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Abstract In this article, we propose a new algorithm for the resolution of mixed integer
bi-level linear problem (MIBLP). The algorithm is based on the decomposition of the initial
problem into the restricted master problem (RMP) and a series of problems named slave
problems (SP). The proposed approach is based on Benders decomposition method where in
each iteration a set of variables are fixed which are controlled by the upper level optimization
problem. The RMP is a relaxation of the MIBLP and the SP represents a restriction of the
MIBLP. The RMP interacts in each iteration with the current SP by the addition of cuts
produced using Lagrangian information from the current SP. The lower and upper bound
provided from the RMP and SP are updated in each iteration. The algorithm converges when
the difference between the upper and lower bound is within a small difference ε. In the case
of MIBLP Karush–Kuhn–Tucker (KKT) optimality conditions could not be used directly to
the inner problem in order to transform the bi-level problem into a single level problem. The
proposed decomposition technique, however, allows the use of KKT conditions and trans-
forms the MIBLP into two single level problems. The algorithm, which is a new method
for the resolution of MIBLP, is illustrated through a modified numerical example from the
literature. Additional examples from the literature are presented to highlight the algorithm
convergence properties.
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1 Introduction

Hierarchical optimization deals with mathematical programming problems whose feasible
set is implicitly determined by a sequence of nested optimization problems [26]. The most
studied case is the bi-level programming problems and especially the linear case. In bi-level
optimization we have two optimization levels the upper which is the leader and the lower
optimization level which is the follower. The feasible region of upper optimization problem
is determined by its own constraints plus the inner optimization problem. This problem in
general is a nonconvex problem and its resolution is complicated. In bi-level optimization
the leader controls a sub-set of decision variables (x) and the follower the other sub-set (y).

If the leader chooses x = x ′, then the follower responds with y = y′ as is shown in Fig. 1.
For a given x, the follower solves the inner problem optimizing F2. The leader examines the
reactions of the follower for each feasible choice of x (the dashed line in x-axis). The set of
all feasible solutions for the bi-level problem is the grey line in Fig. 1 and is called inducible
region. The optimal solution in the linear case is an extreme point of the inducible region
which is a nonconvex region [7]. The optimal solution of bi-level problem is a point that
belongs to the inducible region where the upper level objective function F1 takes its optimal
value. In general a bi-level model can have continuous and integer decision variables. In order
to simplify the presentation of the main characteristic of the bi-level problem we consider
only continues variables: x which is a n1—dimensional vector and y which is a n2—dimen-
sional vector and only constraints in the inner problem. This leads to the following bi-level
linear problem:

F : X × Y → R1, f : X × Y → R1

Max
x∈X

F1(x, y) = c1x + d1 y

st. Max
y∈Y

F2(x, y) = c2x + d2 y

st. g(x, y) = Ax + By ≤ b1,

y ∈ Y = {y : Cy ≤ b2}
where c1, c2 ∈ �n1 , d1, d2 ∈ �n2 , b1 ∈ �p, b2 ∈ �q ,

A ∈ �p×n1 , B ∈ �p×n2 , C ∈ �q×n2

From the leaders perspective this model can be viewed as a mathematical program with an
implicit defined nonconvex constraint region given by the follower’s sub-problem. In general
in bi-level linear optimization problems the following regions and sets (cf. Fig. 1) are defined:

• The bi-level linear problem (BLP) constraints region is defied by the following region:
� = {(x, y) : x ∈ X, y ∈ Y, g(x, y) ≤ b1}

• The projection of � onto the leader’s decision space is �(X) = {x ∈ |X : ∃y (x, y) ∈ �}
• The follower’s feasible region for x ∈ Xfixed is �(x) = {y : y ∈ Y, g(x, y) ≤ b1}
• The follower’s rational reaction set is M(x) = {y : arg max( f (y) : y ∈ �(x))}
• The inducible region (IR) which correspond to the solution space of the bi-level problem

is IR = {(x, y) : x ∈ �(X), y ∈ M(x)}
In order to ensure that the above bi-level problem is well posed we make the additional
assumption that � is nonempty and compact and that for each decision taken by the leader,
the follower can respond (�(x) �= 0) [20]. The rational reaction set, M(x), defines these
responses while the IR, represents the set over which the leader may optimize. Thus, in terms
of the above notation, the BLP can be written as: Max(F(x, y): (x, y) ∈ IR). A bi-level
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Fig. 1 Bi-level linear problem

feasible solution is a pair of (x, y) if y ∈ M(x) for the specific x . An optimal solution for the
bi-level problem is a point (x∗, y∗) if this point is a feasible point and for all bi-level feasible
pairs (x, y) ∈ IR, F(x∗, y∗) ≥ F(x, y).

If the problem involves integer and continuous variables and if all the variables (integer
and continuous) are separable and appear in linear relations, then the bi-level problem cor-
responds to a mixed integer bi-level linear problem and in the general form can be described
as follows:

For
x ∈ X ⊂ Rn, y ∈ Y ⊂ Rm, z ∈ Zz{0, 1}, w ∈ Zw{0, 1},
F1 : X × Y × Zz × Zw → R1, F2 : X × Y × Zz × Zw → R1

Min
x∈X,z∈Zz

F1(x, y) = c1x + d1 y + r1z+ g1w

st. A1x + B1 y + C1,z+ Q1w ≤ b1,

Min
y∈Y,w∈Zw

F2(x, y) = c2x + d2 y + r2z+ g2w

st. A2x + B2 y + C2z+ Q2w ≤ b2,

where c1, c2 ∈ �n, d1, d2 ∈ �m, r1, r2 ∈ �l , g1, g2 ∈ �s, b1 ∈ �p, b2 ∈ �q ,

A1 ∈ �p×n, B1 ∈ �p×m, C1 ∈ �p×l , Q1 ∈ �p×s, A2 ∈ �q×n, B2 ∈ Rq×m,

C2 ∈ �q×l , Q2 ∈ �q×s

In the literature, the exact methods developed for the solution of the mixed integer bi-level
linear problem (MIBLP) have so far addressed a very restricted class of problems. There
has been more attention in bi-level linear problems (BLP) where there no integer decision
variables are involved in the inner problem. In general, we can partition the exact resolu-
tion techniques, for bi-level problems, in two groups, the enumeration and the reformulation
techniques. The enumeration techniques are based on the property of bi-level problem, that
the global optimum lies at a corner of the region that corresponds to feasible space defined
by the upper and lower level constraints. The reformulation techniques transform the bi-level
problem into a single level using for example the Karush–Kuhn–Tucker (KKT) optimality
conditions of the lower level and introducing them as constraints in the upper level problem.

