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Abstract In this paper, a new projection method for solving a system of nonlinear equations
with convex constraints is presented. Compared with the existing projection method for solv-
ing the problem, the projection region in this new algorithm is modified which makes an
optimal stepsize available at each iteration and hence guarantees that the next iterate is more
closer to the solution set. Under mild conditions, we show that the method is globally con-
vergent, and if an error bound assumption holds in addition, it is shown to be superlinearly
convergent. Preliminary numerical experiments also show that this method is more efficient
and promising than the existing projection method.

Keywords Projection method · Constrained system of nonlinear equations · Superlinear
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1 Introduction

Let F : Rn → Rn be a continuous nonlinear mapping and C be a nonempty closed convex
set of Rn . Consider the problem of finding x ∈ C such that

F(x) = 0. (1.1)
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This problem finds applications in many fields such as power engineering [3,12], chemical
equilibrium systems and economic equilibrium problems [2,6].

For problem (1.1), a very popular method may be the Levenberg-Marquardt type methods
[4,9,15] whose superlinear convergence rate can be established under an error bound estima-
tion instead of the nonsingularity assumption. Different from the methods above, Maranas
and Floudas proposed a new type of solution method for a certain class of the problem by
introducing slack variables [5].

More recently, Wang et al. [11] established a projection type method for solving problem
(1.1) motivated by the fact that the projection method has made a good success in solving
such as linearly constrained optimization problems [1], variational inequalities [13] and non-
linear complementarity problems [8]. The numerical performances given in [11] show that
the projection method for solving problem (1.1) is really efficient and has strong stability. To
accelerate the convergence rate, in this paper, we would propose a modified version for the
method inspired by Solodov and Svaiter’s work for solving variational inequalities in [7]. The
main difference between these two algorithms lies in that the projection region is modified,
or more precisely, contracted, in the new version. Our theoretical analysis shows that this
modification makes that an optimal step-size could be taken at each iteration and therefore
guarantees that the next iterate is more closer to the solution set. Under the same conditions
as those in [11], we establish the global convergence and the superlinear convergence of the
proposed algorithm. Preliminary numerical experiments also show that this method is more
efficient and promising than the projection method in [11].

The remaining part of this paper is distributed as follows. In Sect. 2, we will summarize
some basic concepts and related properties which will be used in subsequent sections. The
description of the modified projection method and the global convergence will be given in
Sect. 3. The superlinear convergence of the method will be established in Sect. 4 and the last
section will present some numerical experiments.

2 Preliminaries

A mapping F : Rn → Rn is said to be monotone if

〈F(x) − F(y), x − y〉 ≥ 0 ∀ x, y ∈ Rn .

For a monotone mapping F , if 〈F(x) − F(y), x − y〉 = 0 iff x = y, then it is said to be
strictly monotone.

Let � be a nonempty closed convex subset of Rn . Then for any x ∈ Rn , its projection to
� is defined as:

P�[x] = arg min{‖y − x‖ | y ∈ �}.
The mapping P�: Rn → � is called a projection operator.

One well known property of the projection operator is that it is nonexpansive, i.e., for any
x, y ∈ Rn , it holds that

‖P�[x] − P�[y]‖ ≤ ‖x − y‖,
or more precisely,

‖P�[x] − P�[y]‖2 ≤ ‖x − y‖2 − ‖P�[x] − x + y − P�[y]‖2. (2.1)

We also have the following properties on the projection operator (see [14,16]).
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Lemma 2.1 Let � ⊆ Rn be a nonempty closed convex subset. Then for all x ∈ Rn and
y ∈ �,

〈P�[x] − x, y − P�[x]〉 ≥ 0.

Lemma 2.2 Let � ⊆ Rn be a nonempty closed convex subset. For any x, d ∈ Rn and α ≥ 0,
define x(α) := P�[x − αd]. Then 〈d, x(α) − x〉 is non-increasing with respect to α ≥ 0.

Lemma 2.3 Let � ⊆ Rn be a nonempty closed convex subset. For any x ∈ �, d ∈ Rn and
α ≥ 0, define �(α) := min{‖y − x + αd‖2 | y ∈ �}. Then � ′(α) = 2〈d, x(α) − x + αd〉.

3 Algorithm and convergence analysis

Now, we give a description of the modified projection method and then present its global
convergence analysis.

