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Abstract In this paper, we consider two vector versions of Minty’s Lemma and obtain exis-
tence theorems for three kinds of vector variational-like inequalities. The results presented
in this paper are extension and improvement of the corresponding results of other authors.
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1 Introduction

Since Giannessi [9] introduced the vector variational inequality (VVI) in finite dimensional
Euclidian space, many authors have intensively studied (VVI) and its various extensions.
Several authors have investigated relationships between (VVI) and vector optimization prob-
lems, vector complementarity problem. For details we refer to Chen [3], Chen and Yang [4],
Daniilidis and Hadjisavvas [6], Giannessi [10,11], Giannessi and Maugeri [12], Giannessi
and Maugeri [13], Huang and Fang [14], Konnov and Yao [18], Yang [22], Yang and Goh
[23], and Zeng and Yao [24] and reference therein. The vector variational-like inequalities
(VVLI), a generalization of (VVI) was studied by Ansari, Siddiqi and Yao [1], Chiang [5],
Fang and Huang [8], Jabarootian and Zafarani [16], Lin [20], Yang [22]. Minty’s Lemma has
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been shown to be an important tool in the variational field including variational inequality
problems, obstacle problems, confined plasmas, free boundary problems, elasticity problems
and stochastic optimal control problems when the operator is monotone and the domain is
convex; see Baiocchi and Capelo [2] and Giannessi [10]. Lee and Lee [19] obtained a vector
version of Minty’s lemma using Nadler’s result [21] and with their result they considered two
kinds of vector variational-like inequalities for set-valued mappings under certain pseudo-
monotonicity condition and certain new hemicontinuity condition, respectively. Motivated
by the above works, we first obtain two vector versions of Minty’s Lemma and deduce exis-
tence theorems for the solvability of three classes of vector variational-like inequalities in
normed spaces. In fact we prove the solvability results for these classes of generalized vector
variational-like inequalities under certain pseudomonotonicity assumptions. We also prove
the solvability of these classes of generalized vector variational-like inequalities without
monotonicity assumptions.

2 Preliminaries

Let X and Y be two normed spaces and let L(X, Y ) denote the family of all continuous
linear operators from X into Y equipped with the uniform convergence norm. When Y is
the set R of real numbers, L(X, Y ) is the usual dual space X∗ of X . For any x ∈ X and
any u ∈ L(X, Y ), we shall write the value u(x) as 〈u, x〉. We suppose throughout this paper
that K is a nonempty and convex subset of X, T : K ⇒ L(X, Y ) is a set-valued mapping,
η : K × K −→ X and f : K × K −→ Y are functions, and {C(x) : x ∈ K } is a family of
closed, convex and pointed cones of Y .

Let C be a closed, convex and pointed cone with intC �= ∅. Then a partial order ≤C in Y
is defined as for y1, y2 ∈ Y

y1 ≤C y2 ⇔ y2 − y1 ∈ C. (1)

Note that C �= Y iff 0 /∈ intC.
The purpose of this article is to prove the existence of solutions to the following three kinds
of vector variational-like inequalities:

Problem (1): Find x0 ∈ K such that

〈T (y), η(y, x0)〉 + f (y, x0) � −intC(x0), ∀y ∈ K .

Problem (2): Find x0 ∈ K such that

〈T (x0), η(y, x0)〉 + f (y, x0) � −intC(x0), ∀y ∈ K .

Problem (3): Find x0 ∈ K such that

〈T (y), η(x0, y)〉 + f (x0, y) � intC(x0), ∀y ∈ K .

We recall the following concepts and results which are essential in the sequel.

Definition 2.1 A set-valued mapping T : K ⇒ L(X, Y ) is said to be

(1) η- f pseudomonotone-type (I) if for each x, y ∈ K ,

〈T (x), η(y, x)〉 + f (y, x) � −intC(x) �⇒ 〈T (y), η(y, x)〉 + f (y, x) � −intC(x).
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(2) η- f pseudomonotone-type (II) if for each x, y ∈ K ,

〈T (x), η(y, x)〉 + f (y, x) � −intC(x) �⇒ 〈T (y), η(x, y)〉 + f (x, y) � intC(x).

