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Abstract  As shown by Thanh Hao [Acta Math. Vietnam 31, 283-289, 2006], the solution
existence results established by Facchinei and Pang [Finite-Dimensional Variational Inequal-
ities and Complementarity Problems, vol. I (Springer, Berlin, 2003) Prop. 2.2.3 and Theorem
2.3.4] for variational inequalities (VIs) in general and for pseudomonotone VIs in particu-
lar, are very useful for studying the range of applicability of the Tikhonov regularization
method. This paper proposes some extensions of these results of Facchinei and Pang to the
case of generalized variational inequalities (GVI) and of variational inequalities in infinite-
dimensional reflexive Banach spaces. Various examples are given to analyze in detail the
obtained results.

Keywords Variational inequality - Generalized variational inequality - Pseudomonotone
operator - Solution existence - Degree theory

1 Introduction

Variational inequality (VI, for brevity), generalized variational inequality (GVI), and quasi-
variational inequality (QVI) have been recognized as suitable mathematical models for
dealing with many problems arising in different fields, such as optimization theory, game
theory, economic equilibrium, mechanics, etc. In the last four decades, since the time of the
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celebrated Hartman—Stampacchia theorem (see [9,11]), solution existence of VIs, GVIs,
QVIs and other related problems has become a basic research topic which continues to
attract attention of researchers in applied mathematics (see for instance [2-5,12,18-20], and
the references therein). Difficult questions do exist in the field (see, e.g., [16,21]).

Recently, in the two-volume book [7] dedicated entirely to finite-dimensional Vs,
Facchinei and Pang have used the degree theory to obtain the following existence theorems
for VlIs.

Theorem 1.1 ([7, Vol. I, p. 146]) Let K C R" be a closed convex set and F: K — R" be a
continuous mapping. Consider the following statements:

(a) There exists a reference point x™' € K such that the set
L.:={xeK:(Fx),x—x*) <0}, (1.1)

where (, ) denotes the scalar product, is bounded (possibly empty).
(b) There exist a bounded open set 2 C R" and a vector x™' € QN K such that

(F(x),x —x™) >0 Vx e KN, (1.2)

where 02 denotes the boundary of <.
(¢) The variational inequality problem VI(K, F), which consists of finding an x € K such
that

(F(x),y—x)=0 VyeKk
has a solution.
Then (a) = (b) = (c). Moreover, if the set
Lo:={xeK:(F(x),x—x") <0} (1.3)
is bounded, then the solution set SOL(K, F) of VI(K, F) is nonempty and compact.

Theorem 1.2 ([7, Vol. I, p. 158]) Let K C R" be closed convex and F: K — R" be
continuous. Assume that F is a pseudomonotone operator, that is the implication

(F(»),x=y)20 = (F(x),x—y)=0

is valid for all x,y € K. Then the statements (a), (b) and (c) in the above theorem are
equivalent.

The concept of pseudomonotone operator was proposed by Karamardian [10].

It is clear that the implications (b) = (c) and (a) = (c) in Theorem 1.1 give sufficient
conditions for the solution existence of the problem VI(K, F). Meanwhile, Theorem 1.2
shows that if F is a pseudomonotone operator then the solution existence of the problem
VI(K, F) can be characterized via the conditions (a) and (b), which are now equivalent.
From the proof given in [7, Vol. I] it follows that the conclusion of Theorem 1.1 is valid if in
the statement (b) one requires that 2 C R” is an open ball.

As it has been noted in [7, Vol. I, p. 237], the result recalled in Theorem 1.2 gave for
the first time a necessary and sufficient condition for a pseudomonotone VI on a general
closed convex set to have a solution. Moreover, conditions in Theorem 1.2 are different from
ordinary coercivity conditions which are often used to guarantee the solution existence of
VIs on unbounded sets. For coercivity conditions we refer the reader to [3,5,8].

Solution existence theorems for variational inequalities without monotonicity assumptions
have played a significant role in the development of solution methods. Using some solution
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existence results for the dual variational inequality and the initial variational inequality,
Konnov et al. [13,14] proved the convergence of the Tikhonov regularization method for a
class of nonmonotone variational inequalities. Based on the implication (a) = (c) in
Theorem 1.1, Qi [15] showed that the union of the solution sets of the regularized prob-
lems is nonempty and bounded.