Algorithm 3.1

Step 0. Choose an arbitrary initial point x0 ∈ C , parameters γ1, γ2 > 0, λ, β ∈ (0, 1),
κ0 ∈ [0, 1), and set k := 0.
Step 1. If F(xk)= 0, stop. Otherwise, let µk = γ1‖F(xk)‖1/2, σk = min{κ0, γ2‖F(xk)‖1/2}.
Take a positive semi-definite matrix Gk ∈ Rn×n and solve the following linear equations
with respect to x ∈ Rn

F(xk) + (Gk + µk I )(x − xk) = 0 (3.1)

approximately, i.e., find an approximate solution x̄ k ∈ Rn to (3.1) such that the residual rk

on the left-hand-side satisfies

‖rk‖ ≤ σkµk‖xk − x̄ k‖. (3.2)

Step 2. Find yk = xk + tk(x̄ k − xk) satisfying that

〈F(yk), xk − x̄ k〉 ≥ λ(1 − σk)µk‖xk − x̄ k‖2, (3.3)

where tk = βmk and mk is the smallest nonnegative integer such that (3.3) holds.
Step 3. Compute xk+1 via

xk+1 = PC∩Hk [xk − α1
k F(yk)], (3.4)

where

Hk := {x ∈ Rn | 〈F(yk), x − yk〉 = 0}
and

α1
k := 〈F(yk), xk − yk〉

‖F(yk)‖2 .

Set k := k + 1 and go to Step 1.

Remark 3.1
(1) In the algorithm, a projection from Rn onto the intersected set C ∩ Hk needs to be

computed, i.e., procedure (3.4), at each iteration. Surely, if the domain set C has a special
structure such as a box or a ball, then the next iterate xk+1 can easily be computed. If the
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domain set C is defined by a set of linear (in)equalities, then computing the projection is
equivalent to solving a strictly convex quadratic optimization problem. Furthermore, the
hyperplane Hk can be replaced by the following half space just as done in [7]:

H−
k = {x ∈ Rn | 〈F(yk), x − yk〉 ≤ 0}.

However, this would increase a little more cost in computation for the case that the domain
set C is defined by a set of linear equalities.

(2) It can readily be verified that the hyperplane Hk strictly separates the current point xk

from the solution set, denoted by S, if xk is not a solution of the problem. That is, S ⊂ H−
k .

(3) Compared with the projection given in [11], besides the major modification made
in the projection procedure in the last step, the values of some parameters involved in the
algorithm are also adjusted.

Before establishing the global convergence of Algorithm 3.1, we first give its theoretical
analysis and its theoretical comparison to the algorithm given in [11].

For Algorithm 3.1, if it terminates within finite steps, then we can obtain a solution of
(1.1). So, in the following analysis, we assume that Algorithm 3.1 always generates an infinite
sequence.

For k ≥ 0 and α ≥ 0, we introduce the following projection point

xk(α) := PC [xk − αF(yk)].
Then, for any solution point x∗ ∈ S, by (2.1) and the monotonicity of F , we have

‖xk(α) − x∗‖2 = ‖PC [xk − αF(yk)] − x∗‖2

≤ ‖xk − x∗ − αF(yk)‖2 − ‖xk − xk(α) − αF(yk)‖2

≤ ‖xk − x∗‖2 − 2α〈F(yk), xk − yk〉 + α2‖F(yk)‖2

−‖xk − xk(α) − αF(yk)‖2

If we define

φk(α) := 2α〈F(yk), xk − yk〉 + ‖xk − xk(α) − αF(yk)‖2 − α2‖F(yk)‖2,

then

‖xk(α) − x∗‖2 ≤ ‖xk − x∗‖2 − φk(α).

This means that if we want to make the candidate iterate x(α) more closer to the solution set,
we can take the maximizer of function φk(α) as the step size.

For the function φk(α), by Lemma 2.3, one has

φ′
k(α) = 2〈F(yk), xk − yk〉 + 2〈F(yk), xk(α) − xk + αF(yk)〉 − 2α‖F(yk)‖2

= 2〈F(yk), xk − yk〉 + 2〈F(yk), xk(α) − xk〉
= 2〈F(yk), xk(α) − yk〉.

