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Abstract We consider a generalized equilibrium problem involving DC functions which
is called (GEP). For this problem we establish two new dual formulations based on Toland-
Fenchel-Lagrange duality for DC programming problems. The first one allows us to obtain
a unified dual analysis for many interesting problems. So, this dual coincides with the dual
problem proposed by Martinez-Legaz and Sosa (J Glob Optim 25:311-319, 2006) for equi-
librium problems in the sense of Blum and Oettli. Furthermore it is equivalent to Mosco’s
dual problem (Mosco in J Math Anal Appl 40:202-206, 1972) when applied to a varia-
tional inequality problem. The second dual problem generalizes to our problem another dual
scheme that has been recently introduced by Jacinto and Scheimberg (Optimization 57:795—
805, 2008) for convex equilibrium problems. Through these schemes, as by products, we
obtain new optimality conditions for (GEP) and also, gap functions for (GEP), which cover
the ones in Antangerel et al. (J Oper Res 24:353-371, 2007, Pac J Optim 2:667-678, 2006)
for variational inequalities and standard convex equilibrium problems. These results, in turn,
when applied to DC and convex optimization problems with convex constraints (considered
as special cases of (GEP)) lead to Toland-Fenchel-Lagrange duality for DC problems in Dinh
et al. (Optimization 1-20, 2008, J Convex Anal 15:235-262, 2008), Fenchel-Lagrange and
Lagrange dualities for convex problems as in Antangerel et al. (Pac J Optim 2:667-678,
2006), Bot and Wanka (Nonlinear Anal to appear), Jeyakumar et al. (Applied Mathematics
research report AMRO04/8, 2004). Besides, as consequences of the main results, we obtain
some new optimality conditions for DC and convex problems.
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1 Introduction

In this paper we consider the following generalized equilibrium problem of the model

Find x € K such that

(GEP) [ f(x,y) +W(y) = W(x)forally € K,

where X is a locally convex Hausdorff topological space, K is a nonempty closed convex
subsetof X and f : X x X — RU{+oo}and ¥ : X — RU {+o0} are functions satisfying:

(a) f(x,x)=0forallx eK;
(d) fi():= f(x,-) is proper, lower semi-continuous (l.s.c.), and convex for all x € K;
(c) ¥ = g — h where g, h: X - R U {400} are two proper, l.s.c., convex functions.

Here, by convention, we assume that co — 00 = 00 + (—00) = +00.

This problem is very general in the sense that it includes, as particular cases, many different
problems as, for example, the problem of minimizing the difference of two convex functions,
the mixed variational inequality problem, and when ¥ = 0, the Nash equilibrium problem in
noncooperative games, the fixed point problem, the nonlinear complementarity problem and
the vector optimization problem (see, for instance, Blum and Oettli [6] and the references
quoted therein). The interest of such a general problem is that it unifies all these particular
problems in a convenient way. Moreover, many results obtained for one of these problems can
be extended with suitable modifications to the problem (G E P). However, the generalized
equilibrium problem (G E P) is very important in itself. Indeed, it covers some important
models in economics as, for example, the Nash-Cournot oligopolistic market equilibrium
model with concave cost functions [26]. In this model, the function f(x, y) = (F(x), y —x)
where F is affine and the function W is a difference of two convex functions (a DC function
in short).

Recently, duality results and optimality conditions have been obtained for equilibrium
problems by Martinez-Legaz and Sosa [23] when W = 0 and by Jacinto and Scheimberg
[18] when W is convex. Our aim in this paper is to obtain similar results but for the case
where W is a DC function. First, for each x € K, we consider a DC optimization problem
(Py), which allows us to give a fixed point formulation of the solutions of (G E P). Then, we
associate with each DC problem ( Py ), a dual problem by using the Toland-Fenchel-Lagrange
duality. This is the subject of Sect. 3 where we develop general duality and optimality results
for a DC problem. In that section we also introduce a closedness condition, called (CC),
that plays the role of a constraint qualification for these classes of problems. In Sect. 4 we
use the duality for problems (Py) to construct a first dual problem (DG E P) associated with
problem (GE P). When W = 0, this dual reduces to the dual presented by Martinez-Legaz
and Sosa in [23]. This dual problem also reduces to the ones introduced by Bigi, Castellani,
and Kassey in [5] and by Mosco in [25] for variational inequality (VI) (see Sect. 7). First we
prove weak and strong duality properties for these problems under the closedness condition
(CC) which extended the corresponding results in [5, 23, 25]. We then establish necessary
and sufficient optimality conditions for (G E P). These conditions, at the same time, give rise
to the relationships between the solutions of problems (GE P) and (DGE P). In particular,
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we prove that if the optimal value of the dual problem is zero (the primal problem (G E P)
might not have any solution), then for any ¢ > 0 the problem (G E P) admits e-solutions.
In the last part of this section we introduce another dual scheme that generalizes the dual
presented by Jacinto and Scheimberg in [18] when W is convex.

In Sect. 5 we propose gap functions related to the duality developed in the previous sections
which extend the ones introduced in [1, 2] for variational inequalities and for equilibrium
problems, while in Sects. 6 and 7 we show that our dual scheme allows us to find again well-
known results when applied to special cases of problem (GEP) in [5, 11, 13, 14, 23, 25].
In particular, we develop in Sect. 6 the case of convex and DC optimization problems and
find again several results established recently in [11, 13, 14]. Sect. 7 is devoted to the case of
equilibrium problems in the sense of Blum and Oettli. First we prove that in the latter case
the dual problem (DG E P) coincides with Martinez-Legaz and Sosa’s dual [23]. Then we
show that in the particular case of variational inequality problems the dual problem (DG E P)
is equivalent to the dual introduced by Bigi, Castellani, and Kassey in [5] and by Mosco in
[25].

2 Preliminaries

Let us recall some notations and properties useful in this paper. Let X be a locally convex
Hausdorff topological vector space with its topological dual X*, endowed with the weak*-
topology.

The indicator function of aset D C X isdefinedbydp(x) = 0ifx € Danddp(x) = +o0
if x ¢ D. Moreover, the support function op is defined on X* and is given by op(u) =
sup,cp u(x). When D* is a subset of X*, cI D* stands for the closure of D* with respect to
the weak™ topology in X*.

Letk : X — R U {400} be a proper l.s.c., and convex function. The conjugate function
of k, k* : X* — R U {+00}, is defined for all v € X* by

k*(v) = sup{(v, x) — k(x) | x € dom k},

where the domain of k is given by dom k := {x € X | k(x) < 4o00}.
If a € dom k£, then, following [19], we have

epi k* = | J (v, v(@) + € — k(@) | v € dek(a)}, 6))

€>0

where, for a given € > 0, the e- subdifferential of k at @ € domk, d.k(a), is defined as the
possibly empty weak*-closed convex set

Ock(a) ={v e X* | k(x) —k(a) > (v,x —a) — € forall x € dom k}.

If € = 0, then d.k(a) collapses to dk(a), the usual subdifferential of k at a in the sense of
convex analysis (for more details, see [28]).

Now let D be a convex subset of X and let ¢ > 0. The approximate normal cone ata € D
is defined by

Ne(D,a) ={ue X" |u(x—a) <eforallx € D}.

When ¢ = 0, N (D, a) is the classical cone N (D, a) of convex analysis. Moreover, it is easy
to see that N(D, a) = ddp(a).
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Following [8], it is worth noting that for two proper, l.s.c., and convex functions &y, k> :
X — R U {400}, we have

epi (ki + k2)* = cl(epi k| + epi k3). 2)

Moreover, epi k] + epi k3 is weak*-closed if at least one of the functions k; and k; is
continuous at some point of the domain of the other (see [8]).

