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Abstract We give characterizations of the containment of a convex set either in an arbitrary
convex set or in a set described by reverse cone-convex inequalities in Banach spaces. The
convex sets under consideration are the solution sets of an arbitrary number of cone-convex
inequalities, which can be either weak or strict inequalities. These characterizations provide
ways of verifying the containments either by comparing their corresponding dual cones or
by checking the consistency of suitable associated systems. Particular cases of dual charac-
terizations of set containments have played key roles in solving large scale knowledge-based
data classification problems, where they are used to describe the containments as inequality
constraints in optimization problems. The concept of evenly convex set is used to derive the
dual conditions, characterizing the set containments.

Keywords Set containment · Convex function · Dual cone · Semi-infinite system ·
Conjugation · Existence theorem
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1 Introduction

Let X and Z be Banach spaces and S be a closed convex cone in Z . Consider the sets

F := {x ∈ X : fi (x) ∈ −intS, ∀ i ∈ I; f j (x) ∈ −S, ∀ j ∈ J },
and

G := {x ∈ X : gt (x) ∈ −S, ∀ t ∈ W1; ht (x) ∈ S, ∀ t ∈ W2},
where I, J , W1, W2 are index sets, I∩J = ∅, I∪J �= ∅, W1 ∩W2 = ∅, W1 ∪W2 �= ∅,
and all functions are S-convex from X to Z . The set containment problem that is studied in

A. R. Doagooei · H. Mohebi (B)
Department of Mathematics, Mahani Mathematical Research Center, University of Kerman, Kerman, Iran
e-mail: hmohebi@mail.uk.ac.ir

123



578 J Glob Optim (2009) 43:577–591

this paper, consists of deciding whether F ⊂ G or not. Dual characterizations of such set
containments have played a key role in solving large scale knowledge-based data classifica-
tion problems, where they are used to describe the containments as inequality constraints in
optimization problems (see, e.g., [4,7,10,11]).

Various extensions of the set containment problem to more general situations have been
obtained in [7] and [11], by means of mathematical programming theory and conjugacy
theory, respectively, where S �= ∅ (i.e. without strict inequalities). More recently, dual char-
acterizations by allowing the systems defining F and G to contain strict inequalities in R

n

were established in [5]. In this paper, we establish dual characterizations by allowing the sys-
tems defining F and G to contain strict inequalities in Banach spaces. In fact, we generalize
the results were obtained in [5] to Banach spaces.

The main basic tool in our approach in deriving the dual characterizations is the associa-
tion of two dual cones in X∗ × R, say K and M , such that F ⊂ G if and only if M ⊂ K .

Since M ⊂ K can be interpreted as a dual condition, the verification of the set containment
reduces to the effective calculus of the corresponding dual cones. In the case where F is the
intersection of a family of open convex sets: {x ∈ X : f j (x) ∈ −S} ( j ∈ J ) with a family
of closed convex sets: {x ∈ X : f j (x) ≤ 0} ( j ∈ J ), F turns out to be an evenly convex set
[3], represented by means of convex inequality systems.

The layout of the paper is as follows. In Sect. 2, we collect definitions, notations and
preliminary results that will be used later in this paper. In Sect. 3, we obtain some feasibly
rules for some closed convex sets and calculus rules for their dual cones. In Sect. 4, we
develop calculus rules which are similar to those obtained in Sect. 3 for dual cones of evenly
convex sets. In Sect. 5, we give some properties of positively homogenous convex functions
and state general existence theorems for convex systems which contain strict reverse-convex
inequalities.

2 Preliminaries

We start this section by fixing the notations and preliminaries that will be used later in this
paper. Let X and Z be Banach spaces and S be a closed convex cone in Z . The continuous
dual space of X will be denoted by X∗. For a set A ⊂ X∗, the weak*-closure (resp. closure)
of A will be denoted by w∗ − clA (resp. clA), and the weak*-interior of A will be denoted
by w∗ − intA.

Given a set A ⊂ X , we shall denote by intA, bdA, coA and conecoA the interior, the
boundary, the convex hull and the convex cone generated by A, respectively.

Fenchel [3] defined the class of evenly convex sets as the intersection of open half spaces.
The evenly convex hull of A, ecoA is the smallest evenly convex set which contains A (i.e.
it is the intersection of all open half spaces which contain A).

The support function of A is defined by

σA(x∗) = sup
x∈A

x∗(x) (x∗ ∈ X∗),

and the indicator function of A is defined by

δA(x) =
{

0, x ∈ A
+∞, x �∈ A.

The epigraph of a function f : X −→ R ∪ {+∞}, epi f, is defined by

epi f = {(x, r) ∈ X × R : x ∈ dom f , f (x) ≤ r},
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where the domain of f , dom f , is given by

dom f = {x ∈ X : f (x) < +∞}.
Let f : X −→ R ∪ {+∞} be a proper lower semi continuous (lsc) convex function. Then
the conjugate function of f , denoted by f ∗, such that f ∗ : X∗ −→ R ∪ {+∞}, is given by

f ∗(x∗) = sup{x∗(x) − f (x) : x ∈ dom f }, (x∗ ∈ X∗).

The subdifferential of f at a, ∂ f (a), is given by

∂ f (a) = {x∗ ∈ X∗ : x∗(x − a) ≤ f (x) − f (a), ∀ x ∈ X}.
For a closed convex cone K in X, define K + by

K + := {λ ∈ X∗ : λ(x) ≥ 0, ∀ x ∈ K }.
Let {Yα : α ∈ B} be a family of topological spaces, where B is an index set. consider their

products

Y :=
∏
α∈B

Yα = {x : B −→ ∪α∈BYα : x := (x(α))α∈B, x(α) ∈ Yα, ∀ α ∈ B}.

