
J Glob Optim (2012) 53:29–51
DOI 10.1007/s10898-010-9644-3

On linear programs with linear complementarity
constraints

Jing Hu · John E. Mitchell · Jong-Shi Pang · Bin Yu

Received: 5 December 2010 / Accepted: 23 December 2010 / Published online: 8 January 2011
© Springer Science+Business Media, LLC. 2011

Abstract The paper is a manifestation of the fundamental importance of the linear program
with linear complementarity constraints (LPCC) in disjunctive and hierarchical programming
as well as in some novel paradigms of mathematical programming. In addition to providing
a unified framework for bilevel and inverse linear optimization, nonconvex piecewise linear
programming, indefinite quadratic programs, quantile minimization, and �0 minimization,
the LPCC provides a gateway to a mathematical program with equilibrium constraints, which
itself is an important class of constrained optimization problems that has broad applications.
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birthday in 2009. Professor Cottle is the father of the linear complementarity problem (LCP) [16]. The linear
program with linear complementarity constraints (LPCC) treated in this paper is a natural extension of the
LCP; our hope is that the LPCC will one day become as fundamental as the LCP, thereby continuing
Professor Cottle’s legacy, bringing it to new heights, and extending its breadth.
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We describe several approaches for the global resolution of the LPCC, including a logical
Benders approach that can be applied to problems that may be infeasible or unbounded.

Keywords Linear programs with linear complementarity constraints ·
Inverse programming · Hierarchical programming · Piecewise linear programming ·
Quantile minimization · Cross-validated support vector regression

1 Introduction

A mathematical program with complementarity constraints (MPCC) is a constrained opti-
mization problem subject to certain complementarity conditions on pairs of variables. The
latter conditions classify the MPCC as a nonconvex, disjunctive program. A linear pro-
gram with complementarity constraints (LPCC) is a special case of the MPCC in which the
objective function and all constraints are linear, except for the complementarity conditions.
Complementarity constraints are very natural in describing certain logical relations. An early
occurrence of these constraints is in piecewise linear optimization, wherein the complemen-
tarity condition expresses the simple fact that a linear segment of the function should not be
invoked until its immediate predecessor is fully utilized. This condition is not needed in the
minimization of a convex piecewise linear function, but cannot be removed in a nonconvex
minimization problem.

With the goal of establishing the MPCC as a fundamental class of disjunctive programs
of practical significance, the present paper documents a number of novel optimization mod-
els in which complementarity occurs naturally in the algebraic and/or logical description of
the model objectives and/or constraints in Sects. 3, 4, and 5. Such models include hierarchi-
cal, inverse, quantile, and �0 optimization, as well as optimization problems with equilibrium
constraints. In turn, with its linear structures, the LPCC occupies a central niche in these non-
convex problems, playing the same role as a linear program does in the domain of convex
programming. Thus, the LPCC provides an important gateway to a large class of nonlinear
disjunctive programs; as such, it is imperative that efficient algorithms be developed to facil-
itate the global resolution of the LPCC. An effort along this line is described in [28] and two
algorithms are discussed in Sect. 6. Methods for improving relaxations of LPCCs are given
in Sect. 7 and computational results are described in Sect. 8.

2 Problem formulation

Since this paper focuses on the LPCC and the emphasis is on the complementarity constraints,
we restrict the presentation of the models to linear ones. We begin by giving a general for-
mulation of the LPCC in the form suggested by Scheel and Scholtes [48]. Given vectors and
matrices: c ∈ R

n, d ∈ R
m, e ∈ �m, b ∈ R

k, A ∈ R
k×n, B ∈ R

k×m , and C ∈ R
k×m , the

LPCC is to find a triple (x, y, w) ∈ R
n × R

m × R
m in order to globally

minimize
(x,y,w)

cT x + d T y + eT w

subject to Ax + By + Cw ≥ b
and 0 ≤ y ⊥ w ≥ 0,

(1)

where the ⊥ notation denotes the perpendicularity between two vectors. Thus, without the
orthogonality condition: y ⊥ w, the LPCC is a linear program (LP). With this condition, the
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LPCC is equivalent to 2m LPs, each called a piece of the problem and defined by a subset I
of {1, · · · , m}:

minimize
(x,y,w)

cT x + d T y + eT w

subject to Ax + By + Cw ≥ b
yi = 0 ≤ wi , i ∈ I

and yi ≥ 0 = wi , i �∈ I.

The global resolution of the LPCC means the generation of a certificate showing that the
problem is in one of its 3 possible states: (a) it is infeasible, (b) it is feasible but unbounded
below, or (c) it attains a finite optimal solution. Needless to say, linear equations (in addi-
tion to linear inequalities as stated above) connecting the variables (x, y, w) are allowed in
the constraints of the LPCC; for convenience of presentation, such equality constraints are
omitted.

A frequently occurred special case of (1) is the following:

minimize
(x,y)

cT x + d T y

subject to Ax + By ≥ b
and 0 ≤ y ⊥ q + N x + My ≥ 0,

(2)

in which N ∈ R
m×n and M ∈ R

m×m . Generalizing the standard linear complementarity
problem (LCP): 0 ≤ y ⊥ q + N x + My ≥ 0, affine variational constraints also lead to the
problem (1). In particular, consider the problem:

minimize
(x,y)

cT x + d T y

subject to Ax + By ≥ b
y ∈ K and ( y ′ − y )T ( q + N x + My ) ≥ 0, ∀ y ′ ∈ K ,

(3)

where K � {y : Ey ≤ h} is a given polyhedron, with E ∈ R
�×m and h ∈ R

�. By letting
λ ∈ R

� be the multipliers of the inequalities defining K , the problem (3) has the equivalent
formulation:

minimize
(x,y,λ)

cT x + d T y

subject to Ax + By ≥ b
0 = q + N x + My + ET λ

0 ≤ λ ⊥ h − Ey ≥ 0.

(4)

In turn, the affine variational inequality of finding y ∈ K such that (y ′−y)T (q+N x+My) ≥
0 for all y ′ ∈ K provides a unified formulation for convex quadratic programs and a host
of equilibrium problems with affine structures [19].

Since the LPCC is a generalization of the linear complementarity problem, it is NP-hard.
We also show explicitly in Sect. 5.1 how an integer program can be reduced to an LPCC.
Analogously to integer programming, there does not appear to be a simple way to charac-
terize a priori instances of LPCC that are hard computationally. Of course, the number of
complementarities is important, as to a lesser degree are the dimensions of the other variables.
Looking at formulation (2), the structure of B and of M may play a role. For example, if
B = 0 and M is copositive plus then it follows from results for LCPs that for any given x a
pivoting algorithm can be used to determine whether a feasible y exists.
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Global optimization methods for solving linear complementarity problems can be found
in [25,41]. Collections of global optimization test problems include [20,21].

