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Abstract This paper presents some applications of the canonical dual theory in optimal
control problems. The analytic solutions of several nonlinear and nonconvex problems are
investigated by global optimizations. It turns out that the backward differential flow defined
by the KKT equation may reach the globally optimal solution. The analytic solution to an
optimal control problem is obtained via the expression of the co-state. Some examples are
illustrated.
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1 Introduction

It is well known that there is a close relationship between the theory of optimization and the
technique of optimal control [4,11,14]. This paper is devoted to the study of optimal control
problems by the canonical dual theory which has been widely used in the research of global
optimizations recently [5,7–9]. As the basic model for our study, we consider the following
optimal control problem (primal problem (P) in short):

(P) min
T∫

0
[F(x)+ P(u)]dt, (1.1)
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s.t. ẋ = A(t)x + B(t)u, x(0) = x0 ∈ Rn, t ∈ [0, T ], ‖u‖ ≤ 1. (1.2)

where F(.) is continuous on Rn , P(.) is twice continuously differentiable in Rm . An admis-
sible control, taking values on the unit ball D = {u ∈ Rm | uT u ≤ 1}, is integrable or
piecewise continuous on [0, T ]. In (1.2) we assume that A(t), B(t) are continuous matrix
functions in C([0, T ], Rn×n) and C([0, T ], Rn×m), respectively. This problem often comes
up as a main objective in general optimal control theory [16].

By the classical control theory [16,18], we have the following Hamilton–Jacobi–Bellman
function

H(t, x, u, λ) = λT (A(t)x + B(t)u)+ F(x)+ P(u). (1.3)

The state and co-state systems are as follows

ẋ = Hλ(t, x, u, λ) = A(t)x + B(t)u, x(0) = x0; (1.4)

λ̇ = −Hx (t, x, u, λ) = −AT λ− ∇F(x), λ(T ) = �0. (1.5)

In general, it is difficult to obtain an analytic form of the optimal feedback control for the
problem (1.1)–(1.2). It is well known that, in the case of unconstraint, when P(u) is a positive
definite quadratic form and F(x) is a positive semi-definite quadratic form, we have a per-
fect optimal feedback control for the problem. The primal goal of this paper is to present an
analytic solution via a co-state expression to the optimal control problem (P).

We know from the Pontryagin principle [16] that if the control û is an optimal solution
for the problem (P), with x̂(.) and λ̂(.) denoting the state and co-state corresponding to û(.)
respectively, then û is an extremal control, i.e. we have

˙̂x = Hλ(t, x̂, û, λ̂) = A(t)x̂ + B(t)û, x̂(0) = x0; (1.6)
˙̂
λ = −Hx (t, x̂, û, λ̂) = −AT λ̂− ∇F(x̂), λ̂(T ) = �0. (1.7)

and

H(t, x̂(t), û(t), λ̂(t)) = min‖u‖≤1
H(t, x̂(t), u, λ̂(t)), a.e. t ∈ [0, T ]. (1.8)

By means of Pontryagin principle and the dynamic programming theory, many numerical
algorithms have been suggested to approximate the solution of the problem (P) [12]. This is
due to the nonlinear integrand in the cost functional. It is even difficult for the case of P(u)
being nonconvex on the unit ball D in Rm . In this paper, as long as an optimal control of the
problem (P) exists, we solve the problem (P) for an analytic solution by the co-state.

We see that, with respect to u, the minimization in (1.8) is equivalent to the following
global optimization over a sphere:

min‖u‖≤1
[P(u)+ λ̂(t)T B(t)u], a.e. t ∈ [0, T ]. (1.9)

When P(u) is a nonconvex quadratic function, by the canonical dual transformation [7–9],
the problem (1.9) can be solved completely. In [19], the global concave optimization over a
sphere is solved by use of a differential system with the canonical dual function. Because the
Pontryagin principle is a necessary condition for a control to be optimal, it is not sufficient
for obtaining an optimal control to solve only the optimization (1.9). In this paper, combining
the method given in [8,19] with the Pontryagin principle, also motivated by the significant
works by C.Floudas et al. [1–3,6,10,13] on global optimizations, we solve the problem (1.1)
and present the optimal control expressed by the co-state via canonical dual variables.
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The rest of the paper is organized as follows. In Sect. 2, the backward differential flow is
defined to deduce some optimality conditions for solving global optimizations by canonical
dual functions. In Sect. 3, Some global optimization problems are solved by use of the back-
ward differential flows. In the last section, the analytic solution to an optimal control problem
is obtained via the expression of the co-state. Meanwhile, some examples are illustrated.