Definition 2.2 A set-valued mapping F : K ⇒ Y is said to be C-convex where C is a
convex cone in Y if for all x, y ∈ K and t ∈ [0, 1], we have

(1 − t)F(x) + t F(y) ⊆ F((1 − t)x + t y) + C.

Lemma 2.1 [3]. Let (Y, C) be an ordered topological vector space with a closed, convex
and pointed cone C with intC �= ∅. Then ∀x, y ∈ Y , one has

(1) y − x ∈ intC and y /∈ intC ⇒ x /∈ intC.

(2) y − x ∈ C and y /∈ intC ⇒ x /∈ intC.

(3) y − x ∈ −intC and y /∈ −intC ⇒ x /∈ −intC.

(4) y − x ∈ −C and y /∈ −intC ⇒ x /∈ −intC.

Lemma 2.2 [21]. Let (X, ‖.‖) be a normed space and H be a Hausdorff metric on the col-
lection C B(X) of all nonempty, closed and bounded subsets of X, induced by a metric d in
terms of d(u, v) = ‖u − v‖, which is defined by

H(U, V ) = max(sup
u∈U

inf
v∈V

‖u − v‖, sup
v∈V

inf
u∈U

‖u − v‖),

for U and V in C B(X). If U and V are compact sets in X, then for each u ∈ U, there exists
v ∈ V such that ‖u − v‖ ≤ H(U, V ).

Definition 2.3 Let X and Y be normed spaces. A set-valued mapping T : K ⇒ L(X, Y )

with compact values is said to be H-hemicontinuous on K if for every x, y ∈ K , the mapping
t → H(T (x + t (y −x)), T (x)) is continuous at 0+, where H is the Hausdorff metric defined
on C B(L(X, Y )).

Let X be a nonempty set, we shall denote by F(X) the family of all nonempty finite
subsets of X . Let Y be a nonempty set, X a topological space and F : Y ⇒ X a set-valued
mapping. Then F is said to be transfer closed-valued iff ∀(y, x) ∈ Y × X with x �∈ F(y),
∃y′ ∈ Y, such that x �∈ clF(y′). It is clear that this definition is equivalent to:

⋂

y∈Y

F(y) =
⋂

y∈Y

clF(y).

If B ⊆ Y and A ⊆ X , then we call F : B ⇒ A transfer closed-valued iff the multi-valued
mapping y → F(y)

⋂
A is transfer closed-valued. When X = Y and A = B, we call F

transfer closed-valued on A. Let K be a convex subset of a vector space X . Then a map-
ping F : K ⇒ X is called a KKM mapping iff for each nonempty finite subset A of K ,
convA ⊂ F(A), where convA denotes the convex hull of A, and F(A) = ∪{F(x) : x ∈ A}.
Lemma 2.3 [7]. Let K be a nonempty and convex subset of a Hausdorff t.v.s. X. Suppose
that �,
�̂ : K ⇒ K are two set-valued mappings such that the following conditions are satisfied:

(A1) �̂(x) ⊆ �(x), ∀x ∈ K ,
(A2) �̂ is a KKM map,
(A3) ∀A ∈

F(K ), � is transfer closed-valued on convA,
(A4) ∀A ∈ F(K ), clK (

⋂
x∈convA �(x)) ∩ convA = (

⋂
x∈convA �(x)) ∩ convA,

123



466 J Glob Optim (2008) 40:463–473

(A5) there is a nonempty compact convex set B ⊆ K , such that clK (
⋂

x∈B �(x)) is compact.

Then,
⋂

x∈K �(x) �= ∅.

Remark 2.1 When � is closed-valued, then conditions (A3)–(A4) are trivially satisfied.

