 0, or equivalently,

n
27 (pla, b)) + ko) 0.
j=1

Taking into account the linearity of zjf € Cj;(B)forall j € {1,...,n}, Lemma 1 and the
fact that not all z;f are zero we obtain

> i (ela, b)) < =D ziko) <O.
Jj=1 j=1

Passing to supremum over a € A in the upper relation we deduce that

n
supsz (p(a,bj)) <0,
acA =1

which is a contradiction to assumption (iii). This completes the proof. O

Assumption (ii) of Theorem 1 is a kind of generalized concavity of the bifunction ¢ in
its first variable. To see that, we recall the notions of C-subconcavelikeness, respectively
C-concavelikeness of a bifunction is its first variable, which originates from [6], respectively
[20].

Definition 3 Let ¢ : A x B — Z be a bifunction and C a convex cone with int C # (J. The
bifunction ¢ is said to be:

(i) C-subconcavelike in its first variable if for each / € intC, a;,a; € A and A € [0, 1]
there exists a € A such that

o(a,b) >c rp(ar,b) + (1 — X)g(az,b) —1 forall b € B.

(ii) C-concavelike in its first variable if for all a;, ap € A and A € [0, 1] there existsa € A
such that

@(a,b) >c rp(ar,b) + (1 — M)g(az, b) forall b € B.
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We observe that, if the cone C is solid, then each C-concavelike bifunction in its first
variable is C-subconcavelike in its first variable. The next corollaries deals with stronger
assumptions than those of Theorem 1.

Corollary 1 Let A be a compact set, C a convex cone with a base B, and let¢p : AX B — Z
be a bifunction such that

(i) foreach b € B and U C Vg the function ¢(-,b) : A — Z is Cy (BB)-usc on A;
(i1) for each U < Vg, ¢ is Cy (B)-subconcavelike in its first variable;
(ili) there is Uy C Vg such that for each by, ..., b, € Bandzj, ...,z € CEO (B) not all
zero one has

supZz (¢(a. b)) = 0.

acA =1
Then the equilibrium problem (V E P) admits a Henig efficient solution.

Proof tis enough to show that assumption (ii) of Theorem 1 is satisfied. Let us prove that the
Cy (B)-subconcavelikeness of the bifunction ¢ implies assumption (ii) of the above theorem.
For U C Vp arbitrarily chosen, take ay, ...,ay, € A, by,...,by € B, A1, ..., =0
with Ay + -+ XAy, = 1, and u* € CJ;(B)\{0}.
Since ¢ is Cy (B)-subconcavelike in its first variable, for each [ € int Cy (B) there exists
a € A such that

m
> higlai by) <cy) ¢(@ bj) +1 foreachj e {l,...,n}. )
i=1

Applying u* to relation (9), this becomes

m
> hiutelai, bj) < u* (¢@, b)) +u*(l) foreachj € (l,....n).
i=1

Passing to minimum over j yields:

m
. P *
min_ 1>» iu* (plai, b)) < 1r<n]13nu *(p@a, b)) +u*1)
i=
< sup min u* (p(a,bj)) +u*().
acA 1=j=n

Since this relation holds for each / € int Cy (3) we obtain assumption (ii) of Theorem 1
satisfied. Hence (V E P) admits a Henig efficient solution. O

Corollary 2 Let A be a compact set, C a convex cone with a base B, andletp : AX B — Z
be a bifunction such that

(1) foreachb € B and U C Vg the function ¢(-,b) : A — Z is C-usc on A;
(i) it is C-concavelike in its first variable;
(iii) there is Uy € Vpj such that for each by, ..., b, € Band 73, ...,z € C[*]O (B) not all
zero one has

supZz (¢(a, b)) = 0.

aeA

Then the equilibrium problem (V E P) admits a Henig efficient solution.
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Proof For the proof of this corollary we have to verify if the assumptions of Corollary 1 are
satisfied.

In order to prove this, let U C Vjp be arbitrarily chosen. Since ¢(-, b) is C-usc on A, we
have that for every a € A and each neighborhood V of ¢(a, b), there exists a neighborhood
U of a such that

ou,b) e V-CCV —-CyB) foraluecl.

