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Abstract In this paper, we obtain sufficient conditions for Hausdorff continuity and Berge
continuity of an approximate solution mapping for a parametric scalar equilibrium problem.
By using a scalarization method, we also discuss the Berge lower semicontinuity and Berge
continuity of a approximate solution mapping for a parametric vector equilibrium problem.
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1 Introduction

The equilibrium problem is a unified model of several problems, for example, variational
inequalities and minmax problem. There are many papers ([6,12,14,20–22]) which inten-
sively study different types of equilibrium problems and obtain many existence results. The
stability analysis of solution mappings for equilibrium problems and variational inequalities
is another important topic in optimization theory and applications. The semicontinuity of
solution mappings for parametric equilibrium problems and parametric variational inequal-
ities has been of increasing interest in the literature, such as [2,4,5,10,11,13,18,19]. Beside
semicontinuity, the Hölder continuity of the solution mapping for parametric equilibrium
problems has been also investigated intensively ([1,3,10,11,19]).
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On the other hand, exact solutions of the problems may not exist in many practical problems
because the data of the problems are not sufficiently “regular”. Moreover, these mathematical
models are solved usually by numerical methods (iterative procedures or heuristic algorithms)
which produce approximations to the exact solutions. So it is impossible to obtain an exact
solution of many practical problems. Naturally, investigating approximate solutions of para-
metric equilibrium problems is of interest in both practical applications and computations.
However, there are only a few results concerning the semicontinuity of approximate solution
mappings for parametric variational inequality or parametric equilibrium problems. Kimura
and Yao [17] have established the existence results for two types of approximate generalized
vector equilibrium problems, and further obtained the semicontinuity of approximate solu-
tion mappings. Khanh and Luu [15] have discussed the semicontinuity of the approximate
solution mappings of parametric multivalued quasivariational inequalities in topological vec-
tor spaces. Anh and Khanh [5] have considered two kinds of approximate solution mappings
to parametric generalized vector quasiequilibrium problems and established the sufficient
conditions for their Hausdorff semicontinuity (or Berge semicontinuity).

Motivated by the work reported in [5,15,17], the aim of this paper is to discuss the lower
semicontinuity and continuity of the approximate solution mappings for a parametric scalar
equilibrium problem (PSEP) and a parametric vector equilibrium problem (PVEP), respec-
tively. Our main proof methods are different from the ones used in [5,17] and [15]. By using
the monotonicity of the approximate solution mappings (with respect to the set-inclusion)
for (PSEP), we establish the Hausdorff upper semicontinuity and lower semicontinuity of the
approximate solution mappings for (PSEP). Then, the Berge semicontinuity of the approx-
imate solution mapping for (PVEP) is derived by a scalarization method and a property
involving the union of a family of Berge lower semicontinuity set-valued mappings. More-
over, we show that the sufficient condition which guarantees the Berge lower semicontinuity
of the solution mapping for (PVEP) is also sufficient for Berge continuity. Our consequences
are new and different from the corresponding ones in [5,15,17].

The rest of the paper is organized as follows. In Sect. 2, we recall semicontinuity and
some of their properties. In Sect. 3, we discuss the Harsdorff continuity and Berge continuity
of a solution mapping for (PSEP). In Sect. 4, by the results in Sect. 3, we establish the Berge
lower semicontinuity and Berge continuity of a solution mapping for (PVEP).

2 Preliminaries

In this section, we recall some definitions and some properties needed in the following sec-
tions. Suppose that X and Y are two topological vector spaces, and G : X → 2Y is a set-valued
mapping.

Definition 2.1 (see[16])

(i) G is said to be Hausdorff upper semicontinuous (H-u.s.c) at x0 ∈ X , if for every
neighborhood B of the origin in Y , there is a neighborhood N (x0) of x0 in X such that
G(x) ⊆ G(x0) + B,∀x ∈ N (x0).

(ii) G is said to be Harsdorff lower semicontinuous (H-l.s.c) at x0 ∈ X , if for every neigh-
borhood B of the origin in Y , there is a neighborhood N (x0) of x0 in X such that
G(x0) ⊆ G(x) + B,∀x ∈ N (x0).

