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Abstract The aim of this paper is to prove an existence theorem for the Nash equilibria
of a noncooperative generalized game with infinite-dimensional strategy spaces. The main
peculiarity of this result is the absence of upper semicontinuity assumptions on the constraint
multifunctions. Our result is in the same spirit of the paper Cubiotti (J Game Theory 26:
267–273, 1997), where only the case of finite-dimensional strategy spaces was considered.
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1 Introduction

Let I = {1, . . . , N } be a set of N players. Let each player i ∈ I be endowed with a non-
empty strategy space Xi , a utility function pi : X → IR and a constraint multifunction
Fi : X−i → 2Xi , where we put

X :=
N∏

i=1

Xi , X−i :=
N∏

j=1
j �=i

X j .

The family of triples {(Xi , pi , Fi )}i∈I is called a (non-cooperative) generalized game, or an
abstract economy. In the sequel, we shall assume that each set Xi is a nonempty subset of a real
normed space Ei . The elements of the space X are called multistrategies. If vectors xi ∈ Xi

(i ∈ I ) are given, we shall denote by x the multistrategy x := (x1, . . . , xN ) ∈ X . Conversely,
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if x ∈ X is given, we shall denote by xi the i-th subvector of x and by x−i ∈ X−i the vector
x without its i-th subvector xi . If x ∈ X and vi ∈ Xi , we shall denote by (x−i , vi ) ∈ X the
vector x with its i-th subvector xi being replaced by vi .

Let F : X → 2X be the multifunction defined by setting, for each x ∈ X ,

F(x) :=
N∏

i=1

Fi (x−i ).

We recall that a vector x̂ ∈ X is called a generalized Nash equilibrium for the game (see for
instance [1–3,9,10]) if x ∈ F(x) and for each i ∈ I one has

pi (x̂−i , vi ) − pi (x̂) ≤ 0 for all vi ∈ Fi (x̂−i ).

As known, each multifunction Fi identifies the set of strategies for the player i which
are allowed by the the other players’ choice. That is, once the other players’ strategy x−i is
given, the player i can choose his strategy only in the set Fi (x−i ), and not in the whole set Xi .
Consequently, since the behaviour of the players is noncooperative, the aim of each player
is to maximize his utility over the set Fi (x−i ). Thus, a multistrategy x̂ ∈ X is a generalized
Nash equilibrium if it is feasible (that is, x̂ ∈ F(x̂) ) and it is a no regret strategy for each
player. That is, none of the players can unilaterally improve his utility by choosing a different
strategy, given the constraints imposed on him by the other players’ action.

When for each i ∈ I one has Fi (x−i ) ≡ Xi (that is, the strategy space of each player is
not affected by the other players’ stategy), then the notion of generalized Nash equilibrium
reduces to the classical notion of Nash equilibrium for a noncooperative N -person game in
standard form.

As remarked in [19] (see also [1,2,6,8–11,14–16]), the standard existence theorems for
the generalized Nash equilibria typically require both the upper and the lower semicontinuity
of the multifunctions Fi , together with the convexity and the closedness of their values. They
also typically assume convexity and compactness of the strategy spaces Xi , continuity of the
functions pi , and concavity (or quasiconcavity) of each pi with respect to the i-th strategy xi .

Recently, in the paper [3], some results were proved in the setting of finite-dimensional
spaces Ei (both for bounded and unbounded strategy spaces Xi ), where the typical upper
semicontinuity condition on the constraint multifunctions Fi is not assumed. Indeed, such
an assumption was replaced by the following more general condition: the feasible set

{ x ∈ X : x ∈ F(x) }
is closed. Moreover, some example where provided (to which we refer for a more detailed
discussion) where such results apply. Here, we only recall that the upper semicontinuity and
closed valuedness of each Fi , together with the compactness of each Xi , imply that the fea-
sible set is closed (since the graph of F is closed—see Theorems 7.3.14 and 7.1.15 of [12]),
while the converse is not necessarily true.