Hence, ¢(-, b) is Cy (BB)-usc for all b € B.
Furthermore, take a;, a; € A and A € [0, 1]. By the C-concavelikeness of the bifunction
¢ in its first variable we have the existence of an element a € A such that

o(a,b) >c rp(ar,b) + (1 —Ng(az,b) forall b € B. (10)

We know, that for each balanced neighborhood U of the origin, with the property U C
Vi, C\{0} € int Cy (B). Hence, by(10) we obtain

p(a,b) >c, B) rlar, b) + (1 — Mg(ar, b) forallb € B. (11)
Moreover, for each [ € int Cyy (B), by inequality (11) we get
o(a, b) >cy (B) Aplay, b) 4+ (1 — A)p(ax, b) —1 forallb € B.

So, assumption (ii) of Corollary 1 is satisfied and the proof is completed. O

In what follows, we state existence results for superefficient solutions and Henig globally
efficient solutions.

If C has a closed bounded base 1, in view of Lemma 2, we have int C* = C2. Moreover,
by Proposition 2 of [17], a € A is a superefficient solution of (VEP) if and only if a € A is
a Henig efficient solution.

By Theorem 1, Corollary 1 and Corollary 2, we have the following results.

Theorem 2 Let E be a real Hausdorff topological vector space, Z a real locally convex
Hausdorff topological vector space, A = B a compact set, C a convex cone with a closed
and bounded base B, and let ¢ : A x B — Z be a bi function such that

(i) foreachb € A and U C Vg the function ¢(-,b) : A — Z is Cy(B)-usc on A;
(i) for each ay,...,am € A, A, .. A = 0withAy + -+ Ay, = 1,b1,...,b, € A
and U C Vg there exists u* € C{;(B)\{0} such that

m
min rju* i»b;)) < sup min u* b))
min, 2 ki (plai b)) = sup min u (p(a. b))
(iii) there is Uy C Vp, such that for each by, ..., b, € A, z’f, RN SAS CZ‘/O (B) not all zero

one has

n
sup > 2% (¢(a, b)) = 0.
acA j=1

Then the equilibrium problem (V E P) admits a superefficient solution.

Corollary 3 Let E be a real Hausdorff topological vector space, Z a real locally convex
Hausdorff topological vector space, A = B a compact set, C a convex cone with a closed
and bounded base B, and let ¢ : A X B — Z be a bifunction such that
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(i) foreachb € A and U C Vg the function ¢(-,b) : A — Z is Cy(B)-usc on A;
(ii) for each U C Vg, ¢ is Cy (B)-subconcavelike in its first variable;
(iii) thereis Uy € Vg, such that for each by, ..., by € A, z,..., 2} € C(*J0 (B) not all zero
one has

n
sup D" 2% (¢(a, b)) = 0.
acA j=1

Then the equilibrium problem (V E P) admits a superefficient solution.

Corollary 4 Let E be a real Hausdorff topological vector space, Z a real locally convex
Hausdorff topological vector space, A = B a compact set, C a convex cone with a closed
and bounded base B, and let ¢ : A x B — Z be a bifunction such that

(i) foreachb € A and U C Vg the function ¢(-, b):A — Z is C-usc on A;
(i) it is C-concavelike in its first variable;
(iii) thereis Uy C Vp, such that for each by, ..., b, € A, z}, ..., 7} € Cl*/0 (B) not all zero
one has

n
supsz (go(a, bj)) > 0.

acA =1

Then the equilibrium problem (V E P) admits a superefficient solution.

In the finally part we present sufficient conditions for the existence of Henig globally
efficient solutions of the vector equilibrium problem (V E P).

Theorem 3 Let A be a compact set, K a pointed convex cone with the property C\{0} C int K,
and let ¢ : A X B — Z be a bifunction such that

(i) for each b € B, the function ¢(-,b) : A — Z is K-usc on A;
(i) for each ay,...,am € A, Ay ... Ay = 0withiy +---+ Ay, = 1,b1,...,b, € B
there exists u* € K*\{0} such that

m

min ru*(p(aj, b)) <sup min u* (p(a,b;));
1<j=n & (¢l J))_aeglgjgn (¢(a.b))
=
(iii) foreachby,...,by € B,z],...,z; € K* not all zero one has

n

sup sz (¢(a. b)) = 0.
acA =1

Then the equilibrium problem (V E P) admits a Henig globally efficient solution.