Finally, we recall some results on DC programs which are useful for our study in the next
sections. The first one is due to J.B. Hiriart-Urruty [17] and the second one to Toland [27].

Lemma 2.1 [17] Let X be a locally convex Hausdorff topological vector space and let
F,G: X — RU {400} be Ls.c., proper and convex functions. Then

(i) A pointa € X is a global minimizer of the problem inf,cx {F(x) — G(x)} if and only
if forany e > 0, 0; G(a) C 9 F(a),
(i) Ifa € X is a local minimizer of infycx {F(x) — G(x)}, then 0G(a) C 0F (a).

Lemma 2.2 [17,27] Let X be a locally convex Hausdorff topological vector space and
let F,G : X — R U {400} be two proper and convex functions. If F is Ls.c. on X and
G**(x) = G(x) forall x € X, then

inf {(F(x) — G(x)} = inf {G*(u) — F*(u)}.
xeX ueX*

3 Duality of DC optimization problems

In this section we consider a general DC problem of model (Q) below. We establish opti-
mality conditions and dual results for (Q) that will be the main tools for the establishment
of the corresponding results for the generalized equilibrium problem (GEP) in the next
sections. However the main results of this section may be of their own interest since they
yield the standard Fenchel duality result for convex optimization problem (see Corollary 3.2
and also, [7, 8]), cover the subdifferential sum rule of convex functions established recently
in [8] (see Corollary 3.1), and give rise to a new Farkas’ lemma involving DC inequalities
(see Corollary 3.4).

Consider the problem (GE P) defined in Sect. 1. For each x € K, we associate with
(G E P) the optimization problem

inf f(x,y)+W¥(y)

(P plx) = [s.t. yeK.

Since f(x,x) = 0 for all x € K, the following result is straightforward from the defini-
tions of problems (GE P) and (Py).

Lemma 3.1 A point x € K is a solution of (G E P) if and only if X is a solution of (Pz). In
that case, p(x) = V(x) and x € Q(Xx) where Q(x) := argmin (Py), i.e., X is a fixed point
of the mapping Q.

It is worth mentioning that for each x € K, (Py) is the problem of minimizing the DC

function (difference of two convex functions) f,(y) + g(y) — h(y) over the convex set K.
These problems (Py) are special cases of the following general DC problem

inf F(y)+G(y) — H(y)

(@) [s.t. yeKk,
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where X is a locally convex Hausdorff topological space, K is a closed convex subset of X,
and F, G, H : X — R U {+o0} are proper, l.s.c., and convex functions. It is obvious that
for each x € K, (Py) is of the model (Q) where f, g, and h play the roles of F, G, and H,
respectively. We start with the following proposition which plays a key role in the study of
(Q). This proposition may also have its own interest for it recovers the corresponding Theo-
rem 1 in [8]. Several parts of its proof are similar to those of Theorem 3.1 in [13]. However,
for the completeness of the paper, we give it in details.

From now on, the optimal value of problems (P, ) and (Q) are denoted v(Py) and v(Q),
respectively.

Proposition 3.1 (Conjugate and approximate subdifferential sum rules involving convex
functions) Assume that U, V, T : X — R U {+00} are proper, Ls.c., and convex functions
such that domU N domV N\ domT # (. The following statements are equivalent:

(1) epi U* 4 epi V* + epi T* is weak*-closed,
(ii) Foreach x* € X*,
U+V+T) "= minx {(U*(u™) + V*Q@*) + T*(x* — u™ — v™)} 3)
u* v*eX*

(the infimum in the right-hand side is attained),
(iii) For any x € domU NdomV N domT and each € > 0,

U +V+TH(X) = U {306, UX) + 06, V(X) + 06T (1)} . 4)
€1,€2,63>0
€1t+ert+e3=e€

Proof [(i) = (ii)]. Assume that (i) holds. Let x* € X*. Then, for all u*, v* € X*, and
x € X, we have

UrW®) = (u,x) —Ux), V") = @5 x) - V),
T*(x* —u* —v*) > x* —u* —v*, x) — T(x), 5)
which implies that for all x € X,
U™ + V) + T —u™ —v*) > x",x) = (U +V +T)x),
or, equivalently, that

ian*{U*(u*) + VO + T —u* — v} > U+ V+T)(x"). (6)

u*,v¥e

If x* ¢ dom(U + V + T)*, then (U + V + T)*(x™) = +00 and (i7) holds. So, for proving
the converse inequality in (3), it is sufficient to assume that x* € dom(U + V + T)*. Then
we have

XU+ V4T (x") eepi (U+V +T)". (7
On the other hand we observe that (see (2))
epi (U+V +T) =cl (epi U* +epi (V +T)")
=cl (epi U* +cl (epi V* +epi T™))
=cl (epi U* +epi V* +epi T%). 8)
So, since (i) holds, we obtain that

epi (U+V +T) =epiU* +epi V* +epi T*. ©)
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Combining now (7) and (9), we deduce that
x*, U +V+T) &™) =W r)+@s) + w1
for some (u*, r) € epi U*, (v*,s) € epi V*, and (w*, t) € epi T*. Consequently,
U+V+T)Y ™ =U W)+ VO*) + T " —u* —v"),

and (ii) follows. Finally, the infimum in (i7) is attained at some u*, v* such that u™ €
domU*, v* € domV*, and x* — u* — v* € domT™*.

[(ii) = (iii)]. Assume (ii). Let x € domU NdomV N dom7 and let € > 0. We firstly
observe that the inclusion

U +VADE > | {0U@ +0,VE) +06TE)}

€1,€2,63>0
€1t+ertez=e€

in (iii) can be easily verified from the definition of approximate differentials in Sect. 1. For
the converse inclusion, let x* € 9. (U + V + T)(x). Since X € dom(U + V + T), it follows
from (1) that

e+ (X)) —URX) -V@E) -TGE) > U+V+T)Ch, (10)

which shows that x* € dom(U + V + T)*. Thanks to (ii), there exist u*, v* € X*, such
that u* € domU*, v* € domV*, x* — u* — v* € domT*, and that (U +V + T)*(x*) =
U*(u™) + V¥*) + T*(x* — u™ — v*). So it follows from (10) that

e+ x)—UX)—-VX) —-TE) >U W)+ V@) +T** —u*—v". (11)
Now let €; := U*(u*) — (u*, x) + U(x). Then ¢; > 0 and u* € 9, U(x). Similarly, we
have v* € 9., V(¥) and x* — u* —v* € BEQT()E) where ¢, := V*(v*) — (v*, x) + V(X) and
€)= T*(x* —u* —v*) — (x* —u* —v*, &) + T(¥). Therefore,

X = 0T (= = 0") € 0q UR) + 0, V(E) + 0 T (). (12)
Note that (from (10) 0 < €] + €2 +€; < e€.Lete3 := € —e] — €. Thenez > O and €] < €3,
which entails that 863 T (x) C 0¢; T (x). Combining this and (12), we obtain
X* €0, U(X) + 06, V(X) + 0, T (X),
which shows that

U+V+TIH € | {0aUE +0,VE) +0,TE)}.

€1,€2,63>0
€1+ertez=e

[(iii) = (i)]. Assume that (iii) holds. Take a € domU N domV N domT and (x*,r) €
cl {epi U* +epi V* + epi T*}. Then by (8), (x*,r) € epi (U + V + T)*, and hence, it
follows from (1) that there exists € > 0 such that x* € 3. (U + V + T)(a) and
r=x"a)—U+V+T)a)+e>U+V+T)"(x%. (13)
By (iii), there exist €1, €2, €3 > 0 and u™, v*, w* € X* such that €] + €2 + €3 = €, x* =
u* +v* + w*, and u* € 9., U(a), v* € 9.,V (a), w* € 3T (a). Again, by (1),
w*, (u*,a) +e —U(a)) € epi U*,
", (v, a) + € — V(@) € epi V*,
(w*, (w*,a) + €3 —T(a)) €epi T",
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which, in turn, implies that
x*,x"@)+e—U+V+T)a)) cepi U* +epi V* +epi T*.