Denote x(α) = xα, for all α ∈ B, and x = (xα)α∈B. Consider the projections Pα : Y → Yα

defined by Pαx = xα, for all x ∈ Y .
The space Y endowed with the weakest topology which makes each projection continuous

is called the product topological space of the topological spaces Yα, α ∈ B. Thus, a basis for
the product topology is given by the sets of the form

∏
α∈B Dα , where Dα is an open subset

in Yα, for all α ∈ F , and Dα = Yα, for all α ∈ Y\F , where F is a finite subset of B. Also,
a fundamental neighborhood system of an element x = (xα)α∈B is given by the sets having
the form

VF, {Vα :α∈F}(x) = {u = (uα)α∈B ∈ Y ; uα ∈ Vα(xα), ∀ α ∈ F}, (2.1)

where, for each α ∈ B, Vα(xα) runs through a fundamental neighborhood system of xα ∈ Yα

(see [2,12]).
The following existence theorem for linear inequality systems containing strict inequalities

will be generalized later.

Proposition 2.1 ([7], Theorem 3.1). Let I and J be non-empty index sets. The system {a′
t x <

bt , t ∈ I; a′
t x ≤ bt , t ∈ J } (x, at ∈ R

n; bt ∈ R) is consistent if and only if

0n+1 �∈ eco[{(at , bt ) : t ∈ I} + R+{(at , bt ) : t ∈ J }; (0n, 1)].

3 Containments of closed convex sets

We start this section with the definition of the weak dual cone of a closed convex set. Let
F ⊂ X be a non-empty closed convex set. We define the weak dual cone of F as

K ≤ = {(γ, b) ∈ X∗ × R, γ (x) ≤ b, ∀ x ∈ F} = epiσF .

For explanation of some properties of the weak dual cone, we need to obtain conditions of
dual characterizations of the existence theorem for the set F = {x : ft (x) ∈ −S, ∀ t ∈ J }.
Proposition 3.1 Let F = {x : ft (x) ∈ −S, ∀ t ∈ J }, where ft : X −→ Z is a continuous
and S-convex function (t ∈ J ). Then the following assertions are true.
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(i) F �= ∅ ⇔ (0,−1) �∈ w∗ − clco(
⋃

t∈J
⋃

λ∈S+ epi(λ ft )
∗).

(ii) F �= ∅ ⇒ epiσF = w∗ − clco(
⋃

t∈J
⋃

λ∈S+ epi(λ ft )
∗).

Proof (i). Let t ∈ J , λ ∈ S+ and x∗ ∈ X∗ be arbitrary. Since −λ ft (x) ≥ 0 for all x ∈ F,

we get

(λ ft )
∗(x∗) = sup

x∈X
[x∗(x) − λ ft (x)] ≥ sup

x∈F
[x∗(x) − λ ft (x)] ≥ sup

x∈F
x∗(x) = σF (x∗).

This inequality with the fact that epiσF is w∗-closed, gives us epiσF ⊃ w∗ − clco(
⋃

t∈J⋃
λ∈S+ epi(λ ft )

∗).
Now, if F �= ∅, then clearly (0,−1) �∈ epiσF , and so from the above inclusion, we obtain

(0,−1) �∈ w∗ − clco(
⋃

t∈J
⋃

λ∈S+ epi(λ ft )
∗).

Conversely, if (0,−1) �∈ w∗ − clco(
⋃

t∈J
⋃

λ∈S+ epi(λ ft )
∗), then by the separation

theorem there is (x, α) ∈ X × R, (x, α) �= (0, 0) such that −α < 0,

vt (x) + γtα ≥ 0 ∀ (vt , γt ) ∈
⋃

λ∈S+
epi(λ ft )

∗, ∀ t ∈ J .

Let x = x
α

, then it follows that

vt (−x) − γt ≤ 0 ∀ (vt , γt ) ∈
⋃

λ∈S+
epi(λ ft )

∗, ∀ t ∈ J .

Now, for each vt ∈ dom(λ ft )
∗, we have vt (−x) − (λ ft )

∗(vt ) ≤ 0. Since λ ft is continuous,
thus

λ ft (−x) = (λ ft )
∗∗(−x) = sup

vt ∈dom (λ ft )∗
[vt (−x) − (λ ft )

∗(vt )] ≤ 0, ∀ t ∈ J .

This implies that ft (−x) ∈ −S for each t ∈ J , and hence −x ∈ F , which shows that F �= ∅.
(ii). We have already established in part (i) that epiσF ⊃ w∗ − clco(

⋃
t∈J

⋃
λ∈S+

epi(λ ft )
∗).

To show the converse inclusion, let (u, α) �∈ w∗ − clco(
⋃

t∈J
⋃

λ∈S+ epi(λ ft )
∗) . Since

F �= ∅, we have (0,−1) �∈ w∗ − clco(∪t∈J ∪λ∈S+ epi(λ ft )
∗). Then

B0

⋂
[w∗ − clco(

⋃
t∈J

⋃
λ∈S+

epi(λ ft )
∗)] = ∅,

where

B0 = {δ(u, α) + (1 − δ)(0,−1) ∈ X∗: δ ∈ [0, 1]}.
It is clear that B0 is a w∗-compact convex set in X∗. Now, by the separation theorem there
exists (x, β) �= (0, 0) such that for all δ ∈ [0, 1]:

[δ(u, α) + (1 − δ)(0,−1)](x, β) < 0,

vt (x) + γtβ ≥ 0, ∀ (vt , γt ) ∈ w∗ − clco(
⋃
t∈J

⋃
λ∈S+

epi(λ ft )
∗),∀ t ∈ J .

By letting δ = 0, we get that β > 0, and by letting δ = 1, we obtain u(x) + αβ < 0. Thus,
u(− x

β
) > α. On the other hand, for each λ ∈ S+ and t ∈ J , one has

vt (
−x

β
) − γt ≥ 0 ∀ (vt , γt ) ∈ epi(λ ft )

∗.
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This gives us

vt (
−x

β
) − (λ ft )

∗(vt ) ≤ 0 ∀ vt ∈ dom(λ ft )
∗, ∀ t ∈ J .

Hence, for each λ ∈ S+ and t ∈ J , we have

λ ft (− x

β
) = (λ ft )

∗∗(− x

β
) = sup

vt ∈dom (λ ft )∗
[vt (− x

β
) − (λ ft )

∗(vt )] ≤ 0, ∀ t ∈ J .