We remark that the finite-dimensionality assumption in the paper [3] was a key tool. The
aim of this note is to extend the results of [3] to the setting of infinite-dimensional normed
spaces Ei . This will be made by an approximation argument which makes use, in particular,
of the finite-dimensional results of [3] and of some technical results concerning lower semi-
continuous multifunctions. The technique we use is similar to the one originally developped
in [5].

The following is our result:
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Theorem 1.1 Let {Xi , Fi , pi }i∈I be an abstract economy. For each i ∈ I , let K (1)
i , K (2)

i ⊆
Xi be nonempty compact sets, with K (1)

i ⊆ K (2)
i , K (2)

i convex, and K (1)
i finite-dimensional,

such that the following assumptions are satisfied:

(i) Xi is a closed convex subset of the real normed space Ei ;
(ii) pi is continuous;
(iii) for each x−i ∈ X−i , the function pi (x−i , · ) is concave on Xi ;
(iv) the multifunction Fi : X−i → 2Xi is Hausdorff lower semicontinuous with closed

convex values;
(v) intaff(Xi )(Fi (x−i )) �= ∅ for all x−i ∈ X−i ;

(vi) Fi (x−i ) ∩ K (1)
i �= ∅ for all x−i ∈ X−i .

Moreover, assume that:
(vii) the feasible set � := {x ∈ X : x ∈ F(x)} is compactly closed;

(viii) for each x ∈ � \
[∏N

i=1 K (2)
i

]
, one has

max
i∈I

sup
yi ∈Fi (x−i )∩K (1)

i

[
pi (x−i , yi ) − pi (x)

]
> 0.

Then there exists a generalized Nash equilibrium for the game.

The proof of Theorem 1.1 will be given in Sect. 3, while in Sect. 2 we shall fix some nota-
tions and recall some definitions and preliminary results which will be useful in the sequel.
Finally, in Sect. 4, we shall discuss briefly about possible improvements of Theorem 1.1.

2 Preliminaries

For the basic facts about multifunctions, we refer to [12]. Here, for the reader’s convenience,
we only recall the following definitions. If S and Y are topological spaces and � : S → 2Y

is a multifunction, we say that � is lower semicontinuous (resp., upper semicontinuous) at
x ∈ S if for each open set A ⊆ Y , with �(x) ∩ A �= ∅ (resp., with �(x) ⊆ A), the set
�−(A) := {s ∈ S : �(s) ∩ A �= ∅} (resp., the set {s ∈ S : �(s) ⊆ A}) is a neighborhood of
x in S. We say that � is lower (resp., upper) semicontinuous in S if it is lower (resp., upper)
semicontinuous at each point x ∈ S. The graph of � is the set {(s, y) ∈ S × Y : y ∈ �(s)}.

Let (E, ‖ · ‖E ) be a real normed space. We say that a multifunction � : S → 2E is
Hausdorff lower semicontinuous (resp., Hausdorff upper semicontinuous) at x0 ∈ S if for
each σ > 0 there exists a neighborhood W of x0 in S such that

�(x0) ⊆ �(x) + Bσ for all x ∈ W

(resp., �(x) ⊆ �(x0) + Bσ for all x ∈ W ) ,

where Bσ denote the open ball in E centered at the origin with radius σ . We say that �

is Hausdorff lower (resp., Hausdorff upper) semicontinuous in S if it is Hausdorff lower
(resp., Hausdorff upper) semicontinuous at each point x ∈ S. It is easy to check [12,18]
that Hausdorff lower semicontinuity implies lower semicontinuity, and, conversely, upper
semicontinuity implies Hausdorff upper semicontinuity. The converse implications are true
if the values of � are nonempty and compact [12, Theorem 7.1.14].

Let A ⊆ E be a nonempty set. We denote by A) the affine hull of the set A. If A ⊆ C ⊆ E ,
we denote by intC (A) the interior of A in C . Finally, we recall that the set A ⊆ E is said to
be compactly closed if its intersection with any compact subset of E is closed.

The following result will be a fundamental tool in the sequel.
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Proposition 2.1 (Proposition 2.5 of [4]). Let S be a topological space, (E, ‖ · ‖E ) a real
normed space, V an affine manifold of E, � : S → 2V an Hausdorff lower semicontinuous
multifunction with nonempty closed convex values, and let s ∈ S, y ∈ intV (�(s)). Then,
there exists a neighborhood U of s in S such that

y ∈ intV

(
⋂

s∈U

�(s)

)
.