2 The backward differential flow and canonical dual function

Motivated by the significant work by Panos M. Pardalos and Vitaliy Yatsenko [15], in this
section we present a differential flow for constructing the so called canonical dual function
[8] to deal with the global optimization on u ∈ Rm

min P(u),

s.t.uT u ≤ 1.

Here we use the method in our other paper (see [19]).
In the following we consider the function P(u) to be twice continuously differentiable in

Rm . Define the set

G =
{
ρ ≥ 0 | [∇2 P(u)+ ρ I ] > �0, uT u ≤ 1

}
. (2.1)

By elementary calculus it is easy to get the following result.

Proposition 2.1 G is an open set with respect to [0,+∞). If ρ̂ ∈ G, then ρ ∈ G for ∀ρ > ρ̂.
If a ρ∗ ∈ G and a nonzero vector u∗ ∈ D = {uT u < 1} satisfy following equation

∇ P(u∗)+ ρ∗u∗ = �0, (2.2)

we focus on the flow û(ρ) which is well-defined near ρ∗ by

dû

dρ
+ [∇2 P(û)+ ρ I ]−1û = �0, (2.3)

û(ρ∗) = u∗. (2.4)

The flow û(ρ) can be extended to wherever ρ ∈ G ∩ [0,+∞) [17]. The canonical dual
function [8] with respect to a given flow û(ρ) is defined as follows:

Pd(ρ) = P(û(ρ))+ ρ

2
ûT (ρ)û(ρ)− ρ

2
. (2.5)

Lemma 2.1 For a given flow defined by (2.2)–(2.4), we have

d Pd(ρ)

dρ
= 1

2
ûT (ρ)û(ρ)− 1

2
. (2.6)

d2 Pd(ρ̂)

dρ2 = −
(

dû(ρ)

dρ

)T [∇2 P(û(ρ))+ ρ I
] dû(ρ)

dρ
(2.7)

Proof Since Pd(ρ) is differentiable,

d Pd(ρ)

dρ
= d P(û(ρ))

dρ
+ 1

2
ûT (ρ)û(ρ)+ 1

2
ρ

d(ûT (ρ)û(ρ))

dρ
− 1

2

= ∇ P(û(ρ))
d(û(ρ))

dρ
+ 1

2
ûT (ρ)û(ρ)+ 1

2
ρ

d(ûT (ρ)û(ρ))

dρ
− 1

2
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= −ρûT (ρ)
d(û(ρ))

dρ
+ 1

2
ûT (ρ)û(ρ)+ 1

2
ρ

d(ûT (ρ)û(ρ))

dρ
− 1

2

= −1

2
ρ

d(ûT (ρ)û(ρ))

dρ
+ 1

2
ûT (ρ)û(ρ)+ 1

2
ρ

d(ûT (ρ)û(ρ))

dρ
− 1

2

= 1

2
ûT (ρ)û(ρ)− 1

2
.

�
Further, since P(x) is twice continuously differentiable, by (2.3) we have

d2 Pd(ρ)

dρ2 = ûT (ρ)
dû(ρ)

dρ

= −
(

dû(ρ)

dρ

)T [∇2 P(û(ρ))+ ρ I
] dû(ρ)

dρ
.

Lemma 2.2 Let û(ρ) be a given flow defined by (2.2)–(2.4) and Pd(ρ) be the corresponding

canonical dual function defined by (2.5). We have (i) For every ρ ∈ G, d2 Pd (ρ)

dρ2 ≤ 0; (ii) If

ρ̂ ∈ G, then d Pd (ρ)
dρ monotonously decreases in [ρ̂,+∞); (iii) If ρ̂ ∈ G and û(ρ̂) ∈ D, in

[ρ̂,+∞), Pd(ρ) is monotonously decreasing.

Proof When ρ ∈ G, we have ∇2 P(û(ρ))+ ρ I > 0. It follows from (2.7) that d2 Pd (ρ)

dρ2 ≤ 0.

