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Abstract In this paper, we present constrained simulated annealing (CSA), an algo-
rithm that extends conventional simulated annealing to look for constrained local
minima of nonlinear constrained optimization problems. The algorithm is based on
the theory of extended saddle points (ESPs) that shows the one-to-one correspon-
dence between a constrained local minimum and an ESP of the corresponding penalty
function. CSA finds ESPs by systematically controlling probabilistic descents in the
problem-variable subspace of the penalty function and probabilistic ascents in the
penalty subspace. Based on the decomposition of the necessary and sufficient ESP
condition into multiple necessary conditions, we present constraint-partitioned simu-
lated annealing (CPSA) that exploits the locality of constraints in nonlinear optimi-
zation problems. CPSA leads to much lower complexity as compared to that of CSA
by partitioning the constraints of a problem into significantly simpler subproblems,
solving each independently, and resolving those violated global constraints across the
subproblems. We prove that both CSA and CPSA asymptotically converge to a con-
strained global minimum with probability one in discrete optimization problems. The
result extends conventional simulated annealing (SA), which guarantees asymptotic
convergence in discrete unconstrained optimization, to that in discrete constrained
optimization. Moreover, it establishes the condition under which optimal solutions
can be found in constraint-partitioned nonlinear optimization problems. Finally, we
evaluate CSA and CPSA by applying them to solve some continuous constrained
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optimization benchmarks and compare their performance to that of other penalty
methods.

Keywords Asymptotic convergence · Constrained local minimum · Constraint
partitioning · Simulated annealing · Dynamic penalty methods · Extended saddle
points · Nonlinear constrained optimization

1 Problem definition

A general mixed-integer nonlinear programming problem (MINLP) is formulated as
follows:

(Pm) : min
z

f (z), (1)

subject to h(z) = 0 and g(z) ≤ 0,

where z = (x, y)T ∈ Z; x ∈ R
v and y ∈ D

w are, respectively, bounded contin-
uous and discrete variables; f (z) is a lower-bounded objective function; g(z) =
(g1(z), . . . , gr(z))T is a vector of r inequality constraint functions;1 and h(z) =
(h1(z), . . . , hm(z))T is a vector of m equality constraint functions. Functions f (z),
g(z), and h(z) are general functions that can be discontinuous, non-differentiable, and
not in closed form.

Without loss of generality, we present our results with respect to minimization
problems, knowing that maximization problems can be converted to minimization
ones by negating their objectives. Because there is no closed-form solution to Pm, we
develop in this paper efficient procedures for finding locally optimal and feasible solu-
tions to Pm, demonstrate that our procedures can lead to better solutions than existing
methods, and prove that our procedures have well-behaved convergence properties.
We first define the following basic terms.

Definition 1 A mixed neighborhood Nm(z) for z = (x, y)T in the mixed space R
v ×

D
w is:

Nm(z) =
{
(x′, y)T

∣∣ x′ ∈ Nc(x)
} ∪

{
(x, y′)T

∣∣∣ y′ ∈ Nd(y)
}

, (2)

where Nc(x) = {x′ : ‖x′ − x‖ ≤ ε and ε → 0} is the continuous neighborhood of x, and
the discrete neighborhood Nd(y) is a finite user-defined set of points {y′ ∈ D

w} such
that y′ ∈ Nd(y)⇐⇒ y ∈ Nd(y′) [1]. Here, ε → 0 means that ε is arbitrarily close to 0.

Definition 2 Point z of Pm is a feasible point iff h(z) = 0 and g(z) ≤ 0.

Definition 3 Point z∗ is a constrained local minimum (CLMm) of Pm iff z∗ is feasible,
and f (z∗) ≤ f (z) with respect to all feasible z ∈ Nm(z∗).

Definition 4 Point z∗ is a constrained global minimum (CGMm) of Pm iff z∗ is feasible,
and f (z∗) ≤ f (z) for every feasible z ∈ Z. The set of all CGMm of Pm is Zopt.

1 Given two vectors V1 and V2 of the same dimension, V1 ≥ V2 means that each element of V1 is
greater than or equal to the corresponding element of V2; V1 > V2 means that at least one element of
V1 is greater than the corresponding element of V2 and the other elements are greater than or equal
to the corresponding elements of V2.
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Note that a discrete neighborhood is a user-defined concept because it does not have
any generally accepted definition. Hence, it is possible for z = (x, y)T to be a CLMm to
a neighborhood Nd(y) but not to another neighborhood Nd1

(y). The choice, however,
does not affect the validity of a search as long as one definition is consistently used
throughout. Normally, one may choose Nd(y) to include discrete points closest to z,
although a search will also be correct if the neighborhood includes “distant” points.

Finding a CLMm of Pm is often challenging. First, f (z), g(z), and h(z) may be
nonconvex and highly nonlinear, making it difficult to even find a feasible point or a
feasible region. Moreover, it is not always useful to keep a search within a feasible
region because there may be multiple disconnected feasible regions. To find high-qual-
ity solutions, a search may have to move from one feasible region to another. Second,
f (z), g(z), and h(z) may be discontinuous or may not be differentiable, rendering it
impossible to apply existing theories based on gradients.

A popular method for solving Pm is the penalty method (Sect. 2.1). It transforms
Pm into an unconstrained penalty function and finds suitable penalties in such a way
that a global minimum of the penalty function corresponds to a CGMm of Pm. Because
it is computationally intractable to look for global minima when the penalty function
is highly nonlinear, penalty methods are only effective for finding CGMm in special
cases.

This paper is based on the theory of extended saddle points (EPSs) in mixed
space [27,30] (Sect. 2.2), which shows the one-to-one correspondence between a
CLMm of Pm and an ESP of the corresponding penalty function. The necessary and
sufficient condition allows us to find a CLMm of Pm by looking for an ESP of the
corresponding penalty function.

One way to look for those ESPs is to minimize the penalty function, while gradually
increasing its penalties until they are larger than some thresholds. The approach is not
sufficient because it also generates stationary points of the penalty function that are
not CLMm of Pm. To avoid those undesirable stationary points, it is possible to restart
the search when such stationary points are reached, or to periodically decrease the
penalties in order for the search to escape from such local traps. However, this simple
greedy approach for updating penalties may not always work well across different
problems.

Our goals in this paper are to design efficient methods for finding ESPs of a penalty
formulation of Pm and to prove their convergence properties. We have made three
contributions in this paper.

First, we propose in Sect. 3.1 a constrained simulated annealing algorithm (CSA),
an extension of conventional simulated annealing (SA) [19], for solving Pm. In addi-
tion to probabilistic descents in the problem-variable subspace as in SA, CSA does
probabilistic ascents in the penalty subspace, using a method that controls descents
and ascents in a unified fashion. Because CSA is sample-based, it is inefficient for
solving large problems. To this end, we propose in Sect. 3.2 a constraint-partitioned
simulated annealing algorithm (CPSA). By exploiting the locality of constraints in
many constraint optimization problems, CPSA partitions Pm into multiple loosely
coupled subproblems that are related by very few global constraints, solves each sub-
problem independently, and iteratively resolves the inconsistent global constraints.

Second, we prove in Sect. 4 the asymptotic convergence of CSA and CPSA to a
CGM with probability one in discrete constrained optimization problems, under a
specific temperature schedule. The property is proved by modeling the search as a
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strongly ergodic Markov chain and by showing that CSA and CPSA minimize an
implicit virtual energy at any CGM with probability one. The result is significant
because it extends conventional SA, which guarantees asymptotic convergence in dis-
crete unconstrained optimization, to that in discrete constrained optimization. It also
establishes the condition under which optimal solutions can be found in constraint-
partitioned nonlinear optimization problems.

Last, we evaluate CSA and CPSA in Sect. 5 by solving some benchmarks in contin-
uous space and by demonstrating their effectiveness when compared to other dynamic
penalty methods.

2 Previous work on penalty methods

Direct and penalty methods are two general approaches for solving Pm. Since direct
methods are only effective for solving some special cases of Pm, we focus on penalty
methods in this paper.

A penalty function of Pm is a summation of its objective and constraint functions
weighted by penalties. Using penalty vectors α ∈ R

m and β ∈ R
r, the general penalty

function for Pm is:

Lp
(
(z,α,β)T

) = f (z)+ αTP(h(z))+ βTQ(g(z)), (3)

where P and Q are transformation functions. The goal of a penalty method is to find
suitable α∗ and β∗ in such a way that z∗ that minimizes (3) corresponds to either a
CLMm or a CGMm of Pm. Penalty methods belong to a general approach that can
solve continuous, discrete, and mixed constrained optimization problems, with no
continuity, differentiability, and convexity requirements.

When P(g(z)) and Q(h(z)) are general functions that can take positive and negative
values, unique values of α∗ and β∗ must be found in order for a local minimum z∗ of
(3) to correspond to a CLMm or CGMm of Pm. (The proof is not shown.) However,
the approach of solving Pm by finding local minima of (3) does not always work for
discrete or mixed problems because there may not exist any feasible penalties at z∗.
(This behavior is shown in Example 1 in Sect. 2.1.) It is also possible for the penalties
to exist at z∗ but (3) is not at a local minimum there. A special case exists in contin-
uous problems when constraint functions are continuous, differentiable, and regular.
For those problems, the Karush–Kuhn–Tucker (KKT) condition shows that unique
penalties always exist at constrained local minima [22]. In general, existing penalty
methods for solving Pm transform g(z) and h(z) in (3) into nonnegative functions
before finding its local or global minima. In this section, we review some existing
penalty methods in the literature.