Extreme point algorithms are the basis for enumeration techniques applied to BLP. Every
BLP with a finite optimal solution shares the important property that at least one optimal
solution is attainted at an extreme point of the constraints region. This result was first estab-
lished by Candler and Townsley [7] for the linear bi-level problem. The authors presented
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the “Kth-best” algorithm where the extreme points are evaluated in order to find the global
optimal solution. The same idea is presented also by Bilias and Karwan [5]. Bard [1,2] and
Bilias and Karwan [5] proved these results under the assumption that the constraints region
is bounded. Savard [23] proved the same result in the case where also the upper level has
constraints. Vincente et al. [28] have studied the induced regions of the quadratic bi-level
problem and introduced the concepts of extreme induced region points and extreme induced
region directions. Another algorithm of this group is the complementary pivot algorithm
proposed by Bilias et al. [6]. Unfortunately this algorithm cannot, as suggested in [5], com-
pute global solutions of BLP. Others extreme point algorithms are proposed by Chen and
Florian [8], Papavassilopoulos [21] and Tuy et al. [27] that present algorithms based on global
optimization techniques.

Reformulation techniques are developed from the need to solve the nonlinear or quadratic
bi-level problems. The most commonly used reformulation technique is to replace the inner
problem of the bi-level problem with KKT optimality conditions and append the resultant
system to the upper level problem. In the case of BLP the problem is reformulated into a
corresponding single level nonlinear programming. Shi et al. [25], Bialas and Karwan [5] and
Hansen et al. [16] use the KKT optimality conditions in order to replace the inner problem and
they propose different forms of branch and bound techniques for the resolution of the refor-
mulated problem. Bard and Moore [3] proposed also a new branch and bound algorithm for
the resolution of the linear quadratic bi-level problem. KKT reformulation approach has been
proven to be a valuable analysis tool for bi-level problems. However there exists a serious
deficiency for this approach when the upper level problem involves constraints in an arbitrary
linear form. Shi et al. [24] shows this deficiency through some examples and proposed an
extended KKT approach which resolves this problem. Another reformulation technique is
the penalty function method [18] which is used to solve non-linear bi-level problems or to
solve the problem of non-linearity using KKT condition. The complementary and slackness
condition of the lower level problem is appended to the upper level objective with a penalty.
Recently a new reformulation technique is developed using parametric programming [10].
In this approach parametric programming theory is used in order to transform the bi-level
problem into a number of quadratic or linear problems. Finally Floudas et al. [12] presented a
deterministic global optimization framework based on the ideas of feasible region convexifi-
cation and branch and bound to address the problem of process feasibility and flexibility that
correspond to bi-level nonlinear problems. Visweswaran et al. [29] proposed another global
optimization approach for convex bi-level problems using decomposition based algorithm.

In many real systems, the leader may have to make discrete decisions. This type of decision
can be described by the introduction of binary variables in the model. However, there has been
very little attention in the literature on both the solution and the application of bi-level prob-
lems involving discrete decisions. In the literature, exact before the word methods developed
for the solution of the mixed-integer BLP (MIBLP) have so far addressed a very restricted
class of problems. Moore and Bard [20] developed a basic implicit enumeration scheme
that finds good feasible solutions using relatively few iterations. The algorithm addresses
mixed integer BLPP and uses a depth-first branch-and-bound approach incorporating some
modifications in the typical depth-first branch-and-bound scheme used to solve mixed inte-
ger linear problems. In particular special fathoming rules were introduced to ensure the
generation of valid upper bounds. The algorithm is very efficient for relatively small-scale
problems; whereas for large scale problems a series of heuristics are proposed in an effort
to strike a balance between accuracy and speed. For the solution of the mixed-integer BLP,
another branch-and bound technique is developed by Wen and Yang [31], where only the
outer problem has discrete decisions and the inner problem has continuous decisions.
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Cutting plane and parametric solution approaches have been developed by Dempe [9] to
solve problems where the inner level has a separable outer variable in its objective function
only. Another interesting approach is presented by Faisca et al. [10]. The proposed algorithm
is based on parametric programming theory and uses the basic sensitivity theorem. The main
idea is to divide the follower’s feasible area into different rational reaction sets, and search
for the global optimum of a multi-parametric mixed integer linear programming problem in
each area. Gümus and Floudas [15] introduced two deterministic global optimization meth-
ods that solve mixed integer nonlinear bi-level problems. The first is a global optimization
approach to solve problems in which the outer level may be mixed-integer nonlinear and
the inner level continuous nonlinear. The second is a global optimization approach to solve
problems in which the outer level may involve general mixed-integer nonlinear functions.
The inner level may involve functions that are mixed-integer nonlinear in outer variables and
linear polynomial or multi-linear in inner integer variables and linear in inner continuous
variables. The technique is based on the reformulation of the mixed integer inner problem
as continuous via its convex hull representation and solving the resulting nonlinear bi-level
optimization problem by a novel deterministic global optimization framework.