3 Complementarity constraints enforcing KKT conditions

Beginning in this section, we present various applications of the LPCC (1) and its special
cases. These applications show that the complementarity constraints often arise in practical
modeling. In this section, we consider applications where the complementarity conditions are
used to model KKT optimality conditions that must be satisfied by some of the variables. The
KKT conditions can either be those of a subproblem or of the problem itself. The applications
in this section demonstrate multiple modeling paradigms, from heirarchical optimization to
inverse optimization to data fitting and even to quadratic programming.

In subsequent sections, we look at applications where the complementarity conditions are
used to model nonconvex piecewise linear functions in Sect. 4, and other applications are
discussed in Sect. 5.

3.1 Hierarchical optimization

In a bilevel optimization problem, feasible solutions are constrained to correspond to opti-
mal solutions to a lower level problem. If the lower level problem is convex and satisfies a
constraint qualification then it can be replaced by its KKT optimality conditions [18]. Hence
such problems naturally lead to MPCCs. If the upper level problem is linear and if lower
level problem is a linear program or a convex quadratic program then the problem can be
reformulated as an LPCC.

A hierarchical optimization problem may have more than one lower level problem, and
these lower level problems may have subproblems of their own. In order to be able to for-
mulate the problem as an LPCC, we restrict attention to hierarchical problems with a single
layer of subproblems. In particular, we consider the following problem:

minimize
(x,y)

cT x +
r∑

i=1
hi T

yi

subject to Ax +
r∑

i=1
Bi yi ≥ b

and yi ∈ argmin
vi

di T
vi + 1

2 ( vi )T Qivi

subject to Civi ≥ gi − Fx −
r∑

j �=i, j=1
G j y j ,

(5)

where x ∈ �n, yi , vi ∈ �pi , b ∈ �m, gi ∈ �qi , each Qi is symmetric and positive semidefi-
nite, and c, di , hi , A, Bi , Ci , F, Gi and Qi are all dimensioned appropriately. This problem
arises in Stackelberg games, where there is a single leader with decision variables x and
there are r followers with decision variables yi , and each follower is optimizing its own
subproblem.

Since each subproblem is convex with linear constraints, an optimal solution must satisfy
the KKT conditions. If a subproblem is infeasible or unbounded then formally the argmin of
the subproblem is empty. Hence, (5) can be reformulated as the following equivalent LPCC:
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minimize
(x,y)

cT x +
r∑

i=1
hi T

yi

subject to Ax +
r∑

i=1
Bi yi ≥ b

Fx + Ci yi +
r∑

j �=i, j=1
G j y j − wi = gi for i = 1, . . . , r

di + Qi yi − ( Ci )T λi = 0 for i = 1, . . . , r
and 0 ≤ wi ⊥ λi ≥ 0 for i = 1, . . . , r

(6)

where wi , λi ∈ �qi . If we assume that the dual feasible region of the i th subproblem given
by

{(vi , π i ) ∈ �pi +qi : di + Qvi − (Ci )T π i = 0, π i ≥ 0}
is nonempty for each i , then the subproblem is either infeasible or achieves its minimum at
a KKT point.

Surveys of bilevel optimization problems include [15,17], and hierarchical optimization
problems are surveyed in [3]. The next two sections give examples of the LPCC formulation
of bilevel optimization problems.

3.2 Inverse convex quadratic programming

Inverse convex quadratic programming pertains to the inversion of the inputs to a convex
quadratic program (QP) so that a secondary objective function is optimized; when the latter
is linear, then we obtain an LPCC. Inverse optimization problems are surveyed in [2]. Inverse
quadratic programs are investigated in [57,58]. Inverse conic programs are considered in [29]
and inverse linear complementarity problems in [49].

To illustrate, consider a standard convex quadratic program:

minimize
x∈Rn

cT x + 1
2 xT Qx

subject to Ax ≤ b,
(7)

where Q is a symmetric positive semidefinite matrix. Solving this program for a given tuple
(Q, A, b, c) is the forward problem. An inverse problem is as follows. Given a target triple
(b̄, c̄, x̄), which could represent historical data or empirical observations, and a given pair of
matrices (Q, A) that identifies the forward optimization model, we want to construct a pair
(b, c) and an optimal solution x of the forward QP so that (b, c, x) is least deviated from
(b̄, c̄, x̄). Using a polyhedral (say, the �1 or �∞) norm ‖ • ‖ to measure the deviation, we
obtain the bilevel optimization formulation for this inverse program:

minimize
(x,b,c)

‖ ( x, b, c ) − ( x̄, b̄, c̄ ) ‖
subject to ( b, c ) ∈ F (a polyhedron)

and x ∈ argmin
x ′

cT x ′ + 1
2 ( x ′ )T Qx ′

subject to Ax ′ ≤ b.

(8)

A variant of this inverse problem is the following: given the constraint matrix A, the positive
semidefinite matrix Q, a positive scalar ε > 0, and the triple (x̄, b̄, c̄), we want to find a
triple (x, b, c) so that the pair (b, c) is least deviated from (b̄, c̄) and that x̄ is at a distance of
at most ε from an optimal solution of the convex QP (Q, A, b, c).
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Writing out the Karush–Kuhn–Tucker (KKT) conditions of the inner-level QP in (8), we
arrive at the following LPEC formulation of the above inverse quadratic program:

minimize
(x,b,c)

‖ ( x, b, c ) − ( x̄, b̄, c̄ ) ‖
subject to ( b, c ) ∈ F

and c + Qx + AT λ = 0
0 ≤ b − Ax ⊥ λ ≥ 0.

(9)

A noteworthy point about the above inverse problem is that the pair of matrices (Q, A) is
fixed. If they are part of the inversion process, then we obtain a nonlinear program with
complementarity constraints instead.

The notion of inverting an optimization problem provides an illustration of the process
of model selection in the presence of historical data and/or empirical observations. Simi-
lar inversions arise in many related contexts pertaining to the parameter identification in a
forward optimization or equilibrium problem, for the purpose of optimizing a prescribed
performance function. Such an inverse process is very common in the field of partial differ-
ential equations wherein the forward process is defined by these equations. When the forward
process is a continuous optimization problem with inequality constraints, the inverse opti-
mization problem is an instance of a bilevel program, which leads to an MPCC when the
forward (i.e., the inner) optimization problem is formulated in terms of its KKT conditions,
and to an LPCC in particular cases.