This implies that − x
β

∈ F. This, together with u(− x
β
) > α, gives (u, α) �∈ epiσF , which

completes the proof. ��
Theorem 3.1 Let Y be a Banach space and I be an arbitrary index set. Let K ⊂ Y and
S ⊂ Z be closed convex cones. Assume that h j : X → Y, j = 1, 2, . . . , m (m ∈ N) is a
continuous K -convex function and fi : X → Z (i ∈ I) is a continuous S-convex function.
If F = {x ∈ X : fi (x) ∈ −S, ∀ i ∈ I} �= ∅, then the following assertions are equivalent.

(i) F ⊂ {x ∈ X : h j (x) ∈ K , ∀ j = 1, 2, . . . , m}.
(ii) We have 0 ∈ epi(θh j )

∗ + w∗ − clco(
⋃

i∈I
⋃

λ∈S+ epi(λ fi )
∗), ∀ θ ∈ K + and ∀ j =

1, 2, . . . , m.

Proof (i) ⇒ (ii). Let θ ∈ K + and Hθ := {x ∈ X : (θh j )(x) ≥ 0, ∀ j = 1, 2, . . . , m}. It is
clear that F is a closed convex set, so (i) implies that F ⊂ Hθ . Now, F ⊂ Hθ if and only if
θh j + δF ≥ 0 for all j = 1, 2, . . . , m. It follows from the definition of epi(θh j + δF )∗ and
the inequality θh j + δF ≥ 0 that 0 ∈ epi(θh j + δF )∗ ( j = 1, 2, . . . , m).

Since θh j is a real valued continuous convex function (note that h j is a continuous K -
convex function) and δF is a proper lower semi-continuous convex function, then epi(θh j +
δF )∗ = epi(θh j )

∗ + epiδ∗
F (see [8], Lemma 6.7). Since δ∗

F = σF and F �= ∅, it follows
from Proposition 3.1 that

epiσF = w∗ − clco(
⋃
t∈J

⋃
λ∈S+

epi(λ ft )
∗).

Thus, 0 ∈ epi(θh j )
∗ + w∗ − clco(

⋃
t∈J

⋃
λ∈S+ epi(λ ft )

∗), and hence we conclude that
(ii) holds.

(ii) ⇒ (i). For each θ ∈ K + and for each j = 1, 2, . . . , m, it follows from (ii) that there
exists (uθ, j , αθ, j ) ∈ epiσF ( j = 1, 2, . . . , m) such that −(uθ, j , αθ, j ) ∈ epi(θh j )

∗ ( j =
1, 2, . . . , m). This implies that if x ∈ F and j ∈ {1, 2, . . . , m}, then we have uθ, j (x) ≤
σF (uθ, j ) ≤ αθ, j and −αθ, j ≥ −uθ, j (x) − (θh j )(x). So, (θh j )(x) ≥ 0. Since K is a closed
convex cone, we get h j (x) ∈ K for all j = 1, 2, . . . , m, and hence we have (i). ��

The proof of the following corollary is similar to the one of in ([8], Corollary 2.1), and
therefore we omit it.

Corollary 3.1 Let I be an arbitrary index set and S ⊂ Z be a closed convex cone. Let α j ∈ R

and u j : X −→ R ( j = 1, 2 . . . , m) be a continuous linear mapping and fi : X −→ Z be a
continuous S-convex function (i ∈ I). Assume that the set {x ∈ X : fi (x) ∈ −S, ∀ i ∈ I}
is consistent. Then the following assertions are equivalent.

(i) {x ∈ X : fi (x) ∈ −S, ∀ i ∈ I} ⊂ {x ∈ X : u j (x) ≤ α j , ∀ j = 1, 2, . . . , m}.
(ii) (u j , α j ) ∈ w∗ − clco(

⋃
i∈I

⋃
λ∈S+ epi(λ fi )

∗), ∀ j = 1, 2, . . . , m.

The following result is a generalization of the non-homogeneous Farkas Lemma in Banach
spaces.
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Lemma 3.1 Let I be an arbitrary index set and γi : X −→ R (i ∈ I) and u j : X −→ R

( j = 1, 2, . . . , m) be continuous linear maps. Suppose that ai , α j ∈ R (i ∈ I, j =
1, 2, . . . , m) and the set {x ∈ X : γi (x) ≤ ai , ∀ i ∈ I} is consistent. Then the following
assertions are equivalent.

(i) {x ∈ X : γi (x) ≤ ai , ∀ i ∈ I} ⊂ {x ∈ X : u j (x) ≤ α j , ∀ j = 1, 2, . . . , m}.
(ii) (u j , α j ) ∈ w∗ − clconeco{(γi , ai ) : i ∈ I; (0, 1)}, ∀ j = 1, 2, . . . , m.

Proof Let fi : X −→ R be defined by fi (x) = γi (x) − ai for each i ∈ I, and let S = R+.

Therefore, the condition (i) is equivalent to the following inclusion:

{x : fi (x) ∈ −S, ∀ i ∈ I} ⊂ {x ∈ X : u j (x) ≤ α j , ∀ j = 1, 2, . . . , m}.
In view of Corollary 3.1, it follows that (i) holds if and only if

(u j , α j ) ∈ w∗ − clco(
⋃
i∈I

⋃
λ∈S+

epi(λ fi )
∗), ∀ j = 1, 2, . . . , m.

Now, let A := w∗ − clco(
⋃

i∈I
⋃

λ∈S+ epi(λ fi )
∗) and B := w∗ − clconeco{(γi , ai ): i ∈

I; (0, 1)}. We are going to show that A = B. It is clear that B ⊂ A. To see the converse
inclusion, let (γ, a) ∈ A = w∗ − clco(

⋃
i∈I

⋃
λ∈S+ epi(λ fi )

∗). This means that (γ, a) ∈
epi(λ fi )

∗ for some λ ∈ S+ and some i ∈ I. Since (λ fi )
∗(γ ) ≤ a, then supx∈X [γ (x) −

λ fi (x)] ≤ a. Thus, we conclude that

sup
x∈X

[(γ (x) − λγi (x) + λai )] ≤ a. (3.1)

Moreover, we have supx∈X (γ − λγi )(x) ≤ 0. This implies that γ = λγi . Now, replace γ

by λγi in (3.1), we obtain a − λai ≥ 0. Hence, (γ, a) = (λγi , λai ) + (0, a − λai ). Then,
(γ, a) ∈ B, which implies that A ⊂ B, and the proof is complete. ��

Now, we define the reverse-convex set G by

G = {x ∈ X : h j (x) ∈ S, j = 1, 2, . . . , m}.
It is clear that G = X\⋃m

j=1 G j , where G j = {x ∈ X : h j (x) ∈ −intS} ( j = 1, 2 . . . , m)

and S ∩ (−S) = 0.
Let F = {x ∈ X : fi (x) ∈ −S, ∀ i ∈ I}. Clearly that F ⊂ G if and only if

F
⋂

(
⋃m

j=1 G j ) = ∅, that is, {x ∈ X : fi (x) ∈ −S, ∀ i ∈ I, h j (x) ∈ −intS, for some j=
1, 2, . . . , m} = ∅. Therefore, the characterization of the set containments will be changed
into existence theorem, where G is a reverse-convex set and S ∩ (−S) = 0. Moreover, in
such case we shall characterize the existence theorem in Sect. 5.