Let {(Xi , pi , Fi )}i∈I be a generalized game, where each strategy space Xi is a nonempty
subset of the real normed space (Ei , ‖ · ‖Ei ). In the sequel of the paper, in order to make
notations simpler, we shall write

∏
i∈I instead of the more correct symbol

∏N
i=1. If i ∈ I ,

xi ∈ Ei , and r > 0, we denote by Bi (xi , r) and Bi (xi , r), respectively, the open ball and
the closed ball in Ei centered at xi with radius r . Moreover, if 0Ei denotes the origin of the
space Ei , we put

Bi (r) := Bi (0Ei , r),

Bi (r) := Bi (0Ei , r).

Finally, the product spaces

E :=
∏

i∈I

Ei , E−i :=
∏

j∈I
j �=i

E j

will be considered with the product topologies, generated by the norms

‖x‖E = max
i∈I

‖xi‖Ei , ‖x−i‖E−i = max
j∈I
j �=i

‖x j‖E j .

3 The proof of Theorem 1.1

For each i ∈ I , let Vi := aff(Xi), and let V 0
i be the linear subspace of Ei corresponding to

Vi (of course, Vi may not be closed in Ei ). Following the notations of the previous sections,
for each i ∈ I we put

K (2)
−i :=

∏

j∈I
j �=i

K (2)
j , V−i :=

∏

j∈I
j �=i

V j .

We also put

K (2) :=
∏

i∈I

K (2)
i .

From now on, for the reader’s convenience, we shall divide the proof into steps.

Step 1- Fix i ∈ I . For each z−i ∈ K (2)
−i , since intVi (Fi (z−i )) �= ∅ by assumption (v), choose

any point

u(z−i ) ∈ intVi (Fi (z−i )).
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By Proposition 2.1, for each z−i ∈ K (2)
−i there exists an open bounded neighborhood Wz−i

of z−i in E−i such that

u(z−i ) ∈ intVi

⎛

⎝
⋂

v−i ∈Wz−i ∩X−i

Fi (v−i )

⎞

⎠ . (1)

Since K (2)
−i is compact, there exist vectors z(1)

−i , . . . , z(mi )−i ∈ K (2)
−i such that

K (2)
−i ⊆ �(−i) :=

mi⋃

j=1

[
W

z( j)
−i

∩ V−i

]
. (2)

Firstly we note that �(−i) is open in V−i and bounded (note that �(−i) is not necessarily a

product). Therefore, since the set V−i \ �(−i) is nonempty and closed in V−i , and K (2)
−i is

compact, by (2) we get

ξ(i) := inf
a−i ∈K (2)

−i

inf
v−i ∈V−i \�(−i)

‖ a−i − v−i‖E−i > 0. (3)

Step 2- Once the number ξ(i) is constructed for each i ∈ I , we put

ξ := min
i∈I

ξ(i).

For each i ∈ I , put

�i := K (2)
i +

[
Bi

(
ξ

2

)
∩ V 0

i

]
. (4)

It is easily seen that each �i is convex and closed in Vi , and it is also bounded. Moreover, it
follows by (3) that for each i ∈ I one has also

�−i :=
∏

j∈I
j �=i

� j ⊆ �(−i).

Step 3- For each i ∈ I , define F i as the family of all finite-dimensional subspaces of Ei

containing the set

K (1)
i ∪

{
u(1)

(z−i )
, . . . , u(mi )

(z−i )

}
.

Fix

S1 ∈ F1, . . . , SN ∈ FN ,

and let

S := S1 × · · · × SN .

For each i ∈ I , define

X S
i := Xi ∩ �i ∩ Si .

Observe that, for each i ∈ I , one has

K (1)
i ⊆ Xi ∩ �i ∩ Si ⊆ X S

i ⊆ Xi ∩ Si .