In this paper a new algorithm is presented for the resolution of the mixed integer linear
bi-level problem. The algorithm is based on Benders decomposition technique which makes
the use of KKT optimality conditions a valid reformulation procedure. Decomposition tech-
niques are based on the idea of exploiting the decomposable structure of the problems in order
to facilitate the solution of the initial problem through a series of smaller sub-problems. In
this case one of the sub-problems is the slave problem (SP) which is obtained by fixing
a number of decision variables of the initial problem (MIBLP) to a feasible value and the
second one is the restricted master problem (RMP) which gives the optimal solution after
the addition of cuts. The only assumption of the proposed algorithm is that although inte-
ger variables could appear in both levels of MIBLP, they should be controlled by the upper
optimization problem. Then in each iteration of the algorithm, the SP gives a new valid cut
to the RMP which converges to the optimal solution. If the RMP optimality condition is not
satisfied by the bounded solution obtained by SP, the RMP sends the updated information
to the SP which produces another cut for RMP and the algorithm continues until the RMP
optimality condition is satisfied [4,19]. In the proposed algorithm, the same idea is used in
order to transform the initial mixed integer bi-level linear problem into two models where
the first one is a mixed integer linear problem (RMP) and the second one a bi-level linear
problem (SP) where the binary variables are fixed. The KKT optimality conditions are not
applicable when there are integer variables in the inner problem of the bi-level problem.
That means that the proposed decomposition of the initial problem into RMP and SP per-
mits the use of KKT conditions because the resulted SP problem does not have any integer
variables in the inner level. The use of KKT conditions for the mixed integer bi-level prob-
lem using Benders decomposition makes this algorithm novel. It should be noticed that the
proposed algorithm can be also used for the cases of linear bi-level problems where KKT
optimality conditions can be directly applied. The main advantage of the proposed approach
however is for the resolution of large scale problems where decomposition methods are more
beneficial.

The rest of the paper is organized as follows. In Sect. 2, we present the proposed algorithm
followed by a numerical example in Sect. 3 to illustrate and further clarify the basic steps of
the approach. In Sect. 4, we present the basic conclusions and give our perspective for the
suitability of the presented work. Finally, in the appendix the theoretical background of the
proposed algorithm is given.
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2 Algorithm for mixed integer bi-level linear problem

2.1 Motivation for the development of the proposed algorithm

Our motivation for the resolution of this class of problems is the cross validation of exper-
imental data for the development of the regulatory networks. Foteinou et al. [13] propose
a systematic construction of alternative regulatory architectures and a consistency metric
for assessing the robustness and specific transcription factors. The authors evaluate the bio-
logical implications of the multiple alternative structures in their biological context and
demonstrate how a systematic framework can define the basis for a consistent hypothesis
generation mechanism related to putative regulatory interactions. They use cross-validation
of the experimental data in order to minimize the error in the construction of the gene network.
Cross validation is the statistical practice of partitioning a sample of data into subsets such
that the analysis is initially performed on a single subset, while the other subset is retained
for subsequent use in confirming and validating the initial analysis. The cross validation of
the experimental data for the development of the regulatory networks is done in two steps.
In the first one, we determine the structure of the genes network using the first sub-set of
data and in the second one, we confirm the obtained structure. Our goal is to perform the
cross validation in only one step, performing the development and the validation of the genes
network at the same time. To achieve this goal a bi-level optimization is proposed where the
leader does the validation of the developed gene network and the follower determines the
structure of the gene network.

2.2 Basic idea of the algorithm

The basic idea of the proposed algorithm is to decompose the initial problem to the following
sub-problems, a series of problems named slave problems (SP) and the restricted master
problem (RMP) which converge to the optimal solution. The proposed algorithm is based
on Benders decomposition method. The algorithm produces a cut, in each iteration, which is
added to the RMP. The RMP is a relaxation of our initial problem and gives a lower bound
(LB) for the algorithm when the initial problem is a minimization problem. The algorithm
uses the KKT optimality conditions in order to transform the initial restricted (by fixing the
value of the integer variables) bi-level problem to a single level problem. The restriction of
the initial problem (SP) gives an upper bound (UB) if the initial MIBLP is a minimization
problem. These characteristics show that our algorithm belongs to the class of algorithms
known as reformulation algorithms.

The first step of the algorithm is to decompose the initial mixed integer bi-level
linear problem to the RMP and SP. The algorithm starts by fixing the integer variables
to specific values (z = z) and constructing the current slave problem (SP(z)) which is a
bi-level linear problem. This problem is then reformulated to a mixed integer linear prob-
lem using the KKT optimality conditions of the inner problem and the active set strategy
approach [14]. The solution of this problem provides information about the active constraints
which are used to build the corresponding linear problem (LP(z)). This linear problem, with
the same active constraints derived by the current slave problem (SP(z)), gives an upper
bound (in the case of minimization) to the solution of the original problem. Using the opti-
mal dual values of the current linear problem (LP(z)) we construct a cut which is added
to the RMP. In general one of the three following cuts could be generated (cf. Appen-
dix A):
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• Optimality cut: when the current LP(z) gives a feasible solution;
• Feasibility cut: when the current LP(z) gives an infeasible solution;
• Exclusion Cut: when the current LP(z) gives a feasible solution but the cut does not

restrict the RMP.

After the addition of the current cut, the augmented RMP is solved to obtain a new lower bound
(in the case of minimization). In the next step the RMP optimality condition (UB−LB < ε)

is checked. If it is satisfied the algorithm stops, otherwise the algorithm continues using the
current solution obtained by the RMP in order to construct a new SP. The algorithm continues
until the RMP optimality condition is satisfied. The flowchart of the proposed algorithm is
presented in Fig. 2.

2.3 Validity of the upper and lower bounds

A relaxation of the initial bi-level problem is formulated by eliminating a set of constraints.
In the proposed approach the RMP involves the set of constraints that have only integer
variables. The constraints involving continuous and integer variables, and the inner objective
function are eliminated. Thus the resulted RMP provides in each iteration a valid lower bound
(LB) in the case of minimization.