In the following, we explain some properties of the weak dual cone. The proof of the
following lemma is easy, and therefore we omit it.

Lemma 3.2 Let F be a closed convex set in X and K ≤ = {(γ, b) ∈ X∗ × R : γ (x) ≤
b, ∀ x ∈ F}. Then

F = {x ∈ X : γ (x) ≤ b, ∀ (γ, b) ∈ K ≤}.
The next result is a consequence of the non-homogeneous Farkas Lemma (Lemma 3.1).

Proposition 3.2 Let F = {x ∈ X : γt ≤ bt , t ∈ J }, where γt : X → R is a continuous
linear mapping and bt ∈ R. Then

K ≤ = w∗ − cl(coneco{(γt , bt ) : t ∈ J ; (0, 1)}).
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It is clear that cone{(0, 1)} ⊆ K ≤, and Lemma 3.2 shows that the equality holds if and
only if F = X . Let G �= ∅ �= F be closed convex sets with weak dual cone K ≤ and M≤,
respectively. According to the Lemma 3.2 and Proposition 3.2, we have F ⊂ G if and only
if M≤ ⊂ K ≤.

Proposition 3.3 Let F = ⋂
i∈I Fi �= ∅, where Fi is a closed convex set with weak dual

cone K ≤
i (i ∈ I). Then K ≤ = w∗ − clco(

⋃
i∈I K ≤

i ).

Proof Since Fi = {x ∈ X : γ (x) ≤ b, ∀ (γ, b) ∈ K ≤
i } (i ∈ I), it follows that F = {x ∈

X : γ (x) ≤ b, ∀ (γ, b) ∈ K ≤
i }. Then, in view of Proposition 3.2 and that (0, 1) ∈ K ≤

i
(i ∈ I), we conclude that

K ≤ = w∗ − cl(coneco[
⋃
i∈I

K ≤
i ∪ {(0, 1)}]) = w∗ − clco

⋃
i∈I

K ≤
i ,

which completes the proof. ��
Proposition 3.4 Let F = {x ∈ X : ft (x) ∈ −S, ∀ t ∈ J } �= ∅, where ft : X −→ Z is a
continuous S-convex function. Then the weak dual cone of F is given by

K ≤ = w∗ − clco
⋃
t∈J

⋃
λ∈S+

epi(λ ft )
∗.

Proof This is an immediate consequence of Proposition 3.1 (note that K ≤ = epiσF ). ��

4 The containments of evenly convex sets in Banach spaces

The definition of the strict dual cone of a non-empty evenly convex set in R
n has been given

in [5]. Let F ⊂ X be a non-empty evenly convex set, the strict weak dual cone of F is
denoted by:

K < = {(γ, b) ∈ X∗ × R : γ (x) < b, ∀ x ∈ F}.
In the following, we explain some properties of the strict dual cones and evenly convex sets.

Lemma 4.1 Let A be a subset of X, and let y ∈ X. Then y �∈ ecoA if and only if there exists
0 �= γ ∈ X∗ such that γ (x − y) < 0 for all x ∈ A.

Proof Let y �∈ ecoA. By definition, there exists an open half space W such tat A ⊂ W and
y �∈ W . Now, by separation theorem there exists 0 �= γ ∈ X∗ such that γ (x) < γ (y) for all
x ∈ W . Hence γ (x − y) < 0 for all x ∈ A.

Conversely, put W = {x ∈ X : γ (x) < γ (y)}. It is clear that A ⊂ W and y �∈ W , and so
y �∈ ecoA. ��
Lemma 4.2 Let F be non-empty evenly convex set with associated strict dual cone K <.

Then

F = {x ∈ X : γ (x) < b, ∀ (γ, b) ∈ K <}.
Proof It is obvious that F ⊂ {x ∈ X : γ (x) < b, ∀ (γ, b) ∈ K <}. To show the converse
inclusion, let x0 ∈ {x ∈ X : γ (x) < b, ∀ (γ, b) ∈ K <}, and x0 �∈ F. Then, by Lemma 4.1,
there exists 0 �= γ ∈ X∗ such that γ (x) < γ (x0) for all x ∈ F, and hence supx∈F γ (x) ≤
γ (x0). Put b = 1

2 (supx∈F γ (x) + γ (x0)). It is easy to see that (γ, b) ∈ K <, which implies
that γ (x0) < supx∈F γ (x). This is a contradiction. ��
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In the rest of this section, we assume that F is a non-empty evenly convex set with
associated strict dual cone K <. Obviously, {0} × R++ ⊆ K < and the equality holds if and
only if F = X . Since 0X∗×R �∈ K <, then K < cannot be weak ∗-closed. In particular, if F is
closed, then we have K < contained strictly in K ≤.

We denote the weak dual cone of cl F by K
≤

. It is clear that K
≤

is a weak*-closed con-
vex cone and K

≤ = K ≤, if F is closed. The next result has been obtained in [5] in finite
dimensional case. However, the same proof holds for the case under consideration.

Proposition 4.1 w∗ − cl K < = K
≤
.

Example 4.1 If F = {(x, y) ∈ R
2 : 0 ≤ x ≤ y}, then K

≤ = K ≤ = {(a, b) ∈ R
2 :

a + b ≤ 0, b ≤ 0} × R+, and K < = {(a, b) ∈ R
2 : a + b ≤ 0, b ≤ 0} × R++. Moreover,

w∗ − cl K < = K
≤
.