In particular, X S
i �= ∅.
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Step 4- For each i ∈ I , let

X S
−i :=

∏

j∈I
j �=i

X S
j ,

and let F S
i : X S

−i → 2X S
i be the multifunction defined by setting, for each x−i ∈ X S

−i ,

F S
i (x−i ) := Fi (x−i ) ∩ X S

i = Fi (x−i ) ∩ Xi ∩ �i ∩ Si .

At this point, our aim is to apply Theorem 2.2 of [3] to the generalized game
{

X S
i , F S

i , pi |X S×X S

}

i∈I
, (5)

where, as usual, we put X S := ∏
i∈I Xi . To this aim, we observe the following facts.

(a) For each i ∈ I , the set X S
i is a nonempty closed convex subset of Si . Moreover, each

X S
i is bounded (and finite-dimensional), hence compact.

(b) For each i ∈ I , the multifunction F S
i : X S

−i → 2X S
i has nonempty convex values by

(iv) and (vi) (since K (1)
i ⊆ X S

i ).
(c) The feasible set of the game (5) is closed. Indeed, if for each x ∈ X S we put

F S(x) :=
∏

i∈I

F S
i (x−i ) = F(x) ∩ X S,

then the feasible set of the game (5) is the set

�S :=
{

x ∈ X S : x ∈ F S(x)
}

= � ∩ X S,

which is closed by assumption (vii).

(d) For each i ∈ I , the multifunction F S
i : X S

−i → 2X S
i is lower semicontinuous. To see

this, fix i ∈ I (recall that S is fixed).

Firstly, we prove that

�i ∩ Si ∩ intVi Fi (x−i ) �= ∅ for all x−i ∈ X S
−i . (6)

To prove (6), choose x−i ∈ X S
−i . For each j ∈ I , with j �= i , let x∗

j ∈ X j ∩ � j ∩ S j such
that ‖x j − x∗

j ‖E j ≤ ξ/4.
Hence, we can consider the point

x∗−i ∈
∏

j∈I
j �=i

(X j ∩ S j ∩ � j ) ⊆ X S
−i .

Note that

x j − x∗
j ∈ V 0

j , for all j ∈ I, with j �= i.

Since by (4) we have

x∗
j ∈ K (2)

j +
[

B j

(
ξ

2

)
∩ V 0

j

]
for all j ∈ I, j �= i,

it follows that

x j ∈ K (2)
j +

[
B j

(
3 ξ

4

)
∩ V 0

j

]
for all j ∈ I, j �= i,

123



J Glob Optim (2010) 46:509–519 515

hence by (3) we get

x−i ∈ �(−i).

Consequently, by (2), there exists k ∈ {1, . . . , mi } such that

x−i ∈ W
z(k)
−i

∩ V−i .

By (1), we get in particular that u
z(k)
−i

∈ intVi (Fi (x−i )), hence

u
z(k)
−i

∈ Si ∩ intVi (Fi (x−i )) �= ∅.

By assumption (vi) we have Fi (x−i ) ∩ K (1)
i �= ∅. Fix any point vi ∈ Fi (x−i ) ∩ K (1)

i (of

course, vi ∈ Si since K (1)
i ⊆ Si ). The convexity of Fi (x−i ) implies that

vi + t
(

u
z(k)
−i

− vi

)
∈ Si ∩ intVi (Fi (x−i )) for all t ∈ ]0, 1]. (7)

On the other hand, since K (1)
i ⊆ K (2)

i , by (4) we have

vi +
[

Bi

(
ξ

2

)
∩ V 0

i

]
⊆ �i .

Consequently, we can find α ∈ ]0, 1] such that

vi + t (u
z(k)
−i

− vi ) ∈ �i for all t ∈ ]0, α[. (8)

In particular, by (7) and (8) we have

Si ∩ �i ∩ intVi (Fi (x−i )) �= ∅,

as desired. Thus, (6) is now proved. At this point we can prove that F S
i is lower semicontin-

uous over X S
−i . To this aim, let x̃−i ∈ X S

−i and let Ai be an open set in Vi such that

F S
i (x̃−i ) ∩ Ai �= ∅.

By (6) we have that

�i ∩ Si ∩ intVi (Fi (x̃−i )) �= ∅.