Thus, by the linear search procedure in Step 2, we have

φ′
k(0) = 2〈F(yk), xk − yk〉

= 2tk〈F(yk), xk − x̄ k〉
≥ 2tkλ(1 − σk)µk‖xk − x̄ k‖2

≥ 2λ(1 − σk)µk‖xk − yk‖2 > 0,

(3.5)

where the last non-strict inequality uses the fact that tk ≤ 1.
Consider the optimization problem

max{φk(α) | α ≥ 0} (3.6)
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Since φk(0) = 0 and φ′
k(0) > 0 by (3.5), we know that

max{φk(α) | α ≥ 0} > 0.

By Lemma 2.2, we know that function φ′
k(α) is nonincreasing and continuous with respect

to α ≥ 0. So, if the equation

φ′
k(α) = 0

is solvable on α ≥ 0 then its any solution coincides with the maximizer of problem (3.6).
The following conclusion tells us that the maximizer to problem (3.6) really exists.

Lemma 3.1 Suppose that the underlying mapping F is monotone. Then the equationφ′
k(α) =

0 is solvable with respect to α > 0.

Proof It is easy to verify that (xk −α1
k F(yk)) is the projection of xk to hyperplane Hk . Thus,

for any α > α1
k , it holds that

xk − αF(yk) ∈ {x ∈ Rn | 〈F(yk), x − yk〉 < 0}.
From (2) in Remark 3.1, we know that the set C ∩ H−

k is nonempty. Hence, it can be readily
shown that there exists α′

k satisfying α′
k ≥ α1

k > 0 such that

PC [xk − α′
k F(yk)] ∈ {x ∈ Rn | 〈F(yk), x − yk〉 ≤ 0}.

From (3.5), we conclude that

PC [xk − 0 · F(yk)] ∈ {x ∈ Rn | 〈F(yk), x − yk〉 > 0}.
Thus, by the continuity of the projection, there exists α2

k ∈ (0, α′
k) such that

xk(α2
k ) = PC [xk − α2

k F(yk)] ∈ Hk ∩ C,

which implies that φ′
k(α

2
k ) = 0. This completes the proof. ��

For the candidate iterate xk(α), if we denote the smallest positive solution of equation
φ′

k(α) = 0 by α2
k , then it can be taken as an optimal stepsize for x(α). Compared with stepsize

α1
k taken in Algorithm 3.1 in [11], α2

k is longer and iterate x(α2
k ) is more closer to the solution

set than iterate x(α1
k ) in theory. In this sense, α2

k is an optimal stepsize. However, it is difficult
to take unless the domain set C has a special structure. The following proposition shows this
can be realized via the projection made in the last step of Algorithm 3.1, which also means
that the algorithm given in [11] and Algorithm 3.1 can be unified via x(α).

Proposition 3.1 [10] Suppose that the underlying mapping F is monotone. Then

PC [xk − α2
k F(yk)] = PC∩Hk [xk − α1

k F(yk)].
Now, we turn to establishing the global convergence of Algorithm 3.1. To this end, the fol-
lowing assumptions are needed, which are the same as those given in [11] for the convergence
of the algorithm in that paper.

Assumption:

(A1) The solution set S of (1.1) is nonempty;
(A2) The underlying mapping F is monotone;
(A3) For the positive semi-definite matrix sequence {Gk}, it holds that supk ‖Gk‖ < ∞.
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Theorem 3.1 Suppose that Assumptions (A1)–(A3) hold. Then the sequence {xk} generated
by Algorithm 3.1 converges to a solution of (1.1).

Proof First we show the sequences {xk} and {yk} are both bounded.
From the above analysis, for any k ≥ 0 and any x∗ ∈ S, it holds that

‖xk+1 − x∗‖2 = ‖PC [xk − α2
k F(yk)] − x∗‖2

≤ ‖xk − x∗‖2 − φ(α2
k )

≤ ‖xk − x∗‖2 − φ(α1
k )

= ‖xk − x∗‖2 − 2α1
k 〈F(yk), xk − yk〉 + (α1

k )2‖F(yk)‖2

−‖xk − xk(α1
k ) − α1

k F(yk)‖2

≤ ‖xk − x∗‖2 − 2α1
k 〈F(yk), xk − yk〉 + (α1

k )2‖F(yk)‖2.

Thus by the definition of α1
k , we have

‖xk+1 − x∗‖2 ≤ ‖xk − x∗‖2 − 〈F(yk), xk − yk〉2

‖F(yk)‖2 , (3.7)

which means that sequence {‖xk − x∗‖} is contractive and thus sequence {xk} is bounded.
Due to the monotonicity of F , (3.5) yields

〈F(xk), xk − yk〉 ≥ λ(1 − σk)µk‖xk − yk‖2.