2.1 Penalty methods for constrained global optimization

2.1.1 Static penalty methods

A static-penalty method [22,24] formulates Pm as the minimization of (3) when its
transformed constraints have the following properties: (a) P(h(z)) ≥ 0 and Q(g(z)) ≥
0; and (b) P(h(z)) = 0 iff h(z) = 0, and Q(g(z)) = 0 iff g(z) ≤ 0. By finding suitable
penalty vectors α and β, an example method looks for z∗ by solving the following
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problem with constant ρ > 0:

(P1) : min
z

Ls
(
(z,α,β)T

) = min
z

⎡
⎣f (z)+

m∑
i=1

αi |hi(z)|ρ +
r∑

j=1

βj
(
gj(z)+

)ρ
⎤
⎦ , (4)

where gj(z)+ = max(0, gj(z)), and g(z)+ = (g1(z)+, . . . , gr(z)+)T .
Given z∗, an interesting property of P1 is that z∗ is a CGMm of Pm iff there exist

finite α∗ ≥ 0 and β∗ ≥ 0 such that z∗ is a global minimum of Ls
(
(z,α∗∗,β∗∗)T

)
for

any α∗∗ > α∗ and β∗∗ > β∗. To show this result, note that αi and βj in P1 must be
greater than zero in order to penalize those transformed violated constraint functions
|hi(z)|ρ and

(
gj(z)+

)ρ , which are nonnegative with a minimum of zero. As (4) is to
be minimized with respect to z, increasing the penalty of a violated constraint to a
large enough value will force the corresponding transformed constraint function to
achieve the minimum of zero, and such penalties always exist if a feasible solution to
Pm exists. At those points where all the constraints are satisfied, every term on the
right-hand side of (4) except the first is zero, and a global minimum of (4) corresponds
to a CGMm of Pm.

Example 1 Consider the following simple discrete optimization problem:

min
y∈{−3,−2,
−1,0,1,2}

f (y) =

⎧⎪⎨
⎪⎩

0, if y ≥ 0,
y, if y = −1,−2
−4, if y = −3,

subject to y = 0. (5)

Obviously, y∗ = 0. Assuming a penalty function Lp
(
(y,α)T

) = f (y)+ αy and Nd(y) =
{y − 1, y + 1}, there is no single α∗ that can make Lp

(
(y,α∗)T

)
a local minimum at

y∗ = 0 with respect to y = ±1. This is true because we arrive at an inconsistent α∗
when we solve the following inequalities:

0 = Lp
(
(0,α∗)T

) ≤
{

Lp
(
(−1,α∗)T

) = f (−1)− α∗ = −1− α,∗

Lp
(
(1,α∗)T

) = f (1)+ α∗ = 0+ α,∗

�⇒
{
α∗ ≤ −1, when y = −1,
α∗ ≥ 0, when y = 1.

On the other hand, by using Ls
(
(y,α)T

) = f (y) + α |y| and by setting α∗ = 4
3 , the

CGMd of (5) corresponds to the global minimum of Ls
(
(y,α∗∗)T

)
for any α∗∗ > α∗.

�

A variation of the static-penalty method proposed in [17] uses discrete penalty values
and assigns a penalty value αi(hi(z)) when hi(z) exceeds a discrete level �i (resp.,
βj(gj(z)) when gj(z)+ exceeds a discrete level �j), where a higher level of constraint
violation entails a larger penalty value. The penalty method then solves the following
minimization problem:

(P2) : min
z

Ls
(
(z,α,β)T

) = min
z

[
f (z)+

m∑
i=1

αi(hi(z)) h2
i (z)

+
r∑

j=1

βj(gj(z))
(
gj(z)+

)2

⎤
⎦ . (6)
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A limitation common to all static-penalty methods is that their penalties have to be
found by trial and error. Each trial is computationally expensive because it involves
finding a global minimum of a nonlinear function. To this end, many penalty methods
resort to finding local minima of penalty functions. However, such an approach is
heuristic because there is no formal property that relates a CLMm of Pm to a local
minimum of the corresponding penalty function. As illustrated earlier, it is possible
that no feasible penalties exist in order to have a local minimum at a CLMm in the
penalty function. It is also possible for the penalties to exist at the CLMm but the
penalty function is not at a local minimum there.

2.1.2 Dynamic penalty methods

Instead of finding α∗∗ and β∗∗ by trial and error, a dynamic-penalty method [22,24]
increases the penalties in (4) gradually, finds the global minimum z∗ of (4) with respect
to z, and stops when z∗ is a feasible solution to Pm. To show that z∗ is a CGMm when
the algorithm stops, we know that the penalties need to be increased when z∗ is a
global minimum of (4) but not a feasible solution to Pm. The first time z∗ is a feasi-
ble solution to Pm, the solution must also be a CGMm. Hence, the method leads to
the smallest α∗∗ and β∗∗ that allow a CGMm to be found. However, it has the same
limitation as static-penalty methods because it requires computationally expensive
algorithms for finding the global minima of nonlinear functions.

There are many variations of dynamic penalty methods. A well known one is the
nonstationary method (NS) [18] that solves a sequence of minimization problems with
the following in iteration t:

(P3) : min
z

Lt
(
(z,α,β)T

) = min
z

⎡
⎣f (z)+

m∑
i=1

αi(t) |hi(z)|ρ +
r∑

j=1

βj(t)
(
gj(z)+

)ρ
⎤
⎦ ,

(7)

where αi(t + 1) = αi(t)+ C · |hi(z(t))|, βj(t + 1) = βj(t)+ C · gj(z(t))+.

Here, C and ρ are constant parameters, with a reasonable setting of C = 0.01 and
ρ = 2. An advantage of the NS penalty method is that it requires only a few parameters
to be tuned.

Another dynamic penalty method is the adaptive penalty method (AP) [6] that
makes use of a feedback from the search process. AP solves the following minimiza-
tion problem in iteration t:

(P4) : min
z

Lt
(
(z,α,β)T

)=min
z

⎡
⎣f (z)+

m∑
i=1

αi(t) hi(z)2 +
r∑

j=1

βj(t)
(
gj(z)+

)2

⎤
⎦ , (8)

where αi(t) is, respectively, increased, decreased, or left unchanged when the con-
straint hi(z) = 0 is, respectively, infeasible, feasible, or neither in the last � iterations.
That is,

αi(t + 1) =

⎧⎪⎨
⎪⎩

αi(t)
λ1

, if hi(z(i)) = 0 is feasible in iterations t − �+ 1, . . . , t,

λ2 · αi(t), if hi(z(i)) = 0 is infeasible in iterations t − �+ 1, . . . , t,
αi(t), otherwise,

(9)
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where � is a positive integer, λ1, λ2 > 1, and λ1 �= λ2 in order to avoid cycles in updates.
We use � = 3, λ1 = 1.5, and λ2 = 1.25 in our experiments. A similar rule applies to
the updates of βj(t).

The threshold penalty method estimates and dynamically adjusts a near-feasible
threshold qi(t) (resp., q′j(t)) for each constraint in iteration t. Each threshold indicates
a reasonable amount of violation allowed for promising but infeasible points during
the solution of the following problem:

(P5) : min
z

Lt
(
(z,α,β)T

) = min
z

⎧⎨
⎩f (z)+ α(t)

⎡
⎣

m∑
i=1

(
hi(z)
qi(t)

)2

+
r∑

j=1

(
gj(z)+

q′j(t)

)2
⎤
⎦
⎫⎬
⎭ .

(10)

There are two other variations of dynamic penalty methods that are not as popular:
the death penalty method simply rejects all infeasible individuals [5]; and a penalty
method that uses the number of violated constraints instead of the degree of violations
in the penalty function [21].

2.1.3 Exact penalty methods

Besides the dynamic penalty methods reviewed above that require solving a series of
unconstrained minimization problems under different penalty values, the exact penalty
methods are another class of penalty methods that can yield an optimal solution by
solving a single unconstrained optimization of the penalty function with appropriate
penalty values. The most common form solves the following minimization problem in
continuous space [7,33]:

min
x

Le
(
(x, c)T

) = min
x

⎡
⎣f (x)+ c

⎛
⎝

m∑
i=1

|hi(x)| +
r∑

j=1

gj(x)+
⎞
⎠
⎤
⎦ . (11)

It has been shown that, for continuous and differentiable problems and when cer-
tain constraint qualification conditions are satisfied, there exists c∗ > 0 such that the
x∗ that minimizes (11) is also a global optimal solution to the original problem [7,33].
In fact, c needs to be larger than the summation of all the Lagrange multipliers at x∗,
while the existence of the Lagrange multipliers requires the continuity and differen-
tiability of the functions.

Besides (11), there are various other formulations of exact penalty methods [4,11–
13]. However, their results are limited to continuous and differentiable functions
and to global optimization. Their theoretical results were developed by relating their
penalty terms to their Lagrange multipliers, whose existence requires the continuity
and differentiability of the constraint functions.

In our experiments, we only evaluate our proposed methods with respect to
dynamic penalty methods P3 and P4 for the following reasons. It is impractical to
implement P1 because it requires choosing some suitable penalty values a priori. The
control of progress in solving P2 is difficult because it requires tuning many (� ·(m+r))
parameters that are hard to generalize. The method based on solving P5 is also hard
to generalize because it depends on choosing an appropriate sequence of violation
thresholds. Reducing the thresholds quickly leads to large penalties and the search
trapped at infeasible points, whereas reducing the thresholds slowly leads to slow con-
vergence. We do not evaluate exact penalty methods because they were developed
for problems with continuous and differentiable functions.
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2.2 Necessary and sufficient conditions on constrained local minimization

We first describe in this section the theory of ESPs that shows the one-to-one cor-
respondence between a CLMm of Pm and an ESP of the penalty function. We then
present the partitioning of the ESP condition into multiple necessary conditions and
the formulation of the corresponding subproblems. Because the results have been
published earlier [27,30], we only summarize some high-level concepts without the
precise formalism and their proofs.