(iii) G is said to be Berge upper semicontinuous (B-u.s.c) at x0 ∈ X , if for every open
set U with G(x0) ⊆ U , there is a neighborhood N (x0) of x0 in X such that G(x) ⊆
U,∀x ∈ N (x0).
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(iv) G is said to be Berge lower semicontinuous (B-l.s.c) at x0, if for every open set U
with G(x0)∩U �= ∅, there is a neighborhood N (x0) of x0 in X such that G(x)∩U �=
∅,∀x ∈ N (x0).

We say that G is B-continuous (resp. H-continous ) at x0 if it is both B-l.s.c and B-u.s.c
(resp. H-u.s.c) at x0.

Lemma 2.1 (see [8])

(i) If G is B-u.s.c at x0, then G is H-u.s.c at x0. Conversely if G is H-u.s.c at x0 and G(x0)

is compact, then G is B-u.s.c at x0.
(ii) If G is H-l.s.c at x0, then G is B-l.s.c at x0. Conversely if G is B-l.s.c at x0 and cl(G(x0))

(i.e., the closure of G(x0)) is compact , then G is H-l.s.c at x0.

Lemma 2.2 (see [7]) Let G be compact-valued on X. Then G is Berge upper semicontinuous
at x0 if and only if for any net {xα} ⊂ X with xα → x0 and for every yα ∈ G(xα), there exist
y0 ∈ G(x0) and a subnet {yβ} of {yα} such that yβ → y0.

Now we recall the following lemma which plays an important role in Sect. 4.

Lemma 2.3 (see [9]) The union � = ⋃
i∈I �i of a family of B-l.s.c set-valued mappings �i

from a topological space X into a topological space Y is also a B-l.s.c set-valued mapping
from X into Y , where I is an index set.

3 Continuity of approximate solution mappings for (PSEP)

In this section, we deal with the following parametric scalar equilibrium problem (for short
PSEP) of finding x̄ ∈ E such that

f (x̄, y, μ) ≥ 0, ∀y ∈ E,

where f : E × E × M → R, E is a nonempty convex compact subset of X and M ⊂ Z ;
X, Z are locally convex Hausdorff topological vector spaces.

Denote the approximate solution set of (PSEP) by

Sε(μ) := {x̄ ∈ E : f (x̄, y, μ) + ε ≥ 0, ∀y ∈ E},
where ε is a positive real number.

Fix μ0 ∈ M . First, we establish the compactness of Sε(μ0).

Lemma 3.1 If for every y ∈ E, f (·, y, μ0) is continuous on E, then the approximate solu-
tion set Sε(μ0) of (PSEP) is compact.

Proof Since the proof is trivial, we omit it. ��
Lemma 3.2 Assume that Sε(μ) �= ∅ in a neighborhood of a fixed point (ε0, μ0). If for each
x, y ∈ E, f (x, y, ·) is continuous at μ0, then there exists a neighborhood N (ε0) × N (μ0)

of μ0 such that the approximate solution mapping S·(·) of (PSEP) satisfies the following
condition: ∀μ1, μ2 ∈ N (μ0),∀ε1, ε2 ∈ N (ε0) : ε1 < ε2,

Sε1(μ1) ⊂ Sε2(μ2).
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Proof For any real number δ satisfying 0 < δ < ε0, let N (ε0) := [ε0 − δ, ε0 + δ] be a given
neighborhood of ε0. Now, let ε1, ε2 be any two points from [ε0 − δ, ε0 + δ] with ε1 < ε2.
For any real number η : 0 < η < ε2 − ε1, by (ii), there exists a neighborhood N (μ0) of μ0

such that for each x, y ∈ E ,

| f (x, y, μ1) − f (x, y, μ2)| ≤ η, ∀μ1, μ2 ∈ N (μ0). (1)

Taking any x̄ ∈ Sε1(μ1), we have

x̄ ∈ E and f (x̄, y, μ1) ≥ −ε1,∀ y ∈ E .

Then, f (x̄, y, μ2) + f (x̄, y, μ1) − f (x̄, y, μ2) ≥ −ε1, which along with (1) yields that

f (x̄, y, μ2) ≥ −ε1 − η,∀ y ∈ E .