By the Cauchy–Schwartz inequality and the choices of µk and σk , the inequality above reads

‖F(xk)‖1/2 ≥ λ(1 − κ0)γ1‖xk − yk‖.
From the boundedness of {xk} and the continuity of F , we know that sequence {yk} is also
bounded.

Now, we can show the global convergence of the sequence {xk}.
Since F is continuous and sequence {yk} is bounded, there exists a positive constant M

such that ‖F(yk)‖ ≤ M for k ≥ 0. It follows from (3.7) that

‖xk+1 − x∗‖2 ≤ ‖xk − x∗‖2 − 〈F(yk), xk − yk〉2

M2 ,

from which we deduce that

lim
k→∞〈F(yk), xk − yk〉 = 0. (3.8)

On the other hand, by (3.5) and the choices of σk and λ, there exists a constant κ > 0 such
that

〈F(yk), xk − yk〉 ≥ κtkµk‖xk − x̄ k‖2.

This, together with (3.8), yields that

lim
k→∞ tkµk‖xk − x̄ k‖ = 0.

Following the latter part of the proof of Theorem 2.1 in [11], we can obtain the desired
result. ��
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4 Convergence rate

Throughout this section, we assume that xk → x∗ as k → ∞, where x∗ ∈ S. To analyze the
convergence rate of Algorithm 3.1, the following additional assumption is needed.

Assumption:
(A4) For x∗ ∈ S and sufficiently large k, there exist positive constants δ, c1 and c2 such

that

c1dist(x, S) ≤ ‖F(x)‖, ∀ x ∈ N (x∗, δ), (4.1)

and

‖F(x) − F(y) − Gk(x − y)‖ ≤ c2‖x − y‖2, ∀ x, y ∈ N (x∗, δ), (4.2)

where dist(x, S) denotes the distance from x to solution set S, and

N (x∗, δ) := {x ∈ Rn | ‖x − x∗‖ ≤ δ}.
Under Assumption (A4), it is readily shown that there exists L > 0 such that

‖F(x) − F(y)‖ ≤ L‖x − y‖, ∀ x, y ∈ N (x∗, δ), (4.3)

which means that F is locally Lipschitz continuous. Also, if F is continuously differentiable
and F ′ is locally Lipschitz continuous, then (4.2) holds with x = xk and Gk = F ′(xk).

In order to prove the convergence rate of the algorithm, we need several technical lemmas.

Lemma 4.1 [17] Let G ∈ Rn×n be a positive semi-definite matrix and µ > 0. Then

(1) ‖(G + µI )−1‖ ≤ 1
µ

;

(2) ‖(G + µI )−1G‖ ≤ 2.

Lemma 4.2 Suppose that Assumption (A4) holds. For points xk and x̄k generated by Algo-
rithm 3.1, if xk ∈ N (x∗, 1

2 δ), then there exists a positive constant c3 such that

‖xk − x̄ k‖ ≤ c3dist(xk, S).

Proof Let x̂ k ∈ S be the closest solution to xk . Then from xk ∈ N (x∗, 1
2 δ), we conclude that

‖x̂ k − x∗‖ ≤ ‖x̂ k − xk‖ + ‖xk − x∗‖ ≤ δ,

which means that x̂ k ∈ N (x∗, δ).
Thus, by (3.1), (3.2), (4.2), Lemma 4.1 and Assumption (A4), we have

‖xk − x̄ k‖ ≤ ‖(Gk + µk I )−1 F(xk)‖ + ‖(Gk + µk I )−1rk‖
≤ ‖(Gk + µk I )−1[F(x̂ k) − F(xk) − Gk(x̂ k − xk)]‖

+‖(Gk + µk I )−1Gk(xk − x̂ k)‖ + 1
µk

‖rk‖
≤ c2

µk
‖xk − x̂ k‖2 + 2‖xk − x̂ k‖ + σk‖xk − x̄ k‖,

Hence,

(1 − σk)‖xk − x̄ k‖ ≤
( c2

µk
‖xk − x̂ k‖ + 2

)
dist(xk, S). (4.4)

From (4.1) and the choice of µk , it holds that

c2

µk
‖xk − x̂ k‖ = c2

µk
dist(xk, S) ≤ c2 M1

c1γ1
, (4.5)
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where M1 is the upper bound of {‖F(xk)‖1/2}.
Set c3 := c2 M1+2c1γ1

c1γ1(1−κ0)
. Then by (4.4) and (4.5), one has

‖xk − x̄ k‖ ≤ c3dist(xk, S).

