
J Glob Optim (2009) 43:299–328
DOI 10.1007/s10898-007-9274-6

Cutting circles and polygons from area-minimizing
rectangles

Josef Kallrath

Received: 30 June 2007 / Accepted: 19 December 2007 / Published online: 17 January 2008
© Springer Science+Business Media, LLC. 2008

Abstract A set of circles, rectangles, and convex polygons are to be cut from rectangular
design plates to be produced, or from a set of stocked rectangles of known geometric di-
mensions. The objective is to minimize the area of the design rectangles. The design plates
are subject to lower and upper bounds of their widths and lengths. The objects are free
of any orientation restrictions. If all nested objects fit into one design or stocked plate the
problem is formulated and solved as a nonconvex nonlinear programming problem. If the
number of objects cannot be cut from a single plate, additional integer variables are needed to
represent the allocation problem leading to a nonconvex mixed integer nonlinear optimization
problem. This is the first time that circles and arbitrary convex polygons are treated simul-
taneously in this context. We present exact mathematical programming solutions to both the
design and allocation problem. For small number of objects to be cut we compute globally
optimal solutions. One key idea in the developed NLP and MINLP models is to use sepa-
rating hyperplanes to ensure that rectangles and polygons do not overlap with each other or
with the circles. Another important idea used when dealing with several resource rectangles
is to develop a model formulation which connects the binary variables only to the variables
representing the center of the circles or the vertices of the polytopes but not to the non-overlap
or shape constraints. We support the solution process by symmetry breaking constraints. In
addition we compute lower bounds, which are constructed by a relaxed model in which
each polygon is replaced by the largest circle fitting into that polygon. We have successfully
applied several solution techniques to solve this problem among them the Branch&Reduce
Optimization Navigator (BARON) and the LindoGlobal solver called from GAMS, and, as
described in Rebennack et al. [21], a column enumeration approach in which the columns
represent the assignments. Good feasible solutions are computed within seconds or minutes

J. Kallrath (B)
BASF-AG, Scientific Computing, GVC/S-B009, 67056 Ludwigshafen, Germany
e-mail: josef.kallrath@web.de

J. Kallrath
Department of Astronomy, The University of Florida, Bryan Space Science Building, Gainesville,
FL 32611, USA
e-mail: kallrath@astro.ufl.edu

123

300 J Glob Optim (2009) 43:299–328

usually during preprocessing. In most cases they turn out to be globally optimal. For up to 10
circles, we prove global optimality up to a gap of the order of 10−8 in short time. Cases with
a modest number of objects, for instance, 6 circles and 3 rectangles, are also solved in short
time to global optimality. For test instances involving non-rectangular polygons it is difficult
to obtain small gaps. In such cases we are content to obtain gaps of the order of 10%.

Keywords Global Optimization · Mixed integer programming · Cutting stock problem ·
Packing problem · Shape constraints · Non-overlap constraints · Design problem ·
Assignment

1 Introduction

A set of circles and convex polygons (often rectangles), hereafter called objects, are to be cut
from rectangular plates. The objects are free of orientation restrictions. There are two cases to
be distinguished: (a) the plates are to be produced, or (b) they are already available on stock.
Both the plates to be produced and the plates available on stock are hereafter called resource
plates. In case (a) the plates are considered as design rectangles whose width and length are
to be determined; hereafter called design and production case. The design plates are subject
to lower and upper bounds of their widths and lengths. The number of design rectangles is
not known a priori. The objective is to minimize the area of the design rectangles; this is
equivalent to minimize trimloss. In case (b) the objects should be cut from a set of up to 50
stocked rectangles of known geometric dimensions, i.e., we have to solve the cutting problem
and an additional assignment problem. After (a) or (b) have been solved, in a second step, the
objects should be arranged in the plates in such a way that the remaining waste area contains
a rectangle of maximum size; this remaining rectangle becomes a new stocked plate.

Both problems (a) and (b) fall into the class of two-dimensional cutting or packing
problems of regular objects. They come close to the Dyckhoff [8] classification 2/V/D/F;
i.e., two-dimensional, V = a kind of assignment: a selection of objects and all items, D = an
assortment of large objects: different figures, and F = an assortment of small items: few items
of different figures. There is a vast amount of publications in the framework of discrete or
computational geometry related to congruent circle packing into squares or densest circle
packing; cf. Szabo et al. [27]. However, the literature reveals that there exist no publications
in which circles of unequal radii and orientation-free rectangles or polygons are packed
simultaneously into rectangles. If subproblems are treated, i.e., only circles, only rectangles,
or only for given resource plates of known size, then no claim of computing globally optimal
solutions is made. Regarding our design problem, there exist a few publications in Russian
language packing circles into one area-minimizing rectangle; they are referenced in Stoyan
and Yaskov [26]. Among them are the papers by Rvachev and Stoyan [23,24] who compute
exactly a series of local optima for one area-minimizing rectangle hosting a set of given
circles. The most recent publication on packing circles into area-minimizing rectangles (and
other geometric forms) is the work by Birgin and Sobral [5]. Stoyan and Yaskov [26] do not
claim to compute the global optimum. There are a few more publications on packing equal
circles into one area-minimizing rectangle; cf. Ruda [22] or Lubachevsky and Graham [18].
Although limited to equal circles and not minimizing the area of the rectangle, the work
by Lubachevsky and Graham [19] is worth to mention, who computed minimum perimeter
rectangles enclosing congruent non-overlapping circles. An interesting approach is that by
Yu and Zhang [29] who formulated the problem of packing a given set of different-sized
circles into the smallest possible square box as a nonlinear programming (NLP) problem

123

J Glob Optim (2009) 43:299–328 301

and established the first order optimality conditions. The augmented Lagrangian method is
applied to solve this problem.

We found more publications treating the problem of fitting different-sized circles into
rectangles of given size. Fraser and George [10] discuss packing circles of the same size
in a container of fixed dimensions. George et al. [11] formulated a mixed integer nonlinear
programming (MINLP) problem for packing different-sized pipes into a rectangular contai-
ner which is equivalent to packing unequal circles into rectangles. They also addressed the
problem of how to allocate pipes to various containers in a shipment in order to minimize
the number of containers. They developed a number of heuristic procedures and a gene-
tic algorithm for (approximately) solving this problem. Because of the container-shipping
background of their problem, they also discussed the stability of packing solutions in their
excellent paper. Stoyan and Yaskov [25] discussed and developed exact and approximate
algorithms to compute the global optimum of placing either rectangles or circles into a given
rectangle but not rectangles and circles simultaneously. Although, they did not consider the
case with both circles and rectangles to be placed, this paper is very much recommend to the
reader because it contains useful analytical results and also reviews many results obtained by
Russian and Ukrainian researchers among them Rvachev. Stoyan and Yaskov [26] extended
their approach to strip packing of circles into one rectangle of fixed width and height to be
minimized. Huang et al. [13] developed a greedy algorithm for packing unequal circles into
given rectangles. The problem of packing circles into given rectangles has been shown to be
NP-hard; cf. Lenstra and Rinnooy [15]. Although already 15 years old and mostly on packing
into given rectangles, it is still inspiring to read the invited review article by Dowsland and
Dowsland [7] on packing problems.

The publications on packing rectangles into rectangles are mostly concerned with axis-
parallel or orthogonal packings. A recent very interesting work is that by Birgin et al. [4].
Packing polygons into given rectangles is a field in which only heuristic methods have been
used. Jakobs [14] proposed a genetic algorithm for placing polygons into a rectangle in
which in a pre-step each polygon is embedded into a rectangle of minimum area. This step
is followed by the main step of packing rectangles into one rectangle.

The structure of this article is as follows. In Sect. 2 we develop an NLP model for cutting
objects from one design rectangle. The model is extended in Sect. 3 to allow for a modest
number of design rectangles and also the assignment/selection problem if the objects need
to be assigned to a set of given rectangles (cutting from, or packing into several rectangles).
This MINLP problem can be solved to global optimality only for small instances. Numerical
experiments and results are discussed in Sect. 4. At all places in this paper where we use the
term global optimum, or global optimality, we use it in the sense of small gaps of the order
of 10−8, and we are aware that those are also subject to the limits of the numeric solvers
dealing with finite number arithmetic subject to round-off errors.

2 Modeling: cutting from one rectangle

If all objects fit into one design or given plate the problem can be described as a nonconvex
NLP problem. For circles, the only variables are the coordinates of the center. Rectangles
and polygons are described by the coordinates of their vertices. Shape constraints ensure
that the variables representing the vertices reproduce the original geometrical objects. The
model consists of non-overlap constraints and the constraints ensuring that all objects do not
exceed the bounds of the enclosing rectangle. Non-overlap of circles by enforcing that their
centers are apart not less than the sum of their radii. Polygons are ensured not to overlap

123

302 J Glob Optim (2009) 43:299–328

with other objects by separating lines (in general hyperplanes) exploiting the fact that we
are dealing with convex objects. In the model formulation below we put all relations into
numbered equations which are either referred to in the text, or which appear in the model
and have been coded in GAMS [cf. Brooke et al. [6]). Where possible we try to use a vector
notation using the Euclidean norm scalar products avoiding the additional dimension index
d . We use lower case symbols for variables, and upper case symbols for input or derived data.