Namely, f (x̄, y, μ2) ≥ −ε2, which implies that x̄ ∈ Sε2(μ2). Thus, it follows from the
arbitrariness of x̄ that Sε1(μ1) ⊂ Sε2(μ2) and the proof is complete. ��
Lemma 3.3 Assume that Sε(μ) �= ∅ in a neighborhood of a fixed point (ε0, μ0). If for each
y ∈ E , f (·, y, μ0) is a concave function, then the approximate set Sε(μ0) is convex for each
ε ∈ [ε0 − δ, ε0 + δ].
Proof Take any x1, x2 ∈ Sε(μ0) and any λ ∈ [0, 1]. Then, we have

f (x1, y, μ0) + ε ≥ 0, ∀y ∈ E

and

f (x2, y, μ0) + ε ≥ 0, ∀y ∈ E,

which along with (iii) yields that

f (λx1 + (1 − λ)x2, y, μ0) + ε ≥ λ( f (x1, y, μ0) + ε) + (1 − λ)( f (x2, y, μ0) + ε)

≥ 0, ∀y ∈ E .

Since E is a convex set, we have λx1 + (1 − λ)x2 ∈ E . Thus, λx1 + (1 − λ)x2 ∈ Sε(μ0) and
the proof is complete. ��

Now, we state our main result.

Theorem 3.1 Assume that Sε(μ) �= ∅ in a neighborhood of a fixed point (ε0, μ0). Further-
more, assume that the following conditions hold:

(i) For each y ∈ E, f (·, y, μ0) is continuous on E;
(ii) For each x, y ∈ E, f (x, y, ·) is continuous at μ0;

(iii) For each y ∈ E , f (·, y, μ0) is a concave function.

Then, the approximate solution mapping S·(·) of (PSEP) is H-continuous at (ε0, μ0).

Proof Now, we verifies that the approximate solution mapping Sε(μ) of (PSEP) is H-conti-
nuity at (ε0, μ0). Indeed, it follows from Lemma 3.2 that

Sε0−δ(μ0) ⊂ Sε(μ) ⊂ Sε0+δ(μ0),∀μ ∈ N (μ0), ∀ε ∈ [ε0 − δ, ε0 + δ]. (2)

On the other hand, for any 1 < θ < ε2
ε2−ε1

(ε1, ε2 is defined as in Lemma 3.2), we have

ε1 = 1

θ
γ +

(

1 − 1

θ

)

ε2 for γ := ε2 + θ(ε1 − ε2). (3)
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Obviously, 0 < γ < ε1. Then, we claim that

1

θ
Sγ (μ0) +

(

1 − 1

θ

)

Sε2(μ0) ⊂ Sε1(μ0). (4)

In fact, take any xγ ∈ Sγ (μ0) and any xε2 ∈ Sε2(μ0). Then,

f (xγ , y, μ0) + γ ≥ 0, ∀y ∈ E (5)

and

f
(
xε2 , y, μ0

) + ε2 ≥ 0, ∀y ∈ E . (6)

Hence, (3), (5), (6) and (iii) together yields that

f

(
1

θ
xγ + (1 − 1

θ
)xε2 , y, μ0

)

+ ε1 ≥ 1

θ

(
f (xγ , y, μ0) + γ

)

+
(

1 − 1

θ

)
(

f (xε2 , y, μ0) + ε2
)

≥ 0, ∀y ∈ E,

which implies that 1
θ

xγ + (
1 − 1

θ

)
xε2 ∈ Sε1(μ0). It follows from the arbitrariness of xγ , xε2

that (4) holds.
By assumption i) and Lemma 3.1, S2ε0(μ0) is compact. Then, it follows from Lemma

3.2 that Q := ⋃{Sε(μ0) : ε ≤ 2ε0} ⊂ S2ε0(μ0) is bounded. Thus, for any closed convex
neighborhood B of the origin, there exists a real number ρ > 0 such that

Q − Q ⊂ ρB.

Notice that γ < ε1 < 2ε0. Hence, by Lemma 3.3 and (4), we have

Sε2(μ0) ⊂
(

1 − 1

θ

)−1

[Sε1(μ0) − 1

θ
Sγ (μ0)]

= Sε1(μ0) +
(

1

θ − 1

)
[
Sε1(μ0) − Sγ (μ0)

]

⊂ Sε1(μ0) +
(

ρ

θ − 1

)

B. (7)

Let δ0 < ε0
ρ+1 and consider the interval [ε0−δ0, ε0+δ0]. Let in (7) ε2 = ε0 and ε1 = ε0−δ0.