3.3 Cross-validated support vector regression

The support vector machine (SVM) is a well-known statistical learning method for data
mining [54]. Mathematically, the SVM is formulated as a convex quadratic program with 2
hyper-parameters—the regularization constant C and the tube width ε, which are typically
selected by cross validation based on the mean square error (MSE) or mean absolute deviation
(MAD) measured on certain out-of-sample data. Traditionally, such a selection is done in an
ad hoc manner. Several recent papers in machine learning [12–14] have suggested embedding
the SVM in a bilevel optimization framework for the choice of (C, ε) via the minimization
of an outer-level out-of-sample error. In what follows, we present a bilevel programming
formulation for a cross-validated support vector regression problem with (C, ε) as the design
variables. Further discussion of this problem can be found in the references [9,28,33,34].

Suppose that the regression data are described by the � points {(x1, y1), . . . , (x�, y�)} in
the Euclidean space R

n+1 for some positive integers � and n. We partition these points into
N mutually disjoint subsets, �t for t = 1, . . . , N , such that

⋃N
t=1 �t = {1, . . . , �}. Let

�t ≡ {1, . . . , �}\�t be the subset of the data other than those in groups �t . Our goal is to
fit a hyperplane y = xT w + b to the given data points based on their partitioning. This is
accomplished by solving a bilevel model selection problem, which is to find the parameters
(C, ε) and (wt , bt ) for t = 1, . . . , N in order to

minimize
C,ε,wt ,bt

1

N

N∑

t=1

1

| �t |
∑

i∈�t

| xT
i wt + bt − yi |

subject to C, ε ≥ 0 (10)

and for t = 1, . . . , N ,

( wt , bt ) ∈ argmin
w,b

⎧
⎨

⎩
C

∑

j∈�t

max
(

| xT
j w + b − y j | − ε, 0

)
+ 1

2
‖ w ‖2

2

⎫
⎬

⎭
, (11)
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where the argmin in the last constraint denotes the set of optimal solutions to the convex
optimization problem (11) in the variable w for given hyper-parameters (C, ε). Note that the
inner problem is strictly convex in w, so each wt will be the same. Clearly, the inner problem
(11) is equivalent to the convex quadratic program:

minimize
w,b,e j

C
∑

j∈�t

e j + 1
2 ‖ w ‖2

2

subject to

⎧
⎨

⎩

e j ≥ xT
j w + b − y j − ε

e j ≥ −xT
j w − b + y j − ε

e j ≥ 0

⎫
⎬

⎭
j ∈ �t .

Thus the overall bilevel cross-validated support vector regression is an instance of an LPCC
after we write out the KKT conditions of the above QP. The complete LPCC formulation is
as follows:

minimize
C,ε,wt ,bt ,et ,ηt±

1
N

N∑

t=1

1
|�t |

∑

i∈�t

| xT
i wt + bt − yi |

subject to C, ε ≥ 0
0 ≤ ηt+

j ⊥ et
j − xT

j wt − bt + y j + ε ≥ 0 ∀ j ∈ �t , for t = 1, . . . , N
0 ≤ ηt−

j ⊥ et
j + xT

j wt + bt − y j + ε ≥ 0 ∀ j ∈ �t , for t = 1, . . . , N
0 ≤ et

j ⊥ C − ηt+
j − ηt−

j ≥ 0 ∀ j ∈ �t , for t = 1, . . . , N
∑

j∈�t

(ηt−
j − ηt+

j ) = 0 for t = 1, . . . , N

wt = ∑

j∈�t

(ηt−
j − ηt+

j )x j for t = 1, . . . , N .

(12)

The last constraint can be used to substitute for wt elsewhere in the problem.
The cross-validated support vector regression approach could be embedded in another

level of cross-validation. In particular, the cross-validation support vector regression model
could be applied to a subset of the data, and the resulting model tested on the remaining data.
This might improve the generalizability of the resulting model.

3.4 Indefinite quadratic programs

In this application, the KKT conditions are imposed on the problem itself rather than on a
subproblem, and the objective function value of a KKT point is given by a linear function.
Consider the QP (7) where the matrix Q is symmetric and indefinite. We assume that the
program is feasible but not necessarily bounded. The problem of deciding by a finite algo-
rithm whether (7) has a finite optimal solution or is unbounded was not fully resolved until
the recent paper [27] in which an LPCC is introduced whose global resolution provides the
answer to this decision problem. Previous approaches were based on the assumption that
the QP is known to have a finite optimal solution. Indeed, an early result of Giannessi and
Tomasin [22] states under the solvability assumption, the QP (7) is equivalent to the LPCC
of minimizing a certain linear objective function (involving the constraint multipliers) over
the set of KKT conditions of the QP. This equivalence breaks down for an unbounded QP.

In what follows, we present the equivalent LPCC formulation for the QP (7) assuming
only its feasibility. We refer the reader to the cited reference for the derivation details of this
LPCC. Since (7) is obviously equivalent to
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minimize
x±∈R2n

1
2 ( x+ − x− )T Q( x+ − x− ) + cT ( x+ − x− )

subject to A( x+ − x− ) ≤ b
and x± ≥ 0,

we may assume, to simplify the notation, that the recession cone D ≡ {d ∈ R
n : Ad ≤ 0}

of the feasible set is contained in the nonnegative orthant R
n+. It is then shown in [27] that

the QP (7) is unbounded below if and only if the LPCC below has a feasible solution with a
negative objective value:

minimize
(x,d,ξ,λ,μ,t,s)∈R2n+3m+2

−t

subject to 0 = c + Qx + AT ξ + t 1n

0 = Qd + AT λ − AT μ + s 1n

0 ≤ ξ ⊥ b − Ax ≥ 0
0 ≤ μ ⊥ b − Ax ≥ 0
0 ≤ λ ⊥ −Ad ≥ 0
0 ≤ ξ ⊥ −Ad ≥ 0
0 ≤ μ ⊥ −Ad ≥ 0
0 ≤ s, 1T

n d ≥ 1.

(13)

If Q is copositive on D, then the QP (7) is unbounded below if and only if the following
somewhat simplified LPCC:

minimize
(x,d,ξ,λ,t)∈R2(n+m)+1

−t

subject to 0 = c + Qx + AT ξ + t 1n

0 = Qd + AT λ

0 ≤ ξ ⊥ b − Ax ≥ 0
0 ≤ λ ⊥ −Ad ≥ 0
0 ≤ ξ ⊥ −Ad ≥ 0
1 ≤ 1T

n d

(14)

has a feasible solution with a negative objective value. Detailed investigation of how to
solve (13) or (14) has yet to be undertaken. Some preliminary computational results with
unbounded problems can be found in [27]. These results exploit constraints that require that
the second order optimality conditions be satisfied at a solution. Theoretically, this class of
constraints enables the solution of certain classes of nonconvex quadratic constraints to be
solved in polynomial time—see the cited reference for details.