3 Vector variational-like inequalities with monotonicity

In this section, we prove the solvability of (VVLI) with monotone set-valued mappings.
In order to establish an existence result for problem (II), we state and prove the following

generalized vector version of Minty’s lemma first.

Lemma 3.1 Let X and Y be two normed spaces. Assume that T : K ⇒ L(X, Y ) is η- f
pseudomonotone type(I ) and H-hemicontinuous with compact values. If

(1) for any fixed x, y, z ∈ K , the set-valued mapping
y ⇒ 〈T (z), η(y, x)〉 + f (y, x) is C(x)-convex and

(2) for each x, y ∈ K , 〈T (y), η(x, x)〉 + f (x, x) ⊆ −C(x),

then Problems (I) and (II) are equivalent.

Proof Since T is η- f pseudomonotone type(I), therefore any solution of Problem (II) is also
a solution for Problem(I).

Conversely, suppose that we can find x0 ∈ K , such that for each y ∈ K

〈T (y), η(y, x0)〉 + f (y, x0) � −intC(x0).

We consider yt = x0 + t (y − x0) ∈ K for t ∈ (0, 1). Replacing y by yt in the above
inequality, we deduce

〈T (yt ), η(yt , x0)〉 + f (yt , x0) � −intC(x0). (2)

By condition (1), we have

t[〈T (yt ), η(y, x0)〉 + f (y, x0)] + (1 − t)[〈T (yt ), η(x0, x0)〉 + f (x0, x0)]
� 〈T (yt ), η(yt , x0)〉 + f (yt , x0) + C(x0). (3)

From (1) and Lemma 2.1, we have

〈T (yt ), η(yt , x0)〉 + f (yt , x0) + C(x0) � −intC(x0). (4)

Hence, (2), (3) and condition (2) imply that

〈T (yt ), η(y, x0)〉 + f (y, x0) � −intC(x0). (5)

Since T (yt ) and T (x0) are compact, from Lemma 2.2 it follows that for each fixed vt ∈ T (yt )

there exists ut ∈ T (x0) such that

‖vt − ut‖ ≤ H(T (yt ), T (x0)).

As T (x0) is compact, without loss of generality, we may suppose that ut → u0 ∈ T (x0) as
t → 0+. Since T is H-hemicontinuous, H(T (yt ), T (x0)) → 0 as t → 0+. Thus one has

‖vt − u0‖ ≤ ‖vt − ut‖ + ‖ut − u0‖ ≤ H(T (yt ), T (x0)) + ‖ut − u0‖,
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as t → 0+. Therefore, letting t → 0+, we obtain

‖〈(vt − u0), η(y, x0)〉‖ ≤ ‖vt − u0‖‖η(y, x0)‖ → 0.

Since Y \ −intC(x0) is closed, hence from (4) we deduce that

〈u0, η(y, x0)〉 + f (y, x0) /∈ −intC(x0).

Thus,

〈T (x0), η(y, x0)〉 + f (y, x0) � −intC(x0).

Remark 3.1 Lemma 3.1 generalizes Lemma 2.1 of Ref. [14]. It also improves Lemma 2.3 of
[24] if we replace their mapping T oA, by our mapping T .

Theorem 3.1 Assume that T : K ⇒ L(X, Y ) is η- f pseudomonotone type(I), H-hemicon-
tinuous and compact valued. Suppose that the following conditions are satisfied:

(1) The set-valued mapping W : K ⇒ Y defined by W (x) = Y \ −intC(x) is w × τ -
closed, where w is the weak topology of X.

(2) f and η are weak-norm continuous in the second argument.
(3) For each x, y ∈ K ,

〈T (y), η(x, x)〉 + f (x, x) ⊆ −C(x) and 〈T (x), η(x, x)〉 + f (x, x) = {0}.
(4) For any fixed x, y, z ∈ K , the set-valued mapping

y ⇒ 〈T (z), η(y, x)〉 + f (y, x) is C(x)-convex.
(5) There exist a nonempty weak compact set M ⊂ K and a nonempty weak compact

convex set B ⊂ K such that for each x ∈ K \ M, there is y ∈ B such that

〈T (y), η(y, x)〉 + f (y, x) ⊆ −intC(x).