Proof Suppose by contradiction that (V E P) has no Henig globally efficient solution, i.e.
for each pointed and convex cone H € Z with the property C\{0} C int H, and for each
a € A there exists b € B such that

¢(a,b) € —H\{0}.
In particular, this relation holds for the pointed convex cone int K U {0}, where K is the cone

from the hypothesis.
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Hence, for each a € A there are b € B and k € int K such that
¢(a,b) +k € —int K.
Consider the sets
Upr:={aecAl|eplab)+kec—intK},

where b € B and k € int K. In what follows we show that the family of these sets forms an
open covering of the compact set A.
Letap € Up and k € int K. Since ap € Uy, x we have that

o(ap, b) + k € —int K thatis, —¢(ap, b) — k € int K.
Denote k' := —p(ag, b) —k, so k€ int K .Since the function ¢(-,b)is K-uscatagp € A,
we obtain for k that there exists a neighborhood U,, C E of ag such that
o(u, by € p(ag, b) + kK —intK
= @(ap, b) — p(ag, b) —k —int K
=—k—intK forall u € Uy,.

Hence we have that ¢ (u, b) +k € —int K for all u € U,,, which means that Uj x is an open
set.
Since the family {U), x } is an open covering of the compact set A, we can select a finite sub-

family which covers the same set A, i.e., there exist by, ..., b, € Bandky,...,k, € int K
such that
n
AC (Ui (12)
j=1
For these k1, ..., k, € int K, we have that there exist Vi, ..., V, balanced neighborhoods

of the origin of Z such thatk; + V; C K forall j € {1,...,n}.
Define V := Vi N--- NV, thus V is a balanced neighborhood of the origin of the space
Z.Letkg € V Nint K, so we have —ky € V. Hence,

ki—koek;j+V Ck;+V; CK forall j e{l,...,n},
which gives
kj —koe K forall j e{l,...,n}. (13)
Now define the vector-valued function F : A — Z" by
F(a) := (p(a,by) + ko, ..., e(a, by) + ko) .
Assert that
co F(A) N (int K)" = @, (14)
where co F(A) denotes the convex hull of the set F(A). Supposing the contrarfly, there exist

at, ... am € Aand A, ..., Am > Owith Ay +--- 4+ Ay = 1 suchthatZAiF(ai) €
i=1
(int K)", or equivalently,

m
> higlai.bj) +ko €intK foreachj e {1,....n}. (15)

i=1
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Let u™ € K™ be a nonzero functional for which (ii) holds. Applying u* to (12), we obtain

Z)Liu* (¢(ai, bj)) + u* (ko) > 0.

i=1
Passing to the minimum over j we have

m

1m'in riu* (@(ai, bj)) > —u*(ko), (16)
<j<n*

i=

thus, assumption (ii) and relation (16) imply

sup min u* (p(a,bj)) > —u* (ko). (17)

aeA l=j=n

For each a € A, by relation (12) we have that there exists jo € {1,...,n} such that
ac Ubjo-kjo’ ie.g(a,bj) +kj, € —int K. This, together with (13) imply that

@la,bj,) +ko € —kj, +ko—int K € —int K.
By Lemma 1 we have
u* (p(a, bjy)) + u* (ko) < 0.
Thus for eacha € A

min u* (go(a, bj)) < —u*(ko),
I<j<n
and passing to supremum over a we obtain a contradiction to (17).
By the separation theorem of convex sets of Eidelheit (see for instance [28]), we have that
there exists z* € (Z™)* a nonzero functional such that

7*(u) <0 forallu € co F(A) and (18)
7*(c) > 0 forallc € (int K)". (19)
Using the representation z* = (z},...,z;), by a standard argument we deduce that

z;’f € K*forall j € {1,...,n}.
In particular, by (18), we have z*(u) < Oforall u € F(A). This means that for any a € A,
Z*(F(a)) <0, or equivalently,

n
> 2 (pla. b)) + ko) < 0.
j=1

Taking into account the linearity of zj € K*forallj € {1, ..., n} and the fact that not all
Z; are zero we obtain

> (pa. b)) < — > ko) < 0.
j=I j=1

Passing to supremum over a € A in the upper relation we deduce that

n
supZ:z’Jlf (¢(a, b)) <0,

acA j=1

which is a contradiction to assumption (iii). This completes the proof. O
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The second assumption of Theorem 3, can be replaced by a stronger one, namely a
generalized concavity notion.