Proposition 4.2 The cone K < ∪ {0X∗×R} is weak*-closed if and only if the set F is open.
In such case, K < = K

≤\{0X∗×R}.
Proof Assume if possible that F is not open. Let x ∈ bd F ∩ F . Since F is convex and
x �∈ int F, then by separation theorem there exists 0 �= γ ∈ X∗ such that γ (x) < γ (x) for
all x ∈ int F , which implies that supx∈F γ (x) ≤ γ (x).

Put b = γ (x). Let n ∈ N be arbitrary. Then, we have γ (x) < b + 1
n for all x ∈

F. Therefore, (γ, b + 1
n ) ∈ K < ⊂ K < ∪ {0X∗×R} for all n ∈ N, which implies that

(γ, b) ∈ w∗ − cl(K < ∪ {0X∗×R}). On the other hand, (γ, b) �∈ K < and γ �= 0. Hence,
(γ, b) �∈ K < ∪ {0X∗×R}. This implies that the cone K

≤ ∪ {0X∗×R} is not weak∗-closed,
which is a contradiction.

Conversely, suppose that K < ∪ {0X∗×R} is not weak*-closed. Choose {(γα, bα)}α∈I ⊂
K < ∪ {0X∗×R} such that (γα, bα) −→ (γ, b) in the weak∗ topology, and (γ, b) �∈ K < ∪
{0X∗×R}. Let x ∈ F be such that γ (x) ≥ b. Since

γα(x) < bα ∀ α ∈ I,

it follows that γ (x) = b. By a similar argument, we have γ (x) ≤ b for all x ∈ F . Thus,
F ⊂ {x ∈ X : γ (x) ≤ b}. Since bd{x ∈ X : γ (x) ≤ b} = {x ∈ X : γ (x) = b}, we get
x ∈ bd F, which implies that F cannot be open. This is a contradiction. Therefore, in view
of Proposition 4.1, we conclude that K < = K

≤\{0X∗×R}. ��
Corollary 4.1 If |I| < ∞. Then, γ (x) < b is a consequence of the consistent system
{γt (x) < bt , t ∈ I} if and only if

(γ, b) ∈ [coneco{(γt , bt ) : t ∈ I; (0, 1)}]\{0X∗×R}.
Proof Since |I| < ∞, we have F = {x ∈ X : γt (x) < bt , t ∈ I} is an open subset of X.

In view of Proposition 3.3 we conclude that K
≤ = coneco{(γt , bt ) : t ∈ I; (0, 1)}. Hence

the conclusion follows from Proposition 4.2. ��
Proposition 4.3 If K < is relatively w∗-open, then F is closed.

Proof Assume that F is not closed. Let {xn} ⊂ F be such that limn xn = x �∈ F . Since F is
an evenly convex set, by Lemma 4.1, there exists 0 �= γ ∈ X∗ and b ∈ R such that γ (x) < b
for all x ∈ F and γ (x) = b. Obviously, (γ, b) ∈ K <.
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Let ε > 0 be given. Since limn γ (xn) = γ (x) = b > b − ε, it follows that there exists
m ∈ N such that γ (xm) > b − ε with xm ∈ F . Moreover, let {x1, x2, . . . , xn} ⊂ X be
arbitrary. Consider the set

Vx1,x2,...,xn
ε (γ ) =

n⋂
i=1

{
 ∈ X∗ : |
(xi ) − γ (xi )| < ε},

and

Bε(b) = {a ∈ R : |a − b| < ε}.
On the other hand, Vx1,x2,...,xn

ε (γ ) × Bε(b) is an arbitrary w∗-open neighborhood of (γ, b).
Now, since (γ, b − ε) �∈ K <, and (γ, b − ε) = (γ, b) − ε(0, 1) ∈ a f f K <, we get
(γ, b − ε) ∈ a f f K <, and [Vx1,x2,...,xn

ε (γ ) × Bε(b)] ∩ a f f K < �⊂ K <, where a f f K < is the
affine hull of K <. Hence (γ, b) does not belong to the relative w∗-interior of K <. This is a
contradiction. ��

Example 4.1 shows that the converse of Proposition 4.3 is not true. Next, we show that the
compactness of F guarantees the w∗-openness of K <.

Proposition 4.4 If F is compact, then K < is w∗-open. In such case, K < = w∗ − int K
≤

.

Proof Since F is compact, σF is continuous on X . Let (γ, b) ∈ K <. But, we have σF (γ ) =
maxx∈F γ (x) < b, it follows that there exists ε > 0 such that σF (γ ) < b − ε. By continu-
ity of σF , we conclude that there exists a w∗-open set Vx1,x2,...,xn

δ (γ ) × Bδ(b) of X∗ × R,
for some 0 < δ < ε

2 and some finite set {x1, x2, . . . , xn} ⊂ X such that if (
, d) ∈
Vx1,x2,...,xn

δ (γ ) × Bδ(b), then we have

|σF (
) − σF (γ )| <
ε

2
, whenever |b − d| < δ <

ε

2
.

Now, we are going to show that

Vx1,x2,...,xn
δ (γ ) × Bδ(b) ⊂ K <.

To do this, let (
, d) ∈ Vx1,x2,...,xn
δ (γ ) × Bδ(b). Thus, σF (
) < ε

2 +σF (γ ) < b−ε+ ε
2 < d ,

so that (
, d) ∈ K <. Therefore, K < is w∗-open, and hence K < = w∗ − int K
≤
. ��

Proposition 4.4 yields another version of Farkas Lemma for linear strict inequalities.

Corollary 4.2 If the solution set of the system {γt (x) < bt , ∀ t ∈ I} is compact, then
γ (x) < b is a consequence of this system if and only if

(γ, b) ∈ w∗ − int[ coneco{(γt , bt ) : t ∈ I; (0, 1)}].
Proof This is an immediate consequence of Proposition 4.4. ��

One of the important characterizations of solvability theorem is general Farkas Lemma
for systems of strict inequalities. Proposition 5.5 in [5] gives a condition for the systems of
strict inequalities, but its proof is false. On the other hand, in the first part of the proof of
Proposition 5.5 in [5], we see that “in both cases, there exists a hyperplane containing (a, b)

and 0n+1, which does not contain points of X .” This sentence is the main key of the proof.
The following example shows that this statement is not true.
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Example 4.2 Consider the system X = {(x, y) ∈ R
2 : (1,−1)(x, y) < 0, (1, 1)(x, y) <

0}. Let a1 = (1,−1), a2 = (1, 1), I = {1, 2} and (a, b) = (−1, 1, 0). Now, for every hyper-
plane H containing (−1, 1, 0) and 03, we have H contains (1,−1, 0), but (1,−1, 0) ∈ X.