Choose θ = ρ + 1. Then, 1 < θ < ε2
ε2−ε1

= ε0
δ0

and it follows from (2) and (7) that

Sε0(μ0) ⊂ Sε0−δ(μ0) + B

⊂ Sε(μ) + B, ∀μ ∈ N (μ0), ∀ε ∈ [ε0 − δ0, ε0 + δ0],
which implies that S·(·) is H-l.s.c at (ε0, μ0).

On the other hand, let in (7) ε2 = ε0 +δ0 and ε1 = ε0. Choose θ = ρ +1. Then, it follows
from (2) and (7) that

Sε(μ) ⊂ Sε0+δ(μ0)

⊂ Sε0(μ0) + B, ∀μ ∈ N (μ0), ∀ε ∈ [ε0 − δ0, ε0 + δ0],
which means that S·(·) is H-u.s.c at (ε0, μ0). This completes the proof. ��
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Remark 3.1 If ε is a fixed positive real number and f (x, y, μ) = f ′(x, y, μ) + ε, then the
parametric scalar equilibrium problem (PSEP) was investigated by Ahn and Khanh in [5].
They defined another approximate solution mapping S̃ε(·) for (PSEP) and discussed H-l.s.c
(or B-l.s.c) of the solution mapping S̃ε(·), see Theorems 2.1, 2.3, 2.6 and 2.8 of [5]. They also
studied H-u.s.c (or B-u.s.c) of the approximate solution mapping Sε(·) for (PSEP) in Theo-
rems 3.1, 3.3 and 3.5 of [5]. However, the assumptions and our proof methods in Theorem
3.1 are very different from the corresponding ones in [5].

Corollary 3.1 Assume that all assumptions of Theorem 3.1 are satisfied. Then, the approx-
imate solution mapping S·(·) of (PSEP) is B-continuous at at (ε0, μ0).

Proof From Lemma 3.1, Sε0(μ0) is compact. Thus, by Theorem 3.1 and Lemma 2.1, the
approximate solution mapping S·(·) of (PSEP) is B-continuous at (ε0, μ0) and the proof is
complete. ��

The following example is given to illustrate that assumption (iii) in Theorem 3.1 is essen-
tial.

Example 3.1 Let X = Z = R, E = [0, 1], M = [−1, 1]. Furthermore, let μ0 = 0 ∈ M =
[−1, 1], ε0 = 1

4 and f (x, y, μ) = μx(x − y) − 1
4 . Obviously, all conditions of Theorem 4.1

except for (iii) are satisfied. The direct computation shows that

Sε0(μ) =
{ [0, 1], if μ ∈ [0, 1],

{0}, if μ ∈ [−1, 0).

Clearly, we see that Sε0(·) is even not B-l.s.c at μ0 = 0. Hence assumption (iii) in Theorem
3.1 is essential.

4 Continuity of approximate solution mappings for (PVEP)

Now, we consider the following parametric vector approximate equilibrium problem (PVEP):
find x̄ ∈ E such that

f (x̄, y, μ) �∈ −intC, ∀y ∈ E,

where f : E × E × M → Y is a vector-valued function, C is a pointed closed convex cone
in Y with intC �= ∅, e ∈ intC and E ⊂ X is a nonempty compact convex subset and M ⊂ Z ;
X, Y, Z are locally convex Hausdorff topological vector spaces.

For each ε > 0, μ ∈ M , by Sεe(μ) we denote the approximate solution set of (PVEP),
i.e.,

Sεe(μ) := {x̄ ∈ E : f (x̄, y, μ) + εe �∈ −intC,∀y ∈ E},
where ε is a positive real number.

Let C∗ := {ξ ∈ Y ∗ : ξ(y) ≥ 0,∀y ∈ C} be the dual cone of C . Letting e ∈ intC be given,
we have that B∗

e := {ξ ∈ C∗ : ξ(e) = 1} is a weak* compact base of C∗. For each ξ ∈ B∗
e ,

by Sξ
ε we denote the ξ -approximate solution set of (PVEP), i.e.,

Sξ
ε (μ) := {x̄ ∈ E : ξ( f (x̄, y, μ)) + ε ≥ 0,∀y ∈ E}.