4 Complementarity constraints enforcing piecewise linearity

A piecewise linear function can be modeled using disjunctive constraints, even if the func-
tion is nonconvex. In Sect. 4.1, we derive an LPCC formulation for a problem where the
piecewise linear function is given explicitly. Piecewise linear functions occur implicitly in
quantile minimization, and LPCC formulations of such problems are discussed in Sect. 4.2.
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4.1 Piecewise linear programming

The classical problem of a separable, piecewise linear program can be written:

minimize
x

n∑

i=1
fi (xi )

subject to Ax ≥ b,

(15)

where each fi (xi ) is a (possibly nonconvex) piecewise linear function given as:

fi (xi ) �

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

αi,1 + βi,1 xi if − ∞ < xi ≤ γi,1

αi,2 + βi,2 xi if γi,1 ≤ xi ≤ γi,2
...

...

αi,p + βi,p xi if γi,p−1 ≤ xi ≤ γi,p

αi,p+1 + βi,p+1 xi if γi,p ≤ xi < ∞,

for some constants αi, j , βi, j , and γi, j with γi,1 < · · · < γi,k and αi, j + βi, jγi, j = αi, j+1 +
βi, j+1γi, j for all j = 1, . . . , p. While the latter equations ensure the continuity of fi at the
breakpoints γi, j , there is no guarantee that fi is a convex function. To formulate (15) as an
LPCC, let yi, j denote the portion of xi in the interval [γi, j−1, γi, j ], where γi,0 = −∞ and
γi,p+1 � ∞. The variables yi, j satisfy the following conditions:

0 ≤ γ̂i, j − yi, j ⊥ yi, j+1 ≥ 0, ∀ j = 1, . . . , p, (16)

where

γ̂i, j ≡
{

γi,1 if j = 1
γi, j − γi, j−1 if j = 2, . . . , p.

In terms of the auxiliary variables yi, j , we can write

xi =
p+1∑

j=1

yi, j , and fi (xi ) = αi,1 + βi,1 yi,1 +
p+1∑

j=2

βi, j yi, j (17)

Substituting the expression of xi into the constraint Ax ≥ b, we obtain the following LPCC
formulation of (15):

minimize
yi, j

n∑

i=1

[

αi,1 + βi,1 yi,1 +
p+1∑

j=2
βi, j yi, j

]

subject to
n∑

i=1
a� i

p+1∑

j=1
yi, j ≥ b�, � = 1, . . . , k

and the complementarity conditions(16).

(18)

Note that the complementarity constraints (16) cannot be dropped from the above formula-
tion if the functions fi are not convex. A simple 1-dimensional counter-example is given by:
maximize |t | subject to t ∈ [−1, 1]. The LPCC formulation of this problem is:

maximize −t1 + t2
subject to t1 ≥ −1, t2 ≤ 1

and 0 ≤ −t1 ⊥ t2 ≥ 0.

Without the complementarity constraint, the optimal solution is (t1, t2) = (−1, 1), yielding
t = t1 + t2 = 0 that is not optimal for the original absolute-value maximization problem.
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It is useful to note how the complementarity constraints arise from this problem versus
the previous hierarchical optimization problem. Previously, these constraints were needed to
describe the optimality of an inner-level quadratic program, whereas here they are needed to
express a logical relation between the linear segments of a piecewise linear function. Another
noteworthy remark about the LPCC (18) is that (18) is equivalent to pn LPs, which compares
well with the exponential 2np LP pieces in this LPCC with np complementarities. Finally, we
mention that the complementarity representation (16) and (17) of a piecewise linear function
allows the latter to appear in the constraints of an optimization problem; thus piecewise linear
constraints can be modeled as linear complementarity constraints.

Nonconvex piecewise linear optimization has a long history. The common approach for
treating this problem is to formulate it as a mixed integer program using special ordered sets.
The Ph.D. thesis [30] and the subsequent references [31,32,55,56] study this problem and
its extensions extensively and investigate branch and cut algorithms that are based on valid
inequalities for special-ordered sets of type 2. An advantage of this contemporary approach
is that the 0-1 variables are handled implicity by special branching rules. The LPCC formu-
lation offers an alternative approach to these existing approaches; the detailed investigation
of this complementarity formulation is regrettably beyond the scope of this paper.

4.2 Quantile minimization

Quantiles are fundamental statistical quantities. They have recently been used in risk analysis
to assess probabilities of investment losses and as criteria for portfolio management. In what
follows, we first give an LPCC formulation for a general quantile minimization problem and
then examine the global minimization of the value-at risk (VaR) associated with a portfolio
of risky assets using a scenario approach.

In order statistics, we are given m linear functions bi − aT
i x and wish to choose x to

minimize the kth largest. We assume x is constrained to lie in a polyhedron P (possibly
R

n). Here, bi a scalar and ai an n-vector. This problem can arise, for example, in chance
constrained programming [42]. In particular, consider the problem

min
α,x

{α : Pξ [α ≥ f (x, ξ)] ≥ 1 − γ, x ∈ P} (19)

where 0 < γ < 1, ξ is a random parameter and P is a polyhedron. Assume the uncertainty
can be represented by m equally likely scenarios and if f (x, ξ) is a linear function of x
in each of these scenarios. If γ is not an integer multiple of 1/m then the problem can be
represented as minimizing the kth largest of these m linear functions, with k = γ m�.

Minimizing the maximum function can be formulated as a linear program. For other
choices of k this is a nonconvex problem that can be expressed as the following LPCC:

minimize
α,β,x,s

α

subject to α + βi ≥ bi − aT
i x i = 1, . . . , m

0 ≤ β ⊥ s ≥ 0
1T s = m − k + 1
0 ≤ s ≤ 1, x ∈ P,

(20)

where x ∈ R
n, s and β are m-vectors, and α is a scalar. If βi > 0 then α is smaller than the

function value at the current x . The complementarity condition allows no more than k − 1
components of β to be strictly positive. Given x , the values of βi are nonnegative for the
k − 1 largest values of fi (x) and are equal to zero for the smallest m − k + 1 functions,
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so α gives the value of the kth largest function for this x . Minimizing α leads to the minimum
of the kth largest function.

We now consider the situation where the uncertainty in the chance constrained program
(19) is represented by m scenarios where the scenarios are no longer assumed to be equally
likely. The LPCC (20) can be generalized to handle this situation. Let pi be the probability
of the i th scenario, where f (x, ξi ) = bi − aT

i x . The resulting formulation is

minimize
α,β,x,s

α

subject to α + βi ≥ bi − aT
i x i = 1, . . . , m

0 ≤ β ⊥ s ≥ 0
pT s ≥ 1 − γ

0 ≤ s ≤ 1, x ∈ P.