The next result is the general Farkas Lemma for systems of strict inequalities in infinite
dimensional case.

Theorem 4.1 Let I be an arbitrary index set and F = {x ∈ X : γt (x) < bt , ∀ t ∈ I} �= ∅,
where γt : X −→ R is a continuous linear map. Assume that u : X −→ R is a continuous
linear map. Then the following assertions are equivalent:

(i) {x ∈ X : γt (x) < bt , ∀ t ∈ I} ⊂ {x ∈ X : u(x) < β}.
(ii) (u, β) ∈ eco[R++{(γt , bt ) : ∀ t ∈ I; (0, 1)}].
Proof Let A = R++{(γt , bt ) : ∀ t ∈ I; (0, 1)}.
(i) ⇒ (ii): Suppose that (u, β) �∈ ecoA. Then, by Lemma 4.1, there exists (y, d) ∈ X × R

such that

(y, d)[(
, b) − (u, β)] < 0 ∀ (
, b) ∈ A. (4.1)

Thus, we have

λ(
(y) + db) < u(y) + dβ ∀ (
, b) ∈ A and ∀ λ > 0. (4.2)

This implies that

(1) u(y) + dβ ≥ 0, as λ → 0.
(2) 
(y) + db ≤ 0 for all (
, b) ∈ A, as λ → ∞.

Also, by (4.2) for λ = 1, we have either

u(y) + dβ ≥ 0, 
(y) + bd < 0 ∀ (
, b) ∈ A.

In this case, put x0 := y and c := d, or

u(y) + dβ > 0, 
(y) + db ≤ 0 ∀ (
, b) ∈ A.

Now, assume that u(y) + dβ > 0 and 
(y) + db ≤ 0 for all (
, b) ∈ A. By hypothesis, we
have F = {x ∈ X : γt (x) < bt , ∀ t ∈ I} �= ∅, so there exists l ∈ X such that γt (l)−bt < 0
for all t ∈ I. This implies that


(l) − b < 0, ∀ (
, b) ∈ A.

Moreover, since u(y) + dβ > 0 and (i) implies that (l,−1)(u, β) < 0, then there exists
n ∈ N such that (y, d)(u, β) + 1

n (l,−1)(u, β) ≥ 0. Also,

(y, d)(
, b) + 1

n
(l,−1)(
, b) < 0, ∀ (
, b) ∈ A. (4.3)

This implies that(
1

n
l + y, d − 1

n

)
(
, b) < 0,

(
1

n
l + y, d − 1

n

)
(u, β) ≥ 0 ∀ (
, b) ∈ A. (4.4)

In this case, put x0 := 1
n l + y and c := d − 1

n . Hence, in both the above cases, we have

(x0, c)(
, b) < 0 ∀ (
, b) ∈ A, and (x0, c)(u, β) ≥ 0. (4.5)
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Since (0, 1) ∈ A, it follows from (4.5) that c < 0. Let x := |c|−1x0. Multiplying by |c|−1

each expression of (4.5), we obtain γt (x) < bt for all t ∈ I, and u(x) ≥ β, which is a
contradiction.

(ii) ⇒ (i): Assume if possible that γt (x) < bt for all t ∈ I and u(x) ≥ β for some x ∈ X.

This implies that (x,−1)(
, b) < 0 for all (
, b) ∈ A and (x,−1)(u, β) ≥ 0. Therefore,
we have

(x,−1)[(
, b) − (u, β)] < 0 ∀ (
, b) ∈ A. (4.6)

This, together with Lemma 4.1 imply that (u, β) �∈ ecoA, which completes the proof. ��

Corollary 4.3 Let I be an arbitrary index set and F = {x ∈ X : γt (x) < bt , ∀ t ∈ I} �= ∅,
where γt : X −→ R is a continuous linear mapping. Then

K < = eco[R++{(γt , bt ) : ∀ t ∈ I; (0, 1)}].

The proof of the following proposition is obvious, and therefore we omit it.

Proposition 4.5 Let F = ⋂
i∈I Fi �= ∅, where Fi is an evenly convex set with strict dual

cone K <
i (i ∈ I). Then, K < = eco[⋃i∈I K <

i ].

The next result is the general non-linear Farkas Lemma for systems of strict inequalities
in infinite dimensional case.

Corollary 4.4 Let F = {x ∈ X : ft (x) ∈ −intS, ∀ t ∈ J } �= ∅, where ft : X −→ Z is
a continuous S-convex function for each t ∈ J. Assume that u : X −→ R is a continuous
linear map. Then the following assertions are equivalent:

(i) {x ∈ X : ft (x) ∈ −intS, ∀ t ∈ J } ⊂ {x ∈ X : u(x) < b}.
(ii) (u, b) ∈ eco[(⋃t∈J

⋃
λ∈S+ epi(λ ft )

∗)\{0X∗×R}].

Proof Suppose Ft = {x ∈ X : ft (x) ∈ −intS} for each t ∈ J. Then, F = ∩t∈J Ft .

Therefore, by Proposition 3.2, the weak dual cone of cl Ft (cl Ft := {x ∈ X : ft (x) ∈ −S})
is Kt

≤ = epiσcl Ft = w∗ − cl(
⋃

λ∈S+ epi(λ ft )
∗). Since F �= ∅, then Ft �= ∅ for each

t ∈ J. This implies that the Slater condition holds, that is, there exists xt ∈ X such that
ft (xt ) ∈ −intS, thus the set

⋃
λ∈S+ epi(λ ft )

∗ is w∗-closed (see [9]). Therefore, we have

K
≤
t =

⋃
λ∈S+

epi(λ ft )
∗.