A vector valued function g : X → Y is said to be C-convex on X if, for any x1, x2 ∈ X
and λ ∈ [0, 1], λg(x1) + (1 − λ)g(x2) ∈ g(λx1 + (1 − λ)x2) + C ; f is C-concave if − f is
C-convex.

With the proof similar to Lemma 3.1 in [13], the following result can be proved:
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Lemma 4.1 If for each x ∈ E, μ ∈ M, f (x, ·, μ) is a C-convex function, then

Sεe(μ) =
⋃

ξ∈B∗
e

Sξ
ε (μ).

Theorem 4.1 Assume that, for each ξ ∈ B∗
e , the ξ -efficient solution of (PVEP) exists in

a neighborhood of the considered point (ε0, μ0). Assume furthermore that the following
conditions hold:

(i) For each y ∈ E, f (·, y, μ0) is continuous on E;
(ii) For each x, y ∈ E, f (x, y, ·) is continuous at μ0;

(iii) For each x ∈ E , f (x, ·, μ0) is a C-convex function;
(iv) For each y ∈ E , f (·, y, μ0) is a C-concave function.

Then, the approximate solution mapping S·e(·) of (PVEP) is B-continuous at (ε0, μ0).

Proof (a) We first show that S·e(·) for (PVEP) is B-l.s.c at (ε0, μ0). Indeed, set
g(x, y, μ) := ξ( f (x, y, μ)) for each x, y ∈ E, μ ∈ M and ξ ∈ B∗

e . Applying Cor-

ollary 3.1 to g, we have that the ξ -approximate solution mapping Sξ· (·) of (PVEP) is
B-l.s.c at (ε0, μ0). By (iii) and Lemma 4.1, we have

Sεe(μ) =
⋃

ξ∈B∗
e

Sξ
ε (μ),

which along with Lemma 2.3 yields that S·e(·) is B-l.s.c at (ε0, μ0).
(b) By (a), it suffices to show that the approximate solution mapping S·e(·) for (PVEP)

is B-u.s.c at (ε0, μ0). Suppose that the solution mapping S·e(·) of (PVEP) is not B-
u.s.c at (ε0, μ0). Then there exists a open neighborhood U satisfying Sε0e(μ0) ⊂ U ,
and sequences εn → ε0 and μn → μ0 with xn ∈ Sεne(μn) such that xn �∈ U,∀n.
Since E is compact, xn → x0 ∈ E . If x0 �∈ Sε0e(μ0), then there exists y0 ∈ E such
that f (x0, y0, μ0) + ε0e ∈ −intC . By assumptions (i) and (ii), there exists a index n̄
such that f (xn̄, y0, μn̄) + εn̄e ∈ −intC , which is impossible as xn̄ ∈ Sεn̄ e(μn̄). Thus,
x0 ∈ Sε0e(μ0) ⊂ U , which contradicts xn �∈ U,∀n. This completes the proof. ��

Remark 4.1 When is replaced by any γ ∈ intC and f (x, y, μ) = f (x, y) + γ , the (PVEP)
reduces to the problem in [17]. However, the assumptions and proof method of Theorem 4.1
are very different from the corresponding ones in [17].

The following example is given to illustrate that the assumption (iii) in Theorem 4.1 is
essential.

Example 4.1 Let X = Z = R, E = [0, 1], and Y = R2, e = (1, 1) ∈ intR2+, M = (0, 1)

and ε, μ ∈ M . Suppose that

f (x, y, ε) = ((2 + logε
2)y(x − y) − ε, y(x − y) − ε) and ε0 = μ0 = 1

4
.

Obviously, all assumptions of Theorem 4.1 except for (iii) are satisfied. Moreover, the direct
computation shows that

Sεe(ε) =
{ [0, 1], if ε ∈ [ 1

4 , 1),

{0}, if ε ∈ (0, 1
4 ),

which implies that S·e(·) is not B-l.s.c at μ0 = 1
4 . Thus the assumption (iii) in Theorem 4.1

is essential.
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