Consequently, there exists a point

wi ∈ �i ∩ Si ∩ intVi (Fi (x̃−i )) ⊆ F S
i (x̃−i ).

Choose a point ṽi ∈ F S
i (x̃−i ) ∩ Ai . Since the set Fi (x̃−i ) is convex, we have that

ṽi + λ(wi − ṽi ) ∈ X S
i ∩ intVi (Fi (x̃−i )) for all λ ∈ ]0, 1]. (9)

On the other hand, since Ai is open in Vi , there exists µ > 0 such that

ṽi + [
Bi (µ) ∩ V 0

i

] ⊆ Ai . (10)

Consequently, by (9) and (10), there exists δ ∈ ]0, 1] such that

ṽi + δ(wi − ṽi ) ∈ X S
i ∩ Ai ∩ intVi (Fi (x̃−i )). (11)
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By Proposition 2.1, there is a neighborhood Z(−i) of x̃−i in X−i such that

ṽi + δ(wi − ṽi ) ∈ intVi

⎛

⎝
⋂

u−i ∈Z(−i)

Fi (u−i )

⎞

⎠ . (12)

By (11) and (12), we get

ṽi + δ(wi − ṽi ) ∈ X S
i ∩ Ai ∩ intVi (Fi (u−i )) for all u−i ∈ Z(−i),

hence, in particular,

Fi (u−i ) ∩ Ai ∩ X S
i �= ∅ for all u−i ∈ Z(−i),

and thus

F S
i (u−i ) ∩ Ai �= ∅ for all u−i ∈ Z(−i) ∩ X S

−i ,

as desired.
Consequently, by Theorem 2.2 of [3], there exists x S ∈ X S such that x S ∈ F S(x S) and

for each i ∈ I one has

pi (x S−i , yi ) − pi (x S) ≤ 0 for all yi ∈ F S
i (x S−i ). (13)

By (13) and assumption (viii), taking into account that x S ∈ � and K (1)
i ⊆ X S

i for all i ∈ I ,
we have that x S ∈ K (2). We now prove that for each i ∈ I one has

pi (x S
−i , yi ) − pi (x S) ≤ 0 for all yi ∈ Fi (x S

−i ) ∩ Si . (14)

To this aim, fix i ∈ I and yi ∈ Fi (x S
−i ) ∩ Si . Since

x S
i ∈ K (2)

i ⊆ Xi ⊆ Vi ,

yi ∈ Fi (x S
−i ) ⊆ Xi ⊆ Vi ,

Vi − Vi ⊆ V 0
i ,

and Xi is convex, we have that

x S
i + t (yi − x S

i ) ∈ Xi ∩
[

K (2)
i +

(
Bi

(
ξ

2

)
∩ V 0

i

)]
= Xi ∩ �i

for a sufficiently small t ∈ ]0, 1[ . Hence, by the convexity of Fi (x S
−i ) and by the definition

of X S
i , we have

x S
i + t (yi − x S

i ) ∈ Xi ∩ �i ∩ Si ∩ Fi (x S
−i ) ⊆ X S

i ∩ Fi (x S
−i ) = F S

i (x S
−i ).

By (13) and assumption (iii), we get

0 ≥ pi

(
x S
−i , x S

i + t
(

yi − x S
i

))
− pi (x S)

≥ (1 − t) pi (x S) + t pi

(
x S−i , yi

)
− pi (x S)

= t
[

pi

(
x S
−i , yi

)
− pi (x S)

]
,

hence pi (x S
−i , yi ) − pi (x S) ≤ 0, as desired.
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Step 5- Resuming, we have proved that, if one fixes

S1 ∈ F1, . . . , SN ∈ FN ,

and puts

S = S1 × · · · × SN ,

then there exists a point x S ∈ K (2) ∩ S ∩ � such that for each i ∈ I the relation (14) holds.
Now, let F be the family of all linear subspaces S of E of the type

S = S1 × · · · × SN , with Si ∈ Fi .