(21)

Any feasible solution to this formulation satisfies

Pξ [α ≥ f (x, ξ)] =
∑

i :α≥bi −aT
i x

pi ≥
∑

i :βi =0

pi ≥
∑

i :si >0

pi

≥
∑

i

pi si = pT s ≥ 1 − γ,

so it is feasible in (19). It can be shown similarly that a feasible solution to (19) gives a
feasible solution to (21).

One application of quantile minimization arises in financial optimization. In a nutshell,
the VaR minimization problem in portfolio selection is to choose, for a prescribed confidence
level ζ ∈ (0, 1) of risk, an investment portfolio that is characterized by a deterministic vector
x ∈ R

n , where n is the number of financial instruments, so as to minimize the VaR of the
portfolio subject to various restrictions on x ; in turn, the VaR is the threshold of loss so
that the probability of loss not exceeding this value is at least the given confidence level. To
formulate this optimization problem mathematically, let r denote an n-dimensional random
vector whose components represent the random losses of some financial instruments. Let
X ⊆ R

n be a polyhedron representing the set of feasible investments. Adopting a scenario
approach, let {r1, . . . , rk} be the finite set of scenario values of r , and {p1, . . . , pk} be the
associated probabilities of the respective scenarios. As shown in [40], the portfolio selection
problem of minimizing the VaR can be stated as the following LPCC:

minimize
m,x,τ,w,λ

m

subject to 0 ≤ τi ⊥ pi
1−ζ

− λi ≥ 0 i = 1, . . . , k
0 ≤ λi ⊥ wi � m + τi − xT r i ≥ 0 i = 1, . . . , k

and x ∈ X and 1 =
k∑

i=1
λi .

(22)

The formulation (22) constrains 0 ≤ λi ≤ pi
1−ζ

. On any piece of the LPCC, the bounded

variables λ only appear in one constraint, namely
∑n

i=1 λi = 1. Thus, in any basic feasible
solution at most one component λi will be basic; all other components will be nonbasic at
either their upper or lower bounds. If λi = 0 then τi = 0; if λi = pi

1−ζ
then wi = 0; if

0 < λi <
pi

1−ζ
then both τi = 0 and wi = 0. Thus, τ and s are complementary. The possible

pieces of the LPCC can be enumerated by considering the various cases for λ. The number of
pieces where every component of λ is at a bound is no larger than 2k . The number of pieces
of the LPCC formulation of VaR where exactly one component of λ is not at a bound is no
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larger than k2k−1: one component is basic and each of the remaining k − 1 variables is at
one of its bounds. Hence, the number of pieces of the LPCC formulation of VaR is no larger
than (k + 2)2k−1.

Note that the complementarity restrictions impose additional limits on the number of
components of τ and of s that can be positive. For example, if each pi = 1/k then exactly
r := k(1 − ζ )� components of λ are positive, so enforcing complementarity requires fixing
r components of s to zero and k − r (if k(1 − ζ ) is integer) or k − r + 1 components of τ to

zero. Hence the number of pieces is only

(
k
r

)

if k(1 − ζ ) is integer and r

(
k
r

)

otherwise.

The VaR can also be modeled as a chance-constrained program [1,37]. The corresponding
formulation (21) can be related to (22) through the change of variables pi (1−si ) = (1−ζ )λi .
It should also be noted that formulation (22) follows from the result that Value-at-Risk can be
expressed as the optimal solution to a bilevel program where the inner problem is to minimize
the Conditional Value-at-Risk (CVaR) [44,45].

5 Other applications

An LPCC is a representation of a problem with linear constraints together with some disjunc-
tions. Any problem that is linear together with some either/or constraints can be naturally
formulated as an LPCC. These either/or constraints can arise from combinatorial restrictions,
and we consider a fundamental example of such a problems in Sect. 5.1. Linear programs with
complementarity constraints can arise as approximations of more general problems. They
can also arise in testing optimality of more general problems, as we discuss in Sect. 5.2.

Disjunctive constraints can be modeled as integer programs if a “Big-M” is introduced.
This parameter depends on approximations of upper bounds on constraints or variables.
The advantage of the LPCC approach to disjunctive constraints is that it does not require
knowledge of bounds on constraints, so it is not necessary to introduce a “big-M” into the
model.

5.1 Binary integer programming

In this subsection, we formally show that the general LPCC is NP-hard. One simple example
of a combinatorial disjunction is in binary integer programming: a variable is either equal to
one or to zero. A generic binary integer program can be written

minimize
x ∈ {0,1}n

cT x

subject to Ax ≥ b.

This is equivalent to the LPCC

minimize
x

cT x

subject to Ax ≥ b
and 0 ≤ x ⊥ 1 − x ≥ 0,

where 1 denotes the vector of ones. Binary integer programming is NP-hard, so this reduction
shows that the general LPCC is NP-hard. Of course, in practice, one would usually choose
to solve the integer program directly rather than transform it into an LPCC.
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5.2 B-stationarity of MPCCs

Consider an extension of the LPCC in which the objective function is nonlinear:

minimize
(x,y,w)

f (x, y, w)

subject to Ax + By + Cw ≥ b
and 0 ≤ y ⊥ w ≥ 0.

(23)

The concept of a B-stationary optimal point for an MPCC was formulated in the text [38]
and named in the survey paper [48]. It was investigated further in [39]. A B-stationary point
(x̄, ȳ, w̄) is one that is an optimal solution to the problem obtained by linearizing the original
problem at the point (x̄, ȳ, w̄).

Let I denote the indices of the constraints Ax + By +Cw ≥ b that are active at the point
(x̄, ȳ, w̄). The point is B-stationary if and only if the optimal value of the following LPCC
is equal to zero:

minimize
(dx ,dy ,dw)

∇x f (x̄, ȳ, w̄)T dx + ∇y f (x̄, ȳ, w̄)T dy + ∇w f (x̄, ȳ, w̄)T dw

subject to Ai dx + Bi dy + Ci dw ≥ 0 for i ∈ I

and 0 ≤ dy j ⊥ dw j ≥ 0 ∀ j with ȳ j = w̄ j = 0 (24)

dy j ≥ 0 ∀ j with ȳ j = 0 and w̄ j > 0

dw j ≥ 0 ∀ j with ȳ j > 0 and w̄ j = 0

where Ai , BI and Ci denote the i th rows of A, B, and C , respectively. The directions dx , dy ,
and dw have the same dimensions as the original variables. This problem determines whether
a certain type of improving direction exists. This is a homogeneous LPCC since it is con-
cerned with the existence of a direction, so it either has optimal value zero or it has unbounded
optimal value.