The last inclusion and (13) entail that (x*, ) € epi U* +epi V* +epi T*, which proves ().
[m}

Remark 3.1 Concerning statement (ii), it is worth noting that if x* € dom(U +V 4 T)*, then
there exist u* € domU™*, v* € domV™* such that x* — u* — v* € domT™* and the infimum in
the right hand side of (3) is attained at u™, v*. Otherwise, i.e., when x* ¢ dom(U + V + T)*,
for arbitrary u*, v* € X*, one has

U (u®) + V") + T*(x* —u* —v*) = +o0.

The following Corollary is useful for the study of Problem (P,). It recovers Corollary 1
in [8] when one of the functions U, V, and T is a zero constant function.

Corollary 3.1 (Subdifferential sum rule involving convex functions) Assume that U, V, T :
X — R U {400} are proper, Ls.c., and convex functions. If epi U* + epi V* + epi T* is
weak*-closed, then for any X € domU N domV N domT,

U+V+T)x)=0U(x)+0V(x)+ 0T (x).
Proof This is a direct consequence of Proposition 3.1. O

Theorem 3.1 (Optimality Condition for (Q)) For Problem (Q), assume that epi F* +
epi G* + epi 8% is weak*-closed. Then

(1) x € K is a global solution of (Q) if and only if for any € > 0
0HE) € | {0 F() +0,GE) + Ney (K. )}

€1,€2,63>0
€1t+er+e3=¢

(ii) Ifx € K is a local solution of (Q), then
0H(x) C 0F(x)+0G(x)+ N(K, x).

Moreover, if X is a local solution of (Q), then for any x* € 0H(X), there exist u* €
domF*,v* € domV* such that x* — u* — v* € domé% and

H*(x*) — F*(u*) — G*(v*) = 83 (x* —u* —v*) = F(X) + G(X) — H(X).
Proof Note that problem (Q) is equivalent to the minimization problem
inf [(F+G+38x)(x) — H).
Hence by Lemma 2.1, x € K is a global solution of (Q) if and only if for any ¢ > 0,
0 H(X) C 0; (F + G+ k) ().

Thus, (i) follows from this and Proposition 3.1.
Similarly, (ii) follows from Lemma 2.1 and Corollary 3.1. O

Theorem 3.2 (Duality for (Q)). For Problem (Q), we have

@ v(Q) > lng* [ sup [H*(x*) — F*u*) — G*(v*) — &% (x* — u* — v*)]].

u*, v*eX*
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(ii) If epi F* + epi G* + epi 8% is weak*-closed, then
v(Q) = inf [ max [H*(x*) — F*(u*) — G*(v*) — 8 (x* — u* — v*)]] (14)
x*eX* | u* vteX*

Proof The inequality in (i) follows easily from the definition of conjugate functions and from
that H** = H. In fact, for any x*, u*, v* € X* and any y € K, by definition of conjugate
functions, we have

H*(x*) — F*(u*) — G*(v*) — 05 (x* —u* —v™)
S HY(X) + (=u*, ) + F(y) + (=v*, y) + G) + (=x* +u™ +v*, y)
+ox (y) < H*(x™) — (x*, y) + F(y) + G(y).

This yields for all y € K (note that H**(y) = H(y)),
inf s exs SUP,x s {H*(x%) — F*(u*) — G*(v¥) — 8% (x* — u* — v")}
< inferex«[H*(x*) — (x*, y)] + F(y) + G(y)
=—H"(y)+F») +G©»)
=Fy)+Gy) —H®),

which proves (i) since the last inequality holds for any y € K.
For the proof of (ii), note that

v(Q) = inf[F(y)+G(y) — HW]=inf [(F+G+k)(y) — HY)I
yek yeX

Hence, by Toland’s duality theorem (Lemma 2.2),
v(Q) = ing{[(F +G+dk)(y) —H] = ing {H*(x*) — (F + G + 8g)*(x™)}. (15)
ye x*eX*

Since epi F* + epi G* + epi 8% is weak*-closed, it follows from Proposition 3.1 that
(F+G+8g)"(x*) = minX {F*(u™) + G*(v*) + 8 (x* —u™ — v™)}.
u* v¥eX*

Combining this and (15), we obtain that
v(Q) = inf max {H(")—F'u")=G"0") = k(" —u' — v},
e X*

x*eX* u*v
which completes the proof. O

Now the general Fenchel duality result for convex problems in infinite dimensional spaces
(see [7, 8] and the references quoted therein) follows from the previous proposition as shown
in the next corollary.

Corollary 3.2 [8] (Fenchel Duality for the sum of convex functions). Assume that F, G :
X — RU{4o00} are proper, l.s.c., and convex functions. Assume further that epi F* + epi G*
is weak*-closed. Then

inf [F(y) + G()] = max [—F*(—u*) — G*")].
yex ureX*
Proof Let K = X.Thendx = 0on X and thus, dom 6% = {0} andepi &% = {0} x [0, +00).
The conclusion now follows directly from Theorem 3.2 where H = 0 and K = X since
epi F* 4+ epi G* 4 epi 8 = epiF™ + epiG™* + {0} x [0, c0)
= epiF* + epiG™.
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The following corollary is a direct consequence of Theorem 3.2.

Corollary 3.3 (Fenchel Duality for convex problems). For problem (Q), assume that H = 0
and G = 0. Assume further that epi F* + epi 8% is weak*-closed. Then

inf(Q) = max. [-F*(u*) — 8% (—u™)].

A Farkas lemma of the same dual type as in [14], and involving DC functions, now follows
from Theorem 3.2.

Corollary 3.4 (Farkas Lemma). Let o € R. Assume that epi F* 4 epiG* + epi &% is weak*-
closed. Then the following statements are equivalent:

(i) Forally e K, F(y) +G(y) —H(y) Z a,
(ii) For each x* € X*, there exist u*, v* € X* such that

H*(x™) — F*(u™) — G*(v*) = §x (x* —u* —v*) > .
Proof 1t is clear that (i) is equivalent to

inf [F(y)+G(y) —H(y)] = a.
yekK
By Theorem 3.2, the last inequality is equivalent to

inf  max {Hx*) — F*w*) —G*(v*) =g (x* —u* —v")} > «,
x*eX* u* v*eX*

which, in turn, is equivalent to (ii). m]

We now come back to problem (Py) associated with (GE P). The duality results for the
general problem (Q) give rise to the corresponding ones for (Py) as shown below. But first,
we introduce the definition of a constraint qualification called closedness property for (Py).

Definition 3.1 (Closedness Condition). Let x € K. If the set
(cO) epi fi +epig* + epidy

is weak*-closed in the dual space of X x R, then problem (Py) is said to satisfy the closed-
ness condition, ((CC) in short), or equivalently, that problem (G E P) satisfies the closedness
condition (CC) at x.

It is worth observing that the dual form constraint qualification of the type (CC) seems
to be used for the first time in [8, 20]. This condition is weaker than several qualification
conditions known in the literature such as generalized Slater conditions and interior-type
conditions. It was successfully used for establishing optimality conditions, duality, stability
of convex programming problems [8, 20], convex infinite programs [10, 15], DC problems
with convex constraints [13, 14], and DC infinite programs with parameters [12]. It was also
used to study the variational inequalities and equilibrium problems (see [1, 2]). In this paper
this condition plays a key role in the study of duality and other topics in the next sections.

Forx € K, x*, u*, v* € X*, set

L(x, x*,u*, v") = h*(x™) — fi@W") — g"(v") — S (x* —u™ —v"). (16)
As a consequence of Theorem 3.2, we obtain the following corollary.