This completes the proof. ��
Lemma 4.3 Suppose that Assumptions (A1)–(A4) hold. Then for all k sufficiently large,

(1) c4‖xk − x̄ k‖ ≤ ‖F(xk)‖ ≤ c5‖xk − x̄ k‖;
(2) ‖F(xk) − Gk(xk − x̄ k)‖ ≤ c6‖xk − x̄ k‖3/2;
where c4, c5, c6 are all positive constants.

Proof For (1), the left-hand-side of the inequality follows directly from Lemma 4.2 and (4.1)
by setting c4 := c1/c3.

For the right-hand-side part, from (3.1), (3.2) and the triangle inequality, we have

‖F(xk)‖ ≤ ‖(Gk + µk I )(x̄ k − xk)‖ + ‖rk‖
≤ ‖(Gk + µk I )‖‖(x̄ k − xk)‖ + σkµk‖x̄ k − xk‖
≤ c5‖x̄ k − xk‖,

where the last inequality follows from Assumption (A3) and the choices of σk, µk .
For (2), from (3.1), (3.2) and the triangle inequality, we have

‖F(xk) − Gk(xk − x̄ k)‖ ≤ µk‖xk − x̄ k‖ + ‖rk‖
≤ (1 + σk)µk‖xk − x̄ k‖
≤ (1 + κ0)γ1‖F(xk)‖1/2‖xk − x̄ k‖.

Using the right-hand-side inequality of (1) and setting c6 := (1 + κ0)γ1c1/2
5 yield

‖F(xk) − Gk(xk − x̄ k)‖ ≤ c6‖xk − x̄ k‖3/2.

This completes the proof. ��
Lemma 4.4 Suppose that Assumptions (A1)–(A4) hold. Then for all k sufficiently large, it
holds that tk = 1. That is, yk = x̄ k .

Proof From the fact that xk → x∗ as k → ∞, we know that {‖F(xk)‖} converges to 0 as
k → ∞. From Lemma 4.3, we know that the sequence {‖xk − x̄ k‖} tends to 0 as k → ∞.
So, x̄ k ∈ N (x∗, δ) for k sufficiently large. Hence it follows from (4.2) that

F(x̄ k) = F(xk) + Gk(x̄ k − xk) + Rk

with ‖Rk‖ ≤ c2‖xk − x̄ k‖2. From (3.1), the above equality can be written as

F(x̄ k) = µk(xk − x̄ k) + rk + Rk . (4.6)

Hence,

〈F(x̄ k), xk − x̄ k〉 = 〈µk(xk − x̄ k) + rk + Rk, xk − x̄ k〉
≥ µk‖xk − x̄ k‖2 − σkµk‖xk − x̄ k‖2 − c2(‖xk − x̄ k‖3)

≥
(

1 − c2(‖xk−x̄ k‖)
µk (1−σk )

)
(1 − σk)µk‖xk − x̄ k‖2.

(4.7)
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By the first inequality in Lemma 4.3 and the choices of µk, σk , we know that for k sufficiently
large,

1 ≥ 1 − c2‖xk − x̄ k‖
µk(1 − σk)

≥ 1 − c2‖F(xk)‖1/2

c4γ1(1 − κ0)
.

Since ‖ f (xk)‖ → 0 as k → ∞, then for k sufficiently large, we have

1 − c2‖xk − x̄ k‖
µk(1 − σk)

≥ λ,

which, in junction with inequality (4.7), implies that (3.3) holds with tk = 1 for all k suffi-
ciently large. This completes the proof. ��

This conclusion tells us that we can assume that yk = x̄ k for sufficiently large k in the
subsequent analysis.

Lemma 4.5 Suppose that Assumptions (A1)–(A4) hold. Set x̃k := xk − α1
k F(yk). Then for

all k sufficiently large, there exists a positive constant c7 such that

‖x̃ k − yk‖ ≤ c7‖xk − x̄ k‖3/2.