2.1 Indices

used in this model:

d ∈ D := {1, . . . , |D|} dimension of the space.
If we consider only circles, the model is generic for an arbitrary number, |D|, of dimen-
sions. For the current case we work in a two dimensional space with width (d = 1) and
length (d = 2).

i ∈ I := {i1, . . . , i|I|} circles to be packed.
Circles are characterized by their radii Ri .

j ∈ J := {r1, . . . , r|J |} rectangles to be packed.
Rectangles are characterized by width W j and length L j . Rectangles are treated dif-
ferent from non-rectangular polygons in that different shape constraints are used.

k ∈ K := {k1, . . . , k|K|} index counting the vertices of the rectangles (|K| = 4) or polygons.
We identify vertex Vj,|K|+1 with Vj1.

p ∈ P := {p1, . . . , p|P|} polygons to be packed.
Polygons are characterized by the number of vertices, K p , and the coordinates of their
vertices Vpk , k = 1, . . . , K p . The orientation of placed polygons w.r.t. their reference
orientation is described by the angle αp measuring the anti-clockwise rotation of poly-
gon p. Using only one orientation angle limits us to the two-dimensional case.

r ∈ R := {r1, . . . , r|R|} resource rectangles to be produced or available on stock.
The number of resource rectangles, |R| varies between 1 and 50. They are assumed to
be ordered in a given sequence. The set R∗ denotes the set of all resource rectangles
except the last one.

2.2 Input data

The input data consists of the following geometric data:

Ai [L2] the areas of all circles i ; quantity derived as Ai = π R2
i . [L2] specifies that Ai

has the physical dimension area.

A j [L2] the areas of all rectangles j ; quantity derived as A j = S j1S j2.

Ap [L2] the areas of all polygons p; quantity derived by formula (2.30).

D [L] the maximum possible length of the diagonal of the design rectangle.

123

J Glob Optim (2009) 43:299–328 303

K p [−] the number of vertices of polygon p; [−] specifies that K p is a dimensionless
quantity.

L [L] maximum size (upper bound) of the length of the design rectangle; [L] specifies
that L has the physical dimension length.

L0
r [L] the accumulated length of stocked rectangles up to resource rectangle r .

Ri [L] the radius of circle i .

S jd [L] the extension of rectangle j , i.e., width S j1 and length S j2.

S+
d [L] maximum size (upper bound) of the extension of the design rectangles in dimen-

sion d .

S−
d [L] minimum size (lower bound) of the extension of the design rectangles in dimen-

sion d .

W [L] maximum size (upper bound) of the width of the design rectangle.

X pkd [L] the coordinates of vertex Vpk of polygon p; in vector notation Xpk . The ordering
is such that k and k + 1 refer to adjacent vertices.
The coordinates X pkd define the reference orientation of polygon p.

X0
pd [L] the center coordinates of polygon p; in vector notation X0

p .

XSR
rd [L] the extension of resource rectangle r in dimension d . In the case of design rec-

tangles this is the maximum extension in the sense of an upper bound; for stocked
rectangles it is the given size.

2.3 Variables

used in the different models:

a ∈ [S−
1 S−

2 , S+
1 S+

2] [L2] the area of the design rectangle. a− and a+ are lower and
upper bounds on a obtained during the computation.

In more than two dimensions, S−
1 S−

2 and S+
1 S+

2 are replaced by
∏|D|

d=1
S−

d and
∏|D|

d=1
S+

d , respectively. The minimal and maximal extensions, S−
1 , S−

2 , and S+
1 ,

S+
2 , are machine dependent production constraints.

αp ∈ [0◦, 360◦] [deg] the orientation angle of polygon p.
For rectangles, the range of αp is reduced to [0◦, 180◦].

�pp′k ∈ [0, D] [L] the distances of the vertices to the separating line separating the poly-
gons p and p′.
These variables are bounded by the diagonal, D, of the design rectangle.

123

304 J Glob Optim (2009) 43:299–328

δir ∈ {0, 1} [−] the binary variables δir decide on the allocation of object i to design
rectangle or stocked rectangle r .
These binary variables are only needed in Sect. 3 to model cutting from and object
allocation to several rectangles available on stock.

gpp′ ∈ [0, S+
1] × [0, S+

2] [L × L] the footing point vector of the separating line between
the polygons p and p′.
The vector variable gpp′ leads to the scalar variables gpp′d .

�0
r ∈ [0, L0

r] [L] the starting length of resource rectangle or segment r .
These auxiliary variables are only needed in Sect. 3 to model cutting from and
object allocation to several rectangles available on stock.

�δ
ir ∈ [0, L0

r] [L] the product �δ
ir := �0

r δir .
These auxiliary variables are only needed in Sect. 3 to model cutting from and
object allocation to several rectangles available on stock.

λpp′k ∈ [−D, D] [L] auxiliary variables needed to compute the vectors ppp′k connecting
vertex Vpk with the line separating polygon p and polygon p′.
These auxiliary variables are free variables and can take positive and negative values.

mpp′ ∈ [−1,+1] × [−1,+1 [−]2 the direction vector of the separating line between the
polygons p and p′.
The vector variable mpp′ leads to the scalar variables m pp′d .

npp′ ∈ [−1,+1] × [−1,+1] [−]2 the normal vector of the separating line between the
polygons p and p′.
The vector variable npp′ leads to the scalar variables n pp′d .

ppp′k ∈ [0, D] × [0, D] [L] connection from the separating line Gpp′ to vertex Vpk of
polygon p and p′.
The vector variable ppp′k leads to the scalar variables ppp′kd .

rp [L] radius of the smallest circle enclosing polygons p.
The variable is only used in the auxiliary model computing the smallest circle en-
closing polygons p.

σr ∈ {0, 1} [−] binary variables indicating the usage of rectangle r .
The binary variables σr are only needed in Sect. 3 to model cutting from and object
allocation to several rectangles available on stock.

v jkd ∈ [−S jd , S jd] [L] components of the vector v jk pointing from vertex k to vertex
k + 1 of rectangle j .
The vectors v jk support the representation of the rectangular objects by exploiting
the fact that a rectangle has two parallel sides with

∣∣v j1
∣∣ = S j1 and

∣∣v j2
∣∣ = S j2,

and that adjacent sides are orthogonal to each other, i.e., v jkv jk+1 = 0; here |·|
denotes the Euclidean norm, and the orthogonality is expressed by the vanishing
scalar product.

123

J Glob Optim (2009) 43:299–328 305

xid ∈ [0, S+
d] [L] the coordinates of the center vector, xi , of circle i .

For circles i with radius 2Ri ≤ mind{S+
d } the bounds can be refined to [Ri , S+

d −Ri].

x pkd ∈ [0, S+
d] [L] the coordinates of the vertex k of polygon p; in vectorial

notation xpk .
The vector xpk is obtained by rotation and translation of the original vertex vector
Xpk .

x pd ∈ [0, S+
d] [L] the center coordinates of polygon p; in vectorial notation x0

p .
The vector x0

p serves as the basis to re-construct polygon p.

xDR
rd [L] the extension of design rectangle r .

These variables are only needed in Sect. 3 to model cutting from and object allo-
cation to several rectangles available on stock.

xP
d ∈ [0, S+

d] [L] the extension of the design rectangle in dimension d .
There are pre-given upper bounds on these extensions.

xR
jkd ∈ [0, S+

d] [L] the coordinates of the vertex vector xR
jk of rectangle j .

The variables are only bounded by the size of the design rectangle.

z ∈ [0, S+
1 S+

2] [L2] the objective function, trimloss or waste, associated to the optimal
solution.
This variable is defined as z = a − ∑

i Ai − ∑
j A j − ∑

p Ap .

Note that we provide lower and upper bounds in the model wherever possible and as tight as
possible as these bounds help to solve the NLP and MINLP problems to global optimality.

2.4 Model

The objective function to be minimized is the area, a, of the design rectangle

min a, a =
|D|∏

d=1

xP
d , (2.1)

where xP
d represents the extension of the design rectangle in dimension d . Equivalent to this

is to minimize waste, i.e.,

min z, z = a −
∑

i

Ai −
∑

j

A j −
∑

p

Ap, (2.2)

where Ai , A j , and Ap denote the known areas of circles, rectangles, and polygons.
The extensions are subject to the bounds

S−
d ≤ xP

d ≤ S+
d , ∀d. (2.3)

In the two-dimensional cases considered in this publication xP
1 is width w, and xP

2 is
length �.

123

306 J Glob Optim (2009) 43:299–328

2.4.1 Cutting circles

For all objects we have to guarantee that they do not overlap with other objects. For circles
the non-overlap constraints simply read

(xi − xi ′)
2 ≥ (Ri + Ri ′)

2 , ∀{ (i, i ′) | i < i ′}. (2.4)

Note that for n circles we have n(n − 1)/2 inequalities of type (2.4).
Fitting the circles inside the enclosing rectangles requires

xid ≥ Ri ; ∀{i, d}. (2.5)

and

xid + Ri ≤ xP
d ≤ S+

d ; ∀{i, d}. (2.6)

2.4.2 Cutting rectangles

The rectangles are described by the vertices xR
jkd and the shape constraints (2.8)–(2.11). The

rectangle fits into the enclosing rectangles if all corner points are inside the design rectangle,
i.e.,

0 ≤ xR
jkd ≤ xP

d ≤ S+
d ; ∀{ j, k, d}. (2.7)

To describe rectangle j and establish its proper shape we introduce the vectors v jk pointing
from corner k to corner k + 1

v jk = xR
jk+1 − xR

jk; ∀{ j, k}, (2.8)

where k5 is identified with k1; see Fig. 1. Note that (2.8) only connects the corner points.
However, it could happen that for instance v j1 and v j3 cross each other. In order to avoid
such situations we add the following constraints to ensure that we obtain the appropriate
shape, i.e., a rectangle with four 90◦ angles. At first we establish orthogonality between v j1

and v j2, i.e.,

v j1v j2 =
∑

d

v j1dv j2d = 0; ∀{ j}, (2.9)

(a) (b)

Fig. 1 Representation of rectangles and polygons

123

J Glob Optim (2009) 43:299–328 307

and then we require that v j3 and v j1, or v j4 and v j2, resp., are anti-parallel, i.e.,

v jkd = −v j,k−2,d ; ∀{ jkd|k > 2}. (2.10)

This representation takes care of the orientation automatically. Finally, we ensure that the
size of the rectangle is established by

∥∥∥v2
jk

∥∥∥
2 = v2

jk =
∑

d

v jkdv jkd = S2
jk; ∀{ j, k|k < 3}. (2.11)

Note that if we to arrange the objects in the design rectangle in such a was to leave a maximum
rectangular area free, we just need to replace the known size S2

jk in (2.11) by variables sFR
jd

denoting the unknown size of that inner free rectangle; the objective function to be maximized
is sFR

j1 sFR
j2 .