Corollary 3.5 (Duality for (Py)). Let x € K. Then
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i) v(Py) > inf ‘ max L(x,x*,u*,v*)].
x*eX*

u* vreX*

(ii) If (Py) satisfies (CC), then

v(Py) = inf [ max L(x,x™, u*, v*)] . (17)
x*eX* |u* vteX*
Moreover, in the case (ii), if h = 0 then
v(Py) = max L(x,x* u* v"). (18)
u*, v*eX*

(the “sup” in the right hand-side is attained).

Proof This is a direct consequence of Theorem 3.2 where fy, g, and 4 play the roles of F, G,
and H, respectively. O

4 Duality and optimality conditions for (GE P)

In this section we introduce a dual problem (DGE P) associated with problem (GE P).
We give weak and strong duality results and optimality conditions for (G E P) as well. The
latter, at the same time, shows the relationships between the solutions of (G E P) and those
of (DGE P). Besides, it is shown that if the primal problem (G E P) possesses an optimal
solution then the value of the dual problem (DG E P) is zero, i.e., v(DGE P) = 0. However,
the converse is not true. In such a situation, i.e., when the optimal value of the dual problem
(DGEP) is zero, we prove that for any € > 0, the problem (G E P) possesses at least an
e-solution. As it is proven in Sect. 7, when W = 0, the dual problem (DGE P) coincides
with the dual problem defined by Martinez-Legaz and Sosa in [23], and when 2 = 0 and
f(x,y) = (F(x),y — x) where F is an operator from X to X*, the dual problem (DGE P)
is equivalent to the dual problem for variational inequality problems in the sense of Mosco
[25]. Finally, to end this section, we generalize to our problem another dual scheme that
covers the one recently introduced by Jacinto and Scheimberg in [18] for problem (GE P)
for the case where h = 0.

First let us recall that for problem (GE P), each x € K is associated to an optimization
problem (Py):

px) = inf [fr(y) + ¥ ()]
yek

From this definition and from Lemma 3.1, we can conclude that

e p(x) < W¥(x) forallx € K, and
e X € K is a solution of (GE P) if and only if p(x) = W (x).

Definition 4.1 (Local solutions of (GE P)). A point x € K is called a local solution of
(G E P) if there exists a neighborhood U of x such that

f(X,y)+W(y) > W(x) forally e UNK.

It is obvious that x € K is a local solution of (G E P) if and only if it is a local solution of
(Px). Furthermore, any global solution of (G PE) is also a local solution of this problem.
So the problem of finding (local/global) solutions of (G E P) reduces to the one of finding
(local/global) solutions of the optimization problem

(P) max[p(x) — ¥(x)].
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or, equivalently, to the problem

xek ek

max [yinf {fx() =¥} — \I/(X)] .
By the weak duality property for (P,) (Corollary 3.5 (i)), we obtain
v(P) = max[p(x) — ¥(x)] > max |: inf  max L(x,x* u*, v*) — \IJ(x)] .
xek xeK | x*eX* u* v*eX*

The last inequality stimulates us to define the problem in the right hand side to be the dual
problem of (G E P). Concretely, the problem (DG E P) defined by

xeK | x*eX* u* vteX*

(DGEP) max |: inf  max L(x,x* u*, v") — \Il(x):l

is called the dual problem of the generalized equilibrium problem (G E P).

It is worth mentioning that this dual problem collapses to the one introduced by Martinez-
Legaz and Sosa in [23] when 7 =0 and g = 0. When 2 = 0 and f(x, y) = (F(x),y — x)
where F is an operator from X to X*, the dual problem (DGE P) is equivalent to the dual
problem for variational inequality problems in the sense of Mosco [25] and that of Bigi,
Castellani, and Kassey in [5].

Definition 4.2 (Solution of (DG E P)) A solution of the dual problem is a point X € K such
that for any x* € dom h*, there exist u*, v* € X™* such that the following equality holds

L(x,x*, u*, v*) = g(x) — h(X). (19)
The point x is said to be a weak solution of the dual if for any x* € 9h(x), there exist
u*, v* € X* such that the equality (19) holds.
Remark 4.1 Note that the inequality

L(x,x*, u*, v*) < g(x) — h(X)

is always true. Indeed, using the same argument as in the first part of the proof of Theorem 3.2,
we get forall y € K,

L(x, x*, u*,v*) = h*(x*) — ff*) — g*(v*) — 6 (x* —u* —v¥)
<R = () + g () + 2 ()
< —h(y)+8+ f:(y).

Taking y = x, we obtain the desired inequality. Therefore, the equality in the definition (19)
is equivalent to

A

L(x, x*, u*, v*) > g(X) — h(X).
Furthermore, it is easy to see that v(DGE P) < 0.
The weak and strong duality results are given in the next theorem.

Theorem 4.1 (Weak and strong duality for (GE P)) For problem (GE P), the following
properties hold:

(i) v(P) = v(DGEP).
(ii) Iffor each x € K, the closedness condition (CC) holds, then

v(P) = v(DGEP).

@ Springer



194 J Glob Optim (2010) 48:183-208

Proof (i) is obvious. To prove (ii), note that if (CC) holds, then problem (Py) enjoys the
strong duality property for each x, i.e.,

p(x) = inf max L(x,x", u* v").
x*eX* u* vteX*

Hence, v(P) = v(DGEP). O
Remark 4.2 Note that if the problem (G E P) has a solution then v(P) = 0. In Theorem 4.1,
the equality (ii) holds provided that (CC) holds for every x € K. But even in this case, the

values of each side in this equality might not be zero if (G E P) has no solution as shown in
the following simple example.

Example 4.1 [26] Consider the generalized equilibrium problem (P1) of finding x € K :=
[—1, 1] such that

()c,y—x)—y2 > —x? forall y € K.

This problem is of the model (GE P) where ¥ (x) = h(x) = —x2 is a concave function,
g =0,and f(x,y) = (x,y — x). Itis easy to see that (CC) holds for all x € [—1, 1] and
v(P1) =v(DP1) = —1 # 0 (where(DP1) is the dual problem of (P1)). It is necessary to
emphasize that (P 1) has no solution.

‘We now establish the relationship between the solutions of (G E P) and those of (DG E P),
and we derive at the same time, optimality conditions for (G E P). First we consider the local
solutions of (GE P).

Theorem 4.2 Let x € K. For the problem (GE P), assume that the closedness condition
(CC) holds at x and that dh(x) # O. If x is alocal solution of (G E P), then for any x* € dh(x)
there exist u* € dom f, v* € domg* such that

L(x,x*, u*,v*) = g(x) — h(X). (20)
In particular, X is a weak solution of (DG E P).
Proof Let x be a local solution of (GE P). Then X is a local solution of the DC program

inf [fz(y) +80) — ()]
yekK

Since (CC) holds for (Py), it follows from [27] and the subdifferential sum rule, Corol-
lary 3.1, that

On(x) C 3(fz + g +k)(X)
C 8fz(X) + 8g(X) + Ng (X). (21)

Let x* € dh(x) (this set is non-empty by assumption). By (21), there exist u™ € dfz(x), v* €
0g(x), and w* € Nk (X) = 38k (¥) such that x* = u* 4+ v* + w™*, which give rise to

W) = ff)+ fe(x) = W, x),
g +g(x) = (v*, X), h*(x™) +h(E) = (%, %),
Sp(x* —u* —v") =8k (xF —ut — ") + 8k (%) = (xF —uF — 0¥ X).
Combining these equalities, we get
RE(x%) = ff@®) — g*(v") — S (" —u* —v") = g(X) — h(¥),

and the theorem is proven. O
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Now we consider the global solutions of (GE P).