Let us consider the net {x S}S∈F , with F ordered by the ordinary set inclusion. The compact-
ness of K (2) implies that the net {x S}S∈F has a cluster point x̂ ∈ K (2). Since by assumption
(vii) the set �∩ K (2) is closed, we get x̂ ∈ F(x̂). We now claim that for each i ∈ I one has

pi (x̂−i , yi ) − pi (x̂) ≤ 0 for all yi ∈ intVi (Fi (x̂−i )). (15)

Arguing by contradiction, assume that there exist i ∈ I and ỹi ∈ intVi (Fi (x̂−i )) (which is
nonempty by assumption (v)) such that

pi (x̂−i , ỹi ) − pi (x̂) > 0. (16)

By Proposition 2.1, there exist numbers σ j > 0, with j ∈ I, j �= i , such that

ỹi ∈ intVi

⎛

⎜⎝
⋂

x−i ∈(
∏

j∈I, j �=i B j (x̂ j ,σ j ))∩X−i

Fi (x−i )

⎞

⎟⎠ . (17)

By (16) and assumption (ii), since the set

{x ∈ X : pi (x−i , ỹi ) − pi (x) > 0}
is open in X , there exist numbers λ1, . . . , λN > 0, with λ j < σ j for j �= i , such that

X ∩
⎡

⎣
N∏

j=1

B j (x̂ j , λ j )

⎤

⎦ ⊆ {x ∈ X : pi (x−i , ỹi ) − pi (x) > 0} . (18)

By construction, there exists

Ŝ = Ŝ1 × · · · × ŜN ∈ F
such that

ỹi ∈ Ŝi and x Ŝ ∈
N∏

j=1

B j (x̂ j , λ j ).

By (17) we get

ỹi ∈
[
intVi Fi

(
x Ŝ
−i

)]
∩ Ŝi ⊆ Fi (x Ŝ

−i ) ∩ Ŝi .

Consequently, (14) implies that

pi (x Ŝ
−i , ỹi ) − pi

(
x Ŝ

)
≤ 0. (19)
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On the other hand, (18) implies that

pi (x Ŝ
−i , ỹi ) − pi

(
x Ŝ

)
> 0,

which contradicts (19). Such a contradiction proves that (15) holds. At this point, by the
convexity of each Fi (x̂−i )(i ∈ I ) and the continuity of each pi the conclusion follows at
once. The proof is now complete. 
�

4 Final remarks

We now give some comments about the statement of Theorem 1.1 and possible improvements
of it.

(a) Firstly, we observe that is not strictly necessary to assume the convexity of each set
K (2)

i . Indeed, in the proof of Theorem 1.1, each set K (2)
i can be replaced by its closed

convex hull co K (2)
i , provided that the last set is compact. Consequently, the convexity

assumption on each set K (2)
i in the statement of Theorem 1.1 can be replaced by the

assumption that the set co K (2)
i is compact. This happens, for instance, if the space Ei

is a Banach space (see Theorem 6 at p.416 of [7]).
(b) Theorem 1.1 is a partial extension of Theorems 2.2 and 2.3 of [3] (note that when each

space Ei is finite-dimensional one can take K (1)
i = K (2)

i ). In particular, when the sets
Xi are finite-dimensional and compact, and Fi (x−i ) ≡ Xi , Theorem 1.1 gives back the
classical Nash existence theorem [2,14,15] (recall that each nonempty finite-dimen-
sional convex set has nonempty interior in its affine hull).

(c) As regards possible improvements of Theorem 1.1, a first question could be: can the
Hausdorff lower semicontinuity of the multifunctions Fi be replaced by the usual lower
semicontinuity? In this connection, we point out that, in general, in infinite-dimensional
setting, a lower semicontinuous multifunction has not the property described by Prop-
osition 2.1, even if E is an Hilbert space (see Remark 1.1 of [13]). Moreover, one
could ask if the finite-dimensional assumption on the sets K (1)

i can be dropped (and,

consequently, one could take K (1)
i = K (2)

i ). Our feeling is that it is not easy to give
answers to these questions. In particular, as far as we know, the last problem has been
unsuccessfully investigated by several mathematicians in the last years with respect to
the variational inequality existence results proved in the papers [5,17].
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