Then, according to Proposition 4.2, we obtain

K <
t = (

⋃
λ∈S+

epi(λ ft )
∗)\{0X∗×R},

and hence, by Proposition 4.5, we get

K <
t = eco[(

⋃
t∈J

⋃
λ∈S+

epi(λ ft )
∗)\{0X∗×R}],

which completes the proof. ��
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5 General existence theorem with applications

It is well-known that every positively homogenous convex (sublinear function) lower semi-
continuous function f is equal to support function C , where C = {γ ∈ X∗ : γ (x) ≤
f (x), ∀ x ∈ X} = ∂ f (0). In this section, we show that ∂ f (0) is weak∗-compact. On
the other hand, if f is a positively homogenous lower semi-continuous convex function, then
f (x) = maxγ∈∂ f (0) γ (x).

Let R
X be the set of all functions defined on X with values in R. Thus, R

X can be regarded
as a topological product space.

Lemma 5.1 ([1], Corollary 2.2). A set M ⊂ X∗ is weak∗-compact if and only if it is closed
in R

X , and for every x ∈ X, there exists Kx > 0 such that |γ (x)| ≤ Kx for all γ ∈ M.

The following theorem and its corollary are well-known (see for example [13]). For an
easy reference we gather another proof.

Theorem 5.1 Let f : X −→ R be a positively homogenous lower semi-continuous convex
function. Then, ∂ f (0) is weak∗-compact.

Proof Let x ∈ X be arbitrary. By definition of ∂ f (0), we have

γ (x) ≤ f (x), γ (−x) ≤ f (−x) ∀ γ ∈ ∂ f (0).

Put, Kx = max{ f (x), f (−x)}. Thus, we have

γ (x) ≤ Kx , and γ (−x) ≤ Kx ∀ γ ∈ ∂ f (0).

This implies that |γ (x)| ≤ Kx for all γ ∈ ∂ f (0). Now, by Lemma 5.1, we need only prove
that ∂ f (0) is closed in R

X . To do this, let θ0 : X −→ R be a limit point of ∂ f (0) in the
product topology of R

X . First, we show that θ0 is linear. Let x, y ∈ X, a ∈ R and ε > 0
be arbitrary. Consider the VF (θ0) as in (2.1) with F = {x, y, ax + y}. By hypothesis, there
exists θ ∈ ∂ f (0) ∩ VF (θ0) such that

|θ(x) − θ0(x)| < ε, |θ(y) − θ0(y)| < ε, and |θ(ax + y) − θ0(ax + y)| < ε.

From the above relations, we obtain |θ0(ax + y)− a θ0(x)− θ0(y)| < (2 + |a|)ε, and hence
θ0 is linear.

Also, we have

|θ0(x)| ≤ |θ(x)| + |θ(x) − θ0(x)| ≤ ‖θ‖ ‖x‖ + ε. (5.1)

Moreover, since f is lower semi-continuous, we get f (x) < α for some α ∈ R and for all
x ∈ B, where B = {x ∈ X : ‖x‖ ≤ 1}. Therefore, since θ ∈ ∂ f (0), we conclude that

θ(x) < α ∀ x ∈ B.

This implies that

‖θ‖ < α. (5.2)

Now, according to (5.1) and (5.2), we obtain

|θ0(x)| ≤ ‖θ‖ ‖x‖ + ε < α‖x‖ + ε ∀ x ∈ B.

Hence, ‖θ0‖ ≤ α, and hence θ0 is continuous. Finally, we must show that θ0(x) ≤ f (x) for
all x ∈ X . Let x ∈ X and ε > 0 be arbitrary. Since θ0 is a limit point of ∂ f (0) in the product
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topology of R
X , it follows that there exists θx ∈ ∂ f (0) such that |θx (x) − θ0(x)| < ε. Thus,

we have

θ0(x) = θx (x) + θ0(x) − θx (x) ≤ f (x) + |θ0(x) − θx (x)| < f (x) + ε.

This implies that θ0(x) ≤ f (x), and the proof is complete. ��
Corollary 5.1 Let f : X −→ R be a lower semi-continuous sublinear function. Then
f (x) = maxγ∈∂ f (0) γ (x).

The rest of this section concentrates on existence theorem for convex systems by strict
reverse-convex inequalities. The next result is an extension of Proposition 2.1 in infinite
dimensional case.

Proposition 5.1 Let I, J be arbitrary index sets, I �= ∅. The system F = {at (x) < bt , t ∈
I; at (x) ≤ bt , t ∈ J } is consistent if and only if

0X∗×R �∈ eco[{(at , bt ) : t ∈ I} + R+{(at , bt ) : t ∈ J }; (0X∗×R, 1)].
Proof Put A = [{(at , bt ) : t ∈ I} + R+{(at , bt ) : t ∈ J }; (0X∗×R, 1)]. Suppose that
F is consistent, so there exists x ∈ F such that (x,−1)[(at1 , bt1) + λ(at2 , bt2)] < 0 for all
λ ≥ 0, t1 ∈ I and all t2 ∈ J . According to Lemma 4.1 , we have 0X∗×R �∈ ecoA.

Conversely, assume that 0X∗×R �∈ ecoA. Then, by Lemma 4.1, there exists (x0, d) ∈
X × R such that

(x0, d)[(at1 , bt1) + λ(at2 , bt2)] < 0 ∀ λ ≥ 0, t1 ∈ I, t2 ∈ J .

Since (0, 1) ∈ A, we get d < 0. Put x := − x0
d . Thus

(x,−1)[(at1 , bt1) + λ(at2 , bt2)] < 0 ∀ λ ≥ 0, t1 ∈ I, t2 ∈ J . (5.3)

Moreover, by letting λ = 0 in (5.3), we have (x,−1)(at1 , bt1) < 0 for all t1 ∈ I. Also, it
follows from (5.3) that (x,−1)(at2 , bt2) ≤ 0 for all t2 ∈ J . Hence, x ∈ F, which completes
the proof. ��
Proposition 5.2 Let F = {x ∈ X : ft (x) < 0, t ∈ I; ft (x) ≤ 0, t ∈ J }, where
I �= ∅, ft (x) = gt (x) − bt , bt ∈ R, with gt : X −→ R is a continuous sublinear function
for each t ∈ I ∪ J . Then the system F is consistent if and only if

0X∗×R �∈ eco{(
⋃
t∈I

∂ ft (0) × {bt }) + R+(
⋃
t∈J

∂ ft (0) × {bt }); (0X∗ , 1)}.