Consequently, noting Proposition 2.1, we see that d Pd (ρ)
dρ monotonously decreases in [ρ̂,+∞)

when ρ̂ ∈ G. Finally, since û(ρ̂) ∈ D, d Pd (ρ̂)
dρ ≤ 0 by (2.6). It follows from ρ̂ ∈ G that in

[ρ̂,+∞), d Pd (ρ)
dρ ≤ 0. Thus, in [ρ̂,+∞), Pd(ρ) is monotonously decreasing. �

Theorem 2.1 If the flow û(ρ)(defined by (2.2)–(2.4)) meets a boundary point of the ball
D = {u ∈ Rm | ‖u‖ ≤ 1} at ρ̂ ∈ G, i.e.

[û(ρ̂)]T û(ρ̂) = 1, ρ̂ ∈ G (2.8)

then û is a global minimizer of P(u) over the ball D. Further we have

min
D

P(u) = P(û) = Pd(ρ̂) = max
ρ≥ρ̂

Pd(ρ). (2.9)

Proof By the definition of the flow û(ρ) ((2.2)–(2.4)) and Proposition 2.1, noting that û(ρ̂)
is on the flow and ρ̂ ∈ G, we have, for all ρ ≥ ρ̂

∇
{

P(û(ρ))+ ρ

2

[
ûT (ρ)û(ρ)− 1

]}
= ∇ P(û(ρ))+ ρû(ρ) = �0, (2.10)

and for all ρ ≥ ρ̂

∇2(P(u)+ ρ

2
[uT u − 1]) = ∇2 P(u)+ ρ I > 0, ∀u ∈ D. (2.11)

In the following deducing, we need to note the fact that since P(u) is twice continuously
differentiable in Rn , there is a positive real δ such that (2.11) holds in {uT u < 1 + δ} which
contains D. In other words, for eachρ > ρ̂, û( ρ) is the global minimizer of P(u)+ ρ

2 [uT u−1]
over D. Therefore, for every u ∈ D = {u ∈ Rn | uT u ≤ 1}, when ρ ≥ ρ̂, we have

P(u) ≥ P(u)+ ρ

2
[uT u − 1] ≥ in fD

{
P(u)+ ρ

2
[uT u − 1]

}

= P(û(ρ))+ ρ

2
ûT (ρ)û(ρ)− ρ

2
= Pd(ρ). (2.12)
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Thus, by (2.10), Lemmas 2.2 and (2.8),

P(u) ≥ maxρ≥ρ̂ Pd(ρ) = Pd(ρ̂) = P(û(ρ̂))+ ρ̂

2
[(û(ρ̂))T û(ρ̂)− 1] = P(û(ρ̂)) (2.13)

Consequently

min
D

P(u) = max
ρ≥ρ̂

Pd(ρ). (2.14)

This concludes the proof of Theorem 2.1. �
Similarly we have the following result.

Theorem 2.2 Let the flow û(ρ) be defined by (2.2)–(2.4). If

[û(0)]T û(0) ≤ 1, (2.15)

then û(0) is a global minimizer of P(u) over the ball D.

Proof By the definition of the flow û(ρ)((2.2)–(2.4)), it follows from (2.16) that ρ̂ = 0 ∈ G
and û(0) is on the flow. We have, for all ρ ≥ 0

∇
{

P(û(ρ))+ ρ

2
[ûT (ρ)û(ρ)− 1]

}
= ∇ P(û(ρ))+ ρû(ρ) = �0,

and for all ρ ≥ 0

∇2
(

P(u)+ ρ

2
[uT u − 1]

)
= ∇2 P(u)+ ρ I > 0, ∀u ∈ D.

Therefore, for every u ∈ D = {u ∈ Rn | uT u ≤ 1}, when ρ ≥ 0, we have

P(u) ≥ P(u)+ ρ

2
[uT u − 1] ≥ in fD

{
P(u)+ ρ

2
[uT u − 1]

}

= P(û(ρ))+ ρ

2
ûT (ρ)û(ρ)− ρ

2
= Pd(ρ).