Proof Since x̃ k is the orthogonal projection of xk onto Hk , then we have

‖x̃ k − yk‖ = ‖yk − xk‖ sin θk = ‖xk − x̄ k‖ sin θk, (4.8)

where θk is the angle composed by vectors (x̃ k − xk) and (yk − xk).
Since x̃ k − xk = −α1

k F(yk) and yk − xk = x̄ k − xk , so the angle composed by α1
k F(yk)

and µk(xk − x̄ k) is also θk . Now, we will give a bound estimation to the sine function.
From (4.6), we know that the three edges F(yk), µk(xk − x̄ k) and (rk + Rk) constitute a

triangle. From the geometry knowledge of sine function, we conclude that

sin θk ≤ ‖rk + Rk‖
µk‖xk − x̄ k‖

≤ σkµk‖xk − x̄ k‖ + c2‖xk − x̄ k‖2

µk‖xk − x̄ k‖
= σk + c2‖xk − x̄ k‖

µk

≤ γ2‖F(xk)‖1/2 + c2‖F(xk)‖
c4γ1‖F(xk)‖1/2

= η‖F(xk)‖1/2,

where η := γ2 + c2
c4γ1

.
Therefore, by the right-hand-side inequality (1) in Lemma 4.3, we can deduce from (4.8)

that

‖x̃ k − yk‖ ≤ η‖F(xk)‖1/2‖xk − x̄ k‖
≤ c7‖xk − x̄ k‖3/2,

where c7 := ηc
1
2
5 . This completes the proof. ��

Lemma 4.6 Suppose that Assumptions (A1)–(A4) hold. Then for x∗ ∈ S and all k ≥ 0,

‖xk+1 − x∗‖ ≤ ‖x̃ k − x∗‖.
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Proof If x̃ k ∈ C , then xk+1 = x̃ k and the assertion follows immediately. So, we can only
consider the case that x̃ k /∈ C .

From Proposition 3.1,

xk+1 = PC [xk − α2
k F(yk)].

Then for the hyperplane

Uk := {x ∈ Rn | 〈xk − α2
k F(yk) − xk+1, x − xk+1〉 = 0}.

From Lemma 2.1, we know that

C ⊂ U−
k := {x ∈ Rn | 〈xk − α2

k F(yk) − xk+1, x − xk+1〉 ≤ 0}.
Combining this with the fact that S ⊂ H−

k ∩ C yields that S ⊂ U−
k ∩ H−

k ∩ C .
Define hyperplane

Vk := {x ∈ Rn | 〈x̃ k − xk+1, x − xk+1〉 = 0}.
For any x ∈ Rn such that

〈F(yk), x − xk+1〉 ≤ 0, 〈xk − α2
k F(yk) − xk+1, x − xk+1〉 ≤ 0,

using inequality α2
k ≥ α1

k , we can readily deduce that

〈xk − α1
k F(yk) − xk+1, x − xk+1〉 ≤ 0,

i.e.,

〈x̃ k − xk+1, x − xk+1〉 ≤ 0.

This implies that

U−
k ∩ H−

k ∩ C ⊂ V −
k ∩ H−

k ∩ C,

where V −
k is a half space defined similarly to H−

k and U−
k .

Again from S ⊂ U−
k ∩ H−

k ∩ C , we conclude that S ⊂ V −
k ∩ H−

k ∩ C .
Since hyperplane Hk and hyperplane Vk are perpendicular, x̃ k ∈ Hk ∩V +

k , xk+1 ∈ Hk ∩Vk

and S ⊂ V −
k ∩ H−

k . Thus for any x∗ ∈ S, we denote its projection to the line determined
by x̃ k and xk+1 by x̄∗, then xk+1 lies within the segment [x̃ k, x̄∗] and three points x̃ k, x̄∗, x∗
constitute a right triangle. By the triangle geometry property, we obtain the desired result and
this completes the proof. ��

Now, we are at a position to state the main result in this section.

Theorem 4.1 Suppose that Assumptions (A1)–(A4) hold. Then the sequence {dist (xk, S)}
Q-superlinearly converges to 0.