2.4.3 Cutting polygons

A polygon p is characterized by its K p vertices Vp1, . . . , VpK p , i.e., by their coordinates
Xpk , k = 1, . . . , K p , where the index p counts the available polygons, and K p specifies the
number of vertices of polygon p. While our application is two-dimensional, the formulation
presented below is in most parts generic to can be extended to higher dimensions. Some
care is needed with the neighborhood relationship of vertices, and also with the angular
representation (2.14), e.g., in three dimensions we would need two angles.

The polygons will be implicitly described by their centers, the distances of the vertices to
the center, and the orientations; see Fig. 1. The center, X0

p , of the original polygon is defined
by

X0
p = 1

K p

K p∑

k=1

Xpk; ∀{p}. (2.12)

The polygons can now be placed at a free center represented by the vector x0
q

x0
p = 1

K p

K p∑

k=1

xpk; ∀{p}. (2.13)

subject to the shape and orientation constraint

xpk = x0
p +

(
cos αp sin αp

−sin αp cos αp

) (
Xpk − X0

p

)
; ∀{p, k}. (2.14)

Instead of α as the free variable, we take −1 ≤ cos α ≤ +1 and −1 ≤ sin α ≤ +1 as the
free variables coupled by

sin2 αp + cos2 αp = 1; ∀{p}. (2.15)

Note that for polygons with a symmetry axis we need to consider only rotation angles in the
range of 0◦ to 180◦, i.e., 0 ≤ sin α ≤ 1. Further symmetry might be exploited in special
cases, e.g., regular polygons with n equal sides.

Fitting the polygons inside the enclosing rectangles requires that

X pkd ≤ xP
d ≤ Smax,d ; ∀{p, k, d}. (2.16)

123

308 J Glob Optim (2009) 43:299–328

2.4.4 Non-overlap constraints for polygons

Non-overlap of polygon p and any other polygon q ′ is enforced by the condition that all
vertices of q and q ′ are on different sides of, or on a separating line or hyperplane in higher
dimensions; see Fig. 2. Let polygon p and p′ have K p and K p′ vertices, respectively; note
that K p and K p′ may be different. The line, Gpp′ , separating the vertices of polygon p and
p′ involves the variables gpp′ , mpp′ , and λpp′ per polygon combination pp′ and is given by

Gpp′ := G pp′(λ) = gpp′ + mpp′λpp′ ; ∀{p, p′|p′ > p}, (2.17)

where λ ∈ IR parametrizes the line, and the direction vector mqq ′ is normalized to unity, i.e.,

m2
pp′ = 1; ∀{p, p′|p′ > p}. (2.18)

The normal direction, npp , to Gpp′ is given by
(
n pp′1, n pp′2

)T = (
m pp′2,−m pp′1

)T ; ∀{p, p′|p′ > p}. (2.19)

The K p connection vectors ppp′k from Gpp′ to vertex Vpk of polygon p are given by

ppp′k = xpk − (
gpp′ + mpp′dλpp′k

) ; ∀{p, p′, k|p′ > p ∧ k ≤ K p}, (2.20)

while for the K p′ vertices Vp′k of polygon p′ the connection vectors read

pp′ pk = xp′k − (
gpp′ + mpp′dλp′ pk

) ; ∀{p, p′, k|p′ > p ∧ k ≤ K p′ }. (2.21)

Note that the auxiliary variables λpp′k and λp′ pk are needed to compute the connection points
ppp′k and pp′ pk . The two polygons are separated by the conditions of parallelism

ppp′k = �pp′knpp′ ; ∀{p, p′, k|p′ > p ∧ k ≤ K p}, (2.22)

and anti-parallelism

pp′ pk = −�p′ pknpp′ ; ∀{p, p′, k|p′ > p ∧ k ≤ K p′ }, (2.23)

where the scalar variables �pp′k and �p′ pk measure the distances of the vertices to the
separating line.

To enforce that polygons do not overlap with circles, in (2.18)–(2.23) we replace polygon
p′ by circle i and make the following changes. Variables �p′ pk in (2.23) are fixed to radius

(a) (b)

Fig. 2 Non-overlap for polygons and circles

123

J Glob Optim (2009) 43:299–328 309

Ri , i.e., the separation line is a tangent to the circle. �c
pik is the replacement of �pp′k in

(2.22) which now takes the form

pc
pik = �c

piknpi ; ∀{p, i, k|k ≤ K p}, (2.24)

while (2.23) reads

pc
i p = −R(i)ni p; ∀{i, p}. (2.25)

Let us conclude this section by two remarks. The idea of the separating lines could be
generalized and exploited by a dynamic cutting plane approach, in which the separating
lines are added dynamically to ensure that objects do not overlap. The treatment of polygons
presented also works for nonconvex polygons. However, in that case it is too restrictive and
we may miss the global optimum.

2.5 Symmetry breaking

Symmetry degeneracy for cutting several objects from one design or stocked rectangle can
be broken or at least reduced by requesting that the center of one of the objects is placed into
the first quadrant of the design or stocked rectangle. If we select a specific circle i∗ this reads

xi∗d ≤ 1

2
xP

d ; ∀{d}. (2.26)

If we select a polygon, the inequality

x0
p∗d ≤ 1

2
xP

d ; ∀{d} (2.27)

has a great effect.
Symmetry degeneracy due to the presence of congruent objects has been broken by sorting

their center points with respect to the lower left corner of the design or stocked rectangle.
Objects in the same congruence class are given the same congruence value I co. For instance,
for circles i and i ′ in the same congruence class we apply the ordering inequalities

xi1 + 5xi2 ≤ xi ′1 + 5xi ′2; ∀{(i, i ′)|i < i ′ ∧ I co
i = I co

i ′ }. (2.28)

Rather a matter of degeneracy than that of symmetry we briefly address the problem of free
objects. Free objects are objects which can be moved locally without changing the objective
function, i.e., the area of the design rectangle at all. Examples are shown in Fig. 4; the circle
in the middle of Fig. 4c does not touch any other object. In a cutting problem free objects are
not a problem except for degeneracy; in a packing problem this would cause severe problems
as they would flow around freely. One avoid free objects by adding a soft penalty term which
moves the center coordinate always towards the lower left corner of the design rectangle.

2.6 Structural analysis

The cutting problem has been formulated as an NLP problem with the following nonconvex
aspects:

1. In the two-dimensional case their is the bilinear objective function (2.1). If either the
length or the width of the design rectangles are fixed, it reduces to a linear objective
function.

123

310 J Glob Optim (2009) 43:299–328

2. The overlap constraints lead to a geometrical situation with an obviously nonconvex
domain. Imagine the rectangle from which to cut the objects and assume that we have
one fixed object i f . The feasible area for a set {i1, i2, . . . , in} of n objects with respect
to i f is a rectangle without the region covered by i f . If all objects are circles the critical
inequality is (2.4) with quadratic and bilinear terms. The relevant center-coordinate
variables are only weakly bounded by the size of the design rectangle itself.

3. Cutting rectangles involves the following nonconvex features: the orthogonality equality
(2.9) with bilinear terms, and the normalization equality (2.11) with a sum of quadratic
terms. The variables v jk involved in the critical terms are bounded by − max(S j1, S j2)

and + max(S j1, S j2); these bounds grow with with the larger side of the rectangles to
be cut.

4. Cutting polygons involves the following nonconvex features: the normalization equality
(2.18) with a sum of quadratic terms, and the inequalities (2.20) and (2.21) with bilinear
terms. The variables mpp′ involved in the critical terms are bounded by −1 and +1. The
auxiliary variables λ are only weakly bounded by the size of the diagonal of the design
rectangle.

As all nonconvex terms present in the model are bilinear or quadratic terms, algorithms
specialized on such nonconvexities might be superior to the general purpose algorithms and
software packages we used. The review by Floudas et al. [9] is a good resource for further
references and a description of various approaches; we avoid repeating the material here but
list a few of the relevant references among them Androulakis et al. [3], Maranas and Floudas
[20], Adjiman et al. [2], and Adjiman et al. [1].

Especially, as we will see in Sect. 4.4, for cutting more than one polygon the gap is not
closed. Thus, one might want to resort to relaxations to derive better lower bounds. Our
approach in Sect. 2.7 is to replace the polygons by simpler objects (in our case) circles.
Another approach is to use algebraic reformulations and convex relaxation techniques as
described in Liberti [16], and Liberti and Pantelides [17].