Definition 5 For penalty vectors α ∈ R
m and β ∈ R

r, we define a penalty function of
Pm as:

Lm
(
(z,α,β)T

) = f (z)+ αT |h(z)| + βTg(z)+

= f (z)+
m∑

i=1

αi|hi(z)| +
r∑

j=1

βjgj(z)+. (12)

Next, we informally define a constraint-qualification condition needed in the main
theorem [27]. Consider a feasible point z′ = (x′, y′)T and a neighboring point z′′ =
(x′ + →p, y′)T under an infinitely small perturbation along direction

→
p ∈ X in the x

subspace. When the constraint-qualification condition is satisfied at z′, it means that
there is no

→
p such that the rates of change of all equality and active inequality con-

straints between z′′ and z′ are zero. To see why this is necessary, assume that f (z) at
z′ decreases along

→
p and that all equality and active inequality constraints at z′ have

zero rates of change between z′′ and z′. In this case, it is not possible to find some finite
penalty values for the constraints at z′′ in such a way that leads to a local minimum
of the penalty function at z′ with respect to z′′. Hence, if the above scenario were
true for some

→
p at z′, then it is not possible to have a local minimum of the penalty

function at z′. In short, constraint qualification at z′ requires at least one equality or
active inequality constraint to have a nonzero rate of change along each direction

→
p

at z′ in the x subspace.

Theorem 1 Necessary and sufficient condition on CLMm of Pm [27]. Assuming z∗ ∈ Z

of Pm satisfies the constraint-qualification condition, then z∗ is a CLMm of Pm iff there
exist some finite α∗ ≥ 0 and β∗ ≥ 0 that satisfies the following extended saddle-point
condition (ESPC):

Lm
(
(z∗,α,β)T

) ≤ Lm
(
(z∗,α∗∗,β∗∗)T

) ≤ Lm
(
(z,α∗∗,β∗∗)T

)
(13)

for any α∗∗ > α∗ and β∗∗ > β∗ and for all z ∈ Nm(z∗), α ∈ R
m, and β ∈ R

r.

Note that (13) can be satisfied under rather loose conditions because it is true
for a range of penalty values and not for unique values. For this reason, we call
(z∗,α∗∗,β∗∗)T an ESP of (12). The theorem leads to an easy way for finding CLMm.
Since an ESP is a local minimum of (12) (but not the converse), z∗ can be found by
gradually increasing the penalties of those violated constraints in (12) and by repeat-
edly finding the local minima of (12) until a feasible solution to Pm is obtained. The
search for local minima can be accomplished by any existing local-search algorithm
for unconstrained optimization.

Example 1 (cont’d) In solving (5), if we use Lm
(
(y,α)T

) = f (y) + α |y| and choose
α∗ = 1, we have an ESP at y∗ = 0 for any α∗∗ > α∗. This establishes a local minimum
of Lm

(
(y,α)T

)
at y∗ = 0 with respect to Nd(y) = {y − 1, y + 1}. Note that the α∗



J Glob Optim (2007) 39:1–37 9

that satisfies Theorem 1 is only required to establish a local minimum of Lm
(
(y,α)T

)
at y∗ = 0 and is, therefore, smaller than the α∗ (= 4

3 ) required to establish a global
minimum of Lm

(
(y,α)T

)
in the static-penalty method. �


An important feature of the ESPC in Theorem 1 is that it can be partitioned in
such a way that each subproblem implementing a partitioned condition can be solved
by looking for any α∗∗ and β∗∗ that are larger than α∗ and β∗.

Consider Pt, a version of Pm whose constraints can be partitioned into N subsets:

(Pt) : min
z

f (z),

subject to h(t)(z(t)) = 0, g(t)(z(t)) ≤ 0 (local constraints) (14)

and H(z) = 0, G(z) ≤ 0 (global constraints).

Each subset of constraints can be treated as a subproblem, where Subproblem t,
t = 1, . . . , N, has local state vector z(t) = (z1(t), . . . , zut (t))

T of ut mixed variables,
and ∪N

t=1z(t) = z. Here, z(t) includes all the variables that appear in any of the mt

local equality constraint functions h(t) = (h(t)1 , . . . , h(t)mt )
T and the rt local inequality

constraint functions g(t) = (g(t)1 , . . . , g(t)rt )
T . Since the partitioning is by constraints,

z(1), . . . , z(N) may overlap with each other. Further, z(g) includes all the variables
that appear in any of the p global equality constraint functions H = (H1, . . . , Hp)

T

and the q global inequality constraint functions G = (G1, . . . , Gq)
T .

We first define Nm(z), the mixed neighborhood of z for Pt, and decompose the
ESPC in (13) into a set of necessary conditions that collectively are sufficient. Each
partitioned ESPC is then satisfied by finding an ESP of the corresponding subprob-
lem, and any violated global constraints are resolved by finding some appropriate
penalties.

Definition 6 Np0
(z), the mixed neighborhood of z for Pt when partitioned by its con-

straints, is:

Np0
(z) =

N⋃
t=1

N(t)
p1
(z) =

N⋃
t=1

{
z′
∣∣∣ z′(t) ∈ Nm1

(z(t)) and z′i = zi ∀zi /∈ z(t)
}

, (15)

where Nm1
(z(t)) is the mixed neighborhood of z(t) (see Definition 2).

Intuitively, Np0
(z) is separated into N neighborhoods, where the tth neighborhood

only perturbs the variables in z(t) while leaving those variables in z\z(t) unchanged.
Without showing the details, we can consider Pt as a MINLP and apply Theorem 1

to derive its ESPC. We then decompose the ESPC into N necessary conditions, one
for each subproblem, and an overall necessary condition on the global constraints
across the subproblems. We first define the penalty function for Subproblem t.

Definition 7 Let �((z, γ , η)T) = γ T |H(z)| + ηTG(z)+ be the sum of the transformed
global constraint functions weighted by their penalties, where γ = (γ1, . . . , γp)

T ∈ R
p

and η = (η1, . . . , ηq)
T ∈ R

q
are the penalty vectors for the global constraints. Then the

penalty function for Pt in (14) and the corresponding penalty function in Subproblem
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t are defined as follows:

Lm
(
(z,α,β, γ , η)T

) = f (z)+
N∑

t=1

{
α(t)T |h(t)(z(t))|

+β(t)T
(

g(t)(z(t))
)+}+�((z, γ , η)T), (16)


m((z,α(t),β(t), γ , η)T) = f (z)+ α(t)T |h(t)(z(t))|
+β(t)T

(
g(t)(z(t))

)+ +�((z, γ , η)T), (17)

where α(t) = (α1(t), . . . , αmt
(t))T ∈ R

mt and β(t) = (β1(t), . . . ,βrt
(t))T ∈ R

rt are the
penalty vectors for the local constraints in Subproblem t.

Theorem 2 Partitioned necessary and sufficient ESPC on CLMm of Pt [27]. Given
Np0

(z), the ESPC in (13) can be rewritten into N + 1 necessary conditions that, collec-
tively, are sufficient:


m((z∗,α(t),β(t), γ ∗∗, η∗∗)T) ≤ 
m((z∗,α(t)∗∗,β(t)∗∗, γ ∗∗, η∗∗)T)

≤ 
m((z,α(t)∗∗,β(t)∗∗, γ ∗∗, η∗∗)T), (18)

Lm
(
(z∗,α∗∗,β∗∗, γ , η)T

) ≤ Lm
(
(z∗,α∗∗,β∗∗, γ ∗∗, η∗∗)T

)
(19)

for any α(t)∗∗ > α(t)∗ ≥ 0, β(t)∗∗ > β(t)∗ ≥ 0, γ ∗∗ > γ ∗ ≥ 0, and η∗∗ > η∗ ≥ 0, and
for all z ∈ N

(t)
p1
(z∗), α(t) ∈ R

mt , β(t) ∈ R
rt , γ ∈ R

p
, η ∈ R

q
, and t = 1, . . . , N.

Theorem 2 shows that the original ESPC in Theorem 1 can be partitioned into N
necessary conditions in (18) and an overall necessary condition in (19) on the global
constraints across the subproblems. Because finding an ESP to each partitioned con-
dition is equivalent to solving a MINLP, we can reformulate the ESP search of the tth
condition as the solution of the following optimization problem:

(
P(t)t

)
: min

z(t)
f (z)+ γ T |H(z)| + ηTG(z)+ (20)

subject to h(t)(z(t)) = 0 and g(t)(z(t)) ≤ 0.

The weighted sum of the global constraint functions in the objective of (20) is impor-
tant because it leads to points that minimize the violations of the global constraints.
When γ T and ηT are large enough, solving P(t)t will lead to points, if they exist, that
satisfy the global constraints. Note that P(t)t is very similar to the original problem and
can be solved by the same solver to the original problem with some modifications on
the objective function to be optimized.

In summary, we have shown in this section that the search for a CLMm of Pm
is equivalent to finding an ESP of the corresponding penalty function, and that this
necessary and sufficient condition can be partitioned into multiple necessary condi-
tions. The latter result allows the original problem to be decomposed by its constraints
to multiple subproblems and to the reweighting of those violated global constraints
defined by (19). The major benefit of this decomposition is that each subproblem
involves only a fraction of the original constraints and is, therefore, a significant relax-
ation of the original problem with much lower complexity. The decomposition leads
to a large reduction in the complexity of the original problem if the global constraints
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Fig. 1 CSA constrained simulated annealing (see text for the initial values of the parameters). The
differences between CSA and SA lie in their definitions of state z, neighborhood Nm(z), generation
probability G(z, z′), and acceptance probability AT (z, z′)

is small in quantity and can be resolved efficiently. We demonstrate in Sect. 5 that the
number of global constraints in many benchmarks is indeed small when we exploit the
locality of the constraints. In the next section, we describe our extensions to simulated
annealing for finding ESPs.