Recently, Thanh Hao [17] has used Theorems 1.1 and 1.2 to solve in the affirmative the
question of Facchinei and Pang [7, Vol. II, Remark 12.2.4, p. 1129] about the range of appli-
cability of the Tikhonov regularization method: Whether the conclusion of the convergence
theorem of the Tikhonov regularization method (see [7, Vol. I, Theorem 12.2.3, p. 1128])
will remain valid if instead of monotone VIs one considers pseudomonotone VIs?

In order to study the question of Facchinei and Pang in a broader context, one may wish
to extend Theorems 1.1 and 1.2 to the case of finite-dimensional GVIs and the case of
infinite-dimensional VIs (and GVIs). Our aim in this paper is to obtain such extensions.

The paper is organized as follows. In Sect. 2, from Theorems 1.1 and 1.2 we derive exis-
tence theorems for finite-dimensional GVIs. In the same section, we also construct several
examples to analyze the relations between the statements (a), (b), and (c) in Theorem 1.1. In
Sect. 3, we show that Theorem 1.2 can be extended for VIs and GVIs in infinite-dimensional
reflexive Banach spaces, while the implications (b) = (c) and (a) = (c) in Theorem 1.1 are
no longer valid if instead of R” one considers an infinite-dimensional Hilbert space. (Note
that the solution existence theorem for GVIs given in Sect. 3 does not encompass those given
in Sect. 2.)

We now recall some standard definitions and notation which will be used in the sequel.

Let X be a reflexive Banach space over the reals, K C X a nonempty closed convex set,
®: K = X* a multifunction from K into the dual space X* (which is equipped with the
weak™ topology).

The generalized variational inequality defined by K and &, denoted by GVI(K, @), is
the problem of finding a point x € K such that

Ix* e d(x), (x*,y—x)>0 VyecKk. (1.4)

Here (, ) denotes the canonical pairing between X* and X. The set of all x € K satisfying
(1.4) is denoted by SOL(K, ®). If ®(x) = {F(x)} forall x € K, where F: K — X*isa
single-valued map, then the problem GVI(K, ®) is called a variational inequality and the
abbreviation VI( f, K) is used instead of GVI(K, ).

If forany x, y € K and x* € ®(x), y* € ®(y) one has (x* — y*, x — y) > 0, then one
says that @ is a monotone operator. If for any x,y € K and x* € ®(x), y* € ®(y) the
implication

G'x—»=20 = (" x—y)>0

is valid, then one says that ® is a pseudomonotone operator. For the case X = R", the dual
space X* is identified with X and the pairing between X* and X is just the scalar product in
R”. With this convention, we see that the notion of pseudomonotone operator given here is
in full agreement with the one described (for single-valued maps) in Theorem 1.2.

It is clear that monotonicity implies pseudomonotonicity. The reverse implication is not
true in general (take, for instance, K = R and F(x) = x> + 1 forall x € K).

One says that ® : K = X* is a lower semicontinuous multifunction if ®(x) # ¢ for
all x € K and for any x € K, for any open set W C X* satisfying ®(x) N W # @, there
exists an open neighborhood U of x such that ®(y) N W # @ forall y € U N K. If for any
open set W C X* satisfying ®(x) C W there exists an open neighborhood U of x such that
®(y) c Wiorally e U N K, then & is said to be an upper semicontinuous multifunction.
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2 Finite-dimensional GVIs

The following solution existence theorem for finite-dimensional GVIs is an extension of
Theorem 1.1.

Theorem 2.1 Let K C R" be a closed convex set and ®: K = R" be a lower semicontin-
uous multifunction with nonempty closed convex values. Consider the following statements:

(a) There exists x™f € K such that the set

L_(®,x™ )= [x eK: inf (x*,x—x™) < 0] 2.1)
x*ed(x)
is bounded (possibly empty). ‘
(b) There exists an open ball @ C R" and a vector xf € Q N K such that
inf (x*,x —x™) >0 vx e KNoQ, (2.2)

x*ed(x)

where 02 denotes the boundary of 2.
(c) The generalized variational inequality GVI(K, ®) has a solution.

Then (a) = (b) = (c). Moreover, if there exists x"f € K such that the set

L (®,x™) := [x eK: inf (x*,x—x")<0
- x*ed(x)

is bounded, then the solution set SOL(K, ®) is nonempty and bounded.