Theorem 4.3 Let x € K. For problem (G E P), assume that the closedness condition (CC)
holds at x. If X is a global solution of (G E P), then for each x* € X*, there exist u™, v* € X*

satisfying
L%, x*, u*,v") = g(X) — h(¥). (22)
In this case, X is a solution of the dual problem (DGE P) and v(IDGEP) = 0.

Proof Assume that x is a solution of (GE P). Then by Lemma 3.1, x solves (Pz), which
means that v(Pz) = g(x) — h(x). It now follows from Corollary 3.5 (ii) that for each
x* e X*,

V(Pg) = g(¥) —h(¥) < max L(¥,x", u*, v"),
u* v*eX*

which implies the existence of u*, v* € X* such that
g(X) — h(X) < L(x,x",u*, v").

The reverse inequality being always true (see Remark 4.1), the equality (22) is proved.

The previous argument also shows that x is a solution of the dual problem (DGEP).
Moreover, in this case, since p(x) = W(x) and (CC) holds at x, by the strong duality for
(P;) (Corollary 3.5),

x*eX* | u*,vteX*

p(x) —¥(x) = inf max L(x,x*, u*, v*)] =0,

and hence, v(DGE P) > 0, which together with the obvious inequality v(DGEP) < 0
gives v(DGEP) = 0. O

‘We now prove the converse of Theorem 4.3, which also gives a sufficient optimality condition
for (GEP).

Theorem 4.4 Let x € K. If for any x* € domh™ there exist u* € dom f, v* € domg* such
that

L(x, x*, u",v") > g(¥) — h(x), (23)
then x is a global solution of (GEP).

Proof Let x* € dom h*. By assumption, there exist u™ € dom )-;" ,v* € dom g* such that
(23) holds. Using the same argument as in the first part of the proof of Theorem 3.2, we
obtain, for all y € K, that

g(X) —h(¥) < LG, x*, u*, v*) = h*(x*) — fFw*) — g"(v*) — S (x* —u™ —v¥)
ST = (3 )+ fr () +g(). (24)

Since x* is arbitrary, we deduce from the previous inequality that for all y € K,

g(x)—h(x) < inf {(A*(x")— (x*, 1+ () +28(), Yy e K.
x*edomh*

Consequently,

g(x) —h(x) = f(y) +g(y) —h(y) forally € K,
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8(x) —h(x) = p(x).

Combining this last inequality and the obvious inequality p(x) < W (x), we get p(x) = W (x)
and thus x is a solution of (GE P). O

The following corollary gives necessary and sufficient conditions for a point X € K to be a
solution of (G E P) in the special case when h = 0.

Corollary 4.1 (Necessary and sufficient optimality condition for (G E P) when h = 0) Let
x € K. For problem (GEP), assume that h = 0 and that the closedness condition (CC)
holds at x. Then x is a solution of (GE P) if and only if the dual problem (DGE P) has a
solution, i.e., there exist u* € dom f,v* € domg* such that

fi W) + 8" (") + 8 (—u* —v*) = —g(%). (25)

Proof First note that when 2 = 0, any local solution of (G E P) is a global one. The necessity
is a direct consequence of Theorem 4.2 when taking 2 = 0 and x* = 0 (since in that case
dh(x) = {0} = domh™).

For the sufficiency, note that for any y € K, we have

g(X) = —fiW") — g"(v*) — Sg (—u* —v™) < fi(y) + 8(y).

Then W (x) < p(x) and the conclusion follows. ]
As it is mentioned in Remark 4.2 (see also Theorem 4.1), if (GE P) has a solution x then
v(GEP) = 0 and if the (CC) condition holds for (GE P) at x then v(DGE P) = 0. The
converse, however, is not true, i.e., the value of the dual problem (DGE P) is zero does
not imply the existence of solutions to the primal problem (G E P). This is true even for a
special case of (G E P) as mentioned in [23]. In that case, however, for arbitrary small € > 0,

problem (G E P) has e-solutions as it is proven in the next theorem. But first we give a precise
definition of an e-solution for (GE P).

Definition 4.3 (Definition of e-solution of (GEP)) Given € > (. An element x € K is
called an e-solution of (GE P) if

fG,y)+W(y) > W(x)—e¢ forally € K.

The following theorem extends the results in [23] for equilibrium problems to problems of
the model (GE P).

Theorem 4.5 [f the value of the dual problem (DGE P) is 0, then for any € > 0, there is
an e-solution for (G E P). The converse holds provided that the closedness condition (CC)
holds for all x € K.

Proof Assume that v(DGEP) = 0. Since v(DGEP) < v(P) < 0, we have v(P) = 0,
which means that

sup[p(x) — W(x)] = 0.
xekK

So, for any € > 0, there exists x € K such that p(x) — W(x) > —e, or, equivalently,

fX,y)+W(y) > W¥(x)—e€ forally € K.
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Hence x is an e-solution of (GE P).
Conversely, if for any € > 0, (GE P) has an e-solution, then we get

p(x) = V(X) = —e,

which implies v(P) > —e for any € > 0. Hence, v(P) > 0. But this means that v(P) = 0.
Since (CC) holds forall x € K, it now follows from the previous inequality and Theorem 4.1
that v(DG E P) = v(P) = 0. This completes the proof. ]

In the following theorem some further sufficient optimality conditions are established for
problem (GE P).

Theorem 4.6 (Sufficient Optimality Conditions). Let x € K. Consider the following state-
ments:

(a) x is a solution of (GEP),
(b) p(x) > g(x) —h(x) forallx € K,

(¢) inf max L(x,x™ u* v*) > g(x)—h(x) forallx € K,
XFEX* ut vreX*
(d) foreach x € K and each x* € X* there exist u™, v* € X* satisfying

L(x,x*, u*,v*) > g(x) — h(X). (26)
The following conclusions hold:

(1) (b) implies (a).
(i) If for all x € K, problem (Py) satisfies (CC), then (b), (c), and (d) are equivalent
together. Moreover, in this case each of these conditions implies (a).

Proof (i) If (b) holds then p(x) > W(x) and hence, p(x) = W(x) which implies x is a
solution of (GEP), which is (a).

(i1) Since (CC) holds at each x €, the fact that (c) is equivalent to (d) follows from Prop-

osition 3.1 (i7). On the other hand, strong duality for (P,) (Corollary 3.5), implies

that
p(x) = inf ( max L(x,x*, u*, v*)] .
x*eX* | u* vteX*
This shows that (¢) is equivalent to (b) and that (ii) holds. ]

Another dual scheme has been recently introduced in [18] for problem (GE P) when i = 0.
It is easy to adapt it to the general case where £ is not necessarily the zero function. More
precisely, this dual scheme becomes:
(DLGEP) inf  sup L(x*, u* v"),
x*eX* u*,v*eX*
where L(x*, u*, v¥*) =inf,cx L(x, x*, u*, v*).
The value of the dual problem (DLGE P) is denoted v(DLGE P). When h = 0 we find

again the dual introduced in [18]. The corresponding weak duality property is given in the
next theorem.

Theorem 4.7 (Weak duality) Let x € K. Then for any y € K, it holds
V(DLGEP) = inf  sup LG*u* v < i) +80) —h(y). @27

x*eX* u*,v*eX*

W(DLGEP) = inf sup L(x* u*, v*) < p(x) < g(x) — h(x). (28)

* *
x*eX u*,U*EX*
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In particular, one has

WDLGEP) = inf sup L(x* u* v¥) < inf{p(x). (29)
* xe

*
x*eX u*,v*eX*

Proof Let x*, u*, v* € X* and let x € K. By definition of conjugate functions, it is clear
that forany y € K,

L()C, X*v M*, U*) = h*(X*) + (—l/{*, y) + fx()’) + (—U*, y) + g(}’) + (_X* + I/{* + U*7 }’)
+8k ()
SR = (0 9+ fe () + 8(9)- (30)

This yields for any y € K,

L(x*, u™, v*) < B (x™) — (x¥, Y+ inf [0 +80) < R*(xF) — (7, )+ ()48 (),
which implies for any y € K (note that 2**(y) = h(y)),

inf  sup L(x* u*,v*) < xjrelg*[h*(x*) — (X )+ g

x*eX* Wk vreX*
="+ ) +gB»)
= fx(») +8gQ) —h®).