2.7 Deriving lower and upper bounds

To reduce the range of variables we compute an upper bound on the area size of the design
rectangle by replacing each polygon by its outer circles, i.e., by the smallest circles enclosing
the polygons; see Appendix A.1. We then compute the optimal design rectangle and its area,
a+, which gives an upper bound to the optimal area, a, of the original problem. However, it
is usually not difficult to find a solution to the original polygon cutting problem during the
presolving phase. Therefore, this upper bound, a+, is only used to reduce the range of the
variable a.

However, it is very important to compute a tight lower bound. One might be attempted to
compute the lower bound, a−, by maximizing the radius rp subject to

(
xpk − x0

p

)2 ≥ r2
p; ∀{p, k|k ≤ K p}. (2.29)

This gives us the largest circle with all vertices outside of, or on the circumference of the
circle. However, as this circle partially exceeds the polygons, solving the auxiliary problem
in which the polygons are replaced by those circles, would only lead an estimation of the
area, a, but it does not provide a lower bound. Another estimation of a could be derived from

123

J Glob Optim (2009) 43:299–328 311

the area, Ap , of the polygon computed by the Gaussian trapezian formula

Ap = 1

2

∣∣∣∣∣∣

K p∑

k=1

(
X pk1 + X p,k+1,1

) (
X pk2 − X p,k+1,2

)
∣∣∣∣∣∣
, (2.30)

where X p,K p+1,1 is replaced by X p,1,1. This would enable us to replace the polygon by its

equivalent-area circle with radius R = 1
π

√
Ap .

A strict way to compute a− is to derive the maximal inner circle with radius Rp of each
polygon p as described in Appendix A.2, replace the polygons by those inner circles, and to
compute the area-minimizing plate hosting all inner circles and original circles.

For all polygons replaced with their maximal inner circles plus all original circles, we
then compute the optimal design rectangle and its area, a−

0 , which gives a lower bound
a−

1 := a−
0 − �a to the optimal area, a, of the original problem; �a is the absolute gap when

solving the auxiliary problem. We can further improve the lower bound if we compute the
following auxiliary quantities: the area access �A,

�A :=
∑

p

(
Ap − π R2

p

)
(2.31)

and the trimloss, z−
0 , associated with a−

0

z−
0 := a−

0 −
∑

i

π R2
i −

∑

p

π R2
p, (2.32)

where we have reduced a−
0 by the area of all original circles i and all inner circles corres-

ponding to the polygons. The lower bound, a−
1 , is replaced by

a−
2 = a−

1 + max(0,�A − z−
0). (2.33)

Unfortunately, this bound is only effective if the inner circles are poor approximations to the
polygons. If the inner circles are good approximations to the polygons, �A is usually smaller
than the circular trimloss z−

0 . In that case, however, we would expect that the minimal design
rectangular is very similar to that one obtained when replacing the polygons by the circles.

Let us briefly illustrate this approach by example c1p6a in Table 5. The original
area of the design rectangle is a = 20.372, and the gap is �z = z = 3.849, i.e., the
lower bound on waste or area, 16.523, has not moved at all. The next computational step
is to replace all polygons by their maximal inner circles (object relaxation); the area of
all circles is 14.428, the area access is �A = 2.096. The object-relaxed problem gives a
design rectangle of area size a−

0 = 18.748; as the circular problem was solved up to a gap
of 1.88 · 10−8 the lower bound on the area is reduced to a−

1 = 18.748. The trimloss of the
object-relaxed solution is z−

0 = 4.319. As �A < z−
0 the lower bound on a−

1 cannot be further
reduced; thus a−

2 = a−
1 = 18.748. Therefore, we can summarize the results as

Original Relaxed Improved
Quantity (a; z) LB Gap (a−

1 ; z−
1) (a−

2 ; z−
2) Gap Relative gap (%)

Area 20.372 16.523 3.849 18.748 18.748 1.624 8.66
Waste 3.849 0.000 3.849 2.225 2.225 1.624 72.99

where LB stands for lower bound obtained for the original problem; the quantities z
denote waste and corresponds to the area quantities a. Note that the original absolute gap has
been reduced from 3.849 to 1.624, i.e., by about 58% leading to a relative area gap of 8.66%.

123

312 J Glob Optim (2009) 43:299–328

3 Modeling: cutting and object allocation to several rectangles

If the objects do not fit into one rectangle, several rectangles need to be designed and produced.
However, cutting from several rectangles leads to a nonconvex MINLP problem because in
addition to all variables and constraints described in Sect. 2 we need binary variables δir

to decide on the allocation of object i to design rectangle or stocked rectangle r . Note that
in this section we cover both cases: defining new design rectangles subject to specified
lower and upper bounds as well as assigning the objects to a set of stocked rectangles with
given dimensions. We expect this formulation to work efficiently only for a small number
of rectangles r . Problems with a large number of stocked rectangles can be solved by the
column enumeration approach described in Rebennack et al. [21].

The assignment constraints are given by the requirement that each objects has to be
allocated, i.e.,

∑

r

δir = 1; ∀{i}. (3.34)

Assignment to rectangle r is only possible if this rectangle is used at all. We indicate the
usage of rectangle r by the binary variable σr which is coupled to the assignment variables
by

∑

i

δir ≥ σr ; ∀{r}, (3.35)

and

δir ≤ σr ; ∀{i, r}. (3.36)

The inequality (3.36) ensures that objects i can only be allocated to resource rectangle r if r
is used, while (3.35) enforces that at least one object i is assigned to r if r is used. For design
rectangles we add the symmetry breaking constraints

σr ≤ σr−1; ∀{r |r > 1}. (3.37)

To avoid the complicating issues to incorporate δir in the non-overlap constraints we use
the following equivalent approach. We arrange all resource rectangles (design, or stocked)
in a chain of rectangles in which each rectangle r is a segment with width wr = xDR

r1 and
length �r = xDR

r2 subject to lower and upper bounds 0 and XSR
rd . Note that this approach is

independent of the sequence. We use this chain of rectangle only to illustrate the ideas and
to construct the following constraints. The variables xDR

rd are coupled to σr by

xDR
rd ≤ XSR

rd σr ; ∀{r, d}. (3.38)

If we consider stocked rectangles the variables xDR
rd are fixed to the given dimensions XSR

rd
of resource plate r , if r is used at all, i.e.,

xDR
rd = XSR

rd σr ; ∀{r, d}. (3.39)

In absolute coordinates, rectangle or segment r starts at length �0
r and occupies the length

coordinate up to �0
r +xDR

r2 . This segment approach guarantees that objects allocated to different
rectangles automatically do not overlap. The only constraints we have to modify are those
constraints or bounds related to the lower and upper bounds of the center of circles, i.e., (2.5)
and (2.6), or vertices of the rectangles (2.7) and polygons (2.16). We illustrate this approach

123

J Glob Optim (2009) 43:299–328 313

and the necessary modifications for circles only as the application to the other objects is
obvious. Note that our formulation addresses the full assignment problem while George
et al. [11] allocated circles to rectangles by inspecting the rectangles separately; they were
well aware of the limitation of their approach.

The width coordinate, xi1, of the center of circle i , is now restricted by

xi1 ≤ xDR
r1 + XSR

r1 (1 − δir) − Riδir ; ∀{i, r}. (3.40)

Note that for δir = 0 (3.40) becomes redundant, i.e.,

xi1 ≤ xDR
r1 + XSR

r1 ; ∀{i}, (3.41)

while for δir = 1 (3.40) leads to

xi1 ≤ xDR
r1 − Ri ; ∀{i}, (3.42)

as wanted. Note that δir = 1 is only possible if xDR
r1 ≥ 2Ri as otherwise the circle does not

fit into assignment rectangle r at all.
The length coordinate, xi2, is subject to a lower and upper limit in order to fit into a specific

segment. The lower limit is established by

xi2 ≥ �δ
ir − L+(1 − δir) + Ri ; ∀{i}, L+ =

∑

r∈R∗
XSR

r2 (3.43)

where �δ
ir := �0

r δir and L+ is the sum of the lengths of the design or assignment rectangles
(except for the last one) and serves to make (3.43) redundant. An upper limit on xi2 is given
by

xi2 ≤ �δ
ir + xDR

r2 − L+(1 − δir) − Riδir ; ∀{i}, (3.44)

which is similar to (3.40) except for the absence of the bilinear term �δ
r := �0

r δir term
established by

�δ
ir ≤ �0

r ; ∀{i, r}, (3.45)

�δ
ir ≤ L0

r δir ; ∀{i, r}, (3.46)

with upper bound L0
r = ∑r−1

m=1 XSR
r2 on �0

r with L0
1 = 0, and

�δ
ir ≥ �δ

ir − L0
r δir ; ∀{i, r}. (3.47)

Note that Riδir in (3.44) avoids that object i is assigned to a rectangle r if it does not fit into
it.

For design rectangles we add the symmetry breaking constraints

xDR
r1 ≤ xDR

r−1,1; ∀{r |r > 1}, (3.48)

i.e., the design rectangles are constructed according to decreasing width. Another symmetry
breaking constraint is the requirement that the width of the design rectangles does not exceed
its length, i.e.,

xDR
r1 ≤ xDR

r2 ; ∀{r}. (3.49)

Finally, if we consider design rectangles, we assign the object with the largest area to the first
design rectangle.