A restriction of the original problem is then needed to provide a valid upper bound
(for the case of minimization) in each iteration of the proposed algorithm. In general for
a single level linear program a restriction can be obtained by fixing one or more of the
decision variables or in general by adding inequalities to restrict the value of one or more
of the decision variables. In the case of bi-level optimization programming where the
problem is nonconvex in order to generate a restriction of the initial bi-level problem, the
new bi-level problem should have a New IR (NIR) which is a restriction of the original
IR. As presented above, the IR of the bi-level problem is defined by: x ∈ �(x) and y ∈ M(x)

which means that the IR is defined by �(x) and the reaction of the follower for each
y ∈ �(x). Restricting a variable decision updated regions �′(x) and M ′(x) are obtained.
In order to make sure that the resulted bi-level problem is a restriction of the original problem,
�′(x) and M ′(x) should satisfy the following conditions: �′(x) ⊆ �(x) and M ′(x)

⊆ M(x).
In bi-level optimization the leader examines the reactions of the follower for each feasible

choice of its variables. Thus, restricting a variable which is controlled by the leader results
in a restriction of the constraints region (�). Consequently in the new bi-level problem the
leader is looking for the reaction of the follower in a region which is a restriction of �(x) or
otherwise the resulted projection of the new constraint region on the leader’s decision space
is a restriction of the initial region (�′(x) ⊆ �(x)). A direct result of this observation is
that the follower’s rational reaction set is a restriction of the initial one (M ′(x) ⊆ M(x)) and
thus the NIR is a sub-set of the initial IR. Thus the SP provides a valid cut and a valid upper
bound.

Restricting a variable which is controlled by the follower even if this results in a restriction
of the constraints region (�), and �(x) remains the same, the resulted SP is not guarantee
to provide a valid upper bound. The reason is that fixing a variable within the constraints
region of the MIBLP does not guarantee that the selected value belongs to M(x). In order
to obtain a restriction of the initial problem by fixing a decision variable controlled by the
follower a preliminary analysis should be performed before each iteration of the proposed
algorithm to ensure that the resulted reaction set of the follower is a sub-set of the initial
set (M ′(x) ⊆ M(x)). This extension will be the subject of future publication and is not
addressed in this paper.
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Fig. 2 Flowchart of the proposed algorithm

123



J Glob Optim (2009) 44:29–51 37

3 Numerical examples

3.1 Illustrative example

In this section the algorithm is illustrated using an example presented in [31]. The example
is modified to reduce the number of variables so that it can be represented in two dimensions
for illustrative purposes. After fixing some variables to the optimal values, the model takes
the following form:

Min
x2,y2,y3

F1(x2, y2, y3) = −60x2 − 10y2 − 7y3

st. Min
y2,y3

F2(y2, y3) = −60y2 − 8y3

st. g1: 10x2 + 2y2 + 3y3 ≤ 225,

g2: 5x2 + 3y2 ≤ 230,

g3: 5x2 + y3 ≤ 85.

x2 = {0, 1} /y2, y3 ≥ 0

This bi-level problem is decomposed into the following master and slaves problems where
the binary variable x2 is fixed (x2 = x2) (cf. Appendix A, problem P2) and:

Restricted Master Problem (RMP) : Slave Problem SP(x2) :
Min F3(x2, ξ) = ξ − 60x2 Min F1(y2, y3) = −10y2 − 7y3 − 60x2

st. − M ≤ ξ ≤ M st. Min F2(x, y) = −60y2 − 8y3

x2 = {0, 1} st. 2y2 + 3y3 ≤ 225− 10x2,

M = 1200 3y2 ≤ 230− 5x2,

y3 ≤ 85− 5x2.

y2, y3 ≥ 0

In the first iteration of the algorithm, we fix arbitrarily the binary variable x2 = 0 and this
results in the following problem SP(0):

Min F1(y2, y3) = −10y2 − 7y3

st. Min F2(y2, y3) = −60y2 − 8y3

st. 2y2 + 3y3 ≤ 225,

3y2 ≤ 230,

y3 ≤ 85.

y2, y3 ≥ 0

The solution space of the initial RMP (the two dashed double-lines) and the current con-
straint region of the SP (the grey space) with x2 = 0 (SP(0)) are depicted in Figs. 3 and 4,
respectively. Notice that the constraint space of the current SP is not the feasible set (the
inducible region) of BLP. The inducible region of SP(0) is the dashed line and one of the
extreme point of the inducible region is the optimal solution of SP(0).

The initial value of the lower and upper bound of the algorithm are fixed to LB = −1260
and UB = ∞. In order to solve the SP(0) a reformulation technique is needed. The Karush–
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Kuhn–Tucker method [24] and active set strategy [14] are used and the BLP is transformed
into the following MILP (cf. Appendix A, problem P3):

Min F1(y2, y3) = −10y2 − 7y3

st. g1 : 2y2 + 3y3 ≤ 225,

g2 : 3y2 ≤ 230,

g3 : y3 ≤ 85,

Stationary
conditions

{
2u1 + 3u2 − u4 = 60,

3u1 + u3 − u5 = 8,
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Complimentarity
conditions

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

u1 − Mv1 ≤ 0, 225− 2y2 − 3y3 − M(1− v1),

u2 − Mv2 ≤ 0, 230− 3y2 − M(1− v2),

u3 − Mv3 ≤ 0, 85− y3 − M(1− v3),

u4 − Mv4 ≤ 0, y2 − M(1− v4),

u5 − Mv5 ≤ 0, y3 − M(1− v5).

y2, y3 ≥ 0, u1, u2, u3, u4, u5 ≥ 0, v1, v2, v3, v4, v5 = {0, 1}.
The resolution of this problem shows that the inducible region of the bi-level problem is
the line: 2y2 + 3y3 = 225: (c.f. Fig. 4) That means that the first constraint of the bi-level
problem is an active constraint. The corresponded linear problem takes the following form
(cf. Appendix A, problems P4, P5):

Min F1(y2, y3) = −10y2 − 7y3

st. g1: 2y2 + 3y3 = 225,← w1

g2: 3y2 ≤ 230,← w2

g3: y3 ≤ 85,← w3

y2, y3 ≥ 0

The optimal solution of this problem gives a new upper bound UBnew = −933.16 as proved
in Sect. 2.3. The optimality condition (LB = −1260 �= −933, 16 = UB) is not satisfied and
the current corresponded LP produce the first cut (cf. Appendix A, case 3). The value of dual
variables (w1, w2, w3) produce the following cut which is added to the RMP producing the
following augmented RMP:

Restricted Master Problem:

Min F3(x2, ξ) = ξ − 60x2

st. − M ≤ ξ ≤ M

(225− 10x2)w1 + (230− 5x2)w2 + 85w3 − ξ ≤ 0

where w1 = −2.3334, w2 = −1, 7778, w3 = 0

x2 = {0, 1}
The new RMP with this cut (dashed line) has the solution space as presented in Fig. 5.