Corollary 5 Let A be a compact set, K a pointed convex cone with the property C\{0} C
int K, andlet ¢ : A x B — Z be a bifunction such that

(i) for each b € B, the function ¢(-,b) : A — Z is K-usc on A;
(i) it is K-subconcavelike in its first variable;
(iii) foreachby, ..., by € B,z], ...,z € K* not all zero one has

n
sup > 2% (¢(a. b)) = 0.
acA j=1

Then the equilibrium problem (V E P) admits a Henig globally efficient solution.

Proof We show that assumption (ii) of Theorem 3 is satisfied. Let us prove that the K -sub-
concavelikeness of the bifunction ¢ implies assumption (ii) of the theorem.

Consideray, ...,a, € A,by,....,by € B,A1,..., Ay = 0withA{+---+ A, = 1,and
u* € K*\{0}.

Since ¢ is K-subconcavelike in its first variable, for each [ € int K there exists a € A
such that

m
> hiplai,bj) <k ¢(@,b;)+1 foreachj € ({l,...,n}. (20)

i=1

Applying u* to relation (20), this becomes

m
> hiu*elai. bj) <u* (¢@. b)) +u*(l) foreachj e {1,....n}.
i=1

Passing to minimum over j yields:

m

min > (p(ai. b)) < min u* (p@@, b)) +u*1)
=j=n o <j<n

IA

sup min u* (p(a,bj)) + u* ().

acA l=j=n
Since this relation holds for each / € int K we obtain assumption (ii) of Theorem 1
satisfied. Hence, (V E P) admits a Henig globally efficient solution. O
Corollary 6 Let A be a compact set, K a pointed convex cone with the property C\{0} C
int K, andlet ¢ : A x B — Z be a bi function such that

(1) foreach b € B, the function ¢(-,b) : A — Z is C-usc on A;
(i) it is C-concavelike in its first variable;
(iii) for each by, ...,b, € B, zT, ..., 2y € K* not all zero one has

n
supZz;f (p(a,bj)) = 0.
aeA’_

j=1
Then the equilibrium problem (V E P) admits a Henig globally efficient solution.
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Proof We show that the assumptions (i), respectively (ii) Corollary 5 are satisfied.Is easy to
see, that the C-upper semicontinuity assumption implies the K -upper semicontinuity of the
function ¢(-, b), for all b € B.

Take aj,a» € A and A € [0, 1]. By the C-concavelikeness of the bifunction ¢ in its first
variable we have the existence of an element a € A such that

p(a,b) >c rp(ar, b) + (1 — Ag(az, b) forall b e B. (21)
Since C \ {0} C int K, by (21) we obtain
o(a,b) >k rp(ar,b) + (1 — X)p(az, b) forall b € B. (22)
Moreover, for each / € int K, by inequality (22) we get
p(a,b) >k r¢(ar, b) + (1 — Xg(az,b) —1 forall b € B.

So, assumption (ii) of Corollary 6 is satisfied. O

Whenever Z = R and C = R4, Theorem1 and Theorem 3 permit us to reobtain an earlier
result of existence of solutions for (E P).

Corollary 7 [25] Let A be a compact set, let B be a nonempty set and let ¢ : A x B — R
be a bi function such that

(i) for each b € B, the function ¢(-,b) : A — Ris usc on A;
(ii) foreachay,...,am € A, A1, ... A = 0withii+---+ Ay, =1,andby,...,b, € B
m

min Arip(ai, bj )sup mln (p(a bj);
1

1<j<n“

(iii) foreachby,...,by, € B, 1, ...,y = 0withpuy +---+pup =1

supZu,w(a bj) = 0.
aEA, 1

Then the equilibrium problem (E P) admits a solution.

Proof We show that the assumptions of Theorem 1, respectively Theorem 3 are satisfied.
Since for each U € Vp the set cone (U + B) = Ry and choosing K = R in Theorem 3,
it is obvious that conditions (i) and (ii) of Theorem 1, respectively Theorem 3 are satisfied
(the latter with u™ = 1).