Proof From Lemma 4.3 and (4.3), for sufficiently large k, it holds that

‖x̃ k − x∗‖ ≤ ‖xk − x∗‖ + ‖α1
k F(yk)‖

≤ ‖xk − x∗‖ + ‖xk − x̄ k‖
≤ ‖xk − x∗‖ + ‖F(xk)‖/c4

≤ (1 + L/c4)‖xk − x∗‖,
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from which we deduce that ‖x̃ k −x∗‖ → 0 as k → ∞. Thus, x̃ k ∈ N (x∗, δ) for k sufficiently
large, and from (4.2), we have

‖F(x̃ k)‖ ≤ ‖F(xk) − Gk(x̃ k − xk)‖ + c2‖x̃ k − xk‖2

≤ ‖F(xk) − Gk(xk − x̄ k)‖ + ‖Gk(x̃ k − x̄ k)‖ + c2‖x̃ k − xk‖2

≤ ‖F(xk) − Gk(xk − x̄ k)‖ + τmax‖x̃ k − yk‖ + c2‖xk − x̄ k‖2

≤ c6‖xk − x̄ k‖3/2 + τmaxc7‖xk − x̄ k‖3/2 + c2‖xk − x̄ k‖2,

where τmax = supk ‖Gk‖ and the last inequality follows from the second conclusion in
Lemma 4.3 and from Lemma 4.5. So, there exists a positive constant c8 such that

‖F(x̃ k)‖ ≤ c8‖xk − x̄ k‖3/2. (4.9)

On the other hand, by Lemma 4.6, one has

dist(xk+1, S) = infs∈S‖xk+1 − s‖
≤ infs∈S‖x̃ k − s‖
= dist(x̃ k, S).

Hence, from (4.1) we have

c1dist(xk+1, S) ≤ ‖F(x̃ k)‖. (4.10)

Then from (4.9), (4.10) and Lemma 4.2 we have

c1dist(xk+1, S) ≤ ‖F(x̃ k)‖ ≤ c8‖xk − x̄ k‖3/2 ≤ c9dist3/2(xk, S),

where c9 := c3/2
3 c8. This means that the sequence {dist(xk, S)} Q-superlinearly converges

to 0. ��

5 Preliminary numerical experiments

In our numerical experiments, all examples used in this section were tested in [11]. Just as
done in [11], we take Gk = F ′(xk) and use the left division operation in MATLAB to solve
the system of linear equations (3.1) at each iteration. In this sense, the subproblem is solved
with a higher accurate for all k (i.e., κ0 ≈ 0). Other parameters used in the algorithm are set
as λ = 0.95, β = 0.6 and γ1 = 1. We choose ‖F(xk)‖ ≤ 10−6 as the stop criterion. All
codes are written in MATLAB 6.5 and run on a PIV 2.0 GHz personal computer.

For convenience, we denote the projection algorithm proposed in [11] by Alg-P and the
modified projection algorithm in this paper by Alg-MP. Certainly, the numerical comparison
of these two algorithms is the focus of this section. So, the computation of Alg-P will be
repeated here.

Example 5.1 The mapping F is taken as F(x) = ( f1(x), . . . , fn(x))T , where fi (x) =
exi − 1, i = 1, . . . , n and C = Rn+.

It is obvious that the mapping F is strictly monotone and this problem has a unique solu-
tion x∗ = (0, . . . , 0). For initial point x0 = (1, . . . , 1), Table 1 gives the numerical results
by Alg-P and Alg-MP with different dimensions, where the unit of running time of CPU is
second and Iter. denotes the iteration number when the algorithm terminates.
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Table 1 Numerical results of Example 5.1

Dimension 8 16 32 64 128 256
Alg-P Iter. 43 45 46 47 48 49

Running time 0.20 0.26 0.32 0.37 0.75 4.01
Alg-MP Iter. 4 4 4 4 4 4

Running time 0.04 0.04 0.04 0.04 0.15 1.11

Example 5.2 Let the domain set C and the mapping F be, respectively, taken as

C =
{

x ∈ R5

∣∣∣∣∣
5∑

i=1

xi ≥ 10, xi ≥ 0, i = 1, 2, . . . , 5

}
,

and

F(x) = ρD(x) + Mx + q + q0,

where M is a 5×5 asymmetric positive definite matrix whose entries are randomly generated
in (−5, 5), the vector q is generated from a uniform distribution in the interval (−10, 10)

and Di (x) = arctan(xi − 2), i = 1, 2, . . . , 5. The parameter ρ is a constant. q0 is a constant
vector which guarantees that the equation F(x) = 0 has solutions over C .

For this problem, Table 2 gives the numerical results for ρ = 100 and ρ = 200 by Al-10,
respectively, while Table 3 gives the numerical results for ρ = 100 and ρ = 200 by Alg-MP,
respectively.