The resolution of the RMP gives a new lower bound LBnew = −961.69 as shown in
Sect. 2.3. Comparison of the UB and the new LB does not satisfy the RMP optimality
condition of the algorithm since ε = 0. Thus the algorithm continues by using the solution
provided by the resolution of the RMP for the integer variable decision (x2 = 1). The new
SP(1) takes the following form:

Slave Problem SP(x2 = 1) :
Min F1(y2, y3) = −10y2 − 7y3 − 60

st. Min F2(y2, y3) = −60y2 − 8y3

st. 2y2 + 3y3 ≤ 215,

3y2 ≤ 225,

y3 ≤ 80.

y2, y3 ≥ 0
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The resolution of this new SP(1) gives a new inducible region (the line: 2y2 + 3y3 = 215,

in Fig. 6) and a new upper bound: UBnew = −961.69 (cf. Appendix A, problems P4, P5). At
this point the algorithm stops because the LB and the UB obtained by the RMP and the SP
are equal. The optimal solution of the problem is the point (y2, y3) = (75, 21.67), x2 = 1.

3.2 Numerical examples

As noted in the introduction they are few papers in the literature that address the class of
bi-level problems considered in this paper. Table 1 illustrates the comparison between the
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Table 1 Results of numerical examples

Example Results in the Results of the Proposed approach
reference proposed approach CPU (s)

1 U. P. Wen and Fupper = −1011.69, Fupper = −1011.69, 2.42

Y. H. Yang [31] flower = −4673.34 flower = −4673.34

2 J. F. Bard [1] Fupper = 41.2,
flower = −9.2

Fupper = 41.2,
flower = −9.2

2.92

3 P. Hansen et al. [16] Fupper = 18.4,
flower = −1.8

Fupper = 18.544,
flower = −1.797

2.56

4 A. Haurie et al. [17] Fupper = −27,
flower = 3

Fupper = −27,
flower = 3

1.39

proposed procedure for solving the MIBLP and the already existing techniques. Note that
the CPU times are not mentioned on the referenced papers for these examples. All results
presented in this paper have been obtained on Pentium (R) 4, CPU 2.40 GHz, RAM 1 GB
and CPLEX 10 using a C++ implementation of the proposal approach.

Based on the results obtained for these examples it should be noticed that first the algo-
rithm is successful in obtaining the global solution for each problem requiring 2 iterations
and only very small resolution time. Moreover, the approach obtains better solution in exam-
ple 3 than the solution obtained in the reference paper. For the third example the opti-
mal solution presented in the reference example is Fupper = 18.4 and flower = −1.8 with
(x1, x2, y1, y2, y3) = (0.2, 0.8, 0, 0.2, 0.8) and the proposed algorithm gives a little bet-
ter optimal solution: Fupper = 18.544 and flower = −1.797 with (x1, x2, y1, y2, y3) =
(0.533, 0.8, 0, 0.197, 0.8). We should notice that the third example is a maximization prob-
lem and that the optimal solution obtained by the algorithm presented in this paper is the
same as the solution presented in others papers that used the same numerical example to
prove the efficiency of their proposed method [30].

4 Summary and future directions

In this paper, an exact algorithm for the resolution of the mixed integer bi-level linear prob-
lem (MIBLP) is presented. The algorithm is based on Benders decomposition method and
it is a new alternative for the exact resolution of the mixed integer bi-level linear problem.
The presented algorithm can be considered as a reformulation algorithm based on the use
of KKT optimality conditions for the resolution of the involved bi-level linear problem after
the decomposition. In the developed algorithm the initial MIBLP is decomposed into several
sub models, the restricted master problem (RMP) and a series of bi-level linear problems
named slave problems (SP). The RMP is a relaxation of the initial MIBLP and in the case
of minimization provides a lower bound for the algorithm. The SP represents a restriction
of the initial problem because they are derived from the initial MIBLP by fixing the integer
variables controlled by the upper optimization problem. Thus, the solution of the SP in each
iteration provides an upper bound in the case of minimization. The RMP results in the opti-
mal solution after the addition of cuts produced form the SP. The convergence criterion is
satisfied when the difference between the upper and lower bound of the algorithm is below
a pre-specified tolerance.

123



42 J Glob Optim (2009) 44:29–51

The next step of this research project is to improve the performance of the algorithm so
that it can be applied to large scale problems. In general in decomposition methods the con-
vergence is related to the form of cuts produced in each iteration. An additional complication
in this algorithm is that in each iteration the algorithm constructs and solves three different
problems: the first one is for the resolution of the SP, the second one for the production of the
cut and the update of the upper bound and the third is for the resolution of the RMP which
provide also a lower bound. The RMP and the corresponding problem for the resolution of
the bi-level linear SP are mixed integer linear problems, which is more complicated than
the corresponding linear problems (cf Appendix A, problem P4) used for the production of
cuts. To improve the solution procedure we are investigating the possibility of solving these
models in parallel. In particular we will consider the solution of multiple SP problems that
correspond to different combinations of integer variables.

In addition we will examine the utilization of parallel optimization for the generation of
more than one sufficient cut in each iteration of the algorithm as present in Saharidis et al.
[22]. The multi generation of cuts decrease the number of algorithm’s iterations decreasing
in general the resolution time. It seems also interesting to study under which assumption the
proposed algorithm can be applied for the case of mixed integer bi-level nonlinear problems.
The proposed algorithm using linearization techniques as presented in [24] can provide good
solutions for the case of nonlinear objective function or nonlinear constraints. Finally in our
future research interest is to define a preliminary analysis for the case where the integer deci-
sion variables are controlled by the follower. This analysis will be performed before each
iteration of the proposed algorithm in order to ensure that the resulted inducible region is a
sub-set of the initial inducible region.