Proof Since the multifunction @ is lower semicontinuous and has nonempty closed convex
values, by Michael’s selection theorem (see for instance [22, p. 466]) it admits a continuous
selection; that is there exists a continuous mapping F: K — R such that F(x) € ®(x) for
every x € K.

If (a) holds, then there exists an open ball, denoted by €2 such that

Lo(®,x*) U [x™} c Q.

Combining the obvious property 92 N L (P, xf) = ¢ with (2.1) yields (2.2). We have
shown that (a) implies (b).
Suppose now that (b) is valid. Then we have
(F(x),x —x™) > inf (x*,x—x™)>0 Vxe KNaiQ.
x*ed(x)
Applying Theorem 1.1 we get SOL(K, F) # (. For any x € SOL(K, F), if we choose
x* = F(x) then

(x*,y—x)>0 VyeK.

It follows that # # SOL(K, F) C SOL(K, ®). Thus (b) implies (c).

Finally, suppose that there is some x™ € K such that the set L < (®, x™") is bounded. Then
SOL(K, ®) is nonempty by virtue of the implication (a) = (c). To prove that SOL(K, ®)
is bounded, it suffices to show that SOL(K, ®) C L<(®, x). Let x € SOL(K, ®).
Substituting y = x™f into the inequality in (1.4) gives (x*, x — x™f) < 0. Then we have
infyrea () (X, x —x™) <0,ie,x € Lo(d,x™). o
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Theorem 2.2 Let K C R" be closed convex and ®: K = R" be a lower semicontinuous
multifunction with nonempty closed convex values. Assume that © is a pseudomonotone
operator. Then the statements (a), (b) and (c) in Theorem 2.1 are equivalent.

Proof By Theorem 2.1, (a) = (b) = (c). So it suffices to prove that (¢) = (a). Assuming
(c), we take any x™' € SOL(K, ®). By (2.1), there exists x* € @ (xref) satisfying

(x*,y—x* >0 VvyeKk.

Therefore, by the pseudomonotonicity of ®, for any y € K and y* € ®(y), one has
(v*,y — x™) > 0. It follows that

inf (y*,y—x™)>0 VyeKk;
y*ed(y)

hence L_(®, x™f) = ¢ and (a) is valid. u]

Remark 2.1 Except for the argument involving Michael’s selection theorem, in the above
proofs we have followed closely the arguments used in [7, Vol. I] for proving the results in
Theorems 1.1 and 1.2.

Let us consider several useful illustrative examples. The next example shows that the
reverse of the implication (b) = (c) in Theorem 1.1 is not true in general.

Example 2.1 ((c) # (b)) Let K = [0,4+00) C R, F(x) = —x (or F(x) = —x2) for all
x € K. Itis easy to see that SOL(K, F)) = {0}. Let 2 C R be a bounded open set such that
there exists a point x™' € Q N K. By the formula of K, we infer that there must exist some
X € 9Qsuchthat¥ > OandX—x™ > 0.ThenX € dQNK and we have (F (¥), ¥ —x"f) < 0.
This shows that (1.2) fails to hold for the given pair {€2, x™f}. Thus, the property (c) is valid
for this problem VI(K, F), while (b) is violated.

The reverse of the implication (a) = (b) in Theorem 1.1 is also false in general.

Example 2.2 ((b) % (a))Let K =R, F(x) = —x(x—1) forall x € R. Taking Q = (-1, 1)
and x™f = 0 we see at once that (1.2) holds. It is a simple matter to show that, for any
x™ € R, the set L_ defined by (1.1) is unbounded. Thus the property (a) in Theorem 1.1
does not hold for this problem VI(K, F), while (b) is valid.

We have seen that property (a) (resp., property (b)) in Theorem 1.1 is a sufficient but not
a necessary condition for the solution existence of the problem VI(K, F).

Remark 2.2 Concerning the inclusion L. C L, it is worthy to stress that the topological
closure of L . can be a proper subset of L <. Indeed, consider the problem VI(K, F') described
in Example 2.2 and observe that, for x™f = 0, L_ = (1, +-00), while L. ={0}U[1, +00).