Table 2 Numerical results of Example 5.2 by Alg-P

Initial point Iter. Running time ‖F(x∗)‖

(25,0,0,0,0) 14 0.10 1.28 × 10−7

ρ = 100 (10,0,0,0,0) 12 0.09 1.98 × 10−7

(10,0,10,0,10) 13 0.10 1.13 × 10−7

(0,2.5,2.5,2.5,2.5) 10 0.09 1.77 × 10−7

(25,0,0,0,0) 14 0.11 2.81 × 10−8

ρ = 200 (10,0,0,0,0) 12 0.11 2.78 × 10−8

(10,0,10,0,10) 13 0.10 2.25 × 10−8

(0,2.5,2.5,2.5,2.5) 10 0.09 8.74 × 10−7

Table 3 Numerical results of Example 5.2 by Alg-MP

Initial point Iter. Running time ‖F(x∗)‖

(25,0,0,0,0) 11 0.06 4.45 × 10−10

ρ = 100 (10,0,0,0,0) 8 0.04 4.58 × 10−8

(10,0,10,0,10) 9 0.06 4.94 × 10−10

(0,2.5,2.5,2.5,2.5) 6 0.04 1.15 × 10−7

(25,0,0,0,0) 11 0.06 1.04 × 10−9

ρ = 200 (10,0,0,0,0) 8 0.04 3.71 × 10−7

(10,0,10,0,10) 8 0.06 8.31 × 10−9

(0,2.5,2.5,2.5,2.5) 6 0.04 6.92 × 10−9
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Table 4 Numerical results of Example 5.3 by Alg-P

Dimension 10 20 30 40 50 60 70 80 90 100
Iter. 29 33 38 42 43 47 52 54 58 60
Running time 0.14 0.17 0.18 0.34 0.40 0.51 0.78 1.01 1.32 1.57

Table 5 Numerical results of Example 5.3 by Alg-MP

Dimension 10 20 30 40 50 60 70 80 90 100
Iter. 8 8 8 8 8 8 8 9 9 9
Running time 0.06 0.07 0.12 0.17 0.21 0.28 0.40 0.57 0.68 0.73

Table 6 Numerical results of Example 5.4

Initial point Iter. Running time ‖F(x∗)‖

(0,0,0,0) 16 0.14 6.12 × 10−7

Alg-P (3,0,0,0) 16 0.14 6.69 × 10−7

(1,1,1,0) 29 0.26 8.52 × 10−7

(0,1,1,1) 57 0.51 8.41 × 10−7

(0,0,0,0) 13 0.09 1.21 × 10−8

Alg-MP (3,0,0,0) 12 0.09 8.43 × 10−9

(1,1,1,0) 13 0.10 4.01 × 10−9

(0,1,1,1) 15 0.11 9.11 × 10−9

Example 5.3 Let C = Rn+ and the mapping

F(x) = D(x) + Mx + q + q0,

where D(x) and Mx + q are the nonlinear part and the linear part of F(x), respectively. The
matrix M = A� A + B, where A is an n × n matrix whose entries are randomly generated
in the interval (−1, 1) and a skew-symmetric matrix B is generated in the same way. The
vector q is generated from a uniform distribution in the interval (−500, 500). In D(x), the
nonlinear part of F(x), the components are D j (x) = a j ∗ arctan(x j ) and a j is a random
variable in (0, 100). q0 is a regular vector.

Tables 4 and 5 report the average results for n from 10 to 100 with the initial points
randomly generated in (0, 1) by Alg-P and Alg-MP, respectively.

Example 5.4 Let

F(x) =

⎛
⎜⎜⎝

1 0 0 0
0 1 −1 0
0 1 1 0
0 0 0 0

⎞
⎟⎟⎠

⎛
⎜⎜⎝

x1

x2

x3

x4

⎞
⎟⎟⎠ +

⎛
⎜⎜⎜⎝

x3
1

x3
2

2x3
3

2x3
4

⎞
⎟⎟⎟⎠ +

⎛
⎜⎜⎝

−10
1

−3
0

⎞
⎟⎟⎠ ,

and the constraint set C be taken as

C =
{

x ∈ R4

∣∣∣∣∣
4∑

i=1

xi ≤ 3, xi ≥ 0, i = 1, . . . , 4

}
.
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This problem has the unique but degenerate solution x∗ = (2, 0, 1, 0)T . The numerical
results of Alg-P and Alg-MP are given in Table 6. Note that the algorithm in [11] requires
more iterations for approximating a solution for some starting points than Algorithm 3.1.
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