Thus, noting (2.16) and using Lemma 2.2 ,

P(u) ≥ maxρ≥0 Pd(ρ) = Pd(0) = P(û(0))+ 0

2
[(û(0))T û(0)− 1] = P(û(0)).

Consequently, û(0) is a global minimizer of P(u) over the ball D. This concludes the proof
of Theorem 2.1. �
Definition 2.1 Let û(ρ) be a flow defined by (2.2)–(2.4). We call û(ρ), ρ ∈ (0, ρ∗] a back-
ward differential flow.

In other words, the backward differential flow û(ρ), ρ ∈ (0, ρ∗] comes from solving the
Eq. (2.2) backwards from ρ∗.

In what follows, we introduce a result in [19] which is a sufficient condition for the global
optimization over a sphere. Let P(u) be strictly concave. Suppose that there are only finitely
many of root pairs for (2.2) :

0 < ρ∗
1 < ρ∗

2 < · · · < ρ∗
l ,

associated with feasible points on the unit sphere:

û1, û2, ..., ûl , (2.16)
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such that for each i ,

∇ P(ûi )+ ρ∗
i ûi = 0, ûT

i ûi = 1, (2.17)

ρ∗
i > 0. (2.18)

and for each i = 1, 2, ..., l, the associate state point ûi is uniquely corresponding to ρ∗
i .

Theorem 2.3 [19] Let P(u) be strictly concave. Suppose that (2.16)–(2.18) hold for the pairs

(ρ∗
i , ûi ), i = 1, 2, ..., l. If, for i = 1, 2, ..., l, det[∇2 P(ûi ) + ρ∗

i I ] �= 0 and
d2 Pd (ρ

∗
i )

dρ∗2 > 0,

then ûl is the unique global minimizer of (1.1).

Before going further let us give the following remark:

Remark 2.4 In this section, the idea to introduce the set G of shift parameters is closely
following the works by Floudas et al. [1–3]. In [2], they developed a global optimization
method, αBB, for general twice-differentiable constrained optimizations. It is a powerful
theory which can be used to solve a very broad class of global optimization problems. In
[1], the performance of the proposed algorithm [2] and its alternative under-estimators is
studied through their application to a variety of problems. In this paper we use the method
given by Floudas et al. [2] proposing to utilize some α parameter to generate valid convex
under-estimators for nonconvex terms of generic structure.

In the following two sections we will use Theorem 2.1–2.3 to solve the optimization
problems and optimal control problem (P).

3 Find the global minimizer by the backward differential flow

Here we propose using backward differential flow with the corresponding canonical dual
function to solve the optimization problem minD P(u). We focus on Theorems 2.1 and 2.3.
The main idea of using backward differential flows to find global minimizer is as follows.
Since D is bounded and P(u) is twice continuously differentiable, we can choose a large
positive parameter ρ∗ such that ∇2 P(u) + ρ∗ I > 0, ∀u ∈ D and ρ∗ > supD{‖∇ P(u)‖}.
If ∇ P(0) �= 0, then it follows from ‖∇2 P(u)

ρ∗ ‖ < 1 uniformly in D that there is a unique
nonzero fixed point u∗ ∈ D such that

−∇ P(u∗)
ρ∗ = u∗ (3.1)

by Brown fixed-point theorem. It means the pair (u∗, ρ∗) satisfies (2.2). We solve (2.2) back-
wards from ρ∗ to get the backward flow û(ρ), ρ ∈ [0, ρ∗]. If there is a ρ̂ ∈ G ∩ (0, ρ∗] such
that û(ρ̂)T û(ρ̂) = 1, then by Theorem 2.1 we see that û(ρ̂) is a global minimizer of P(u)
over D. On the other hand, if û(0)T û(0) < 1, then by Theorem 2.2 we see that û(0) is a
global minimizer of P(u) over D.

On how to choose the desired parameter ρ∗, we may be referred to [1,2]. Some good
algorithms are given in [1,2] to estimate the bounds of ‖∇2 P(u)‖. If there is a positive real
number M such that ‖∇2 P(u)‖ ≤ M, ∀u ∈ D, then a properly large parameter ρ∗ can be
obtained by the inequalities

‖∇2 P(u)‖
ρ∗ ≤ M

ρ∗ < 1, ρ∗ > sup
D

{‖∇ P(u)‖}
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uniformly on D for us to use Brown fixed-point theorem. We should choose

ρ∗ > max{sup
D

‖∇2 P(u)‖, sup
D

{‖∇ P(u)‖}.