The first assertion is proven. The second assertion follows from the arbitrariness of y € K.
The weak duality (29) is immediate from (28). The proof is complete. ]

Theorem 4.8 (Strong duality). Assume that o := inf cx p(x) € R. Assume further that for
each x € K, problem (Py) satisfies (CC). Then it holds

(i) v(DLGEP) = inIf(p(x),
xXe
(i) v(DLGEP) = inf inf sup  L(x,x™, u*, v*).

xeX x*eX* Wk e X*
Proof (i). By assumption, for each x € K, p(x) > « which means that for each x € K,

yek = fi(y)+gy)—h(y) >a.

It follows from Farkas lemma (Corollary 3.4) that for any x* € X*, there exist u™*, v* € X*
such that

Lx, x*,u*, v") = h*(x") — fi@") — g"(v") = §x (x" —u* —v*) > e
The last inequality yields

inf sup L(x* u*,v*) > a = inf p(x).
x*eX* u*,v*eX* xeK

So (i) follows from this and the weak duality property (Theorem 4.7). Finally part (ii) is
obtained from (i) and Corollary 3.5 (ii). ]

Corollary 4.2 Under the assumptions of Theorem 4.8, if ¥ = 0, then

V(DLGEP) <v(DGEP) <v(P).
Theorem 4.9 Let x € K. If for all x € K, problem (Py) satisfies (CC) and v(DLGEP) =
g(x) — h(x), then x is a solution of (GE P).
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Proof By the strong duality property (Theorem 4.8), we have

V(DLGEP) = inf p(x) = g(i) — h().
xXe

Then the conclusion follows from Theorem 4.6 (i). m]

5 Gap functions for (GE P)

Gap functions are useful for solving variational inequalities and equilibrium problems (see,
for example, the references [1, 2, 16, 24]). In this section we study gap functions associ-
ated with (GE P). They are based on the duality results developed in the previous sections.
Furthermore, when (G E P) represents a variational inequality problem or an equilibrium
problem, these gap functions coincide with the gap functions given in [1,2]. Let us first
recall the definition of a gap function for (GE P).

Definition 5.1 (Gap function) A functiong : X — RU{+o0} is a gap function for (G E P)
if the following conditions hold:
(i) g(x) >0forallx € K,
(ii) x € K is a solution of (GE P) if and only if g(x) = 0.
Let

() = —inf [f(x,y) +¥(y) — V()] €Y}
yek

By Lemma 3.1, x* is a solution of (G E P) if and only if y (x*) = 0. Since y (x) > 0 for all
x € K, itis clear that y is a gap function for (GE P).

When (G E P) represents the standard variational inequality problem: Find x € K such
that

(F(x),y—x)>0forally € K,
the gap function defined by (31) reduces to

y(x) =sup(F(x),x —y)
yek
which is the gap function introduced for this problem by Auslender [4]. Here F' is an operator
from X to its dual X*.
Thanks to the duality theory developed previously we can introduce another class of gap
functions for (G E P). More precisely, for all x € K, we define

y(x) = — |: inf  sup L(x,x", u", v*)] + g(x) — h(x). (32)

* *
x*eX u*,U*GX*

This function y is called “the dual gap function” associated with (G E P). This name is
justified in the proof of the next theorem.

Theorem 5.1 (Gap function for (G E P)). Assume that problem (Py) satisfies the condition
(CC) foreach x € K. Then y is a gap function for (GE P).
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Proof 1t follows from the weak duality for (GE P) (Theorem 4.1) that y(x) > 0 for all
x € K. On the other hand, by Lemma 3.1, x solves (GEP) if and only if p(x) = W(x).
Since the condition (CC) holds at x, the strong duality property for (P;z) gives

p(x)= inf sup L(x,x* u*, v¥).
x*eX* u*,v*EX*

So, x solves (GEP) if and only if y (x) = ¥(x) — p(x) = 0. o

The gap function y defined in (32) collapses to the ones constructed in [1] and [2] for the
variational inequality problem and for the equilibrium problem, respectively.

6 Convex and DC optimization problems

In this section we apply the duality and optimality conditions for (G E P) to convex and DC
programs. We find again several duality results for these classes of problems established in
[13, 14]. Better still, we get some new optimality conditions for these problems.

6.1 Convex optimization problems

First let us consider the following convex optimization problem with cone-convex constraints

min W (y)

(PC) [s.t. yeC, k(y) e —S.

Here, X and Z are locally convex topological spaces, C is a closed convex subset of X, S
is a closed convex cone of Z, ¥ : X — R U {400} is a proper, l.s.c., and convex function
while k : X — Z is a S-convex and continuous mapping. For problem (PC), we assume
that its feasible set K := {y € C | k(y) € —S} is non-empty. Let

ST i={z*eZ*|(z*,5) >0 foralls € S},

be the positive dual cone of S.
Note that problem (P C) can be rewritten as follows:

Find x € K such that

(GEPI) W(y) > W(x) forall y € K.

This is a special case of (GE P) with f =0, g(y) = W(y) forall y € X, and h = 0.
Observe that when 7 = 0, we have 7*(0) = 0, h*(x*) = 400 if x* # 0, and thus
epi i* = {0} x [0, +00). The same holds for f, = 0, i.e., epi f; = {0} x [0, +-00). There-
fore, for (GE P1), the function L does not depend on the variables x, x*, and v* (in fact,
x* = v* = 0) and collapses to
Lu*) = —W*(—u") — 85 (u").

In that case the two dual problems (DGE P) and (DLGE P) are equivalent and can be
written under the form

(D1) sup L(u®).

u*eX*

Furthermore the two duality theories developed in Sect. 4 can be applied to problem (D1).
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On the other side note that for each A € S+, the function Ak defined by Ak(x) := (A, k(x))
for all x € X, is continuous. By Lemma 2 in [21] (see also [20]),

epi 8x =cl { | J epi ()" +epi 65t . (33)
reSt

As a consequence of the strong duality property, (Theorem 4.8), we obtain the following
Fenchel and Fenchel-Lagrange duality results for problem (P C). These results were recently
established in [8, 13, 14].

Theorem 6.1 (Fenchel Duality and Fenchel-Lagrange Duality). Suppose that v(PC) € R.
(i) If epi W* + epi 6% is weak*-closed, then Fenchel duality holds, i.e.,
v(PC) = sup [—¥*(—u*) — 8% w™)]. 34)

u*eX*
(i) If epi W* + U, c5+ epi (M)* + epi 8 is weak*-closed, then the Fenchel-Lagrange
duality holds, i.e.,
V(PC) = max [—W*(—u™) — (A)* (") — 85 w™ —v)], (35)
b

eSt; ux vieX*
(the “sup” in the right hand-side of (35) is attained at some ). € S, and u*, v* € X*).
Proof (i) Note that the dual problem (D1) can be written in the form
(Dla) sup [—W*(—u™) — 8% w™)].
ureX*
Then the Fenchel duality (i) follows from Theorem 4.8.

(i) The conclusion (ii) can be proved using an argument similar to the one in the proof
of Theorem 3.2 (ii), where the set epi W* + | J, cg+ epi (Ak)* +epi 8% plays the role
of epi F* + epi G* + epi 6} and H = 0. Also, by the proof of Theorem 3.2 (ii), the
“sup” in the right hand-side of (35) is attained at some A € ST, and u*, v* € X*).