3 Simulated annealing for constrained optimization

In this section, we present three algorithms for finding ESPs: the first two imple-
menting the results in Theorems 1 and 2, and the third extending the penalty search
algorithms in Sect. 2.1. All three methods are based on sampling the search space of
a problem during their search and can be applied to solve continuous, discrete, and
mixed-integer optimization problems. Without loss of generality, we only consider Pm
with equality constraints, since an inequality constraint gj(z) ≤ 0 can be transformed
into an equivalent equality constraint gj(z)+ = 0.

3.1 Constrained simulated annealing (CSA)

Figure 1 presents CSA, our algorithm for finding an ESP whose (z∗,α∗∗)T satis-
fies (13). In addition to probabilistic descents in the z subspace as in SA [19], with
an acceptance probability governed by a temperature that is reduced by a properly
chosen cooling schedule, CSA also does probabilistic ascents in the penalty subspace.
The success of CSA lies in its strategy to search in the joint z−α space, instead of
applying SA to search in the z subspace of the penalty function and updating the
penalties in a separate phase of the algorithm. The latter approach would be taken
in existing static and the dynamic penalty methods discussed in Section 2.1. CSA
overcomes the limitations of existing penalty methods because it does not require a
separate algorithm for choosing penalties. The rest of this section explains the steps
of CSA [29,31].

Line 2 sets a starting point z ← (z,α)T , where z can be either user-provided or
randomly generated (such as using a fixed seed 123 in our experiments), and α is
initialized to zero.

Line 3 initializes control parameter temperature T to be so large that almost
any trial point z′ will be accepted. In our experiments on continuous problems, we
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initialize T by first randomly generating 100 points of x and their corresponding
neighbors x′ ∈ Nc(x) in close proximity, where |x′i − xi| ≤ 0.001, and then setting
T = maxx,x′,i

{|Lm
(
(x′, 1)T

)− Lm
(
(x, 1)T

)|, |hi(x)|
}
. Hence, we use a large initial T if

the function is rugged (|Lm
(
(x′, 1)T

) − Lm
(
(x, 1)T

)| is large), or the function is not
rugged but its constraint violation (|hi(x)|) is large. We also initialize κ to 0.95 in our
experiments.

Line 4 sets the number of iterations at each temperature. In our experiments, we
choose NT ← ζ(20n+m) where ζ ← 10(n+m), n is the number of variables, and m
is the number of equality constraints. This setting is based on the heuristic rule in [10]
using n+m instead of n.

Line 5 stops CSA when the current z is not changed, i.e., no other z′ is accepted,
in two successive temperature changes, or when the current T is small enough (e.g.,
T < 10−6).

Line 7 generates a random point z′ ∈ Nm(z) from the current z ∈ S = Z×
, where

 = R

m is the space of the penalty vector. In our implementation, Nm(z) consists of
(z′,α)T and (z,α′)T , where z′ ∈ Nm1

(z) (see Definition 1), and α′ ∈ Nm2
(α) is a point

neighboring to α when h(z) �= 0:

Nm(z) =
{
(z′,α)T ∈ S where z′ ∈ Nm1

(z)
}
∪
{
(z,α′)T ∈ S where α′ ∈ Nm2

(α)
}

(21)

and

Nm2
(α) = {

α′ ∈ 
 where (α′i < αi or α′i > αi if hi(z) �= 0)

and (α′i = αi if hi(z) = 0)
}

. (22)

According to this definition, αi is not perturbed when hi(z) = 0 is satisfied.
G(z, z′), the generation probability from z to z′ ∈ Nm(z), satisfies:

0 ≥ G(z, z′) ≤ 1 and
∑

z′∈Nm(z)

G(z, z′) = 1. (23)

Since the choice of G(z, z′) is arbitrary as long as it satisfies (23), we select z′ in our
experiments with uniform probability across all the points in Nm(z), independent of T:

G(z, z′) = 1
|Nm(z)| . (24)

As we perturb either z or α but not both simultaneously, (24) means that z′ is gen-
erated either by choosing z′ ∈ Nm1

(z) randomly or by generating α′ uniformly in a
predefined range.

Line 8 accepts z′ with acceptance probability AT(z, z′) that consists of two compo-
nents, depending on whether z or α is changed in z′:

AT(z, z′) =
⎧⎨
⎩

exp
(
− (Lm(z′)−Lm(z))+

T

)
, if z′ = (z′,α)T ,

exp
(
− (Lm(z)−Lm(z′))+

T

)
, if z′ = (z,α′)T .

(25)

The acceptance probability in (25) differs from the acceptance probability used in
conventional SA, which only has the first case in (25) and whose goal is to look for a
global minimum in the z subspace. Without the α subspace, only probabilistic descents
in the z subspace are carried out.
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In contrast, our goal is to look for an ESP in the joint Z×
 space, each existing at
a local minimum in the z subspace and at a local maximum in the α subspace. To this
end, CSA carries out probabilistic descents of Lm

(
(z,α)T

)
with respect to z for each

fixed α. That is, when we generate a new z′ under a fixed α, we accept it with proba-
bility one when δz = Lm

(
(z′,α)T

) − Lm
(
(z,α)T

)
is negative; otherwise, we accept it

with probability e−δz/T . This step has exactly the same effect as in conventional SA;
that is, it performs descents with occasional ascents in the z subspace.

However, descents in the z subspace alone will lead to a local/global minimum
of the penalty function without satisfying the corresponding constraints. In order to
satisfy all the constraints, CSA also carries out probabilistic ascents of Lm

(
(z,α)T

)
with respect to α for each fixed z in order to increase the penalties of violated con-
straints and to force them into satisfaction. Hence, when we generate a new α′ under
a fixed z, we accept it with probability one when δα = Lm

(
(z,α′)T

) − Lm
(
(z,α)T

)
is positive; otherwise, we accept it with probability e−δα/T . This step is the same as
that in conventional SA when performing ascents with occasional descents in the α
subspace. Note that when a constraint is satisfied, the corresponding penalty will not
be changed according to (22).

Finally, Line 10 reduces T by the following cooling schedule after looping NT times
at given T:

T ←− κ · T where the cooling-rate constant κ ← 0.95 (typically 0.8 ≤ κ ≤ 0.99).

(26)

At high T, (25) allows any trial point to be accepted with high probabilities, thereby
allowing the search to traverse a large space and overcome infeasible regions. When
T is reduced, the acceptance probability decreases, and at very low temperatures, the
algorithm behaves like a local search.

3.2 Constraint-partitioned simulated annealing (CPSA)

We present in this section CPSA, an extension of CSA that decomposes the search in
CSA into multiple subproblems after partitioning the constraints into subsets. Recall
that, according to Theorem 2, Pt in (14) can be partitioned into a sequence of N
subproblems defined in (20) and an overall necessary condition defined in (19) on
the global constraints across the subproblems, after choosing an appropriate mixed
neighborhood. Instead of considering all the constraints together as in CSA, CPSA
performs searches in multiple subproblems, each involving a small subset of the con-
straints. As in CSA, we only consider Pt with equality constraints.

Figure 2 shows the idea in CPSA. Unlike the original CSA that solves the prob-
lem as a whole, CPSA solves each subproblem independently. In Subproblem t, t =
1, ..., N, CSA is performed in the (z(t),α(t))T subspace related to the local constraints
h(t)(z(t)) = 0. In addition, there is a global search that explores in the (z(g), γ )T

subspace on the global constraints H(z) = 0. This additional search is needed for
resolving any violated global constraints.

Figure 3 describes the CPSA procedure. The first six lines are similar to those in
CSA.

To facilitate the convergence analysis of CPSA in a Markov-chain model, Lines
7–14 randomly pick a subproblem for evaluation, instead of deterministically enu-
merating the subproblems in a round-robin fashion, and stochastically accept a new
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Fig. 2 CPSA Constraint-partitioned simulated annealing

_

_

_

_

Fig. 3 The CPSA search procedure

probe using an acceptance probability governed by a decreasing temperature. This
approach leads to a memoryless Markovian process in CPSA.

Line 7 randomly selects Subproblem i, i = 1, . . . , N + 1, with probability Ps(t),
where Ps(t) can be arbitrarily chosen as long as:

N+1∑
t=1

Ps(t) = 1 and Ps(t) > 0. (27)

When t is between 1 and N (Line 8), it represents a local exploration step in Sub-
problem t. In this case, Line 9 generates a trial point z′ ∈ N

(t)
p (z) from the current

point z = (z,α, γ )T ∈ S using a generation probability G(t)(z, z′) that can be arbitrary
as long as the following is satisfied:

0 ≤ G(t)(z, z′) ≤ 1 and
∑

z′∈N(t)
p (z)

G(t)(z, z′) = 1. (28)
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The point is generated by perturbing z(t) and α(t) in their neighborhood N
(t)
p (z):

N(t)
p (z) =

{
(z′,α(t), γ ) ∈ S | z′ ∈ N(t)

p1
(z)

}
∪
{
(z,α′(t), γ ) ∈ S | α′(t) ∈ N(t)

p2
(α(t))

}
,

(29)

N(t)
p2
(α(t)) =

{
α′(t) ∈ 
(α(t)) where (α′i(t) < αi(t) or α′i(t) > αi(t) if hi(z(t)) �= 0)

and (α′i(t) = αi(t) if hi(z(t)) = 0)
}

(30)

and N
(t)
p1
(z) is defined in (15) and 
(α(t)) = R

mt . This means that z′ ∈ N
(t)
p (z) only

differs from z in z(t) or α(t) and remains the same for the other variables. This is
different from CSA that perturbs z in the overall variable space. As in CSA, αi is not
perturbed when hi(z(t)) = 0 is satisfied. Last, Line 10 accepts z′ with the Metropolis
probability AT(z, z′) similar to that in (25):

AT(z, z′) =
⎧⎨
⎩

exp
(
− (Lm(z′)−Lm(z))+

T

)
, if z′ = (z′,α, γ )T ,

exp
(
− (Lm(z)−Lm(z′))+

T

)
, if z′ = (z,α′, γ )T or z′ = (z,α, γ ′)T .