%
Z.

Let by,..., b, € B,z’f,...,zj € Ry not all zero and denote p; = - for all j €

v

{1,...,n}, where v = z:_l zj. Thus each p; > 0 and wuy + --- + w, = 1. Hence by
assumption (iii) we obtain

1
fsupZz ¢(a,bj) >0,

v aEA

i.e. assumption (iii) of Theorem 1, respectively Theorem 3 is satisfied. O
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3 Applications to vector variational inequalities

The domain of vector variational inequalities received a great attention ever since the paper
of Giannessi [15] appeared and the first existence results for vector variational inequalities
were published in [11]. Most of the research results in this area deal with a weak version of
vector variational inequalities and their generalizations. Hence, the authors of [12] suggested
to study the existence of solutions for strong vector variational inequalities.

In this section we consider Minty and Stampacchia generalized vector variational inequal-
ities, and we state existence results for proper solutions.

Let F: A— LC(A,Z)and q : A — Z be given mappings, where LC (A, Z) denotes
the set of all linear and continuous functionals from A to Z. Taking A = B, we study the
following vector variational inequalities:

(MVI)finda € Asuchthat (F(b),b—a)+q(b) —q(a) ¢ —C \ {0} forallbe A
and
(SVI) finda € A such that (F(a),b —a) + q(b) — q(a) ¢ —C\{0} forall b € A.

By (F(a), b — a) we understand the value of F'(b) atb —a, foralla, b € A.
First, let us recall some definitions concerning the study of vector variational inequalities
(see [18,29,31]).

Definition 4 Let F : A — LC(A, Z) be a given mapping.
(i) Fis said to be C-monotone if for each a, b € A, we have
(F(b) — F(a),b—a) >c 0.
(i) Lete* € C*\ {0}. Fis said to be e*-monotone if for each a, b € A, we have
e*((F(b) — F(a),b—a)) > 0.

(iii) F is said to be v-hemicontinuous if for each a,b € A and ¢ € [0, 1], the mapping
t+— (F(th+ (1 —t)a), b — a) is continuous at 0.

(iv) Lete* € C*\ {0}. F is said to be e*-upper hemicontinuous if for each a, b € A and
t € [0, 1], the mapping ¢ — e*((F(tb + (1 — t)a), b — a)) is upper semicontinuous
at0t,

Itis clear that, if F is C-monotone and v-hemicontinuous on A, then for any e* € C*\ {0},
F is e*-monotone, respectively e*-upper-hemicontinuous.

Definition 5 A vector a € A is said to be:

(1) a Henig globally efficient solution to (M V I) if there exists a pointed convex cone
K C Z, with C\{0} C int K, such that

(F(b),b—a) +qb) —q(a) ¢ —K \ {0} for allb € A.

(i) a Henig globally efficient solution to (SVI) if there exists a pointed convex cone
K C Z, with C\{0} C int K, such that

(F(a),b—a)+q(b) —q(a) ¢ —K \ {0} for allb € A.
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(iii) a Henig efficient solution to (SV I) if there exists some neighborhoods U of zero, with
U C Vg, such that

(F(a),b—a)+q(b) —q(a) ¢ —intCy(B) for all b € A.

Theorem 4 Let K C Z be a pointed convex cone, with C\{0} C int K, e* € K, A a
compact and convex set, and the following assumptions satisfied:

(i) e* o q is lower semicontinuous;
(i1) qis K-convex;
(i) F is e*-monotone.

Then, (MV I) admits a Henig globally efficient solution.

Proof For the proof of this theorem, we show that the assumption of Corollary 7 are satisfied.
Define a real-valued bifunction g : A x A — R, by

gla,b) =e*((F(b),b—a)+q) —q(a)) foralla,be A.

The linearity of F(b) in the variable a and assumption (i) assure the upper semicontinuity of
the function g in its first variable.

We observe that g is concave in its first variable, due to assumption (ii). So, assumption
(ii) of Corollary 7 is satisfied.