O

It is worth mentioning that the Fenchel duality result given in Theorem 6.1 (i) is related to
the Fenchel dual of the problem (P C) when written under the form inf,cx [V (x) + 5k (x)].
Similar Fenchel duality results related to the more general convex problem inf cx[p(x) +
g (x)] were given in [3] under another regularity condition which is strictly stronger than
the one in Theorem 6.1, and was given in [8] under the same type of qualification condi-
tion. On the other hand, the Fenchel-Lagrange duality result given in Theorem 6.1 (ii) was
proved in [13, 14] under the same constraint qualification and in [7] under another constraint
qualification.

‘We now show that the strong Lagrange duality for (P C) can be derived from Theorem 4.8.
This result was established in several papers such as [11, 14, 20].

Theorem 6.2 (Lagrange Duality) [11, 14, 20]. Suppose that
epi W + | epi (WO* + epi 8¢
reSt

is weak*-closed. Then strong Lagrange duality holds for (PC), i.e.,

inf  W(y) = inf [W Ak ) 36
yec,ir(ly)e_s ) Aseuﬁﬁgc[ ) + k) ()] (36)
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Proof Using a same argument as in the proof of Theorem 6.1 (ii), we obtain

v(D) = sup [—W* (—u™) — k) (0*) — 8¢ w™ —v)].

reSTiut vre X
Moreover, it is also easy to see that
=W (—u") — (M) (V) = 8 —vH)] < W(y) + (Ak)(y), Vy € C,
which implies
=W (—u®) — (A)* (V) = 8¢ —vH)] < ;IEIE[W(y) + (k) (M) = v(PC)

(the last inequality holds by weak duality). The equality (36) readily follows from Theo-
rem 4.8. O

We now turn to the application of optimality conditions for (G E P) (see Theorem 4.6)
to (PC). For the sake of simplicity, we consider the case where C = X and as usual, let
K =k71(=S5).

Theorem 6.3 For the problem (PC), assume that C = X and that x € K. Assume fur-
ther that the set epi W* + | J; cg+ epi (Ak)* is weak*-closed. The following statements are
equivalent:

(i) x is a solution of (PC),
(ii) There exist . € S*, u* € X* such that

U (—u™) — (M)* (") = W(X),
(iii) There exists . € ST such that

W (y) + (Ak)(y) = W(x) forally e X.

Proof We first give some observations gathered from Theorems 6.1 and 6.2.
Under the given assumptions and v(PC) < +00, by Theorem 6.1 we get
(o) there exist A € ST and u* € X* such that

V(PC) = —U*(—u®) — Ak)* (™).

On the other hand, by Theorem 6.2, we get
(B) there exists A € ST such that

v(PC) = yirellé[‘ll(y) + ()]

Hence («) and (B) are equivalent.

From the previous observations, (ii) and (iii) are equivalent and each of them implies (i)
by Theorem 4.6. The fact that (i) implies (ii) follows from Theorem 4.3 (see also its proof).
The proof is complete. m}

It is worth mentioning that the optimality condition given in (ii) is new while the one in (iii)
may be obtained by using the new Farkas-type result established recently in [14].
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6.2 DC optimization problems

In this subsection we consider DC optimization problems with convex constraints, i.e., prob-
lems of the form (P C) with W(x) = g(x) — h(x) being a DC function. More precisely, we
consider the problem

min W(y) := g(y) — h(y)
(PDC) [ st yeC, k(y) e —S,
where X, C, S, and Z are as before and g, h : X —> RU {400} are proper, l.s.c., and convex
functions. Let K be the set defined as before, i.e., K :={y € C | k(y) € —S}.
It is obvious that (P DC) can be rewritten under the form of (GE P), say (GE P2), as for
problem (PC) with f = 0. In that case, the function L is independent from the variables x
and v*.

L(x*, u®) =h*"(x") — g*(u™) — S5 (x* —u™).

Consequently the two dual problems (DGE P) and (DLGE P) are equivalent and can be
written under the form

(D2) inf  sup L(x*, u™).

X*eX* xex*

Furthermore the two duality theories developed in Section 4 can be applied to problem
(D2). Problem (D?2) is the Toland-Fenchel-Lagrange dual problem introduced in [14, 22].
The strong duality for (G E P) (Theorem 4.8) entails the following strong Toland-Fenchel-
Lagrange duality result for (P DC) which is the one established recently in [13, 14]. The two
following theorems give a duality result and an optimality condition for (P DC). The first
one was introduced in [7, 14] while the second one is a new optimality condition for (P DC).
These theorems can be proved by the same arguments as those of Theorems 6.1 and 6.3 and
will be omitted.

Theorem 6.4 [13, 14]. If epi W* 4 epi 8% is weak*-closed, then
V(PDC) = inf sup [h*(x*) = g"(") = 85 (" —u")].
x*e *

u*eX*

Proposition 6.1 (Optimality Condition for (PDC)). Assume that C = X, g is continuous
at some point in K = k=Y (—=S), and that the set Uses+ epi (Ak)* is weak*-closed. The
Sfollowing statements are equivalent:

(i) x € K is a solution of (PDC),
(i) For each x* € X*, there exist . € ST, u* € X* such that

h*(x*) — g* ") — M) (" —u*) = g(¥) — h(%).

7 Equilibrium problems

Consider the general equilibrium problem

Find x € K such that
S, y)+g(y) = g(x) forall y € K,

where f : X x X — R U {400} is such that, for each x € K, f,(.) is a proper, l.s.c., and
convex function, g : X — RU{4-00} is a proper, L.s.c., and convex function and K is a closed

(EP) [
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convex subset of X. This problem is a particular case of problem (GE P) when ¥ = g and
h = 0.Inthat case, foreach x € K, the problem (P,) becomes inf e (fx(y)+g(y)), and the
condition (CC) for (P,) can be expressed as: epi f,"+epi g*+epi 8% is weak™-closed. Fur-
thermore, since epi 7* = {0} x [0, +00), the function L only dependsonx € X, u*, v* € X*
and can be written as

L(x,u*,v*) = —ff (") — g"*(v*) — g (—u* —v™). (37)

The function L depending on x, the two dual problems (DGE P) and (DLGE P) are dif-
ferent.

In this section, we consider two cases. The first one corresponds to K = X and has been
studied from the duality point of view particularly in [18]. In the second one, the function
g = 0and K is some closed convex subset of X. This is the equilibrium problem introduced
by Blum and Oettli in [6] and for which a theory of duality has been developed in [23].

Let us start with the first case where K = X. Then, the support function 8} (—u* —v*) =0
if v* = —u™ and 400 otherwise. Consequently, the function L only depends on x € X and
u* € X* and has the form

L(x,u") = —f{(u") — g"(—u™). (38)
With this function L, the general dual problem (DG E P) becomes
(D3) max sup [L(x,u*)—g(x)].

xeX ur*eX*

By the weak duality theorem (Theorem 4.1), we have that v(D3) < sup,.y [p(x) —
g(x)] < 0. Furthermore, using (37) and (38), it follows from Corollary 4.1 that x € X is a
solution of problem (E P) if and only if there exists u* € X*, satisfying L(x, u*) > g(x),
provided that the closedness condition (CC) holds at x. So we find again the optimality
conditions obtained in [18] under a similar qualification of constraints. If we consider the
general dual problem (DLGE P), we obtain the following dual problem

(D4) sup inf L(x,u™).
ureX* xeX
By the weak duality theorem (Theorem 4.7), we have that v(D4) < inf,cx p(x). Since
p(x) < g(x) for all x € X, we obtain that v(D4) < inf,cx g(x). So we find again the
weak duality theorem obtained in [18] under a similar qualification of constraints. How-
ever, in addition to this result, we can derive from Theorem 4.8, the following strong duality
property.