(31)

When t = N+ 1 (Line 11), it represents a global exploration step. In this case, Line
12 generates a random trial point z′ ∈ N

(g)
p (z) using a generation probability G(g)(z, z′)

that satisfies the condition similar to that in (28). Assuming Nm1
(z(g)) to be the mixed

neighborhood of z(g) and 
(g) = R
p, z′ is obtained by perturbing z(g) and γ in their

neighborhood N
(g)
p (z):

N
(g)
p (z) =

{
(z′,α, γ )T ∈ S where z′ ∈ N

(g)
p1
(z)

}

∪
{
(z,α, γ ′)T ∈ S where γ ′ ∈ N

(g)
p2
(γ )

}
, (32)

N
(g)
p1
(z) =

{
z′ where z′(g) ∈ Nm1

(z(g)) and z′i = zi ∀zi /∈ z(g)
}

, (33)

N
(g)
p2
(γ ) =

{
γ ′ ∈ 
(g) where (γ ′i < γi or γ ′i > γi if Hi(z) �= 0)

and (γ ′i = γi if Hi(z) = 0)
}

. (34)

Again, z′ is accepted with probability AT(z, z′) in (31) (Line 13). Note that both N
(t)
p (z)

and N
(g)
p (z) ensure the ergodicity of the Markov chain, which is required for achieving

asymptotic convergence.
When compared to CSA, CPSA reduces the search complexity through constraint

partitioning. Since both CSA and CPSA need to converge to an equilibrium distribu-
tion of variables at a given temperature before the temperature is reduced, the total
search time depends on the convergence time at each temperature. By partitioning
the constraints into subsets, each subproblem only involves an exponentially smaller
subspace with a small number of variables and penalties. Thus, each subproblem takes
significantly less time to converge to an equilibrium state at a given temperature, and
the total time for all the subproblems to converge is also significantly reduced. This
reduction in complexity is experimentally validated in Sect. 5.
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Fig. 4 Greedy ESPC search method (GEM)

3.3 Greedy ESPC search method (GEM)

In this section, we present a dynamic penalty method based on a greedy search of an
ESP. Instead of probabilistically accepting a probe as in CSA and CPSA, our greedy
approach accepts the probe if it improves the value of the penalty function and rejects
it otherwise.

One simple approach that does not work well is to gradually increase α∗∗ until
α∗∗ > α∗, while minimizing the penalty function with respect to z using an existing
local-search method. This simple iterative search does not always work well because
the penalty function has many local minima that satisfy the second inequality in (13),
but some of these local minima do not satisfy the first inequality in (13) even when
α∗∗ > α∗. Hence, the search may generate stationary points that are local minima of
the penalty function but are not feasible solutions to the original problem.

To address this issue, Fig. 4 shows a global search called the Greedy ESPC Search
Method [32] (GEM). GEM uses the following penalty function:

Lg
(
(z,α)T

) = f (z)+
m∑

i=1

αi|hi(z)| + 1
2
||h(z)||2. (35)

Lines 5–8 carries out Ng iterative descents in the z subspace. In each iteration, Line
6 generates a probe z′ ∈ Nm1

(z) neighboring to z. As defined in (24) for CSA, we
select z′ with uniform probability across all the points in Nm1

(z). Line 7 then evaluates

Lg
(
(z′,α)T

)
and accepts z′ only when it reduces the value of Lg. After the Ng descents,

Line 9 updates the penalty vector α in order to bias the search toward resolving those
violated constraints.

When α∗∗ reaches its upper bound during a search but a local minimum of Lg does
not correspond to a CLMm of Pm, we can reduce α∗∗ instead of restarting the search
from a new starting point. The decrease will change the terrain of Lg and “lower” its
barrier, thereby allowing a local search to continue in the same trajectory and move
to another local minimum of Lg. In Line 10, we reduce the penalty value of a con-
straint when its maximum violation is not reduced for three consecutive iterations. To
reduce the penalties, Line 11 multiplies each element in α by a random real number
uniformly generated between 0.4 and 0.6. By repeatedly increasing α∗∗ to its upper
bound and by reducing it to some lower bound, a local search will be able to escape
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from local traps and visit multiple local minima of the penalty function. We leave the
presentation of the parameters used in GEM and its experimental results to Sect. 5.

4 Asymptotic convergence of CSA and CPSA

In this section, we show the asymptotic convergence of CSA and CPSA to a con-
strained global minimum in discrete constrained optimization problems. Without
repeating the definitions in Sect. 1, we can similarly define a discrete nonlinear pro-
gramming problem (Pd), a discrete neighborhood (Nd(y)), a discrete constrained local
minimum (CLMd), a discrete constrained global minimum (CGMd), and a penalty
function in discrete space (Ld).

4.1 Asymptotic convergence of CSA

We first define the asymptotic convergence property. For a global minimization prob-
lem, let � be its search space, �s be the set of all global minima, and ω(j) ∈ �,
j = 0, 1, . . . , be a sequence of points generated by an iterative procedure ψ until some
stopping conditions hold.

Definition 8 Procedure ψ is said to have asymptotic convergence to a global mini-
mum, or simply asymptotic convergence [3], if ψ converges with probability one to an
element in �s; that is, limj→∞ P (ω(j) ∈ �s) = 1, independent of ω(0), where P(w) is
the probability of event w.

In the following, we first prove the asymptotic convergence of CSA to a CGMd
of Pd with probability one when T approaches 0 and when T is reduced according
to a specific cooling schedule. We model CSA by an inhomogeneous Markov chain,
show that the chain is strongly ergodic, prove that the chain minimizes an implicit
virtual energy based on the framework of generalized SA (GSA) [25,26], and show
that the virtual energy is at its minimum at any CGMd. We state the main theorems
and illustrate them by examples, while leaving the proofs to the appendices.

CSA can be modeled by an inhomogeneous Markov chain that consists of a
sequence of homogeneous Markov chains of finite length, each at a specific tempera-
ture in a cooling schedule. Its one-step transition probability matrix is PT = [PT(y, y′)],
where:

PT(y, y′) =

⎧⎪⎪⎨
⎪⎪⎩

G(y, y′)AT(y, y′), if y′ ∈ Nd(y),
1− ∑

y′′∈Nd(y)
G(y, y′′)AT(y, y′′), if y′ = y,

0, otherwise.

(36)

Example 2 Consider the following simple discrete minimization problem:

min
y

f (y) = −y2 (37)

subject to h(y) = |(y− 0.6)(y− 1.0)| = 0,

where y ∈ Y = {0.5, 0.6, . . . , 1.2}. The corresponding penalty function is:

Ld
(
(y,α)T

) = −y2 + α · |(y− 0.6)(y− 1.0)|. (38)
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Fig. 5 The Markov chain with the transition probabilities defined in (36) for the example problem
in (37) and the corresponding penalty-function value at each state. The four ESPs are shaded in (a)

By choosing α ∈ 
 = {2, 3, 4, 5, 6}, with the maximum penalty value αmax at 6, the
state space is S = {(y,α)T ∈ Y×
} with |S| = 8× 5 = 40 states. At y = 0.6 or y = 1.0
where the constraint is satisfied, we can choose α∗ = 1, and any α∗∗ > α∗, including
αmax, would satisfy (13) in Theorem 1.

In the Markov chain, we define Nd(y) as in (21), where Nd1
(y) and Nd2

(α) are as
follows:

Nd1
(y) = {y− 0.1, y+ 0.1| 0.6 ≤ y ≤ 1.1} ∪ {y+ 0.1| y = 0.5} ∪ {y− 0.1| y = 1.2},

(39)

Nd2
(α) = {α − 1,α + 1| 3 ≤ α ≤ 5, y �= 0.6 and y �= 1.0} ∪ {α − 1| α = 6,

y �= 0.6 and y �= 1.0} ∪ {α + 1| α = 2, y �= 0.6 and y �= 1.0}. (40)

Figure 5 shows the state space S of the Markov chain. In this chain, an arrow from y
to y′ ∈ Nd(y) (where y′ = (y′,α)T or (y,α′)T) means that there is a one-step transition
from y to y′ whose PT(y, y′) > 0. For y = 0.6 and y = 1.0, there is no transition among
the points in the α dimension because the constraints are satisfied at those y values
(according to (22)).

There are two ESPs in this Markov chain at (0.6, 5)T and (0.6, 6)T , which corre-
spond to the local minimum at y = 0.6, and two ESPs at (1.0, 5)T and (1.0, 6)T , which
correspond to the local minimum at y = 1.0. CSA is designed to locate one of the ESPs
at (0.6, 6)T and (1.0, 6)T . These correspond, respectively, to the CLMd at y∗ = 0.6 and
y∗ = 1.0. �


Let yopt = {(y∗,αmax)T | y∗ ∈ Yopt}, and NL be the maximum of the minimum
number of transitions required to reach yopt from all y ∈ S. By properly constructing
Nd(y), we state without proof that PT is irreducible and that NL can always be found.
This property is shown in Fig. 5 in which any two nodes can always reach each other.

Let NT , the number of trials per temperature, be NL. The following theorem states
the strong ergodicity of the Markov chain, where strong ergodicity means that state
y of the Markov chain has a unique stationary probability πT (y). (See the proof in
Appendix A.)

Theorem 3 The inhomogeneous Markov chain is strongly ergodic if the sequence of
temperatures {Tk, k = 0, 1, 2, . . . , } satisfies:

Tk ≥ NL�L

loge(k+ 1)
, (41)
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where Tk > Tk+1, lim
k→∞

Tk = 0, and �L = 2 maxy∈S,y′∈Nd(y)
{|Ld(y′)− Ld(y)|

}
.