123

314 J Glob Optim (2009) 43:299–328

Note that the formulation presented has the following advantage. The binary variables
never show up in the non-overlap or shape constraints. They only connect to the variables
representing the center of the circles or the vertices of the polygons.

4 Numerical experiments and results

We present a case study in which we apply the solution approach to solve problems of a
modest number of objects. We consider up to 10 objects to be nested into one design rectangle.
We consider examples with only circles in Sects. 4.1 and 4.2; with circles and rectangles in
Sect. 4.3; and with circles and polygons in Sect. 4.4. We also distinguish experiments with
differently shaped objects to be cut and those which have mostly congruent figures. All expe-
riments have been performed using the Branch&Reduce Optimization Navigator (BARON)
exploiting global optimization techniques; cf. Ghildyal and Sahinidis [12] or Tawarmalani
and Sahinidis [28]. For some of them we also tried LindoGlobalwhich is part of the GAMS
22.5 distribution. In the tables displayed in the next sections we use the following symbols:

a Optimal area of the design rectangle
Acirc The area occupied by the circles to be cut
Arect The area occupied by the rectangles to be cut
CPU The CPU time in seconds

� The absolute gap; sometimes we display a multiple of the gap
L; � Upper bound and optimal length of the design rectangle

n The number of circles
Nrow The number of constraints
Ncol The number of variables
Nnz The number of non-zero coefficients in the problem matrix

Nnlin GAMS code length providing a measure for the complexity of the nonlinear terms, e.g.,
exy is, loosely speaking, more nonlinear than xy

Nnlz The number of nonlinear matrix entries in the model
Niter The number of BARON iteration
Nbest The node at which BARON found the optimal solution

Nmem The maximum number of nodes hold in memory
W ;w Upper bound and optimal width of the design rectangle

z Minimal waste of the design rectangle

4.1 Sets of mostly congruent circles

In this numerical experiments summarized in Table 1 we used n circles of radius R = 0.5, the
cases indicated by a, b, and c contain a few larger circles (a: one circle with radius R = 0.7,
b: one circle with R = 0.9, and c: one circle with R = 0.7 and another one with R = 0.9),
e.g., case c6-b involves 6 circles of radius R = 0.5 and one circle of radius R = 0.9. Case
c6a-x involves 6 circles of radius R = 0.725 and one circle of radius R = 1.2; it was solved
to provide a lower bound on the polygon case c1p6.

In this tables and others which contains only circles to be cut, the waste is given by
z = a − ∑

i π R2
i , and � is the absolute gap between the upper and lower bound of the

objective function z. If the upper limits, W and L , on the size of the design rectangle are not
active, and the x coordinate measures the width, a linear chain of congruent circles with radii
Ri = R and center coordinates (xi , yi) = R(1, 2i − 1) as displayed in Fig. 3a is globally

123

J Glob Optim (2009) 43:299–328 315

Ta
bl

e
1

C
on

gr
ue

nt
ci

rc
le

s

n
ca

se
3

“c
3-

1”
3

“c
3-

2”
4

“c
4-

1”
4

”c
4-

2”
5

“c
5-

1”
5

“c
5-

2”
6

“c
6-

1”
6

“c
6-

2”
6

“c
6-

3”
7

“c
7-

1”
7

“c
7-

2”

N
ro

w
15

15
23

23
39

34
46

55
46

60
60

N
co

l
10

10
12

12
14

14
16

16
16

18
18

N
nz

42
42

70
70

13
0

10
8

15
2

19
0

15
2

20
4

20
4

N
nl

in
13

8
13

8
26

4
26

4
58

2
47

2
70

2
89

2
70

2
45

3
45

3
N

nl
z

26
26

50
50

10
6

82
12

2
16

2
12

2
86

86
W

;w
4;

1.
00

2;
1.

87
1;

1.
00

2;
2.

00
4;

1.
00

2;
2.

00
4

;2
.0

0
2;

2.
00

1.
9;

1.
00

4.
0;

1.
00

2.
0;

2.
00

L
;�

8;
3.

00
2.

5;
2.

00
4;

4.
00

4;
2.

00
8;

5.
00

4;
2.

73
8;

3.
00

4;
3.

00
8.

0;
6.

00
8.

0;
7.

00
6.

0;
3.

73
a

3.
00

00
3.

73
20

4.
00

00
4.

00
00

5.
00

00
5.

46
41

6.
00

00
6.

00
00

6.
00

00
7.

00
7.

46
41

01
4

z
0.

64
38

1.
37

58
0.

85
84

0.
85

84
1.

07
30

1.
53

71
1.

28
76

1.
28

76
1.

28
76

1.
50

22
08

4
1.

96
63

14
3

C
PU

1
3

4
40

45
9

82
47

7
11

07
82

13
25

44
2

N
ite

r
21

45
5

14
1

63
35

26
40

7
65

61
27

73
3

41
84

1
59

27
46

40
3

18
34

8
N

be
st

21
42

4
14

1
22

8
77

4
63

38
14

88
38

22
4

28
30

23
95

2
17

75
4

N
m

em
4

33
6

10
5

46
8

29
9

56
3

72
4

13
5

88
7

35
6

10
9
�

1.
00

1.
38

1.
00

1.
00

1.
07

1.
54

1.
28

1.
54

1.
28

1.
50

1.
97

T
he

fir
st

lin
e

of
th

e
co

lu
m

n
gi

ve
s

th
e

nu
m

be
r,

n,
of

ci
rc

le
s

an
d

th
e

na
m

e
as

si
gn

ed
to

th
at

ca
se

.F
or

an
ex

pl
an

at
io

n
of

th
e

ot
he

r
sy

m
bo

ls
se

e
th

e
ta

bl
e

at
th

e
be

gi
nn

in
g

of
Se

ct
.4

123

316 J Glob Optim (2009) 43:299–328

(a) (b)

(d)

(c)

Fig. 3 Mostly congruent circles. The circles in (a), and (c) have unit diameter. The length of the design
rectangle is visible in the horizontal, its width in the vertical extension

optimal. If a linear chain cannot be established because 2n R > L , solutions with w = W
and � < L are obtained; see Fig. 3c.

4.2 Several circles of mostly different size

In this test series summarized in Table 2 and displayed in Fig. 4 we consider up to 10 circles
of different size for a typical 4 × 8 design plate, and a larger one with L = 18. The cases
with more than 5 circles contain one pair of congruent circles of radius 0.6.

These cases can be solved relatively easily by BARON. However, as cases 5a and 5b
illustrate, the maximum width, W , of the design rectangle has a strong influence on the
solution time. The smaller W , the easier to solve a case. Case 10 has been solved exploiting
the symmetry breaking constraint (2.26).

4.3 Circles and rectangles

For small cases, the rectangles are modeled as polygons with center x0
q rotated by α with

0◦ ≤ α ≤ 180◦. Even for these small cases, it became important and necessary to specify
priorities on the branching variables; high priority (5000 as BARON option) for x0

q and the
variable cos α is prioritized with the BARON value 1000. Case c1r1-3 has two rows more
than c1r1-1 and c1r1-2 because we included the symmetry breaking inequalities (2.26).

The larger cases displayed in Fig. 5 with 6 circles and 1, 2, or 3, resp., rectangles have been
solved to optimality during the preprocessing phase using the model formulation presented
in Sect. 2.4.2; for rectangles this model is more efficient than the general polygon case. In
this case the area, Acirc, covered by the circles is 22.84 while the rectangles cover only 1.52,
i.e., the rectangles can easily placed in the empty space between the circles (Table 4).

4.4 Circles and polygons

The circle-polygon experiments are summarized in Table 5; some of them are displayed in
Fig. 6. In the examples c1p1-1, c1p1-2, and c1p1-3 the polygons were rectangles of size
0.1 × 0.15, 0.5 × 0.75, and 0.5 × 0.75, respectively. In the other cases, the coordinates of

123

J Glob Optim (2009) 43:299–328 317

Ta
bl

e
2

O
ne

or
tw

o
la

rg
er

ci
rc

le
s

ad
de

d
to

a
se

to
f

co
ng

ru
en

tc
ir

cl
es

n
ca

se
7

“c
6a

-x
”

7
“c

6-
a”

7
“c

6-
b”

7
“c

6-
c”

7
“c

7-
a”

8
“c

8-
a”

N
ro

w
56

54
54

65
71

88
N

co
l

18
18

18
20

20
22

N
nz

18
4

18
0

18
0

21
6

24
0

30
4

N
nl

in
45

3
45

3
45

3
60

0
60

0
76

8
N

nl
z

86
86

86
11

4
11

4
14

6
W

;w
4;

2.
90

2.
9;

2.
00

2.
9;

2.
00

4.
0;

3.
00

1.
9;

1.
86

60
25

40
2.

1;
2.

00
L
;�

8;
6.

47
8.

0;
4.

18
8.

0;
4.

62
8.

0;
6.

87
8.

0;
5.

19
82

03
47

8.
0;

5.
18

17
42

43
a

18
.7

52
9

8.
36

34
85

9.
23

06
78

7
20

.6
21

42
9.

69
99

79
72

10
.3

63
48

47
0

z
4.

32
11

8
2.

11
17

15
1.