As Theorems 2.1 and 2.2 can be considered as “‘set-valued extensions” of Theorems 1.1
and 1.2, Examples 2.1 and 2.2 show that the implications (b) = (c) and (a) = (b) in
Theorem 2.1 are not reversible in general. Remark 2.2 says that the topological closure
of the set L - (®, x™F) (see Theorem 2.1) can be a proper subset of L (P, xrefy,

Remark 2.3 In the formulations of Theorems 2.1 and 2.2 instead of assuming that “®: K =
R” is a lower semicontinuous multifunction with nonempty closed convex values” one can
assume that “®: K = R”" is a multifunction with admits a continuous selection F: K — R"”.
The subsequent examples show that this weaker assumption significantly enlarges the class
of problems to which Theorems 2.1 and 2.2 can be applied to.
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Example 2.3 Let K = [0, +00), K1 = [—1, 400), ®: R = R be the subdifferential map-
ping in the sense of convex analysis of the convex function ¢(x) = |x|[; that is

{1} if x>0,
dx)={[-1,1]1 if x =0,
(-1} if x<0.

Note that F(x) = 1 is a continuous selection of the restriction of & on K. Taking any
x™ € (0, +00) and applying the refined version of Theorem 2.1 described in Remark 2.3 to
VI(K, ®), we conclude that SOL(K, ®) # . Since the restriction of ® on K| does not have
any continuous selection, the refined version of Theorem 2.1 is not applicable to VI(K{, ®).
Observe that SOL(K, ®) = SOL(K, ®) = {0}.

Example 2.4 Let K = Ri ={x=0C,x)eR:x;>0,i=1,2}, K =[-I,+o0) x
[—1,400), ® : R = R be the subdifferential mapping in the sense of convex analysis of
@(x) = |x1| + |x2], x = (x1, x2) € R2. Since

{1, D} if x1 > 0,x3 >0,
[—1,1] x {1} if x; =0,x >0,
{1} x [—1, 1] if x1 >0,x =0,
Px)=q[-1,11x[-1,1] if x=0,
(=1,=1) if x; <0,x <0,
[—1,1] x {—1} if x; =0,x <0,
{—=1} x [-1,1] if x; <0,x,=0,

F(x) = (1, 1) is a continuous selection of the restriction of ® on K. The refined version
of Theorem 2.1 asserts that SOL(K, ®) #  (as for x™!, one can choose any point from
the interior of K). However, since ® on K| does not have any continuous selection, the
refined version of Theorem 2.1 is not applicable to VI(K, ®). Observe that SOL(K, ) =
SOL(K1, ®) = {(0, 0)}.

It is easily seen that both the maps & in the last two examples are upper semicontinu-
ous on K. The problem of finding a suitable extension of Theorem 1.1 to the case of GVIs
with upper semicontinuous operators deserves a further investigation. The next statement is
a solution existence theorem proved by using the approximate selection theorem due to A.
Cellina. Note that the coercivity condition (2.3) below is a little bit stronger than condition
(2.2) in Theorem 2.1.

Theorem 2.3 Let K C R”" be a nonempty closed convex set and ®: K = R" be an upper
semicontinuous multifunction with nonempty compact convex values. If there exist an open
ball Q@ C R" and a reference vector x™f € QN K such that

inf (x*, x—x")>0 Vxe KNI (2.3)
x*ed(x)

then the problem GVI(K, ®) has a solution.

Proof By our assumptions and the approximate selection theorem due to A. Cellina (see
[1, p. 84]), for every ¢ > O there exists a continuous map ¢.: K — R” such that

¢e(x) € D((x + &Brn) N K) + eBgn,
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where Bgn is the closed unit ball of R”; that is
(x, pe(x)) € gph® + ¢ (Brr X Brrn) Vx € K 24

with gph @ := {(x,z) € K x R" : z € ®(x)} denoting the graph of ®.
We claim that there exists € > 0 such that for every ¢ € (0, £] it holds

(Pe(x), x —x™) >0 Vx e KNOQ. (2.5)

Indeed, if the assertion is false then there exist sequences gy — 07 and x; € K N 9K such
that

(e, (1), Xk —x™T) <0 Vk € N. (2.6)

By (2.4), there exists (yx, zk) € gph @ such that ||x; — yk || < &x and ||@g, (xx) — 2k || < &x. By
the compactness of K N 32 we may suppose that there exists x € K N d€2 such that x;p — x.
Then y; — X. As ®(x) is a compact set and @ is upper semicontinuous at x, by taking a
subsequence (if necessary) we can suppose furthermore that z; — z for some 7 € ®(x).
Then ¢, (x) — Z. Letting k — oo, from (2.6) we obtain (z, ¥ — x™!) < 0, hence

inf (x*, x —x"™) <o0.
X*ED(X)

This contradicts (2.3) and completes the proof of our claim.