Acknowledgements M. Ierapetritou would like to gracefully acknowledge financial support from the
National Science Foundation under the NSF CTS 0625515 grant and also the USEPA-funded Environmental
Bioinformatics and Computational Toxicology Center under the GAD R 832721-010 grant.

Appendix A: Theoretical background of the proposed algorithm

Using the following notation the basic steps of the algorithm are described below:

Index
• m = 1, . . . , 4 denotes the constraints in the illustrated example;
• l = 1, . . . , L denotes the number of extreme rays of the dual slave problem;
• p = 1, . . . , P denotes the number of extreme rays of the dual slave problem with

z = z1;
• k = 1, . . . , K denotes the number of extreme rays of the dual slave problem with

z = z2;
• r = 1, . . . , R denotes the number of extreme rays of the dual slave problem with

z = zn;
• i = 1, . . . , I denotes the number of extreme points of the dual slave problem with

z = z1;
• j = 1, . . . , J denotes the number of extreme points of the dual slave problem with

z = z2;
• t = 1, . . . , T denotes the number of extreme points of the dual slave problem with

z = zn .

123



J Glob Optim (2009) 44:29–51 43

Auxiliary decision variables
• vm = 1 if the corresponding constraint m is active otherwise takes the value of zero;
• um: dual value of the m constraint;
• wm: Lagrangian multiplier m constraint use for the active constraint strategy.

Parameter
• M: big value number.

R f1+ f2+ f3+··· = R f1 ∪ R f2 ∪ R f3 ∪ R...

b1 ∈ Rb1 , b2 ∈ Rb2 , x ∈ X ⊂ Rx , y ∈ Y ⊂ Ry, s ∈ S ⊂ Rb1+b2 , u ∈ U ⊂ Rb1+b2 ,
v ∈ V ⊂ Rb1+b2

z ∈ Z{0, 1} ⊂ Rz, bv ∈ Z{0, 1} ⊂ Rv, h ∈ H ⊂ Rh

w1 ∈ W1 ⊂ Rw1 , w2 ∈ W2 ⊂ Rw2 , w3 ∈ W3 ⊂ Rw3 , w4 ∈ W4 ⊂ Rw4

c1 ∈ Rx , c2 ∈ Ry, c3 ∈ Rz

F1, F2 : X × Y × Z → R1

A1 ∈ Rb1×x , B1 ∈ Rb1×y, E1 ∈ Rb1×z, Q1 ∈ Rb1×b1 , C1 = I ∈ Rh×h

A2 ∈ Rb2×x , B2 ∈ Rb2×y, E2 ∈ Rb2×z, Q2 ∈ Rb2×b2 , C2 = I ∈ Rh×h

cT =
⎡
⎣ c1

0
0

⎤
⎦ , cT∈Rc = Rx+y+z, D =

[
A1 B1 Q1

A2 B2 Q2

]
, D∈RD=R(b1+b2)×(x+y+b1+b2)

b=
[
b1

b2

]
, b∈ Rb = Rb1+b2 , g=

⎡
⎣x

y
s

⎤
⎦ , g ∈ Rg = Rx+y+b1+b2 , E =

[
E1

E2

]
, E∈RE=Rb1+b2

c′T=

⎡
⎢⎢⎣

0
0
0
1

⎤
⎥⎥⎦ , c′T∈Rc′=Rx+y+z+h, D′=

[
A1 B1 Q1 C1

A2 B2 Q2 C2

]
, D′∈RD′

= R(b1+b2)×(x+y+h+b1+b2)

g′ =

⎡
⎢⎢⎣

x
y
s
h

⎤
⎥⎥⎦ , g′ ∈ Rg′ = Rx+y+h+b1+b2

Let’s consider the following model for the MIBLP:

P1 :

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Min
x,z

F1(x) = c1x

st.
Min

y
F2(x) = c2 y

st.
A1x + B1 y + E1z ≤ b1

A2x + B2 y + E2z ≤ b2

x, y ≥ 0 z = {0, 1}

Note that constraints in the upper level as well as binary variable in the objective function
can be also considered. Fixing the values of the binary variables z = z, we get the following
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bi-level linear problem (BLP):

P2 :

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Min
x

F1(x) = c1x

st.
Min

y
F2(x) = c2 y

st.
A1x + B1 y ≤ b1 − E1z→ w1

A2x + B2 y ≤ b2 − E2z→ w2

−y ≤ 0→ w3

−x ≤ 0→ w4

Using KKT conditions [25,5,16] and the active constraints strategy [14], we can transform
this BLP to a mixed integer linear problem (MILP):

P3 :

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Min F1(x) = c1x

st.

A1x + B1 y ≤ b1 − E1z

A2x + B2 y ≤ b2 − E2z

w1 − Mbv1 ≤ 0, w2 − Mbv2 ≤ 0

w3 − Mbv3 ≤ 0, w4 − Mbv4 ≤ 0

(b1 − E1z)− A1x − B1 y − M(1− bv1) ≤ 0

(b2 − E2z)− A2x − B2 y − M(1− bv2) ≤ 0

y − M(1− bv3) ≤ 0, x − M(1− bv4) ≤ 0

w1 A1 + w2 A2 − w4 = 0

w1 B1 + w2 B2 − w3 = −c2

x, y, w1, w2, w3, w4 ≥ 0 bv1, bv2, bv3, bv4 = {0, 1}
From the solution of P3, we find which constraints are active and we transform the initial
problem P1 to the following linear problem P4 where we assume that the first group of
constraints is active.

P4 :

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

Min F1(x) = c1x

st.

A1x + B1 y = b1 − E1z

A2x + B2 y ≤ b2 − E2z

x, y ≥ 0

The general form of P4 can be reformulated as follows (P5):

P5

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

Min F1(x) = c1x

st.