We will discuss to calculate the parameter ρ∗ in detail by use of the results in [3,6,13] with
the future works.

In the following we present several examples to find global minimizers by backward
differential flows.

Example 3.1 (A concave minimization) . Let us consider the following one dimensional con-
cave minimization problem

p∗ = min P(u) = −1

12
u4 − u2 + u,

s.t. u2 ≤ 1.

We have P ′(u) = −1
3 u3 − 2u + 1, P ′′(u) = −u2 − 2 < 0,∀u2 ≤ 1. Choosing ρ∗ = 10,

solve the following equation in {u2 < 1}(for the fixed point)

−1

3
u3 − 2u + 1 + 10u = 0

to get u∗ = −0.1251. Next we solve the following backward differential equation

du(ρ)

dρ
= u(ρ)

u2(ρ)+ 2 − ρ
, u(ρ∗) = −0.1251, ρ ≤ 10.

To find a parameter such that

u2(ρ) = 1,

we get

ρ̂ = 10

3
,

which satisfies

P ′′(u)+ 10

3
> 0,∀u2 ≤ 1.

Let u
( 10

3

)
be denoted by û. Compute the solution of following algebra equation

−1

3
u3 − 2u + 1 + 10

3
u = 0, u2 = 1

to get û = −1 . It follows from Theorem 2.1 that û = −1 is the global minimizer of P(u)
over [−1, 1].

Remark 3.1 For the proper parameter ρ∗, it is worth investigating how to get the solution u∗
of the Eq. (3.1) inside of D. For this issue, when P(u) is a polynomial we may be referred to
[10]. There are results in [10] on bounding the zeros of a polynomial. We may consider for a
given bounds to determine the parameter by use of the results in [10] on the relation between
the zeros and the coefficients. We will discuss it with the future works as well.
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Example 3.2 (A non-convex quadratic optimization over the sphere) . Given a symmetric
matrix G ∈ Rm×m and a vector f ∈ Rm, f �= 0, let P(u) = 1

2 uT Gu − f T u be non-convex.
We consider the following global optimization over a sphere

min P(u) = 1

2
uT Gu − f T u,

s.t.uT u ≤ 1.

Suppose that G has p ≤ m distinct eigenvalues a1 < a2 < · · · < ap . Since P(x) =
1
2 uT Gu − f T u is non-convex, a1 < 0. Choose a large ρ∗ > −a1 such that

0 < ‖(G + ρ∗ I )−1 f ‖ < 1,

noting that f �= 0. We see that the backward differential equation is

du

dρ
= −(G + ρ I )−1u, u(ρ∗) = (G + ρ∗ I )−1 f, ρ ≤ ρ∗,

which leads a backward flow

u(ρ) = (G + ρ I )−1 f, ρ ≤ ρ∗.

Further noting that there is an orthogonal matrix R leading to a diagonal transformation
RG RT = D := (aiδi j ) and correspondingly R f = g := (gi ), we have

uT (ρ)u(ρ) = f T (G + ρ I )−2 f =
p∑

i=1

g2
i

(ai + ρ)2
.

Since f T (G + ρ∗ I )−2 f < 1 and

lim
ρ>−a1,ρ→−a1

p∑

i=1

g2
i

(ai + ρ)2
= +∞,

there is the unique ρ̂ : −a1 < ρ̂ < ρ∗ such that

uT (ρ̂)u(ρ̂) = f T (G + ρ̂ I )−2 f =
p∑

i=1

g2
i

(ai + ρ̂)2
= 1.

By Theorem 2.1, we see that u(ρ̂) = (G + ρ̂ I )−1 f is a global minimizer of the problem.

Example 3.3 (A convex quadratic optimization over the sphere) . Given a positive definite
matrix G ∈ Rm×m and a vector f ∈ Rm, f �= 0, let P(u) = 1

2 uT Gu − f T u. We consider
the following convex optimization over a sphere

min P(u) = 1

2
uT Gu − f T u,

s.t. uT u ≤ 1.