Now, take by,...,b, € A, u1,..., 1y > 0 with u; + --- + u, = 1. Since, F is
e*-monotone we have

e*((F(bj),bj —a)+qbj) —q(a) = e*((F(a),bj —a) +q(b)) —q(a))  (23)

forall j € {1,...,n}anda € A. O

Summing over j and taking into account assumption (ii), by (23) we obtain

n
sup > jujg(a. bj) = 0.
acA =1

So, the assumptions of Corollary 7 are satisfied and, by this, we have the existence of an
a € A such that

g(a,b)y >0 forall beA.
Since e* € K* we get
(F(b),b—a)+q()—q(a) ¢ —K\{0} forallbe A,

i.e. (MVI) admits a Henig globally efficient solution.

Under the e*-upper hemicontinuity of the operator F and the convexity assumption on A,
we state existence results for (SV I).

The next theorem gives existence results for Henig globally efficient solutions of (SVI),
under additional assumptions than those of Theorem 3.1 from [18], where the author states
existence results for efficient solution of (SV I), namely that there exists a pointed convex
cone K with the property C\{0} C intK and K® # . Such an hypothesis is not very
demanding, since such a cone always exists if we suppose the cone C to admit a base.

Theorem 5 Let K C Z be a pointed convex cone, with C \ {0} C intK,e* € K% A a
compact and convex set, and the following assumptions satisfied:
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(i) e* o g is lower semicontinuous;
(ii) qis K-convex;
(iii) F is e*-monotone;
(iv) F is e*-upper hemicontinuous.

Then, (SV 1) admits a Henig globally efficient solution.
Proof By Theorem 4, we have the existence of a point a € A such that
e*((F(b),b—a)+q(b)—q(a) >0 forallb e A. (24)

Forallt € [0, 1],1letb(t) = tb+ (1 —t)a which belongs to A, by the convexity assumption
on A. Thus, by (24), for all # € [0, 1] we have

e ((F(b(1)),b(t) —a) +qb@) —q(a)) = 0. (25)
By assumption (ii) and relation (25), for each ¢t € (0, 1]
e*((F(b(), b —a)+q(b) —q(a)) = 0. (26)

Let {#,},>1 be a sequence of positive numbers, such that 7, — 0, whenever n — o0.
Assumption (iv) guarantees for each € > 0, the existence of no € N such that, for all n > ng
holds:

e (F(b(tn). b — @) + q(b) — (@) < *((F(@), b —a) + q(b) — q(@)) + ¢ .
where € = min {e, 1}. By this and (26) we have
0<e*(F@,b—a)+q(b) —q@) +¢.
Since the inequality holds for each € we deduce
e*((F(@),b—a)+q®) —q(@)) = 0.

By this, the vector variational inequality (SV ) admits a Henig globally efficient solution.
]

In the final part of this section, we give existence results for the Stampacchia vector
variational inequality problem, under stronger assumptions than those of Theorem 5.

Corollary 8 Let K C Z be a pointed convex cone, with K® # @ such that C \ {0} C int K,
A a compact and convex set,and the following assumptions satisfied:

(i) g is K-lower semicontinuous;
(ii) g is K-convex;
(iii) F is K-monotone;
(iv) F is v-hemicontinuous.

Then, (SVI) admits a Henig globally efficient solution.

Proof Tt is an easy exercise to verify that for each e* € K, the assumptions of Theorem 5
are satisfied. O

Assumptions (i), (i) and (iii) of Corollary 8 are satisfied, if we consider the function ¢ to
be C-lsc, C-convex and the operator F to be C-monotone on A.

Corollary 9 Let C be a cone with a base, A a compact and convex set, and the following
assumptions satisfied:
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(1) q is C-lower semicontinuous;
(ii) q is C-convex;
(iii) F is C-monotone;
(vi) F is v-hemicontinuous.

Then, (SVI) admits a Henig efficient solution.

Proof Since C admits a base B, then there exists a pointed convex cone Cy () such that
C\{0} CintCy(B)andC [ﬁ] (B) # () (see the first section). By the hypothesis, the assumptions
of Corollary 8 are satisfied. So, there exists an element a € A such that

(F(@),b—a)+qb) —q@) ¢ —Cy(B)\{0} forallb e A.

By this, we deduce

(F(@),b—a)+q(b) — q@) ¢ —intCy(B) forallb e A,

i.e. the strong vector variational inequality (SV I) admits a Henig efficient solution. O
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