Then Problem (II) holds.

Proof We show that for each y ∈ K , the set

�(y) = {x ∈ K : 〈T (y), η(y, x)〉 + f (y, x) � −intC(x)}
is weakly closed. Let {xβ} be a net in �(y) weakly convergent to x0 ∈ K . Since xβ ∈ �(y)

there exists vβ ∈ T (y) satisfying

zβ = 〈vβ, η(y, xβ)〉 + f (y, xβ) /∈ −intC(xβ),

then zβ ∈ W (xβ) and hence (xβ, zβ) ∈ Gr (W ). Since T (y) is compact, {vβ} has a con-
vergent subnet in T (y). Let {vλ} be a subnet of {vβ} that converges to v0 ∈ T (y). By
continuity of η, {η(y, xλ)} is a convergent net with norm. Hence, there exists λ0 such that
the set {η(y, xλ) : λ ≥ λ0} is norm bounded and therefore, by Proposition 2.3 of Ref. [5] and
continuity of f in the second argument, we have

z0 = lim
λ≥λ0

zλ = 〈v0, η(y, x0)〉 + f (y, x0).

Since Gr (W ) is w × τ -closed, then (x0, z0) ∈ Gr (W ) and hence,

〈v0, η(y, x0)〉 + f (y, x0) /∈ −intC(x0).

Thus, x0 ∈ �(y), this means �(y) is weakly closed. Now, for each y ∈ K , we define the
set-valued mapping �̂ : K ⇒ K by

�̂(y) := {x ∈ K : 〈T (x), η(y, x)〉 + f (y, x) � −intC(x)}.
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We show that �̂ is a KKM mapping. Since if �̂ is not a KKM mapping, then there exists
{x1, x2, . . . , xn} ⊂ K , ti ≥ 0, i = 1, 2, . . . , n with �n

i=1ti = 1 such that x = �n
i=1ti xi /∈

∪n
i=1�̂(xi ). Thus for any i = 1, 2, . . . , n, we have

〈T (x), η(xi , x)〉 + f (xi , x) ⊆ −intC(x),

therefore, we deduce

�n
i=1ti 〈T (x), η(xi , x)〉 + �n

i=1ti f (xi , x) ⊆ −intC(x). (6)

On the other hand by (iv),

〈T (x), η(x, x)〉 + f (x, x) − �n
i=1ti [〈T (x), η(xi , x)〉 + f (xi , x)] ⊆ −C(x). (7)

Thus by (5), (6) and the second part of condition (3), we have

〈T (x), η(x, x)〉 + f (x, x) = {0} � −intC(x), (8)

which contradicts C(x) �= Y. Hence, �̂ is a KKM mapping. Since T is η- f pseudomonotone
type (I), we have �̂(y) ⊆ �(y) for each y ∈ K . Thus all of the conditions of Lemma 2.3 are
fulfilled by the mappings �̂ and �. Therefore,

⋂

y∈K

�(y) �= ∅.

Hence, Problem (I) holds. Since Lemma 3.1 implies the equivalence between Problem (I)
and (II), the result follows.

Remark 3.2 Theorem 3.1 generalizes Theorem 2.1 of Ref. [14]. It also improves Theorem
2.1 of [24] if we replace their mapping T oA, by our mapping T .

Corollary 3.1 Let K be a nonempty convex subset of a reflexive Banach space X with 0 ∈ K
and Y be a normed space. Assume that T : K ⇒ L(X, Y ) is η- f pseudomonotone type(I)
and H-hemicontinuous with compact values. Suppose that the conditions (1)–(4) of Theorem
3.1 are satisfied and there exists some r > 0 such that

〈T (x), η(0, x)〉 + f (0, x) ⊆ −intC(x), x ∈ K with ‖x‖ = r. (9)

Then Problem (II) holds.