Example 2 (cont’d) In the Markov chain in Fig. 5, �L = 0.411 and NL = 11. Hence,
the Markov chain is strongly ergodic if we use a cooling schedule Tk ≥ 4.521

loge(k+1) .
Note that the cooling schedule used in CSA (Line 10 of Fig. 1) does not satisfy the
condition. �


Our Markov chain also fits into the framework of GSA [25,26] when we define
an irreducible Markov kernel PT(y, y′) and its associated communication cost v(y, y′),
where v: S × S→ [0,+∞] and y′ ∈ Nd(y):

v(y, y′) =
{
(Ld(y′)− Ld(y))+, if y′ = (y′,α)T ,
(Ld(y)− Ld(y′))+, if y′ = (y,α′)T .

(42)

Based on the communication costs over all directed edges, the virtual energy W(y)
(according to Definition 2.5 in [25,26]) is the cost of the minimum-cost spanning tree
rooted at y:

W(y) = min
g∈G(y)

V(g), (43)

where G(y) is the set of spanning trees rooted at y, and V(g) is the sum of the com-
munication costs over all the edges of g.

The following quoted result shows the asymptotic convergence of GSA in mini-
mizing W(i):

Proposition 1 “(Proposition 2.6 in [15,25,26]). For every T > 0, the unique stationary
distribution πT of the Markov chain satisfies:

πT (i) −→ exp

(
−W(i)−W(E)

T

)
as T −→ 0, (44)

where W(i) is the virtual energy of i, and W(E) = mini∈S W(i).”

In contrast to SA that strives to minimize a single unconstrained objective, CSA
does not minimize Ld

(
(y,α)T

)
. This property is shown in Fig. 5b in which the ESPs are

not at the global minimum of Ld
(
(y,α)T

)
. Rather, CSA aims to implicitly minimize

W(y) according to GSA [25,26]. That is, y∗ ∈ Yopt corresponds to y∗ = (y∗,αmax)T with
the minimum W(y), and W

(
(y∗,αmax)T

)
< W

(
(y,α)T

)
for all y �= y∗ and α ∈ 
 and

for all y = y∗ and α �= αmax. The following theorem shows that CSA asymptotically
converges to y∗ with probability one. (See the proof in Appendix B.)

Theorem 4 Given the inhomogeneous Markov chain modeling CSA with transition
probability defined in (36) and the sequence of decreasing temperatures that satisfy (41),
the Markov chain converges to a CGMd with probability one as k→∞.

Example 2 (cont’d) We illustrate the virtual energy W(y) of the Markov chain in
Fig. 5a and the convergence behavior of CSA and random search.

One approach to find W(y) that works well for a small problem is to enumerate
all possible spanning trees rooted at y and to find the one with the minimum cost.
Another more efficient way adopted in this example is to compute W(y) using (44).
This can be done by first numerically computing the stationary probabilityπT (y) of the
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Fig. 6 Virtual energy of the Markov chain in Fig. 5a and the convergence behavior of CSA and
random search at (1.0, 6)T

Markov chain at a given T using the one-step transition probability PT(y, y′) in (36),
where πT evolves with iteration k as follows:

Pk+1
c = Pk

c PT for any given initial convergence probability vector P0
c , (45)

until ||Pk+1
c − Pk

c || ≤ ε. In this example, we set ε = 10−16 as the stopping precision.
Since πT = lim

k→∞
Pk

c , independent of the initial vector P0
c , we set P0

c(i) = 1
|S| for

i = 1, . . . , |S|.
Figure 6a shows W

(
(y,α)T

)
of Fig. 5a. Clearly, Ld

(
(y,α)T

) �= W
(
(y,α)T

)
. For a

given y, W
(
(y,α)T

)
is nonincreasing as α increases. For example, W

(
(0.6, 3)T

) =
4.44 ≥ W

(
(0.6, 4)T

) = 4.03, and W
(
(0.8, 2)T

) = 4.05 ≥ W
(
(0.8, 6)T

) = 3.14. We
also have W

(
(y,α)T

)
minimized at y = 1.0 when α = αmax = 6: W

(
(0.6, 6)T

) =
3.37 ≥ W

(
(0.8, 6)T

) = 3.14 ≥ W
(
(1.0, 6)T

) = 0.097. Hence, W
(
(y,α)T

)
is minimized

at (y∗,αmax)T = (1.0, 6)T , which is an ESP with the minimum objective value. In con-
trast, Ld

(
(y,α)T

)
is nondecreasing as α increases. In Fig. 5b, the minimum value of

Ld
(
(y,α)T

)
is at (1.2, 2)T , which is not a feasible point.

To illustrate the convergence of CSA to y∗ = 1.0, Fig. 6b plots Pk
c (y
∗) as a function

of k, where y∗ = (1.0, 6)T . In this example, we set T0 = 1.0, NT = 5, and κ = 0.9
(the cooling schedule in Fig. 1). Obviously, as the cooling schedule is more aggressive
than that in Theorem 3, one would not expect the search to converge to a CGMd with
probability one, as proved in Theorem 4. As T approaches zero, W(y∗) approaches
zero, and Pk

c (y
∗) monotonically increases and approaches one. Similar figures can be

drawn to show that Pk
c (y), y �= y∗, decreases to zero as T is reduced. Therefore, CSA is

more likely to find y∗ as the search progresses. In contrast, for random search, Pk
c (y
∗)

is constant, independent of k.
Note that it is not possible to demonstrate asymptotic convergence using only a

finite number of iterations. Our example, however, shows that the probability of find-
ing a CGMd improves over time. Hence, it becomes more likely to find a CGMd when
more time is spent to solve the problem.

Last, Fig. 6c depicts the reachability probability Pk
r (y
∗) of finding y∗ in any of the

first k iterations. Assuming all the iterations are independent, Pk
r (y
∗) is defined as:

Pk
r (y
∗) = 1−

k∏
i=0

(
1− P(y∗ found in the ith iteration)

)
. (46)
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The figure shows that CSA has better reachability probabilities than random search
over the 100 iterations evaluated, although the difference diminishes as the number
of iterations is increased. �


It is easy to show that CSA has asymptotic reachability [3] of y∗; that is, limk→∞ Pk
r (y
∗)

= 1. Asymptotic reachability is weaker than asymptotic convergence because it only
requires the algorithm to hit a global minimum sometime during a search and can be
guaranteed if the algorithm is ergodic. (Ergodicity means that any two points in the
search space can be reached from each other with a nonzero probability.) Asymptotic
reachability can be accomplished in any ergodic search by keeping track of the best
solution found during the search. In contrast, asymptotic convergence requires the
algorithm to converge to a global minimum with probability one. Consequently, the
probability of a probe to hit the solution increases as the search progresses.

4.2 Asymptotic convergence of CPSA

By following a similar approach in the last section on proving the asymptotic con-
vergence of CSA, we prove in this section the asymptotic convergence of CPSA to a
CGMd of Pd.

CPSA can be modeled by an inhomogeneous Markov chain that consists of a
sequence of homogeneous Markov chains of finite length, each at a specific tempera-
ture in a given cooling schedule. The state space of the Markov chain can be described
by state y = (y,α, γ )T , where y ∈ Dw is the vector of problem variables and α and γ
are the penalty vectors.

According to the generation probability G(t)(y, y′) and the acceptance probability
AT(y, y′), the one-step transition probability matrix of the Markov chain for CPSA is
PT = [PT(y, y′)], where:

PT(y, y′) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Ps(t)G(t)(y, y′)AT(y, y′), if y′ ∈ N
(t)
p (y),

t = 1, . . . , N,

Ps(N + 1)G(g)(y, y′)AT(y, y′), if y′ ∈ N
(g)
p (y),

1−
N∑

t=1

⎡
⎣ ∑

y′′∈N(t)
p (y)

PT(y, y′′)

⎤
⎦− ∑

y′′∈N(g)
p (y)

PT(y, y′′), if y′ = y,

0, otherwise.

(47)

Let yopt =
{
(y∗,αmax, γmax)T | y∗ ∈ Yopt

}
, and NL be the maximum of the minimum

number of transitions required to reach yopt from all y ∈ S. Given {Tk, k = 0, 1, 2, . . . , }
that satisfy (41) and NT , the number of trials per temperature, be NL, a similar theo-
rem as in Theorem 3 can be proved [9]. This means that state y of the Markov chain
has a unique stationary probability πT (y).

Note that �L defined in Theorem 3 is the maximum difference between the
penalty-function values of two neighboring states. Although this value depends on
the user-defined neighborhood, it is usually smaller for CPSA than for CSA because
CPSA has a partitioned neighborhood, and two neighboring states can differ by only
a subset of the variables. In contrast, two states in CSA can differ by more vari-
ables and have larger variations in their penalty-function values. According to (41),



22 J Glob Optim (2007) 39:1–37

a smaller �L allows the temperature to be reduced faster in the convergence to a
CGMd.

Similar to CSA, (47) also fits into the framework of GSA if we define an irreduc-
ible Markov kernel PT(y, y′) and its associated communication cost v(y, y′), where v:
S × S→ [0,+∞]:

v(y, y′) =
{
(Ld(y′)− Ld(y))+, if y′ = (y′,α, γ )T ,
(Ld(y)− Ld(y′))+, if y′ = (y,α′, γ )T or y′ = (y,α, γ ′)T .

(48)

In a way similar to that in CSA, we use the result that any process modeled by GSA
minimizes an implicit virtual energy W(y) and converges to the global minimum of
W(y) with probability one. The following theorem states the asymptotic convergence
of CPSA to a CGMd. The proof in Appendix C shows that W(y) is minimized at
(y∗,αmax, γmax)T for some αmax and γmax.

Theorem 5 Given the inhomogeneous Markov chain modeling CPSA with transition
probability defined in (47) and the sequence of decreasing temperatures that satisfy (41),
the Markov chain converges to a CGMd with probability one as k→∞.

Again, the cooling schedule of CPSA in Fig. 3 is more aggressive than that in
Theorem 5.