We now consider the problems VI(K, ¢;) (k € N), where ¢ := ¢, and g — o+,
ex € (0, €] for all k € N. Due to the property (2.5), for each k € R, condition (b) of Theorem
1.1 is satisfied for F = ¢. By that theorem, there exists x; € K N Q such that

(Pr(xr), x —x;) >0 Vx € K. 2.7

By the compactness of K N Q we can assume that x; — ¥ for some ¥ € K N Q. Using (2.4)
and arguing similarly as above, we get ¢ (xx) — z for some 7z € ®(x). Letting k — o0,
from (2.7) we obtain

(Z,x —X)>0 VxeK.

This shows that SOL(K, ®) # ¢ and completes the proof. O

It is worthy to note that Theorem 2.3 is applicable to Examples 2.3 and 2.4. For instance,
letting 2 be the open unit ball in R? and x™" = 0, one can verify that (2.3) is satisfied for
the problem considered in Example 2.4.

3 Infinite-dimensional VIs and GVIs

Theorem 2.2 can be extended to the case of VIs in reflexive Banach spaces as follows.

Theorem 3.1 Let X be a real reflexive Banach space and K C X be a closed convex set.
Assume that F: K — X* is a pseudomonotone operator which is continuous on finite
dimensional subspaces of X. Then the following statements are equivalent:

(a) There exists a reference point x™' € K such that the set
L_(F,x*):={x e K: (F(x),x —x™) <0}

is bounded (possibly empty).
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(b) There exist an open ball @ and a vector x™' € Q N K such that
(F(x),x —x™) >0 Vx e KNIQ. (3.1)

(¢) The problem VI(K, F) has a solut@on.
Besides, if there exists a vector x™' € K such that the set

Lo(F,x™) :={x e K : (F(x),x —x™) <0}
is bounded, then the solution set SOL(K, F) is nonempty and bounded.

In order to prove this theorem we shall need the following generalization of the Minty
lemma.

Lemma 3.1 (See [18, p. 693] and [20, p. 509]) Let K be a closed convex subset in a real
reflexive Banach space X, F: K — X™* be a pseudomonotone operator. Assume that F is
hemicontinuous; that is for every pair of points x, y € K the function

t— (Fitx+(1—-1ty),x—y) 0<r<1
is continuous. Then x € K is a solution of VI(K, F) if and only

(F(y),y—x)>0 VyeKk.

It is clear that the operator F: K — X™ is hemicontinuous whenever it is continuous on
finite dimensional subspaces of X.

Proof of Theorem 3.1 The implication (a)= (b) can be proved similarly as the correspond-
ing assertion in Theorem 2.1. In order to prove the implication (b) = (c) we will use the
method of proving solution existence theorems for monotone VIs in [11]. Suppose that there
exist an open ball 2 C X and a vector x™f € Q@ N K such that (3.1) is satisfied. For each
x € K, we put

Q(x)={ye KNQ: (F(x),x —y) =0} (3.2)
and notice that Q(x) is a weakly closed subset of K N Q. We will show that the family
{O(x)}rek has the finite intersection property. In fact, given a finite sequence x Lox2, ., xm

of vectors in K we denote by L the linear subspace of X generated by the vectors x!, x2, .. .,

xm x Let K, = KNL, Q. =QNL,and let ; ;. stand for the boundary of € in the
induced topology of L. Then 9,27 = (92) N L. Consider the map F: K; — L* defined
by

(FL(x),y) =(F(x),y) VyelL. (3.3)

From (3.1) and (3.3) all the conditions stated in the statement (b) of Theorem 1.2, where
(K, Fr, Qp, x') plays the role of the (K, F, €2, x™f) are fulfilled. Hence there exists a
vector uy, € €27 such that

(F(up),y —ur) >0 Vye Kp.

By Lemma 3.1 and by the pseudomonotonicity of F, from the last property we deduce that
(F(y),y—ur)>0 VyeKL.

In particular,

(FxD), x' —ug) >0 Vi=1,2,...,m.
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Hence

m
up €[ Q.
i=1
We have shown that the farrlily {O(x)}xek has the finite intersection property. This and the
weak compactness of K N  imply

[ @) #0.

xek
Hence there exists a vector # € K N Q such that
(F(x),x —u)>0 Vx eK.
Applying Lemma 3.1 once more, we get
(Fu),x —u)y>0 VxeK
hence u € SOL(K, F).