Proof Let Br = {x ∈ X : ‖x‖ ≤ r}. By Theorem 3.1, there exists xr ∈ K ∩ Br such that

〈T (xr ), η(y, xr )〉 + f (y, xr ) �⊆ −intC(xr ), ∀y ∈ K ∩ Br . (10)

Putting y = 0 in the above inequality, one has

〈T (xr ), η(0, xr )〉 + f (0, xr ) �⊆ −intC(xr ). (11)

Combining (8) and (10), we deduce that ‖xr‖ < r. For any z ∈ K , choose t ∈ (0, 1) small
enough such that zt = (1 − t)xr + t z ∈ K ∩ Br , hence from (9), one has

〈T (xr ), η(zt , xr )〉 + f (zt , xr ) �⊆ −intC(xr ). (12)

Condition (4) implies that

t[〈T (xr ), η(z, xr )〉 + f (z, xr )] + (1 − t)[〈T (xr ), η(xr , xr )〉 + f (xr , xr )]
� 〈T (xr ), η(zt , xr )〉 + f (zt , xr ) + C(xr ). (13)
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Then from (11), (12), the second part of condition (3) and Lemma 2.1, we deduce

〈T (xr ), η(z, xr )〉 + f (z, xr ) � −intC(xr ), ∀z ∈ K . (14)

This completes the proof.

Remark 3.3 Corollary 3.1 improves Theorem 2.1 of Ref. [24] in many aspects if we replace
their mapping T oA, by our mapping T .

Theorem 3.2 Assume that T : K ⇒ L(X, Y ) is η- f pseudomonotone type(I) and
H-hemicontinuous with compact values. Suppose that the following conditions are satisfied:

(1) The set-valued mapping W : K ⇒ Y defined by W (x) = Y \ −intC(x) is closed.
(2) f and η are continuous in the second argument.
(3) For each x, y ∈ K ,

〈T (y), η(x, x)〉 + f (x, x) ⊆ −C(x) and 〈T (x), η(x, x)〉 + f (x, x) = {0}.
(4) For any fixed x, y, z ∈ K , the set-valued mapping

y ⇒ 〈T (z), η(y, x)〉 + f (y, x) is C(x)-convex.
(5) There exist a nonempty compact set M ⊂ K and a nonempty compact convex set

B ⊂ K such that for each x ∈ K \ M, there is y ∈ B such that

〈T (y), η(y, x)〉 + f (y, x) ⊆ −intC(x).

Then Problem (II) holds.

Proof By a similar proof as that of Theorem 3.1, one can deduce the result.

Remark 3.4 Theorem 3.2 is a generalized version of Corollary 2.1 of Ref. [24].

In the following we will establish another vector version of Minty’s Lemma.

Lemma 3.2 Let X and Y be two normed spaces. Assume that T : K ⇒ L(X, Y ) is η- f
pseudomonotone type(II) and H-hemicontinuous with compact values. If

(1) for each x, y ∈ K , 〈T (y), η(y, y)〉 + f (y, y) ⊆ C(x),

(2) for each x, y, z ∈ K , the set-valued mapping
y ⇒ 〈T (z), η(y, z)〉 + f (y, z) is C(x)-convex and

(3) f and η are continuous,

then, Problems (II) and (III) are equivalent.

Proof Since T is η- f pseudomonotone type(II), therefore any solution of Problem (II) is
also a solution for Problem(III).

Conversely, suppose that we can find x0 ∈ K , such that for each y ∈ K

〈T (y), η(x0, y)〉 + f (x0, y) � intC(x0).