5 Experimental results on continuous constrained problems

In this section, we apply CSA and CPSA to solve some nonlinear continuous optimi-
zation benchmarks and compare their performance to that of other dynamic penalty
methods.

5.1 Implementation details of CSA for solving continuous problems

In theory, any neighborhoods Nc1
(x) and Nc2

(α) that satisfy (21) and (22) can be used.
In practice, however, appropriate neighborhoods must be chosen in any efficient
implementation.

In generating trial point x′ = (x′,α)T from x = (x,α)T where x′ ∈ Nc1
(x), we choose

x′ to differ from x in the ith element, where i is uniformly distributed in {1, 2, . . . , n}:
x′ = x+ θ ⊗ e1 = x+ (θ1e1,1, θ2e1,2, . . . , θne1,n)

T (49)

and ⊗ is the vector-product operator. Here, e1 is a vector whose ith element is 1 and
the other elements are 0, and θ is a vector whose ith element θi is Cauchy distributed
with density fd(xi) = 1

π
σi

σ 2
i +x2

i
and scale parameter σi. Other distributions of θi studied

include uniform and Gaussian [31]. During the course of CSA, we dynamically update
σi using the following modified one-to-one rate rule [10] in order to balance the ratio
between accepted and rejected configurations:

σi ←−

⎧⎪⎪⎨
⎪⎪⎩

σi[1+β0(pi−pu)]
1−pu

, if pi > pu,
σi

[1+β1(pv−pi)/pv] , if pi < pv,

unchanged, otherwise,

(50)

where pi is the fraction of x′ accepted. If pi is low, then too many trial points of x′
are rejected, and σi is reduced; otherwise, the trial points of x′ are too close to x, and
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σi is increased. We set β0 = 7, β1 = 2, pu = 0.3, and pv = 0.2 after experimenting
different combinations of parameters [31]. Note that it is possible to get somewhat
better convergence results when problem-specific parameters are used, although the
results will not be general in that case.

Similarly, in generating trial point x′′ = (x,α′)T from x = (x,α)T where α′ ∈ Nc2
(α),

we choose α′ to differ from α in the jth element, where j is uniformly distributed in
{1, 2, . . . , m}:

α′ = α + ν ⊗ e2 = α + (ν1e2,1, ν2e2,2, . . . , νm, e2,m)
T . (51)

Here, the jth element of e2 is 1 and the others are 0, and the νj is uniformly distributed
in [−φj,φj]. We adjust φj according to the degree of constraint violations, where:

φ = w⊗ h(x) = (w1h1(x), w2h2(x), . . . , wmhm(x))T . (52)

When hi(x) = 0 is satisfied, φi = 0, and αi does not need to be updated. Otherwise,
we adjust φi by modifying wi according to how fast hi(x) is changing:

wi ←−

⎧⎪⎨
⎪⎩

η0 wi, if hi(x) > τ0T,
η1 wi, if hi(x) < τ1T,
unchanged, otherwise,

(53)

where η0 = 1.25, η1=0.95, τ0 = 1.0, and τ1 = 0.01 were chosen experimentally. When
hi(x) is reduced too quickly (i.e., hi(x) < τ1T is satisfied), hi(x) is over-weighted,
leading to a possibly poor objective value or difficulty in satisfying other under-
weighted constraints. Hence, we reduce αi’s neighborhood. In contrast, if hi(x) is
reduced too slowly (i.e., hi(x) > τ0T is satisfied), we enlarge αi’s neighborhood in
order to improve its chance of satisfaction. Note that wi is adjusted using T as a refer-
ence because constraint violations are expected to decrease when T decreases. Other
distributions of φj studied include non-symmetric uniform and nonuniform [31].

Finally, we use the cooling schedule defined in Fig. 1, which is more aggressive than
that in (41). We accept the x′ or x′′ generated according to the Metropolis probability
defined in (25). Other probabilities studied include logistic, Hastings, and Tsallis [31].
We set the ratio of generating x′ and x′′ from x to be 20n to m, which means that x is
updated more frequently than α.

Example 3 Figure 7 shows the run-time behavior at four temperatures when CSA is
applied to solve the following continuous constrained optimization problem:

min
x1, x2

f (x) = 10n+
2∑

i=1

(
x2

i − 10 cos(2πxi)
)

, where x = (x1, x2),T (54)

subject to |(xi − 3.2)(xi + 3.2)| = 0, i = 1, 2.

The objective function f (x) is very rugged because it is made up of a two-dimensional
Rastrigin function with 11n (where n = 2) local minima. There are four constrained
local minima at the four corners denoted by rectangles, and a constrained global
minimum at (−3.2,−3.2).

Assuming a penalty function Lc
(
(x,α)T

) = f (x)+α1|(x1−3.2)(x1+3.2)|+α2|(x2−
3.2)(x2 + 3.2)| and that samples in x are drawn in double-precision floating-point
space, CSA starts from x = (0, 0)T with initial temperature T0 = 20 and a cooling
rate κ = 0.95. At high temperatures (e.g., T0 = 20), the probability of accepting
a trial point is high; hence, the neighborhood size is large according to (50). Large
jumps in the x subspace in Fig. 7a are due to the use of the Cauchy distribution for
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Fig. 7 Example illustrating the run-time behavior of CSA at four temperatures in solving (54)

generating remote trial points, which increases the chance of getting out of infeasi-
ble local minima. Probabilistic ascents with respect to α also help push the search
trajectory to feasible regions. As T is reduced, the acceptance probability of a trial
point is reduced, leading to smaller neighborhoods. Finally, the search converges to
the constrained global minimum at x∗ = (−3.2,−3.2)T . �

5.2 Implementation details of CPSA for solving continuous problems

We have observed that the constraints of many application benchmarks do not involve
variables that are picked randomly from their variable sets. Invariably, many con-
straints in existing benchmarks are highly structured because they model spatial and
temporal relationships that have strong locality, such as those in physical structures,
optimal control, and staged processing.

Figure 8 shows this point by depicting the regular constraint structure of three
benchmarks. It shows a dot where a constraint (with unique ID on the x-axis) is
related to a variable (with a unique ID on the y-axis). When the order of the variables
and that of the constraints are properly arranged, the figure shows a strongly regular
constraint-variable structure.

In CPSA, we follow a previously proposed automated partitioning strategy [28] for
analyzing the constraint structure and for determining how the constraints are to be
partitioned. The focus of our previous work is to solve the partitioned subproblems
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Fig. 8 Strongly regular constraint-variable structures in some continuous optimization problems. A
dot in each graph represents a variable associated with a constraint

using an existing solver SNOPT [16]. In contrast, our focus here is to demonstrate the
improvement of CPSA over CSA and on their asymptotic convergence property.

Based on Pm with continuous variables and represented in AMPL [14], our parti-
tioning strategy consists of two steps. In the first step, we enumerate all the indexing
vectors in the AMPL model and select one that leads to the minimum Rglobal, which
is the ratio of the number of global constraints to that of all constraints. We choose
Rglobal as a heuristic metric for measuring the partitioning quality, since a small num-
ber of global constraints usually translates into faster resolution. In the second step,
after fixing the index vector for partitioning the constraints, we decide on a suitable
number of partitions. We have found a convex relationship between the number of
partitions (N) and the complexity of solving Pm. When N is small, there are very few
subproblems to be solved but each is expensive to evaluate; in contrast, when N is
large, there are many subproblems to be solved although each is simple to evaluate.
Hence, there is an optimal N that leads to the minimum time for solving Pm. To find
this optimal N, we have developed an iterative algorithm that starts from a large N,
that evaluates one subproblem under this partitioning (while assuming all the global
constraints can be resolved in one iteration) in order to estimate the complexity of
solving Pm, and that reduces N by half until the estimated complexity starts to increase.
We leave the details of the algorithm to Wah and Chen [28].

Besides the partitioning strategy, CPSA uses the same mechanism and parameters
described in Sect. 5.1 for generating trial points in the x, α, and γ subspaces.

5.3 Implementation details of GEM for solving continuous problems

The parameter in GEM were set based on the package developed by Wu and dated
August 13, 2000 [32]. In generating a neighboring point of x for continuous prob-
lems, we use a Cauchy distribution with density fd(xi) = 1

π
σi

σ 2
i +x2

i
for each variable xi,

i = 1, . . . , n, where σi is a parameter controlling the Cauchy distribution. We initialize
each σi to 0.1. For the last 50 probes that perturb xi, if more than 40 probes lead to
a decrease of Lm, we increase σi by a factor of 1.001; if less than two probes lead to
a decrease of Lm, we decrease σi by a factor of 1.02. We increase the penalty αi for
constraint hi by αi = αi + �i|hi(x)|, where �i is set to 0.0001 in our experiments. We
consider a constraint to be feasible and stop increasing its penalty when its violation
is less than 0.00001.
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5.4 Evaluation results on continuous optimization benchmarks

Using the parameters of CSA and CPSA presented in the previous sections and assum-
ing that samples were drawn in double-precision floating-point space, we report in this
section some experimental results on using CSA and CPSA to solve selected prob-
lems from CUTE [8], a constrained and unconstrained testing environment. We have
selected those problems based on the criterion that at least the objective or one of
the constraint functions is nonlinear. Many of those evaluated were from real applica-
tions, such as semiconductor analysis, chemical reactions, economic equilibrium, and
production planning. Both the number of variables and the number of constraints in
CUTE can be as large as several thousand.

Table 1 shows the CUTE benchmark problems studied and the performance of
CPSA, CSA, GEM in (35), P3 in (7), and P4 in (8). In our experiments, we have used
the parameters of P3 and P4 presented in Sect. 2.2. For each solver and each instance,
we tried 100 runs from random starting points and report the average solution found
(Qavg), the average CPU time per run of those successful runs (Tavg), the best solution
found (Qbest), and the fraction of runs there were successful (Psucc). We underline
the best Qavg and Qbest among the five solvers when there are differences. We do
not list the best solutions of P3 and P4 because they are always worse than those of
CSA, CPSA, and GEM. Also, we do not report the results on those smaller CUTE
instances with less than ten variables (BT*, AL*, HS*, MA*, NG*, TW*, WO*, ZE*,
ZY*) [31] because these instances were easily solvable by all the solvers studied.