97
35

99
7

4.
09

75
26

2.
66

28
12

17
54

2.
54

09
18

99
63

C
PU

83
2

21
13

30
77

44
92

6
11

2
34

32
4

N
ite

r
27

02
0

70
43

1
10

76
35

95
92

91
16

91
64

05
09

N
be

st
26

67
9

59
63

2
67

27
8

92
59

60
16

45
63

93
13

N
m

em
88

0
29

56
29

60
30

34
4

17
0

19
80

0
10

9
�

4.
32

2.
11

1.
97

2.
97

2.
66

2.
55

123

318 J Glob Optim (2009) 43:299–328

(a)

(c)

(d)

(b)

Fig. 4 Several circles of different size. The four examples displayed in this figure are taken from Table 3

the polygon vertices were

Case Polygons and their vertices

c1p1-1 1 × 0.05(0, 0; 0, 2; 3, 2; 3, 0)

c1p1-2 1 × 0.25(0, 0; 0, 2; 3, 2; 3, 0)

c1p1-3 1 × 0.25(0, 0; 0, 2; 3, 2; 3, 0)

c1p5a 2 × 1
2 (0, 0; 0, 2; 1, 3; 2, 3; 3, 2; 3, 0)

c1p5b 5 × 1
2 (0, 0, 0, 2, 1, 3, 2, 3, 3, 2; 3, 0)

c1p6a 6 × 1
2 (0, 0; 0, 2; 1, 3; 2, 3; 3, 2; 3, 0)

c3p3 2 × 1
2 (0, 0, 0, 2, 1, 3, 2, 3, 3, 3, 0) + 1 × 1

2 (0, 0, 0, 2, 3, 2, 3, 0)

c6p3 1 × 0.1(0, 0; 0, 8; 5, 8; 5, 0) + 1 × (0, 0; 0, 1; 1, 1; 1, 0)

+1 × 0.1(0, 0; 0, 3; 4, 3; 4, 0)

Let us illustrate the interpretation of this table by case c1p5a with 6 vertices (0,0), (0,1),
(0.5,1.5), (1,1.5), (1.5,1), and (1.5,0). The small gap of 9.05 · 10−6 in case c3p1b could only

123

J Glob Optim (2009) 43:299–328 319

Ta
bl

e
3

Se
ve

ra
lc

ir
cl

es
of

di
ff

er
en

ts
iz

e

n
5a

5b
6

7
8

9
10

N
ro

w
24

24
45

39
48

58
77

N
co

l
14

14
16

18
20

22
24

N
nz

68
68

15
0

12
0

15
2

18
8

25
6

N
nl

in
22

2
22

2
64

2
45

3
60

0
76

8
95

7
N

nl
z

42
42

12
2

86
11

4
14

6
18

2
10

R
i

12
,6

,8
,1

7,
5

12
,6

,8
,1

7,
5

“5
a”

+
13

“6
”

+
6

“6
”

+
20

,1
3

“8
”

+
6

“9
”

+
7

W
;w

4;
3.

97
5;

4.
93

4;
3.

97
4;

3.
98

4;
4.

00
4;

4.
00

4;
4.

00
L
;�

8;
7.

72
18

;5
.7

6
8;

7.
72

8;
7.

82
18

;1
3.

79
18

;1
3.

80
15

;1
3.

83
a

30
.6

27
27

27
28

.4
11

30
16

0
30

.6
27

3
31

.1
23

48
13

1
55

.1
96

29
95

9
55

.1
96

29
95

8
55

.3
20

88
96

1
z

8.
57

32
92

22
6.

35
73

21
18

7.
78

79
0

7.
15

31
29

36
14

.4
81

25
88

1
13

.3
50

28
54

4
11

.9
35

49
50

8
C

PU
11

11
6

41
21

1
54

8
52

88
15

77
N

ite
r

16
3

11
46

9
68

8
72

21
18

45
5

25
02

86
13

30
5

N
be

st
88

11
40

8
67

4
72

21
13

91
2

87
29

8
13

20
8

N
m

em
16

30
8

47
31

6
89

7
11

61
1

72
0

10
8
�

0.
85

8
0.

63
5

0.
77

8
0.

71
6

1.
45

1.
34

1.
19

Fo
r

an
ex

pl
an

at
io

n
of

th
e

sy
m

bo
ls

se
e

th
e

ta
bl

e
at

th
e

be
gi

nn
in

g
of

Se
ct

.4

123

320 J Glob Optim (2009) 43:299–328

(a)

(c)

(b)

Fig. 5 Cutting circles and rectangles. Note that the configuration displayed in Subfigure (c) is not globally
optimal. The smallest rectangle could be moved elsewhere giving more space for the small circle on the right
of it allowing the largest circle to move to the left, and thus leading to a reduced length of the design plate

be reached when we used the symmetry breaking inequality (2.27). Case c6p3 contains the
same rectangles as c6r3-9, but represents them as general polygons. Table 5 shows that only
small and moderate cases with less than 200 nonlinear non-zero coefficients can be solved
to small gaps. For all other experiments the solutions listed have been solved during prepro-
cessing. However, during the Branch&Reduce phase, no further solutions were found nor
the lower bound was increased. In case c1p6a we applied the bound improving approach
described in Sect. 2.7. The two-polygon problem displayed in Fig. 6c was solved to global
optimality using LindoGlobal within 2 min.

4.5 Cutting and allocating objects to several rectangles

Here we consider numerical experiments for constructing simultaneously several design
rectangles (Fig. 7) and assigning objects to stocked rectangles (Fig. 8). Using the formulation
described in Sect. 3 we produced feasible solutions with in 1 or 2 min. But in none of these
cases were we able to find solutions with gaps smaller than 10−7.

4.6 Summarizing the experiments

In all circular experiments we found good feasible solutions within seconds or the latest in
minutes. Cutting only circles is easiest which is not a surprise as the numbers of variables
and constraints are small. Solution with gaps between the upper and lower bound of the
objective function of the order of 10−8 are within seconds and minutes; these seem to be good
approximations to the global optimum. Cutting congruent circles requires to use the symmetry
breaking constraints (2.28). Achieving small gaps is difficult when several polygons are
involved, especially, when several larger ones need to be cut. Addressing the community of
reliable computing and interval arithmetic, we point out that all our statements about small

123

J Glob Optim (2009) 43:299–328 321

Ta
bl

e
4

C
ir

cl
es

an
d

re
ct

an
gl

es

n
c1

r1
-1

c1
r1

-2
c1

r1
-3

c6
r1

c6
r2

-9
c6

r3
-9

N
ro

w
54

54
56

15
0

49
9

38
8

N
co

l
47

47
47

56
25

0
13

6
N

nz
16

8
16

8
17

2
50

0
1,

73
0

1,
31

6
N

nl
in

21
8

21
8

21
8

3,
04

8
9,

53
1

8,
49

0
N

nl
z

42
42

42
35

8
11

48
95

0
10

R
i

5
5

5
12

,6
,8

,1
7,

13
,5

12
,6

,8
,1

7,
13

,5
12

,6
,8

,1
7,

13
,5

10
S

j
1,

1.
5

5,
7.

5
10

,1
5

8,
5

8,
5;

10
,1

0
8,

5;
10

,1
0;

3,
4

A
ci

rc
π
/
4

π
/
4

π
/
4

22
.8

4
22

.8
4

22
.8

4
A

re
ct

0.
01

5
0.

37
5

1.
50

0.
40

1.
40

1.
52

W
;w

4;
1.

00
4;

1.
00

2.
5;

1.
00

4;
3.

85
24

36
96

4;
3.

85
4;

3.
60

L
;�

8;
1.

00
8;

1.
50

3.
0;

2.
50

9;
7.

95
91

68
40

9;
8.

18
9;

8.
80

a
1.

00
00

1.
50

00
2.

50
00

30
.6

62
19

45
2

31
.4

49
2

31
.6

81
3

z
0.

19
96

01
83

67
5

0.
33

96
0.

21
46

01
52

82
06

7.
42

27
15

93
33

9
7.

20
98

27
62

72
4

7.
32

19
54

79
79

3
C

PU
1

42
36

8
15

60
30

9
N

ite
r

−1
6,

26
9

6,
81

09
20

9
−1

−1
N

be
st

−1
6,

23
4

27
,0

03
−1

−1
−1

N
m

em
0

70
23

3
15

0
0

�
0

10
−9

10
−9

10
−4

0
0

123

322 J Glob Optim (2009) 43:299–328

Ta
bl

e
5

C
ir

cl
es

an
d

Po
ly

go
ns

;s
om

e
ca

se
s

ar
e

di
sp

la
ye

d
in

Fi
g.

6

n
c1

p1
-1

c1
p1

-2
c1

p1
-3

c1
p5

a
c1

p5
b

c1
p6

a
c3

p1
b

c3
p3

c6
p3

10
R

i
5

5
5

12
12

12
12

,6
,8

12
,6

,8
12

,6
,8

,1
7,

13
,5

N
ro

w
54

54
56

79
9

83
8

11
61

14
1

51
6

66
1

N
co

l
47

47
47

76
7

79
1

1,
11

0
12

5
48

9
62

8
N

nz
16

8
16

8
17

2
2,

91
4

3,
07

6
4,

29
0

48
4

1,
83

6
2,

29
4

N
nl

in
21

8
21

8
21

8
6,

25
2

6,
49

2
9,

30
3

90
7

3,
82

9
4,

86
3

N
nl

z
42

42
42

1,
21

4
1,

26
2

1,
80

8
17

8
74

8
95

0
W

;w
4;

1.
00

4;
1.

00
2.

50
;1

.0
0

4;
2.

50
4;

3.
90

4;
3.

00
4;

2.
68

1;
3.

40
4;

3.
97

16
74

07
L
;�

8;
1.

00
8;

1.
50

3;
2.