A1x + B1 y + Q1s = b1 − E1z
A2x + B2 y + Q2s = b2 − E2z
x1 y1s ≥ 0

where Q1, Q2 are matrices where all the elements are equal to zero except the elements in
the diagonal that correspond to non-active constraints and are equal to 1. In order to simplify
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the presentation we transform the problem using the notation presented in the nomenclature.
Thus problem P5 takes the follow form:

P ′5

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

Min F1(x) = cg

st.

Dg = b − Ez

g ≥ 0

In the decomposition procedure we propose, we cannot choose the variable z arbitrarily. Prob-
lem P2 (and P3) should have at least a non empty solution set for z. To express this condition,
we use P ′3 which gives the best feasible solution minimizing the auxiliary variables h.

P ′3 :

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Min h

st.

A1x + B1 y − C1h ≤ b1 − E1z

A2x + B2 y − C2h ≤ b2 − E2z

w1 − Mbv1 ≤ 0, w2 − Mbv2 ≤ 0

w3 − Mbv3 ≤ 0, w4 − Mbv4 ≤ 0

(b1 − E1z)− A1x − B1 y + C1h − M(1− bv1) ≤ 0

(b2 − E2z)− A2x − B2 y + C2h − M(1− bv2) ≤ 0

y − M(1− bv3) ≤ 0, x − M(1− bv4) ≤ 0, h − M(1− bv5) ≤ 0

w1 A1 + w2 A2 − w4 = 0

−w1C1 − w2C2 − w5 = 0

w1 B1 + w2 B2 − w3 = −c2

x, y, w1, w2, w3, w4, w5 ≥ 0 bv1, bv2, bv3, bv4, bv5 = {0, 1}

From P ′3, we find which constraints are active and we transform the initial problem P1 to the
following linear problem P ′′5 :

P ′′5 :

⎧⎪⎪⎨
⎪⎪⎩

Min c′g′
st.
D′g′ = b − Ez
g′ ≥ 0

The necessary and sufficient condition for P ′′5 to have at least a non empty solution for z is
given by lemma of Farkas and Minkowski. At each constraint i of P ′′5 corresponds a dual
variable ui (not sing restricted), then the lemma of Farkas and Minkowski states:

The problem P ′′5 has a solution g′ ≥ 0 if and only if u(b − Ez) ≤ 0 for all u for which
u D′ ≤ 0 holds.

We should notice that for each z the matrix D′ is different based on the values of matrix Q.

That means that the matrix D′ is related to the value of z, so it can be stated asD′(z). For
each z the cone U (z) = {

u/u D′(z) ≤ 0
}

has a finite number of generators which we denote
as uz

1, . . . , uz
L . The necessary and sufficient condition of the Farkas and Minkowski lemma
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for each z1, z2, . . . , zn is then equivalent to the system of inequalities:

for z1

⎧⎪⎪⎨
⎪⎪⎩

uz1
1 · (b − E · z1) ≤ 0

uz1
2 · (b − E · z1) ≤ 0

. . . . . . . . . .

uz1
P · (b − E · z1) ≤ 0

for z2

⎧⎪⎪⎨
⎪⎪⎩

uz2
1 · (b − E · z2) ≤ 0

uz2
2 · (b − E · z2) ≤ 0

. . . . . . . . . .

uz2
K · (b − E · z2) ≤ 0

(I)

for zn

⎧⎪⎪⎨
⎪⎪⎩

uzn
1 · (b − E · zn) ≤ 0

uzn
2 · (b − E · zn) ≤ 0

. . . . . . . . . .

uzn
R · (b − E · zn) ≤ 0

Suppose that P3 has a solution for given z = z, then the dual of P ′5 reads:

Dual of P ′5

⎧⎪⎪⎨
⎪⎪⎩

Max F3(v) = v(b − Ez)
st.
vD(z) ≤ c
v of any sign

where v is the vector of dual variables associated with the constraints of P ′5; (vz1
1 , . . . , v

z1
P ),

(v
z2
1 , . . . , v

z2
K ), . . . , (v

zn1
1 , . . . , v

zn
R ) are the extreme rays of the cones vD(z1) ≤ 0, vD(z2) ≤

0, . . . ., vD(zn) ≤ 0, respectively. If one of this cone is empty P ′5 is unbounded (by definition
P ′5 has a solution) and P4 is also unbounded. Then by agreeing to assign the value of−∞ to
the maximum of dual P ′5, if P ′5 has no solution, and using the duality theorem we can rewrite
problem P ′5 as:

Max{v · (b − E · z)/v · D(z) ≤ c} z ∈ RZ , where Z = {z1, z2, . . . , zn}

This maximum is obtained at the vertex of each polytope V (z) = {v/vD(z) ≤ c} . Assuming
that V (z) is not empty for all z, we denote by (v

z1
1 , . . . , v

z1
I ), . . . , (v

zn
1 , . . . , v

zn
T ) the vertices

of the polytope V (z) where z ∈ {z1, z2, . . . , zn} then P ′5 can be written:

Max
i=1,...,I

{vi · (b − E · z1)}
. . . ..

Max
t=1,...,T

{vl · (b − E · zn)}
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These previous maximization problems turn out to be equivalent to the following linear
program:

Min F4 = ξ

st.

v
z1
1 (b − E · z1) ≤ ξ

. . .

v
z1
I (b − E · z1) ≤ ξ

v
z2
1 (b − E · z2) ≤ ξ

. . .

v
z2
J (b − E · z2) ≤ ξ

. . .

v
zn
1 (b − E · zn) ≤ ξ

. . .

v
zn
T (b − E · zn) ≤ ξ

ξ ∈ [−∞,+∞]

Considering the inequalities (I) that ensure that P5 does not have an empty solution set, the
following formulation is obtained:

Min F4(ξ) = ξ

st.

v
z1
1 (b − E · z1) ≤ ξ

. . . . . . ..

v
z1
I (b − E · z1) ≤ ξ

. . . . . . ..

v
zn
1 (b − E · zn) ≤ ξ

. . . . . . ..