6 Algorithms

In this section we discuss two algorithms for finding a global optimum of an LPCC. The
first approach can be used when simple bounds are available for all components of y and
w. The second algorithm is a logical Benders decomposition approach [28] which can also
determine if an LPCC is unbounded or infeasible.

6.1 Branch-and-cut

When upper bounds y ≤ ȳ and w ≤ w̄ are known, problem (1) is equivalent to the following
integer programming problem:

minimize
(x,y,w,z)

cT x + d T y + eT w

subject to Ax + By + Cw ≥ b

and 0 ≤ yi ≤ zi ȳi for i = 1, . . . , m (25)

0 ≤ wi ≤ (1 − zi )w̄i for i = 1, . . . , m

z binary
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where z ∈ B
m . This formulation can then be solved with any standard integer programming

solver. Relaxations of this formulation can be made tighter using the techniques discussed
below in Sect. 7. The bounds ȳ and w̄ should be chosen as small as possible in order to make
LP relaxations tighter.

If the complementary pair of variables yi and wi are both basic and strictly positive in a
basic feasible solution to an LP relaxation of (1) then the rows of the simplex tableau cor-
responding to the basic variables yi and wi can be used to generate a valid linear constraint
that is violated by the current point. This derivation is called a simple cut by Audet et al. [4],
and is based on intersection cuts for 0-1 programming [5], and has also been investigated by
Balas and Perregaard [8].

A branch-and-cut approach can be used even if explicit bounds on the variables are not
available. Disjunctive cuts (including simple cuts) can be used to tighten the relaxation, as
discussed in Sect. 7. The complementarities can be branched on. The relaxation at each node
is a linear program, obtained by relaxing all unfixed complementarities. We have conducted
preliminary computational testing of such an algorithm using a strong branching scheme,
with very encouraging results, and some results are included in Sect. 8.

6.2 Logical benders decomposition

We developed a logical Benders decomposition approach [28] to handle the situation when
simple upper bounds are not available on all the variables y and w. The existence of this
algorithm makes it possible to formulate and solve various classes of problems as LPCCs;
these problem classes could not be solved directly using integer programming because of
the lack of bounds on at least some of the variables. Classical Benders decomposition can be
used to solve (25) when bounds on the variables are available. In this subsection, we show
the relationship between the classical Benders cutting planes and the cuts derived in the log-
ical Benders decomposition approach. This relationship can be exploited when bounds are
available for a proper subset of the y and w variables.

In the logical Benders decomposition approach, we first introduce a conceptually large
scalar parameter � and construct the integer program:

minimize
(x,y,w,z)

cT x + d T y + eT w

subject to Ax + By + Cw ≥ b
and 0 ≤ yi ≤ zi� for i = 1, . . . , m

0 ≤ wi ≤ (1 − zi )� for i = 1, . . . , m
z binary

(26)

The LPCC is equivalent to the limiting case of this integer program as � → ∞. For a fixed
value of z = z̄, (26) is a linear program. The limiting dual linear program is

maximize
(λ,u,v)

bT λ

subject to AT λ = c
BT λ − v ≤ d
CT λ − u ≤ e
z̄T u + ( 1 − z̄ )T v = 0
( λ, u, v ) ≥ 0

(27)

where (λ, u, v) ∈ R
k × R

m × R
m . We define ϕ(z̄) to the value of this limiting dual LP. Let

� ≡ {(λ, u, v) ∈ R
k+ × R

m+ × R
m+ : AT λ = c, BT λ − v ≤ d, CT λ − u ≤ e}. (28)
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If � = ∅ then the LPCC is either infeasible or unbounded.
The algorithm initializes with a master problem where every binary vector z ∈ B

m feasi-
ble. This corresponds to considering every possible assignment of the complementarities. As
satisfiability constraints on z are added, various complementarity assignments are ruled out,
either because the assignment is infeasible, or because the assignment cannot give a value
better than a known feasible solution. A feasible z̄ is chosen and subproblem (27) is solved
with this z̄. The solution to the subproblem provides information about the master problem
and allows the generation of constraints to shrink the feasible region of the master problem.
There are several cases:

• If (27) has a finite optimal value ϕ(z̄) then we obtain a feasible solution to the LPCC.
Let ( λ̄, ū, v̄ ) be the optimal solution. Any z for which ( λ̄, ū, v̄ ) is feasible must have
value at least ϕ(z̄), so such a z cannot be better than z̄ and need not be considered further.
A valid constraint can be added to the master problem so that such z are cut off. This
constraint is called a point cut.

• If (27) is unbounded then the choice of z̄ is infeasible in the original LPCC, so a ray cut
is added to the master problem to ensure that subsequent choices of z do not allow the
same ray.

• If (27) is infeasible then either z̄ leads to an unbounded solution to the original LPCC, or
the choice of z̄ is infeasible. In the latter case, a ray exists in the homogeneous version of
(27) and so a ray cut is added to the master problem. In the former case, the homogeneous
version has optimal value 0 and this leads to confirmation that the corresponding primal
piece is feasible and hence the original LPCC is unbounded.

The algorithm is summarized below:

1. Initialize the Master Problem with all binary z feasible.
2. Find a feasible z̄ for the Master Problem.
3. Solve the subproblem (27).

• (27) finite: Add a point cut to Master Problem.
• (27) unbounded: Add a ray cut to the Master Problem.
• (27) infeasible: Either LPCC is unbounded so STOP, or add a ray cut to the

Master Problem.

4. If the Master Problem is infeasible, STOP with determination of the solution
of LPCC: either it is infeasible, or the best feasible solution found is optimal.

5. Return to Step 2.

Given the optimal dual solution ( λ̄, ū, v̄ ) to (27), the point cut has the form
∑

i :v̄i >0

(1 − zi ) +
∑

i :ūi >0

zi ≥ 1. (29)

If we abuse notation and allow ( λ̄, ū, v̄ ) to represent the ray when z̄ is infeasible then the
ray cut is also of the form (29). These point and ray cuts should be sparsified if possible, in
order to strengthen them: the fewer terms that appear in the constraint, the larger the number
of binary vectors that violate it. From the structure of (29), it is clear that the Master Problem
is a satisfiability problem.