The assertion (¢) = (a) can be proved similarly as the corresponding assertion in
Theorem 2.2. The proof is complete. O

Comparing Theorem 1.1 with Theorem 3.1, one finds that the latter needs a stronger
assumption: F is a pseudomonotone operator. Hence one can raise the following very natural
question: Whether the conclusion of Theorem 3.1 remains valid if the assumption on the
pseudomonotonicity of F is omitted?

The next example gives a negative answer for this question. It shows that without the
pseudomonotonicity assumption on F, neither one of the implications (b) = (c) and (a) =
(c) in Theorem 3.1 is valid. We will see that there exists an infinite-dimensional problem of
the form VI(K, F) with a continuous mapping F which has no solutions, but for which we
can find a point x™f € K and an open ball  containing x™' such that the conditions (1.1)
and (1.2) are both satisfied.

Example 3.1 Let X = H, where H is an infinite-dimensional Hilbert space with the inner
product (, ). We identify the dual space X* with H and put By = {x € H : |x| < 1}.
According to a result of J. Dugundji (see for instance [6, p. 66]), there exists a continuous
(in norm) mapping G: By — Bpy which has no fixed points. Define

F(x)=x—G(x) Vx € By

and set K = By. For the given pair {K, F}, property (1.2) is satisfied if we choose x™f = 0
and Q@ = {x € H : ||x|| < 1}. To see this, it suffices to observe that

(F(x), x = x") = Ix|> = (G(x), x) = 1L =[G [Ix]| = 0

whenever x € 02N K = {x € H : ||x|| = 1}. We have SOL(K, F) = . Indeed, if there
exists x € SOL(K, F) then are two possibilities: ||x|| < 1, or |x|| = 1. If ||x|| < 1, then x is
an interior point of K. This implies F(x) = 0, which is impossible because G has no fixed
points. If || x| = 1, then the condition

(F(x),y—x)>0 Vye K =By
yields F(x) = A(—x) for some A > 0. Hence
1> G =d+1|x| =14+
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Thus A = 0 and we obtain F(x) = 0;i.e. x is a fixed point of G. This contradicts the choice
of G. Observe also that property (1.1) is satisfied for any choice of x™ € K because K is a
bounded set.

Using Theorem 3.1 and the arguments for proving Theorem 2.1 we can establish the
following result.

Theorem 3.2 Let X be a real reflexive Banach space and K C X be a closed convex set.
Let ®: K — 2X" be a lower semicontinuous multifunction with nonempty closed convex
values, where X* is endowed with the norm topology. Assume that ® is a pseudomonotone
operator. Then the following statements are equivalent:

(a) There exists x*f € K such that the set L_(®, x™%) defined as in (2.1) is bounded
(possibly empty).

(b) There exists an open ball Q2 and a vector x™ € QN K such that the condition 2.2) is
satisfied.

(¢c) Problem GVI(F, K) has a solution.

In the formulation of Theorem 3.2 instead of assuming that “® is a lower semicontinuous
multifunction with nonempty closed convex values” one can assume that “® is a multifunction
with admits a continuous selection” (here X* is equipped with the norm topology).

Let us end this section with a remark about VIs and GVIs with quasimonotone operators.
By definition, a multifunction ® : K = X™* from a closed convex set K of a Banach space
X into the dual space X*. If for any x, y € K and x* € ®(x), y* € ®(y) the implication

(G —y) >0 = " x—y)=0

is valid, then one says that @ is a guasimonotone operator. Clearly, if ® is pseudomonotone,
then it is quasimonotone. The conclusion of Theorems 1.2, 2.2, 3.1 and 3.2 is no longer
valid if instead of problems with a pseudomonotone operators one considers problems with
quasimonotone operators.

Example 3.2 The conclusion of Theorems 1.2,2.2, 3.1 and 3.2 is no longer valid if instead of
the problem with a pseudomonotone operator one considers a problem with a quasimonotone
operator. To see this, it suffices to put K = [0, 00), F(x) = —x2 and ®(x) = {F(x)} for
all x € K. It is a simple matter to verify that F, hence ®, is a quasimonotone operator. We
have SOL(K, F) = {0}, while there does not exist any x"f € K suchthat L. := {x € K :
F(x).(x — x™) < 0} is a bounded set (possibly empty).
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