Corollary 7.1 The optimal value of problem (D4) is such that v(D4) = inf,cx p(x) pro-
vided that inf,cx p(x) is finite and that, for every x € X, the subset epi fI+epi g* is
weak*-closed in X*.

Finally let us mention that when K = X, the gap function (32) becomes:

y1(x) = ujrell;*[fx*(u*) + 8% (—u] + g(x). (39)

Remark 7.1 In [18], the function f(x,y) is decomposed into the sum of two functions
F(x,y) + ¢(x, y) to recover more easily the various equilibrium problems considered in
the literature. In [18], this decomposition is not used to develop the duality theory. However
the authors of [18] work with the function f(x,-) = F(x, -) + ¢(x, -) that is assumed to be
proper, L.s.c., and convex and so, our method is applicable in this case.
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We now examine the important particular case of variational inequality problems in the
case where K = X. More precisely, we consider the variational inequality problem of the
form

Find x € X such that

VD 1 (A@). y — )+ 8() = g(x) forall y € X,

where A is an operator from X to its dual X* and g : X —> R U {400} is a proper, Ls.c.,
and convex function. This model was first studied in [25], and then in [5, 18]. In this section
we show that our dual problem defined in Sect. 4 reduces to the dual problem and the results
established by Mosco in [25].

Let f(x,y) = (A(x), y—x). Then (V1) is a particular case of (GE P) where h = 0, K =
X, and W = g. To show that our dual problem for (VI), considered as a representation of
(GEP), is equivalent to the dual introduced by Mosco in [25], we proceed as follows: First
we observe that for each x € X,

(A(x),x) ifu* = Ax),
+00 otherwise.

i) = [

Moreover, domh* = {0} with 2*(0) = 0. The same holds for dx, i.e., doméy = {0}
and 6}} (0) = 0. So, the function L (defined by (16)) in this case only depends on x and
u* € domf,

Lx,u™) = —fF(u") — g"(—u") (40)
[ —(Ax), x) — g*(—Ax)), ifu* = A(x), —u* € domg*,
= . 41)
—00 otherwise .

The dual problem for (VI), called (DV 1), is

* * *
(DVI) max A [—(u*, x) — g*(—u*) — g(x)].
Now let x € X. Since f; is continuous on X, it follows from (2) that epi f + epi g* is
weak™*-closed. So condition (CC) is satisfied for every x € X and, by the strong duality
theorem (Theorem 4.1), the optimal value of problem (D V I) is equal to zero. Consequently,
finding a solution to problem (DV ) consists in finding X € X and u* € X* such that
u* = A(x) and

—(u*, %) — g"(—u") — g(x) = 0.

In other terms, problem (D V I) is equivalent to the following one: Find x € X and u™* € X*
such that u™ = A(X) and x € dg*(—u™), i.e., such that

[ —(X, v +u") + g*(v*) = g*(—u*) forall v* € X*,
u* = A(X).

So we find again the dual proposed by Bigi, Castellani and Kassay (see (10) in [5]). In par-
ticular, when A is an injective mapping, ¥ = A~ ! (u*) is the unique solution associated with
u* and problem (DVI) collapses into the variational inequality:

Find u* € X* such that (—A™'(u*), v* + u*) + g"(v*) > g*(—u*) forall v* € X*

introduced by Mosco in [25] as the dual of (V I). Furthermore, the duality theorem obtained
by Mosco in [25] is a direct consequence of Corollary 4.1.

@ Springer



206 J Glob Optim (2010) 48:183-208

Finally it is easy to see that, for problem (V I P), the gap function (39) becomes:
) = il (AG), x)+ 8" (—AW) + g().

This gap function was introduced in [1] for solving problem (V' I).

Now we consider the second case: g = 0 and K is some closed convex subset of X. In that
case, problem (Py) becomes inf,cx fy(y), and since epi g* = {0} x [0, +00), the condition
(CC) for (Py) becomes

epi fi +epidy is weak®-closed in X*.

Several sufficient conditions to obtain condition (CC) were given in [8, 14]. In particu-
lar, (Py) satisfies (CC) if either f, is continuous at some point in K or int K # () and
domf, NintK # @ (see [23]).

Since g = 0, the conjugate g*(v*) = 0 if v* = 0 and +o00, otherwise. Hence, the function
L only depends on x € K and u™ € X and can be written as

L(x,u") = —fFu*) — 8x (—u™). (42)

Adopting the notation used in [23], we set ig (u*) := infyex (4™, y). Then, 8§} (—u*) =
—ig(u*) and

sup sup L(x,u®) = sup sup [—fu") — 8k (—u®)]

xeK u* vreX* xeK u*eX*
= sup [ixg ™) — inf f)u™)].
ureX* xekK
The dual problem of (E P) is then
(D5) sup [ig (u*) — inf f(u*)].
ureX* xek

So, in this particular case, our dual problem (DG E P) coincides with the dual problem (D5)
introduced by Martinez-Legaz and al. in [23]. The weak and strong duality properties given
in Theorem 4.1, become: v(D5) < sup,.x p(x) and v(D5) = sup,.x p(x) when (Py)
satisfies (CC) for each x € K. Furthermore, since p(x) < 0, we also obtain that v(D5) < 0.
For this problem, and with L defined by (42), the optimality conditions given in Corollary
4.1, become: if condition (CC) is satisfied at x, then X € X is a solution of problem (E P)
if and only if there exists u* € X*, satisfying L(x,u*) > 0, ie., ix (u*) — fF@*) > 0.
This condition allows us to derive the following proposition closely related to Theorem 3.1
in [23].

Proposition 7.1 Letx € K. Assume thatepi [ +epi 8% is weak™-closed. Then the following
statements are equivalent:

(i) x € K is a solution of (EP),
(ii) There exists u* € X* such that f¥(u*) = ig (u™).
Furthermore, if either (i) or (ii) holds, then ix (u*) = infyex fif (™).

Proof By Corollary 4.1, x € K is a solution of (E P) if and only if there exists u* € X*
such that L(x, u*) > 0, or, equivalently,

fiw®) <ig®).

@ Springer



J Glob Optim (2010) 48:183-208 207

On the other hand, it follows from the definition of the conjugate function that, for any
x,y € K, one has (u*, y) — f¥(u*) < f(x,y). So, taking successively the infimum on y
and the supremum on x , we obtain

ixW*) — fru®) < in£ f(x,y) <0 forallx € K,
ye
and
ig(u*) — inf fx*(u*) <0.
xek
Consequently, ix (u*) = f3(u*) = inficg f(u*). The proof is complete. O

Remark 7.2 Itis worth mentioning that this result was established in [23] under the constraint
qualification:

“for every x € K, there exists yy € K such that f(x, yx) < +00, and either y, € intK
or fy is continuous at yy.”

It is easy to see that this condition implies that O € int(dom fy — K) which, in turn, entails
that epi f7 +epi 8% is weak*-closed (see [8, 20]). This means that Proposition 7.1 improves
the result in [23].

To end this section we present a gap function for (E P). The next result is a consequence of
Theorem 5.1. It covers the corresponding result established in [2] for the special case where
g=0.

Proposition 7.2 Suppose that for any x € K, the set epi f + epi 8% is weak*-closed. Then
the function y» defined by

y2(x) = ujlelg*[fx*(u*) + 8 (—u™)] (43)
is a gap function for (E P).

Proof Note that (E P) is a special case of (GE P) with g = h = 0. The function L only
depends on x, u*, and can be expressed as

L(x,u*) = —fFfu") — 8% (—u®).

In this case, the gap function y defined in (32) collapses to y» defined by (43). The conclusion
follows from Theorem 5.1. ]
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