Benders decomposition can also be used to solve problem (25) when bounds are avail-
able on y and w. The approach constructs a subgradient approximation to the function ϕ(z).
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The extended real valued function ϕ(.) is convex provided � �= ∅. For fixed z̄, the dual to
the LP relaxation of (25) can be written

maximize
(λ,u,v)

bT λ −
m∑

i=1
ȳi (1 − z̄i )vi −

m∑

i=1
w̄i z̄i ui

subject to ( λ, u, v ) ∈ �

(30)

If (λ̄, ū, v̄) solves (30) for z = z̄ then ξ ∈ R
m with ξi = ȳi v̄i − w̄i ūi is a subgradient of ϕ(z)

at z̄. The corresponding subgradient inequality is

ϕ(z) ≥ bT λ̄ −
m∑

i=1

ȳi (1 − zi )v̄i −
m∑

i=1

w̄i zi ūi

= ϕ(z̄) +
m∑

i=1

(zi − z̄i )(ȳi v̄i − w̄i ūi ) (31)

Inequality (31) is the standard inequality used in Benders decomposition, specialized to
problem (25). Note that the validity of this inequality only requires that (λ̄, ū, v̄) be feasible
in (30). Thus, lower bounding inequalities on ϕ(z) can be created from any feasible solution
to (30). Note that this subgradient inequality is related to the point cut (29). In particular, we
have the following theorem:

Theorem 1 Let (λ̄, ū, v̄) solve (30) for z = z̄ ∈ B
m. Any z ∈ B

m with ϕ(z) < ϕ(z̄) must
satisfy

∑

i :v̄i >0,z̄i =1

(1 − zi ) +
∑

i :ūi >0,z̄i =0

zi ≥ 1 (32)

Proof The proof is by contraposition. Assume (32) is violated by z, so if v̄i > 0 then zi ≥ z̄i

and if ūi > 0 then zi ≤ z̄i . The point (λ̄, ū, v̄) is feasible in (30) for any z, so

ϕ(z) ≥ bT λ̄ −
m∑

i=1

ȳi (1 − zi )v̄i −
m∑

i=1

w̄i zi ūi

≥ bT λ̄ −
m∑

i=1

ȳi (1 − z̄i )v̄i −
m∑

i=1

w̄i z̄i ūi

= ϕ(z̄)

giving the desired result. ��
A similar result can be derived when (30) is unbounded:

Theorem 2 Assume ϕ(z̄) = +∞. Let (λ̄, ū, v̄) be an optimal ray for (30) for z = z̄ ∈ B
m.

Any z ∈ B
m with finite optimal value must satisfy

∑

i :v̄i >0,z̄i =1

(1 − zi ) +
∑

i :ūi >0,z̄i =0

zi ≥ 1 (33)

Proof The proof is by contraposition. Assume (33) is violated by z, so if v̄i > 0 then zi ≥ z̄i

and if ūi > 0 then zi ≤ z̄i . The triple (λ̄, ū, v̄) is a ray in (30) for any z, and

bT λ̄ −
m∑

i=1

ȳi (1 − zi )v̄i −
m∑

i=1

w̄i zi ūi ≥ bT λ̄ −
m∑

i=1

ȳi (1 − z̄i )v̄i −
m∑

i=1

w̄i z̄i ūi > 0.

It follows that ϕ(z) = +∞. ��
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Thus, the standard subgradient cut implies the corresponding point or ray cut when bounds
are available on all components of y and w. If bounds are available on only some of the com-
ponents, a dual problem can be constructed that is a combination of (27) and (30). If the
optimal dual solution only has positive components of ui and v j for the bounded variables
then the subgradient cut (31) can be used; otherwise the point cut (29) can be added to the
master problem.

7 Tightening the relaxation

The linear programming relaxation of the LPCC can be tightened by using disjunctive cuts
or lift-and-project (see Balas et al. [6,7], Lovasz and Schrijver [36], and Sherali and Adams
[50]). A tightened relaxation helps directly in an integer programming formulation of an
LPCC. It also helps in the logical Benders decomposition approach when trying to sparsify
the cuts (29), because the sparsification approach requires relaxing some of the complemen-
tarity restrictions.

Lift-and-project approaches involve forming products of variables and then linearizing
the products. For example, the following quadratic inequalities are valid in the LPCC:

n∑

j=1

Ai j x j yq+
m∑

l=1

Bik yl yq+
m∑

p �=q,p=1

Cipwp yq ≥ bi yq for i = 1, . . . , k, q = 1, . . . , m

n∑

j=1

Ai j x jwq+
m∑

l �=q,l=1

Bik ylwq+
m∑

p=1

Cipwpwq ≥ biwq for i = 1, . . . , k, q = 1, . . . , m,

as are the equalities yiwi = 0 for i = 1, . . . , m. These quadratic constraints can be linearized
by introducing matrices of variables. To simplify notation, we let

γ :=
⎛

⎝
x
y
w

⎞

⎠ ∈ R
n+2m . (34)

Let

M :=
⎡

⎣
X ζ T �T

ζ Y ϒT

� ϒ W

⎤

⎦ :=
⎡

⎣
x
y
w

⎤

⎦
[

xT yT wT
] = γ γ T . (35)

The diagonal entries of ϒ must be zero in any feasible solution to the LPCC. The quadratic
terms in the inequalities can be replaced by appropriate entries of the matrices defined in
(35). The nonlinear equality (35) can itself be relaxed. For example, we could construct valid
linear inequalities by using quadratic inequalities of the form

(

α +
n+2m∑

i=1

βiγi

)2

≥ 0 (36)

for constants α ∈ R and β ∈ R
n+2m , and then replacing quadratic terms by the appropriate

entries in M to give the valid linear constraint

α2 + 2α

n+2m∑

i=1

βiγi +
n+2m∑

i=1

β2
i Mii + 2

n+2m−1∑

i=1

n+2m∑

j=i+1

βiβ j Mi j ≥ 0. (37)
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The vector β can be chosen to be sparse. It can also be chosen as a cutting plane based
on eigenvectors of M , which could then be sparsified if desired. Approximating a semidef-
initeness constraint using linear constraints is discussed in, for example, [35,43,51]. Any
inequality derived in this way is implied by the positive semidefiniteness of the matrix

M̂ :=
[

1 γ T

γ M

]

, (38)

as shown in the following standard lemma.

Lemma 3 The set of γ and M which satisfy (37) for every α ∈ R, β ∈ R
n+2m is equal to

{

( γ, M ) :
[

1 γ T

γ M

]

� 0

}

=
{

( γ, M ) : M − γ γ T � 0
}

.