v
zn
T (b − E · zn) ≤ ξ

uz1
1 (b − E · z1) ≤ 0

. . . . . . ..

uz1
P (b − E · z1) ≤ 0

. . . . . . ..

uzn
1 (b − E · zn) ≤ 0

. . . . . . ..

uzn
R (b − E · zn) ≤ 0

ξ ∈ [−∞,+∞]
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Which is equivalent to the following problem (P6) named master problem (MP):

M P : P6

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Min F4(ξ) = ξ

st.
v

z1
1 (b − E · z) ≤ ξ

. . . . . . ..

v
z1
I (b − E · z) ≤ ξ

. . . . . . ..

v
zn
1 (b − E · z) ≤ ξ

. . . . . . ..

v
zn
T (b − E · z) ≤ ξ

uz1
1 (b − E · z) ≤ 0

. . . . . . ..

uz1
P (b − E · z) ≤ 0

. . . . . . ..

uzn
1 (b − E · z) ≤ 0

. . . . . . ..

uzn
R (b − E · z) ≤ 0

z ∈ {0, 1}, ξ ∈ [−∞,+∞]
At each stage of the algorithm, only some constraints of P6 are known explicitly which gives
rise to a problem named Restricted Master Problem (RMP) and involves a subset of the
constraints of P6 (Master Problem). Let (z, ξ) be an optimal solution of RMP, ξ is a lower
bound of optimal ξ∗ such that ξ ≤ ξ∗. An upper bound can be taken by the resolution of P4

or P2 (which is a restriction of the initial MIBLP). The upper bound (UB) is updated when
a lower optimal solution is obtained for the current P4 (or P2) compared to the current UB.

In Benders decomposition a necessary and sufficient condition for (z, ξ) to be an optimal
solution of P6 is that (z, ξ) satisfy all the constraints of P6 which are not explicitly stated
in RMP but this condition cannot be satisfied in this approach. Another sufficient condition
for the (z, ξ) to be an optimal solution of P6 is that the (U B − L B < ε) because the RMP
is a relaxation of the original problem whereas the SP represent a restriction. Except for the
case where RMP or the dual of P ′5 do not have a feasible solution, in each iteration of the
algorithm three cases arise:

4.1 Case 1 (Production of feasibility cut)

The optimal value of dual P5 is unbounded. The Simplex algorithm is applied to dual P ′′5 and
produces an extreme ray u such that u · (b − E · z) > 0 and u · D ≤ 0. Thus the constraint
u · (b − E · z) ≤ 0 does not hold for the current solution z of RMP (z, ξ) and thus it is not
a solution of P6. The constraints u · (b − E · z) ≤ 0 must be added to RMP to form a new
RMP augmented.

4.2 Case 2 (Production of integer exclusion cut)

The optimal value of dual has a finite value and v · (b− E · z)−ξ ≤ 0. Since this constraint is
satisfied, adding this constraint to RMP does not change the optimal value. If the optimality
condition (U B − L B < ε) is not satisfied the algorithm continues by excluding the current
integer solution using the following cut:∑

i∈P

zi −
∑
j∈Q

z j ≤ |P| − 1 (integer exclusion cut)
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where P is the set of indices of variables that have assumed the value 1, P = {
i/z∗i = 1

}
.

Similarly Q is the set of indices where the corresponding variable assumed the value 0,

Q =
{

j/z∗j = 0
}

. By |P| we denote the number of variables z∗i that are equal to one.

Adding this constraint to RMP the algorithm proceeds by generating a new integer optimal
solution which gives rise to new SP.

4.3 Case 3 (Production of optimality cut)

The optimum of dual P5 is bounded but contrary to case 2, we have v · (b− E · z)− ξ > 0.

This shows that the constraint v · (b− E · z)− ξ ≤ 0 is not satisfied by the current solution
(z, ξ) of RMP and the constraint v · (b − E · z) − ξ ≤ 0 must therefore be added to P6 in
order to form a new augmented RMP.

In each iteration of the algorithm a LB is provided from the RMP and an UB is provided
from the SP. The convergence criterion of the algorithm is when the difference between
UB and LB is lower or equal to the parameter ε (UB − LB < ε) where ε is a very small
number.

We notice that in the case where we have constraints in the upper level optimization
problem the proposed algorithm finds the optimal solution without any difficulty. The upper
level constraints of the integer decision variables are added to the RMP and the upper level
constraints of the integer and continuous decision variables are added to the SP. For the case
that the upper level constraints involving both integer and continuous decision variables the
extended KKT approach [24] is used in order to find the global optimal of the bi-level lin-
ear problem (SP). In case where the integer decisions variables appear into the upper level
objective function as c3z term then the variable ξ in the produced optimality cuts is replaced
by ξ − c3z (ξ = ξ − c3z).

To conclude the presentation of the algorithm we discuss the differences between the clas-
sical Benber’s decomposition method for the mixed integer linear programs and the algorithm
proposed in this paper. In the classical algorithm the dual of each of the slave problem (SP)
has the same solution space. The difference between the slave problems is only in the objec-
tive function and the algorithm searches in each iteration the optimal dual solution in the
same solution space going form one extreme point to another. In the proposed algorithm
the difference between the slave problems is not only in the objective function but also in
the range of dual variables. This difference influences the convergence of the algorithm. In
classical Benders algorithm the optimal solution is determined when the solution of RMP
results in v · (b − E · z)− ξ ≤ 0 (case: 2).

In the presented algorithm it is not certain that in this case all the inequalities of P6 are
satisfied. The only group of inequalities satisfied is the ones that correspond to the current
value of z = z. Since a valid cut cannot be produced in this case following the classic Benders
decomposition, the algorithm continues by excluding the current integer solution including
an additional constraint (integer exclusion cut). Thus the convergence criterion for the pro-
posed algorithm has to be modified to the difference between upper and lower bounds to be
less than a small tolerance value ε.

Notice that the finite convergence of the algorithm results from the fact that problem P6

has a finite number of constraints. The finite number of cuts results from the finite number
of extreme points and rays of the dual P ′5 and P ′′5 , respectively.
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