50
8;

6.
36

8;
4.

76
8;

6.
79

8;
4.

95
4;

4.
93

8;
4.

95
a

1.
00

00
1.

50
00

2.
50

15
.9

04
97

80
2

18
.5

52
92

04
1

20
.3

72
85

41
4

13
.2

95
08

72
4

16
.7

56
21

37
4

35
.1

03
92

48
5

z
0.

19
96

01
83

67
5

0.
33

96
0.

21
46

01
52

82
06

2.
88

10
84

59
66

5
4.

02
90

26
99

37
1

3.
84

89
60

72
35

5
3.

62
96

01
16

80
1

3.
59

07
27

66
10

.7
44

54
62

62
3

C
PU

0.
1

42
36

8
2,

00
0

1,
80

0
1,

80
0

53
2,

00
0

33
,0

00
N

ite
r

−1
6,

26
9

68
,1

09
−1

24
1

14
1

47
2

11
,7

55
N

be
st

−1
6,

23
4

27
,0

03
−1

−1
−1

1
−1

−1
N

m
em

0
70

23
3

0
12

3
13

1
19

5
1,

41
5

�
0

1.
00

·1
0−

9
1.

00
·1

0−
9

2.
88

10
84

59
66

5
4.

02
90

26
99

37
1

3.
84

89
60

72
35

5
9.

05
·1

0−
6

3.
59

07
27

66
10

.7
44

54
62

62
3

C
PU

3,
77

4
a− 1

18
.7

47
72

03
82

1
�

a
1.

88
·1

0−
8

A
ci

rc
14

.4
28

28
16

3
z− 0

4.
31

94
38

75
21

�
A

2.
09

6
a− 2

18
.7

47
72

03
82

1
�

2
1.

62
51

33
75

79

N
ot

e
th

at
ca

se
c6

p3
pl

ac
es

th
e

sa
m

e
ob

je
ct

s
as

ca
se

c6
r3

.H
ow

ev
er

,n
um

er
ic

al
ly

it
is

le
ss

ef
fic

ie
nt

to
tr

ea
tr

ec
ta

ng
le

s
as

ge
ne

ra
lp

ol
yg

on
s.

C
ol

um
n

c1
p6

a
de

m
on

st
ra

te
s

th
e

ef
fe

ct
of

ex
pl

oi
tin

g
th

e
lo

w
er

bo
un

d
ob

ta
in

ed
by

so
lv

in
g

th
e

au
xi

lia
ry

ci
rc

le
pr

ob
le

m
de

sc
ri

be
d

in
Se

ct
.2

.7
;t

he
or

ig
in

al
ga

p
of

3.
85

is
re

du
ce

d
to

1.
62

,w
hi

ch
co

rr
es

po
nd

s
to

a
re

du
ct

io
n

of
m

or
e

th
an

50
%

an
d

a
re

la
tiv

e
ar

ea
ga

p
of

8.
7

pe
rc

en
t.

M
or

e
de

ta
ils

ar
e

gi
ve

n
at

th
e

en
d

of
Se

ct
.2

.7
.a

− 1
is

th
e

lo
w

er
bo

un
d

on
th

e
ar

ea
of

th
e

de
si

gn
re

ct
an

gl
e

ob
ta

in
ed

by
so

lv
in

g
th

e
pr

ob
le

m
w

ith
al

lp
ol

yg
on

s
re

pl
ac

ed
by

th
ei

r
m

ax
im

um
si

ze
in

ne
r

ci
rc

le
;�

a
is

th
e

ab
so

lu
te

ga
p

ob
ta

in
ed

fo
r

th
is

re
la

xe
d

pr
ob

le
m

.
A

ci
rc

de
no

te
s

th
e

ar
ea

oc
cu

pi
ed

by
th

e
or

ig
in

al
ci

rc
le

s.
z− 0

is
th

e
tr

im
lo

ss
as

so
ci

at
ed

w
ith

th
e

so
lu

tio
n

of
th

e
re

la
xe

d
pr

ob
le

m
,�

A
is

th
e

ar
ea

ac
ce

ss
of

po
ly

go
ns

m
in

us
th

ei
r

in
ne

r
ci

rc
le

s,
a− 2

an
d

�
2

ar
e

th
e

lo
w

er
bo

un
d

an
d

th
e

ab
so

lu
te

ga
p

af
te

r
ev

al
ua

tin
g

th
e

ar
ea

ac
ce

ss
an

d
re

la
xe

d
tr

im
lo

ss

123

J Glob Optim (2009) 43:299–328 323

(a) (b) (c)

(d) (e)

Fig. 6 Circles and convex polygons. Although all solutions have been produced in short time, in most cases
we were not able to find solutions with gaps smaller than 10−7. The configurations displayed in Subfigures
(a) and (e) are obviously not the global optimum. In (a) one could move the two right polygons left to the
circle; in case (e) the small circle at the lower left of the big circle could be placed at the position of the small
rectangle at the upper left corner of the sheet; the big circle could be moved towards left possibly adjacent to
the other two circles, and the small rectangle previously at the upper left corner of the sheet could be placed
at the lower right corner of the sheet below the displaced great circle — this would decrease the length of the
sheet while keeping the width the same. Only the two-polygon configuration displayed in Subfigure (c) was
proven to be the global optimum

gaps and global optima are subject to the limits related to the fact that BARON deals with
finite number arithmetic subject to round-off errors. Shortly before submitting this paper,
LindoGlobal became available in the most recent GAMS 22.5 release. On problems with
a small number of circles, it produced quickly solutions with gaps of the order of 10−11.
BARON produced smaller for cases with more circles.

In the polygon experiments with more than one polygon we found feasible solutions
within seconds or the latest in minutes but the relative gaps were 100% with the lower bound
not moving away from zero. An interesting case is the two-polygon problem displayed in
Fig. 6c; hereLindoGlobalproved global optimality within 40 min, a case on whichBARON
did not increase the lower bound at all. For larger polygon cases we experienced similar
problems as with BARON. Nevertheless, the overall experience with both commercial solvers
is encouraging.

5 Conclusions

We have developed NLP and MINLP models describing the problem of cutting circles, rec-
tangles and polygons from rectangular design or stocked plates, and applied several solution
techniques to solve this problem among them the Branch&Reduce Optimization Navigator
(BARON) called from GAMS, and, for solving the allocation problem, a column enumera-
tion approach [Rebennack [21]] in which the columns represent feasible assignments. It
is the first time when circles and arbitrary convex polygons are cut simultaneously. Good,

123

324 J Glob Optim (2009) 43:299–328

(a)

(g)(f)(e)

(b) (c) (d)

Fig. 7 Subfigures (a–c) show three design plates to be produced to cut four circles of radius R = 2, and one
smaller circle with R = 1. Subfigures (d, e) show a similar case with four circles of radius R = 1.5. In the
third case (f, g), two plates are generated to cut 9 circles

Fig. 8 5 circles are allocated to 2
of 5 stocked plates. Note that the
circles are placed within the
stocked plates but are not yet
arranged optimally. This could be
accomplished by solving an
additional strip or bin packing
problem

(a) (b)

123

J Glob Optim (2009) 43:299–328 325

often near globally optimal solutions with gaps of the order of 10−8, are computed within
seconds or minutes usually during preprocessing. As it is expected from the NP-hard nature
of the problem, we can derive such small gaps within seconds or minutes only for small cases.
Symmetry degeneration is tackled by appropriate symmetry breaking constraints. Cases with
small rectangles and polygons, which fit in the free space between the circles, are relatively
easy to solve. Cases with large polygons and significant trimloss are much more difficult, and
at best we have derived reasonable lower bounds by exploiting an auxiliary model using the
maximum inner circle fitting into a polygon. The upper bound, W , on the width of the design
rectangle plays an important role. The smaller W , the faster near globally optimal solutions
with gaps smaller than 10−7 are reached.

The approach developed here serves real world applications in which one has to cut
valuable material. In such cases, solutions proven to be globally optimal can be superior to
solutions produced by heuristics. For cases with small number of objects to be cut, the com-
putational effort meets the practical requirements. The reformulation–linearization technique
(RLT) approach by Liberti [16], and more recently, Liberti and Pantelides [17] can extend the
limit of problem sizes which can be solved with reasonable gaps. If cases with significantly
more objects need to be solved, or a certain time limit must not be exceeded in a real world
application one might resort to metaheuristics.

Acknowledgements Thanks is directed to Steffen Rebennack (University of Florida) for proof reading
and supporting the production of the graphics. Christodoulos A. Floudas (Princeton University) improved
this publication by pointing me to a set of publications of E. G. Birgin and co-workers. Comments by and
discussions with Leo Liberti (LIX Ecole Polytechnique, F-91128 Palaiseau, France), Tapio Westerlund (Abo
Adademi University, Turku, Finland), and Tibor Csendes (University of Szeged, Szeged, Hungary) are greatly
acknowledged. Two unknowns referees made constructive and valuable suggestions and thus helped to improve
this paper.

Appendix

A Auxiliary models

In this appendix we provide two auxiliary models used to derived upper and lower bounds on
the area of the design rectangle. The basic idea is to replace the polygons by there smallest
outer and largest inner circle.

A.1 Smallest circles enclosing the polygon

The model to compute the smallest circle enclosing polygon p is to minimize the radius r
subject to the constraints that all vertices of the polygon are inside the circle defined by rp

and the center x0, i.e.,

(
xpk − x0

p

)2 ≤ r2
p; ∀{p, k|k ≤ K p}. (A.50)

The global optimum of this problem is computed within seconds.