We consider yt = x0 + t (y − x0) ∈ K for t ∈ (0, 1). Replacing y by yt in the above
inequality, we deduce

〈T (yt ), η(x0, yt )〉 + f (x0, yt ) � intC(x0). (15)
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From condition (1), we obtain that

〈T (yt ), η(yt , yt )〉 + f (yt , yt ) � C(x0). (16)

Hence, condition (2) and (15) imply that

t[〈T (yt ), η(y, yt )〉 + f (y, yt )] + (1 − t)[〈T (yt ), η(x0, yt )〉 + f (x0, yt )] � C(x0). (17)

Therefore, from (14) and (16) and Lemma 1.1, we have

〈T (yt ), η(y, yt )〉 + f (y, yt ) � −intC(x0). (18)

Now since T (yt ) and T (x0) are compact, and T is H-hemicontinuous, by the same argu-
ment as that of the proof of Lemma 3.1, for each vt ∈ T (yt ) we can find u0 ∈ T (x0)

such that vt → u0 ∈ T (x0) as t → 0+. By continuity of η and f in the second argu-
ment, η(y, yt ) → η(y, x0) and f (y, yt ) → f (y, x0) as t → 0+, respectively. Furthermore,
{η(y, yt )} is bounded for a sufficiently small t > 0. Thus by Proposition 2.3 of [5]

〈vt , η(y, yt )〉 + f (y, yt ) → 〈u0, η(y, x0)〉 + f (y, x0) (19)

as t → 0+. Since Y \ −intC(x0) is closed, hence from (17) and (18) we deduce that

〈u0, η(y, x0)〉 + f (y, x0) /∈ −intC(x0).

Therefore,

〈T (x0), η(y, x0)〉 + f (y, x0) � −intC(x0), ∀y ∈ K .

Remark 3.5 If for each x, y, z ∈ K , the mapping y �−→ 〈T (z), η(y, x)〉 + f (y, x) is affine,
then condition (2) is satisfied. Hence, the above Lemma improves Theorem 3.1 of Ref. [17]
and therefore Theorem 2.3 of Ref. [19], if we replace their mapping T oA, by our map-
ping T . In the proof of Lemma 3.2 in condition (3), the continuity of f and η in the second
argument is sufficient. Lemma 3.2 is also a vector version of Lemmas 6.1 and 6.2 of Ref. [15].

Theorem 3.3 Let X and Y be normed spaces. Assume that all of the conditions of Lemma
3.2 are satisfied and

(1) The set-valued mapping W : K ⇒ Y defined by W (x) = Y \ intC(x) is closed.
(2) There exist a nonempty compact set M ⊂ K and a nonempty compact convex set

B ⊂ K such that for each x ∈ K \ M, there is y ∈ B such that

〈T (y), η(x, y)〉 + f (x, y) ⊆ intC(x).

Then Problem (II) holds.

Proof For each y ∈ K , we define the set-valued mapping �̂ : K ⇒ K by

�̂(y) := {x ∈ K : 〈T (x), η(y, x)〉 + f (y, x) � −intC(x)}.
We show that �̂ is a KKM mapping. Since if �̂ is not a KKM mapping, then there exists
{x1, x2, . . . , xn} ⊂ K , ti ≥ 0, i = 1, 2, . . . , n with �n

i=1ti = 1 such that x = �n
i=1ti xi /∈

∪n
i=1�̂(xi ). Thus for any i = 1, 2, . . . , n, we have

〈T (x), η(xi , x)〉 + f (xi , x) ⊆ −intC(x),

therefore, we deduce

�n
i=1ti 〈T (x), η(xi , x)〉 + �n

i=1ti f (xi , x) ⊆ −intC(x). (20)
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and by condition (2) of Lemma 3.2, we have

〈T (x), η(x, x)〉 + f (x, x) − �n
i=1ti [〈T (x), η(xi , x)〉 + f (xi , x)] ⊆ −C(x), (21)

From (19), (20) and condition (1) of Lemma 3.2, we obtain

〈T (x), η(x, x)〉 + f (x, x) ⊆ C(x) ∩ −intC(x), (22)

which is a contradiction. Hence, �̂ is a KKM mapping.
Now for each y ∈ K , we define the set-valued mapping � : K ⇒ K by