Choose a large ρ∗ > 0 such that

0 < ‖(G + ρ∗ I )−1 f ‖ < 1,

noting that f �= 0. We see that the backward differential equation is

du

dρ
= −(G + ρ I )−1u, u(ρ∗) = (G + ρ∗ I )−1 f, ρ ≤ ρ∗,
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which leads a backward flow

u(ρ) = (G + ρ I )−1 f, ρ ≤ ρ∗.

Since G > 0 and f �= 0, by Lemma 2.1, we have, for ρ ∈ [0, ρ∗],
d(uT u)

dρ
= −2 f T [G + ρ I ]−3 f < 0. (3.2)

If f T G−2 f ≤ 1, then by Theorem 2.2 we see that u(0) = G−1 f is the global minimizer
of P(u) over the unit ball D.

On the other hand, we consider the case f T G−2 f > 1, noting (3.2), there is the unique
ρ̂ ∈ [0, ρ∗) such that u(ρ̂)T u(ρ̂) = 1. Actually, in this case, we can solve

f T (G + ρ I )−2 f = 1, ρ ∈ [0, ρ∗] (3.3)

to get this unique parameter ρ̂. By use of Theorem 2.1, we see that u(ρ̂)) = (G + ρ̂ I )−1 f is
the global minimizer of P(u) over the unit ball D.

4 The analytic solution of an optimal control problem

In this section, we consider A(t), B(t) in the problem (1.1) to be constant matrices, F(x) =
cT x and

P(u) = 1

2
uT Gu − bT u,

where c ∈ Rn×1, b ∈ Rm×1 and G ∈ Rm×m , is symmetric. Suppose that G has p ≤ m
distinct eigenvalues a1 < a2 < · · · < ap(p ≥ 1).

We need the following basic assumption:

rank(BT , b) > rank(BT ). (*)

We consider the following optimal control problem:

(P) min J (u) =
T∫

0

[
cT x + 1

2 uT Gu − bT u
]

dt, (4.1)

s.t. ẋ = Ax + Bu, x(0) = x0, t ∈ [0, T ], ‖u‖ ≤ 1. (4.2)

To solve the above problem, we define the function φ(t, x) = ψT (t)x , where the contin-
uously differentiable functionψ(t) is to be determined by the following ordinary differential
equation:

ψ̇(t) = −ATψ(t)+ c, (4.3)

ψ(T ) = �0. (4.4)

Compare (4.3)–(4.4) with (1.7), we see that

ψ(t) = −λ(t), a.e. t ∈ [0, T ]. (4.5)

123



230 J Glob Optim (2012) 54:221–233

We have

J (u) =
T∫

0

[

cT x + 1

2
uT Gu − bT u

]

dt

=
T∫

0

[

(ψ̇(t)+ ATψ(t))T x + 1

2
uT Gu − bT u

]

dt

=
T∫

0

[

ψ̇T (t)x + ψ(t)T Ax + 1

2
uT Gu − bT u

]

dt

=
T∫

0

[

ψ̇T (t)x + ψ(t)T (Ax + Bu)− ψ(t)T Bu + 1

2
uT Gu − bT u

]

dt

=
T∫

0

[

ψ̇T (t)x(t)+ ψ(t)T ẋ(t)− ψ(t)T Bu + 1

2
uT Gu − bT u

]

dt

=
T∫

0

[

φ̇(t, x(t))− ψ(t)T Bu + 1

2
uT Gu − bT u

]

dt

= φ(T, x(T ))− φ(0, x(0))+
T∫

0

[
1

2
uT Gu − bT u − ψ(t)T Bu

]

dt

= −φ(0, x(0))+
T∫

0

[
1

2
uT Gu − bT u − ψ(t)T Bu

]

dt, (4.6)

noting that ψ(T ) = �0 and x(0) = x0. Thus,

min J (u) = −φ(0, x(0))+ min

T∫

0

[
1

2
uT Gu − bT u − ψ(t)T Bu

]

dt. (4.7)

Consequently, we deduce that, for a.e. t ∈ [0, T ], the optimal control

û(t) = argmin

{
1

2
uT Gu − bT u − ψ(t)T Bu | uT u ≤ 1

}

. (4.8)