A.2 Largest circle fitting in the polygon

For a given polygon p, the radius of the maximal size circle is the maximal smallest height
h pk of all onto the edge Dpk of the triangles given by the sides dpk , dp,k+1 and Dpk , where

123

326 J Glob Optim (2009) 43:299–328

Dpk is the distance between vertex Vpk and vertex Vp,k+1,

D2
pk = (

Xp,k+1 − Xpk
)2

, (A.51)

and dpk and dp,k+1 are the distance of the vertices Vpk and vertex Vp,k+1 to the center x0
p of

the inner circle

d2
pk =

(
Xpk − x0

p

)2
, d2

p,k+1 =
(

Xp,k+1 − x0
p

)2 ; ∀{k|k ≤ K p}. (A.52)

The objective function of the problem is to maximize h p subject to

h p ≤ htri
pk; ∀{p, k|k ≤ K p}. (A.53)

The heights htri
pk depend on the center, x0

p, and the distances dpk , dp,k+1, and Dpk . They follow
from Heron’s area formula with a, b, and c being the lengths of the sides of the triangle

Fabc = √
s(s − a)(s − b)(s − c); s = a + b + c

2
(A.54)

and

Fabc = aha

2
= bhb

2
= chc

2
. (A.55)

With a = dpk , b = dp,k+1, and c = Dpk we obtain

htri
pk = 2

F

Dpk
= 2

√
s(s − dpk)(s − dp,k+1)(s − Dpk)

Dpk
, sp = dpk + dp,k+1 + Dpk

2
.

(A.56)

Let h∗
p be the optimal solution to (A.53). The circle placed at x0

p with radius Rp = h∗
p is

the inner circle of maximal size completely inside the polygon p; see Fig. 9. Under certain
assumptions this circle touches all edges but we cannot count on this. For instance, if the
polygon is a rectangle with different length and width, the inner circle touches only the two
longer edges.

Fig. 9 Polygon p and its
maximal inner circle with radius
h∗

p and center x0
p . Note that the

circle has three touching points
with the polygon

123

J Glob Optim (2009) 43:299–328 327

References

1. Adjiman, C.S., Androulakis, I.P., Floudas, C.A.: Global optimization of mixed integer nonlinear pro-
blems. AIChE J. 46, 1769–1797 (2000)

2. Adjiman, C.S., Androulakis, I.P., Maranas, C.D., Floudas, C.A.: A global optimization method aBB for
process design. Comput. Chem. Eng. Suppl. 20, S419–424 (1996)

3. Androulakis, I.P., Maranas, C.D., Floudas, C.A.: aBB: a global optimization method for general constrai-
ned nonconvex problems. J. Glob. Optim. 7, 337–363 (1995)

4. Birgin, E.G., Martínez, J.M., Nishihara, F.H., Ronconi, D.P.: Orthogonal packing of rectangular items
within arbitrary convex regions by nonlinear optimization. Comput. Oper. Res. 33, 3535–3548 (2006)

5. Birgin, E.G., Sobral, F.N.C.: Minimizing the object dimensions in circle and sphere packing problems.
Comput. Oper. Res. 34, online 16. Jan 2007.

6. Brooke, A., Kendrick, D., Meeraus, A.: GAMS – A User’s Guide (Release 2.25). Boyd & Fraser
Publishing Company, Danvers, Massachusetts (1992)

7. Dowsland, K.A., Dowsland, W.B.: Packing problems. Eur. J. Oper. Res. 56, 2–14 (1992)
8. Dyckhoff, H.: A typology of cutting and packing problems. Eur. J. Oper. Res. 44, 145–159 (1990)
9. Floudas, C.A., Akrotiriankis, I.G., Caratzoulas, S., Meyer, C.A., Kallrath, J.: Global optimization in

the 21st century: advances and challenges for problems with nonlinear dynamics. Comput. Chem.
Eng. 29, 1185–1202 (2005)

10. Fraser, H.J., George, J.A.: Integrated container loading software for pulp and paper industry. Eur. J.
Oper. Res. 77, 466–474 (1994)

11. George, J.A., George, J.M., Lamar, B.W.: Packing different-sized circles into a rectangular container. Eur.
J. Oper. Res. 84, 693–712 (1995)

12. Ghildyal, V., Sahinidis, N.V.: Solving global optimization problems with BARON. In: Migdalas, A.,
Pardalos, P., Varbrand, P. (eds.) From Local to Global Optimization. A Workshop on the Occasion of the
70th Birthday of Professor Hoang Tuy, Chap. 10, pp. 205–230. Kluwer Academic Publishers, Boston,
MA (2001)

13. Huang, W.Q., Li, Y., Akeb, H., Li, C.M.: Greedy algorithms for packing unequal circles into a rectangular
container. J. Oper. Res. Soc. 56, 539–548 (2005)

14. Jakobs, S.: On genetic algorithms for the packing of polygons. Euro. J. Oper. Res. 88, 165–181 (1996)
15. Lenstra, J.K., Rinnooy Kan, A.H.G.: Complexity of packing, covering, and partitioning pro-

blems. In: Schrijver, A. (ed.) Packing and Covering in Combinatorics, pp. 275–291. Mathematisch
Centrum, Amsterdam, The Netherlands (1979)

16. Liberti, L.: Reformulation and Convex Relaxation Techniques for Global Optimization. Ph.D. Thesis,
Imperial College London, London, UK (2004)

17. Liberti, L., Pantelides, C.: An exact reformulation algorithm for large nonconvex NLPs involving bilinear
terms. J. Glob. Optim. 36, 161–189 (2006)

18. Lubachevsky, B.D., Graham, R.: Dense packings of congruent circles in rectangles with a variable aspect
ratio. In: Aronov, B., Basu, S., Pach, J., Sharir, M. (eds.) Discrete and Computational Geometry – The
Goodman-Pollack Festschrift, vol. 25 of Algorithms and Combinatorics, pp. 633–650. Springer, Hei-
delberg (2003)

19. Lubachevsky, B.D., Graham, R.: Minimum perimeter rectangles that enclose congruent non-overlapping
circles. ArXiv Mathematics e-prints (2004)

20. Maranas, C.D., Floudas, C.A.: Finding all solutions of nonlinearly constrained systems of equations. J.
Glob. Optim. 7, 143–182 (1995)

21. Rebennack, S., Kallrath, J., Pardalos, P.M.: Column enumeration based decomposition techniques for a
class of non-convex MINLP problems. J. Glob. Optim. ∗ ∗ ∗ : ∗ ∗ ∗_ ∗ ∗∗ (2008)

22. Ruda, M.: The packing of circles in rectangles (in Hungarian). Magyar Tud. Akad. Mat. Fiz. Tud. Oszt.
Közl. 19, 73–87 (1970)

23. Rvachev, V.L., Stoyan, Y.G.: At the problem on optimal placement of circles. Cybernetics 4, 70–75.
Kiev, Ukraine (in Russian) (1965)

24. Rvachev, V.L., Stoyan, Y.G.: Solution algorithms of optimal cutting problems by circles when ristances
between a pair of circles are given. Cybernetics 3, 73–83. Kiev, Ukraine (in Russian) (1965)

25. Stoyan, Y.G., Yaskov, G.N.: Mathematical model and solution method of optimization problem of
placement of rectangles and circles taking into account special constraints. Int. Trans. Oper. Res. 5(1), 45–
57 (1998)

26. Stoyan, Y.G., Yaskov, G.N.: A mathematical model and a solution method for the problem of placing
various-sized circles into a strip. Euro. Jo. Oper. Res. 156, 590–600 (2004)

27. Szabó, P.G., Markót, M.C., Csendes, T., Specht, E., Casado, L.G., García, I.: New Approaches to Circle
Packing in a Square. Springer, Heidelberg (2007)

123

328 J Glob Optim (2009) 43:299–328

28. Tawarmalani, M., Sahinidis, N.V.: Convexification and Global Optimization in Continuous and Mixed-
Integer Nonlinear Programming: Theory, Algorithms, Software, and Applications. Nonconvex Optimi-
zation and its Applications Series. Kluwer Academic Publishers, Dordrecht The Netherlands (2002)

29. Yu, H.-X., Zhang, L.-W.: A nonlinear programming model for the packing of unequal circles into
a square box. In Proceedings of the 6th World Congress on Intelligent Control and Automation,
June 21–23, 2006, Dalian, China, pp. 1044–1047 (2006)

123

	Cutting circles and polygons from area-minimizing rectangles
	Abstract
	1 Introduction
	2 Modeling: cutting from one rectangle
	2.1 Indices
	2.2 Input data
	2.3 Variables
	2.4 Model
	2.5 Symmetry breaking
	2.6 Structural analysis
	2.7 Deriving lower and upper bounds

	3 Modeling: cutting and object allocation to several rectangles
	4 Numerical experiments and results
	4.1 Sets of mostly congruent circles
	4.2 Several circles of mostly different size
	4.3 Circles and rectangles
	4.4 Circles and polygons
	4.5 Cutting and allocating objects to several rectangles
	4.6 Summarizing the experiments

	5 Conclusions
	Acknowledgements
	A.1 Smallest circles enclosing the polygon
	A.2 Largest circle fitting in the polygon

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org?)
 /PDFXTrapped /False

 /Description <<
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e00670065007200200061006e006400200049006d007000720065007300730065006400200047006d00620048>
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [5952.756 8418.897]
>> setpagedevice