Proof Constraint (37) can be written as

[
α βT

]
[

1 γ T

γ M

] [
α

β

]

≥ 0.

showing the first part of the lemma. The Schur complement result states that the matrix
[

1 γ T

γ M

]

is positive semidefinite if and only if M − γ γ T � 0 [24]. ��
In this way, a semidefinite programming relaxation of an LPCC can be constructed, with

many potential linear constraints to tighten the relaxation. In certain applications, ideas of
matrix completion [23] can be exploited, where positive semidefiniteness of M̂ can be guar-
anteed by ensuring an appropriate submatrix of M̂ is positive semidefinite. From a practical
point of view, it may be useful to work with just a submatrix of M̂ even when matrix com-
pletion is not available.

The semidefiniteness constraint only enforces one side of the matrix equality M = γ γ T .
Recently, the reference [46,47] has discussed methods for generating disjunctive cuts to
enforce the nonconvex constraint γ γ T − M � 0. Disjunctive cuts can also be enforced as
an algorithm proceeds, and used to cut off points that are not in the convex hull of the set of
feasible solutions. See [7] for more details.

8 Computational experience

The logical Benders decomposition method of Hu et al. [28] has been used to find global
optimal solutions of general LPCCs effectively. It has also been used to identify infeasi-
ble LPCCs and unbounded LPCCs. For more details, see the cited reference and also the
doctoral thesis of Hu [26]. This method has been used to solve nonconvex global optimal
solutions [27].

Vandenbussche and Nemhauser [52,53] developed an integer programming approach to
solving the LPCC formulation of nonconvex quadratic programming problems with box con-
straints. Burer and Vandenbussche [10,11] used a semidefinite programming approach within
a branch-and-bound algorithm to solve the LPCC formulation of box-constrained nonconvex
quadratic programs, with impressive results.
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Table 1 Computational experience with cross-validated support vector regression problems of dimension 5

Problem Values Branch-and-Cut CPLEX

Train Test RelaxLP LPCCmin LP Nodes Time Nodes Time

10 10 3.2191 8.9582 594 87 0.11 1,487 0.58

10 10 5.4535 15.2389 640 102 0.14 1,348 0.41

10 10 5.7514 10.4474 1,138 150 0.22 2,978 0.94

20 20 12.1247 15.7522 8,556 754 4.3 270,796 211.2

20 20 10.3882 16.3427 5,746 492 3.4 29,901 23.8

20 20 12.4111 18.3917 1,680 158 1.0 9,102 8.6

30 30 19.5499 23.6281 8,430 451 11.1 99,893 169.1

30 30 18.4676 24.2991 11,030 656 13.3 64,938 84.6

30 30 15.7274 18.6622 3,048 208 3.6 34,328 54.3

40 40 31.3081 39.3843 24,886 1,184 51.8 539,128 1407.9

40 40 34.9672 42.6682 39,080 2,312 75.7 719,346 2145.5

40 40 30.0506 34.0263 6,478 373 14.1 81,957 205.1

50 50 33.5479 36.7149 14,004 729 51.9 172,908 981.0

50 50 37.3623 39.3964 19,508 1,132 63.1 422,080 1699.7

50 50 41.7643 50.9952 90,258 5,109 288.9 – –

60 60 37.6553 50.3336 136,708 6,569 707.4 – –

60 60 49.1863 51.5881 26,772 1,296 143.9 348,278 2522.7

60 60 40.8572 47.6830 59,118 2,439 347.4 – –

70 70 47.4771 55.1966 62,670 2,118 542.1 – –

70 70 45.6660 56.0318 133,786 6,793 1178.3 – –

70 70 46.7967 54.3473 45,546 2,097 400.0 – –

80 80 64.3488 69.2778 41,852 1,724 550.0 – –

80 80 69.2562 74.0414 46,624 1,571 586.5 – –

80 80 55.5947 59.9417 60,956 1,741 866.4 – –

90 90 75.5819 77.4303 43,332 1,626 644.0 – –

90 90 64.6352 76.0012 196,554 7,870 2962.5 – –

90 90 74.2927 78.9140 68,278 2,259 1052.3 – –

100 100 85.2575 87.154 48,526 1,432 1085.2 – –

100 100 81.3640 84.1875 49,998 1,534 1069.9 – –

100 100 69.3205 75.2687 302,730 11,001 5672.2 – —

Recently, we have experimented with a specialized branching algorithm for solving the
cross-validated support vector regression problem described in Sect. 3.3. Branching is per-
formed to fix the complementarities. Multiple linear programming relaxations of the problem
are solved at each node of a tree, with branching decisions based on the solutions of these
linear programs. The algorithm hence has similarities to strong branching rules in algorithms
for integer programming. Preliminary computational results with this algorithm are contained
in Table 1.

In the notation of Sect. 3.3, the test problems have N = 1, the number of test points is
equal to |�|, the number of training points is |�|, and the dimension of the vectors w and xi is
equal to five. The table gives the optimal value of the LP relaxation, the optimal value of the
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Fig. 1 Performance profile of runtimes on the 30 cross-validated support vector regression problems. The
left axis gives the number of problems solved, and the plot indicates the number of problems solved within a
given ratio of the best time for that problem. Ratios for the branch-and-cut code and for CPLEX are given

LPCC formulation, the number of linear programming subproblems solved, the size of the
branch and bound tree, and the runtime for the branch-and-cut approach, and the size of the
branch-and-bound tree and the runtime for CPLEX. An upper bound of 18000 seconds was
imposed on the runtime. The runtimes are in seconds on an AMD Phenom II X4 955 4 core
CPU @3.2GHZ with 4 gb of memory, using a 64 bit windows operating system, and running
on a single core. The tolerance for optimality is 10−6 and for complementarity is 10−5. The
CPLEX result is from solving an MIP formulation of the LPCC, using the CPLEX 11.0 call-
able library with indicator constraints, with the default CPLEX settings. The branch-and-cut
algorithm used CPLEX 11.0 to solve the LP subproblems. A performance profile of these
results is contained in Fig. 1. Note that the scale of the time axis in the figure is logarithmic.
It is clear that our algorithm dramatically outperforms a default application of CPLEX for
these problems.

9 Concluding remarks

Disjunctive constraints arise in many settings. For example, they arise when constructing
optimality conditions for nonlinear programs; when these nonlinear programs appear as con-
straints in an optimization problem, a natural formulation for the complete problem is often a
mathematical program with complementarity constraints, of which the LPCC is the simplest
instance. An LPCC is an NP-hard nonconvex nonlinear program so finding a global optimum
is non-trivial. The importance and breadth of applications of LPCCs make further research
on methods for determining global optimality imperative. Multiple alternative approaches
are possible, and several have been investigated. Determining efficient methods (or combina-
tion of methods) for particular applications is an intriguing challenge that requires sustained
investigation. By presenting a host of realistic contexts where the LPCC arises, we hope to
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have established the fundamental significance of this class of global optimization problems
and have motivated its further research.
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