Proof This is an immediate consequence of Corollary 5.1 and Proposition 5.1. ��
Lemma 5.2 Let X be a Banach space and S be a closed convex cone in X such that intS �= ∅.

Then

intS = {x ∈ X : λ(x) > 0, ∀ λ ∈ S+\{0}}.
Proof Since

S = {x : λ(x) ≥ 0, ∀ λ ∈ S+},
it follows that int S ⊃ {x ∈ X : λ(x) > 0, ∀ λ ∈ S+\{0} }. For the converse inclusion, let
x ∈ intS. Then there exists r > 0 such that the neighborhood Nr (x) ⊂ S. This implies that
λ(u) ≥ 0 for all u ∈ Nr (x), and all λ ∈ S+\{0}. Assume that x /∈ {x ∈ X : λ(x) > 0, ∀ λ ∈
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S+\{0} }. That is, there exists a λ ∈ S+\{0} such that λ(x) = 0. Let 0 �= u ∈ Nr (x). It is
clear that x + u

‖u‖
r
2 and x − u

‖u‖
r
2 ∈ Nr (x). Thus, λ(x + u

‖u‖
r
2 ) ≥ 0 and λ(x − u

‖u‖
r
2 ) ≥ 0.

This, together with the fact λ(x) = 0 imply that λ(u) = 0. Thus, we have λ(u) = 0 for all
u ∈ Nr (x). Hence, λ = 0 on X. This is a contradiction, and the proof is complete. ��

The next result is the general existence theorem for the system of strict reverse-convex
inequality with the collection of sublinear functions and reverse-convex inequality with the
collection of convex functions.

Theorem 5.2 Let F = {x ∈ X : ft (x) ∈ −intS, t ∈ I; ft (x) ∈ −S, t ∈ J }, where S
is a non-empty closed convex cone in Z , ft : X −→ Z is a continuous S-convex function
for each t ∈ I ∪ J , and ft is a positively homogenous function for each t ∈ I with I �= ∅.
Then, F �= ∅ if and only if

0X∗×R �∈ eco{
⋃
t∈I

⋃
λ∈S+\{0}

epi(λ ft )
∗ + R+(

⋃
t∈J

⋃
λ∈S+

epi(λ ft )
∗); (0X∗ , 1)}.

Proof Let A = {⋃t∈I
⋃

λ∈S+\{0} epi(λ ft )
∗ + R+(

⋃
t∈J

⋃
λ∈S+ epi(λ ft )

∗); (0X∗ , 1)}.
Suppose that 0X∗×R �∈ ecoA. Then, by Lemma 4.1, there exists (x0, d) ∈ X × R such that
(x0, d)[(γt , bt ) + µ(
s , ds)] < 0, for all µ ≥ 0, t ∈ I, s ∈ J , (γt , bt ) ∈ epi(λ ft )

∗ and
all (
s, ds) ∈ epi(λ fs)

∗. By a similar argument as in the proof of Proposition 5.1, we obtain

(x0,−1)[(γt , bt ) + µ(
s, ds)] < 0, (5.4)

for all µ ≥ 0, t ∈ I, s ∈ J , (γt , bt ) ∈ epi(λ ft )
∗ and all (
s, ds) ∈ epi(λ fs)

∗. Let
λ ∈ S+\{0}, t ∈ I and (γt , bt ) ∈ epi(λ ft )

∗ be arbitrary. Put, bt = (λ ft )
∗(γt ) and µ = 0 in

(5.4). Then we have

γt (x0) < (λ ft )
∗(γt ). (5.5)

Since λ ft is continuous, it follows that

(λ ft )(x0) = (λ ft )
∗∗(x0) = sup

γt ∈dom(λ ft )∗
[γt (x0) − (λ ft )

∗(γt )]. (5.6)

It is easy to see that dom(λ ft )
∗ = ∂(λ ft )(0). So, by Theorem 5.1, dom(λ ft )

∗ is weak*-
compact. Thus, we have

sup
γt ∈dom(λ ft )∗

[γt (x0) − (λ ft )
∗(γt )] = max

γt ∈dom(λ ft )∗
[γt (x0) − (λ ft )

∗(γt )].

According to this fact and (5.5)and (5.6), we get (λ ft )(x0) < 0. Hence, by Lemma 5.2,
we obtain ft (x0) ∈ −intS for all t ∈ I.

Now, letλ ∈ S+, s ∈ J and (
s, ds) ∈ epi(λ fs)
∗ be arbitrary. This implies that
s(x0) ≤

ds . Put ds = (λ fs)
∗(
s). Hence, 
s(x0) − (λ fs)

∗(
s) ≤ 0 for all 
s ∈ dom(λ fs)
∗. Thus

(λ fs)(x0) = (λ fs)
∗∗(x0) = sup


s∈dom(λ fs )∗
[
s(x0) − (λ fs)

∗(
s)] ≤ 0.

This shows that fs(x0) ∈ −S for all s ∈ J , and hence F �= ∅.
Conversely, assume that F �= ∅. Then there exists x ∈ F such that in view of Lemma 5.2,

we obtain

− λ ft (x) > 0, and − µ fs(x) ≥ 0, ∀ t ∈ I, s ∈ J , λ ∈ S+\{0}, µ ∈ S+. (5.7)
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Now, we are going to show that (x,−1)(γ, b) < 0 for all (γ, b) ∈ A. To do this, let
λ ∈ S+\{0}, µ ∈ S+, t ∈ I, s ∈ J , (γt , bt ) ∈ epi(λ ft )

∗ and (
s, ds) ∈ epi(µ fs)
∗ be

arbitrary. Then, according to (5.7), we have


s(x) + γt (x) < 
s(x) + γt (x) − µ fs(x) − λ ft (x) ≤ ds + bt .

This implies that

(x,−1)(
s + γt , ds + bt ) < 0.

In view of Lemma 4.1, we obtain 0X∗×R �∈ ecoA, and the proof is complete. ��
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