�(y) = {x ∈ K : 〈T (y), η(x, y)〉 + f (x, y) � intC(x)}.
Since T is η- f pseudomonotone type (II), we have �̂(y) ⊆ �(y) for each y ∈ K . We will
show that for each y ∈ K , �(y) is closed. Let {xn} be a sequence in �(y) convergent to
x0 ∈ K . Since xn ∈ �(y) there exists vn ∈ T (y) satisfying

zn = 〈vn, η(xn, y)〉 + f (xn, y) /∈ intC(xn)

Therefore, zn ∈ W (xn) and hence (xn, zn) ∈ Gr (W ). Since T (y) is compact, {vn} has a
convergent subsequence in T (y). Let {vm} be such a subsequence of {vn} that converges
to v0 ∈ T (y). By continuity of η, {η(xm, y)} is a convergent sequence. Hence, it is norm
bounded and therefore, by Proposition 2.3 of [5] and continuity of f , we have

z0 = lim
m

zm = 〈v0, η(x0, y))〉 + f (x0, y).

Since Gr (W ) is closed, then (x0, z0) ∈ Gr (W ) and hence,

〈v0, η(x0, y))〉 + f (x0, y)) /∈ intC(x0).

Thus, x0 ∈ �(y), this means �(y) is closed. Thus all of the conditions of Lemma 2.3 are
fulfilled by the mappings �̂ and �. Therefore,

⋂

y∈K

�(y) �= ∅.

Hence, Problem (III) holds and from Lemma 3.2, Problem (II) is deduced.

Remark 3.6 The above result improves Theorem 3.2 of Ref. [17] and Theorem 3.2 of Ref.
[19], if we replace their mapping T oA, by our mapping T . Theorem 3.3 is also a vector
version of Theorem 6.2 of Ref. [16].

4 Vector variational-like inequalities without monotonicity

In this section, some existence results for vector variational-like inequality problem without
any monotonicity are obtained. We suppose that {C(x) : x ∈ K } is a family of closed and
convex cones in Y .

Theorem 4.1 Assume that the conditions (iii)–(iv) of Theorem 3.1 are satisfied and the set-
valued mapping � : K ⇒ K defined by

�(y) = {x ∈ K : 〈T (x), η(y, x)〉 + f (y, x) � −intC(x)}
is weakly closed valued. If there exist a nonempty weak compact set M ⊂ K and a nonempty
weak compact convex set B ⊂ K such that for each x ∈ K \ M, there is y ∈ B such that
x �∈ �(y), then Problem (II) holds.
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Proof By the same argument as that of the second part of the proof of Theorem 3.1, one can
deduce that � = �̂ is a KKM mapping. Hence the result follows from Lemma 2.3.

Remark 4.1 Theorem 4.1 generalizes Theorem 2.2 of Ref. [14] in many aspects. It also
improves Theorem 3.1 of Ref. [24] if we replace their mapping T oA, by our mapping T .

Corollary 4.1 Let X and Y be normed spaces and let T : K ⇒ L(X, Y ) be a set-valued
mapping. Assume that the following conditions are satisfied:

(1) For each y ∈ K , the set-valued mapping defined by

�(y) = {x ∈ K : 〈T (x), η(y, x)〉 + f (y, x) � −intC(x)}
is closed valued

(2) For each x, y, z ∈ K , the set-valued mapping y ⇒ 〈T (z), η(y, y)〉 + f (y, y) is C(x)-
convex in the first argument.

(3) For each x, y ∈ K , 〈T (x), η(y, y)〉 + f (y, y) ⊆ C(x),
(4) There exist a nonempty compact set M ⊂ K and a nonempty compact convex set

B ⊂ K such that for each x ∈ K \ M, there is y ∈ B such that x �∈ �(y).

Then Problem (II) holds.

Proof By the same argument as that of the first part of the proof of Theorem 3.3, one can
deduce that � = �̂ is a KKM mapping. Hence the result follows from Lemma 2.3.

Remark 4.2 Corollary 4.1 generalizes Theorem 2.1 of Ref. [14]. It also improves Theorem
3.2 of Ref. [24] if we replace their mapping T oA, by our mapping T .
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