By the relation between ψ(t) and the co-state in (4.5), for each t ∈ [0, T ], we need to solve
following non-convex optimization

min 1
2 uT Gu − (b − BT λ(t))T u, (4.9)

s.t.uT u ≤ 1. (4.10)

It follows from the basic assumption (*) rank(BT , b) > rank(BT ) that b − BT λ(t) �= 0 for
each t ∈ [0, T ]. By Example 3.2, for each t ∈ [0, T ], we have

û(t) = (G + ρt I )−1[b − BT λ(t)] (4.11)
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where the dual variable ρt > −a1 satisfies

(b − BT λ(t))T (G + ρt I )−2(b − BT λ(t)) = 1. (4.12)

With respect to λ we define the function ρ(λ) by the following equation

(b − BT λ)T (G + ρ(λ)I )−2(b − BT λ) = 1, (4.13)

ρ(λ) > −a1. (4.14)

We have the optimal control by the co-state

û = (G + ρ(λ)I )−1(b − BT λ). (4.15)

On the other hand, by the solution of the ordinary differential Eqs. (4.3)–(4.4), we have

λ(t) = −ψ(t) = eAT T

T −t∫

0

e−AT t e−AT sdsc = eAT (T −t)

⎡

⎣
T −t∫

0

e−AT sds

⎤

⎦ c. (4.16)

Example 4.1 Consider G = −I in the problem (4.1)–(4.2), i.e.

P(u) = −1

2
uT u − bT u.

By the Pontryagin principle, we need to solve a system on the state and co-state

˙̂x = Ax̂ + Bû, x̂(0) = x0, (4.17)
˙̂
λ = −AT λ̂− c, λ̂(T ) = �0, (4.18)

and a global concave optimization for almost each t ∈ [0, T ],

min‖u‖≤1

[−1

2
uT u − bT u + λ̂T (t)Bu

]

. (4.19)

By the basic assumption (*), we have b − BT λ̂(t) �= 0,∀t ∈ [0, T ]. By Example 3.2, we
have

û(t) = (ρ̂ − 1)−1(b − BT λ̂(t)),

where ρ̂ is determined by the following equation:

(ρ − 1)−2(b − BT λ̂)T (b − BT λ̂) = 1, ρ > 0, ρ �= 1.

It gives two possible choices of roots

ρ = 1+‖b − BT λ̂‖. (4.20)

By Theorem 2.1 and Example 3.2(or directly by observing (4.19)), we have to take

ρ̂ = 1 + ‖b − BT λ̂‖. (4.21)

We see that at each t ∈ [0, T ], the global concave optimization (4.19) has the unique solution

û(t) = (ρ̂ − 1)−1(b − BT λ̂(t)) = b − BT λ̂(t)

‖b − BT λ̂(t)‖ . (4.22)

It follows from the traditional optimal control theory that û(t) is the optimal control which
is an analytic solution expressed by the co-state.
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Example 4.2 Consider the following problem

(P) min
1∫

0
[x + (−u4 − u2 + u)]dt, (4.23)

s.t. ẋ = x + u, x(0) = 0, t ∈ [0, 1], |u| ≤ 1.

In this example we have

H(x, u, λ) = λ(x + u)+ x − u4 − u2 + u.

The adjoint equation

λ̇ = −λ− 1, λ(T ) = 0

gives

λ(t) =
1−t∫

0

e1−t−sds = e1−t − 1.

For each t ∈ [0, 1] such that 1 + λ(t) �= 0, we solve

min|u|≤1
{−u4 − u2 + u(1 + λ(t))}. (4.24)

By Canonical dual method, we have

−4u3 − 2u + (1 + λ(t))+ ρu = 0, u2 = 1,

and

(ρ − 6)u = −(1 + λ), 1 + λ �= 0.

As in Example 3.2 of [19], using Theorem 2.3, we get ρ̂ = 6 + |1 + λ| and obtain the unique
global minimizer of (4.24)

û(t) = −(1 + λ)

|1 + λ| , 1 + λ �= 0.

Since

1 + λ(t) = e1−t > 0, ∀t ∈ [0, 1],
we get the optimal control for the problem (4.23)

û(t) ≡ −1, ∀t ∈ [0, 1].
Remark We can also use the process (4.6)–(4.8) to show that û(t) = −(1+λ)

|1+λ| is the optimal
control.
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