When compared to P3, P4, and GEM, CPSA and CSA found much better solutions
on the average and the best solutions on most of the instances evaluated. In addition,
CPSA and CSA have a higher success probability in finding a solution for all the
instances studied.

The results also show the effectiveness of integrating constraint partitioning with
CSA. CPSA is much faster than CSA in terms of Tavg for all the instances tested. The
reduction in time can be more than an order of magnitude for large problems, such as
ZAMB2-8 and READING6. CPSA can also achieve the same or better quality and
success ratio than CSA for most of the instances tested. For example, for LAUNCH,
CPSA achieves an average quality of 21.85, best quality of 9.01, and a success ratio of
100%, whereas CSA achieves, respectively, 26.94, 9.13, and 90%.

The nonlinear continuous optimization benchmarks evaluated in this section are
meant to demonstrate the effectiveness of CSA and CPSA as dynamic penalty meth-
ods. We have studied these benchmarks because their formulations and solutions are
readily available and because benchmarks on nonlinear discrete constrained optimi-
zation are scarce. These benchmarks, however, have continuous and differentiable
functions and, therefore, can be solved much better by solvers that exploit such prop-
erties. In fact, the best solution of most of these problems can be found by a licensed
version of SNOPT [16] (Version 6.2) in less than one second of CPU time! In this
respect, CSA and CPSA are not meant to compete with these solvers. Rather, CSA
and CPSA are useful as constrained optimization methods for solving discrete, con-
tinuous, and mixed-integer problems whose constraint and objective functions are
not necessarily continuous, differentiable, and in closed form. In these applications,
penalty methods are invariably used as an effective solution approach. As an example,
a recent application uses CSA to optimize out-of-core code generation for a special
class of imperfectly nested loops encoding tensor contractions [20].



J Glob Optim (2007) 39:1–37 27

Ta
bl

e
1

E
xp

er
im

en
ta

lr
es

ul
ts

co
m

pa
ri

ng
C

P
SA

,C
SA

,G
E

M
,P

3,
an

d
P

4
in

so
lv

in
g

se
le

ct
ed

no
nl

in
ea

r
co

nt
in

uo
us

pr
ob

le
m

s
fr

om
C

U
T

E

P
ro

bl
em

C
P

SA
(w

it
h
κ
=0

.8
an

d
10

0
ru

ns
)

C
SA

(w
it

h
κ
=

0.
8

an
d

10
0

ru
ns

)
G

E
M

P
3

P
en

al
ty

M
et

ho
d

P
4

P
en

al
ty

M
et

ho
d

ID
Q

av
g

Q
be

st
T

av
g

P
su

cc
Q

av
g

Q
be

st
T

av
g

P
su

cc
Q

av
g

Q
be

st
T

av
g

P
su

cc
Q

av
g

T
av

g
P

su
cc

Q
av

g
T

av
g

P
su

cc
(%
)

(%
)

(%
)

(%
)

(%
)

A
V

IO
N

2
9.

47
×

10
7

9.
47
×

10
7

7.
93

10
0

9.
47
×

10
7

9.
47
×

10
7

20
4.

74
10

0
9.

47
×

10
7

9.
47
×

10
7

32
13

.4
9

10
0

9.
47
×

10
7

27
98

10
0

9.
47
×

10
7

25
78

10
0

B
A

T
C

H
2.

14
×

10
5

2.
00
×

10
5

35
.0

3
20

–
–

–
–

2.
42
×

10
5

1.
94
×

10
5

13
24

2.
43

5
–

–
–

–
–

–
C

R
E

SC
4

29
.2

3
1.

78
3.

48
10

0
34

.2
4

1.
98

7.
37

10
0

82
.8

4
2.

17
31

.8
2

10
0

82
.8

4
31

.8
2

10
0

82
.8

4
31

.8
2

10
0

C
SF

I1
−3

8.
87

−4
9.

08
0.

06
10

0
−2

8.
65

−4
9.

08
1.

24
10

0
−1

7.
34

−4
9.

05
2.

95
98

−2
3.

26
0.

98
91

−2
0.

57
1.

54
93

D
E

M
B

O
7

17
4.

80
17

4.
79

2.
58

10
0

17
4.

80
17

4.
80

65
.8

6
83

17
4.

80
17

4.
80

23
2.

16
57

17
4.

81
19

8.
23

42
17

4.
81

20
3.

64
40

D
IP

IG
R

I
68

0.
63

68
0.

63
0.

17
10

0
68

0.
65

68
0.

63
1.

79
10

0
68

0.
64

68
0.

63
11

.1
8

10
0

68
0.

64
9.

45
10

0
68

0.
64

14
.3

8
10

0
D

N
IE

P
E

R
1.

87
×

10
4

1.
87
×

10
4

80
.3

6
25

–
–

–
–

1.
87
×

10
4

1.
87
×

10
4

30
71

.6
7

3
–

–
–

–
–

–
E

X
P

F
IT

A
1.

20
0.

06
8.

15
10

0
2.

35
0.

10
18

.4
5

10
0

1.
24

1.
12

60
.1

8
10

0
1.

24
63

.9
4

10
0

1.
26

76
.1

8
10

0
F

L
E

T
C

H
E

R
14

.6
5

11
.6

5
0.

07
10

0
42

27
.1

1
11

.6
5

0.
7

10
0

20
.2

8
11

.7
2

3.
75

10
0

23
.9

7
4.

76
10

0
23

.7
6

6.
42

10
0

G
IG

O
M

E
Z

2
1.

95
1.

95
0.

02
50

1.
95

1.
95

0.
55

48
1.

95
1.

95
9.

67
50

–
–

–
1.

95
12

.0
4

22
H

IM
M

E
L

B
I
−1

73
4.

83
−1

73
5.

39
19

5.
28

10
0
−1

73
5.

55
−1

73
5.

57
a 5

09
1.

47
10

0
–

–
–

–
–

–
–

–
–

–
H

IM
M

E
L

B
J
−1

91
0.

45
−1

91
0.

56
17

.8
3

10
0
−1

90
9.

98
−1

91
0.

33
a 6

19
.1

9
10

0
−1

90
9.

39
−1

91
0.

05
35

14
.9

2
99

−1
90

4
23

04
.0

4
94

−1
90

8
19

53
.9

4
57

H
IM

M
E

L
P

2
−6

2.
05

−6
2.

05
0.

02
10

0
−6

2.
05

−6
2.

05
0.

44
10

0
−6

2.
05

−6
2.

05
0.

95
97

−6
2.

05
0.

95
89

−6
2.

05
0.

95
19

H
IM

M
E

L
P

6
−5

9.
01

−5
9.

01
0.

04
10

0
−5

9.
01

−5
9.

01
0.

62
10

0
−5

9.
01

−5
9.

01
1.

58
10

0
−5

9.
01

2.
34

10
0
−5

9.
01

1.
77

10
0

H
O

N
G

22
.5

3
22

.5
3

0.
06

10
0

22
.5

3
22

.5
3

0.
82

10
0

22
.5

7
22

.5
7

8.
68

10
0

22
.5

7
8.

9
10

0
22

.5
7

10
.3

10
0

H
U

B
F

IT
0.

01
7

1.
69
×

10
−2

0.
02

10
0

0.
01

7
1.

69
×

10
−2

0.
36

10
0

0.
01

7
1.

69
×

10
−2

14
.7

3
10

0
0.

01
7

15
.6

2
10

0
0.

01
7

16
.0

7
10

0
L

A
U

N
C

H
21

.8
5

9.
01

12
.3

3
10

0
26

.9
4

9.
13

a 4
95

.8
9

90
22

.8
0

9.
01

12
05

.0
3

87
24

.5
83

14
03

.4
0

40
24

.5
4

15
43

.0
4

34
L

IN
−0

.0
2

−0
.0

2
0.

1
10

0
−0

.0
2

−0
.0

2
1.

21
10

0
−0

.0
19

−0
.0

2
3.

02
10

0
−0

.0
19

3.
01

10
0
−0

.0
19

3.
21

10
0

L
O

A
D

B
A

L
76

.3
5

0.
78

6.
34

10
0

10
0.

71
33

.5
3

a 2
26

.0
7

10
0

13
.4

0
2.

66
23

50
.6

0
10

0
13

.4
5

24
54

.6
5

10
0

14
.5

4
19

34
.3

4
10

0
L

O
O

T
SM

A
1.

41
1.

41
0.

04
10

0
1.

41
1.

41
0.

52
10

0
1.

41
1.

41
1.

56
10

0
1.

41
2.

75
10

0
1.

41
2.

43
10

0
M

E
SH

−1
05

−1
05

17
.3

7
10

0
−1

05
−1

05
a 6

25
.0

3
10

0
−1

05
−1

05
14

45
3.

76
10

0
−1

05
14

56
0

10
0
−1

05
12

13
9

10
0

M
IS

T
A

K
E

−1
.0

0
−1

.0
0

0.
44

10
0
−1

.0
0

−1
.0

0
11

.1
8

10
0
−1

.0
0

−1
.0

0
63

.8
4

90
−1

.0
0

70
.4

8
45

−1
.0

0
77

.7
4

98
M

R
IB

A
SI

S
30

.1
1

21
.5

2
31

.2
7

10
0

31
.0

4
29

.3
2

10
31

.3
4

10
0

31
.5

6
31

.2
2

24
34

5.
34

10
0

34
.0

3
20

43
4

90
–

–
–

M
W

R
IG

H
T

25
64

.3
5

1.
53

0.
04

10
0

12
02

9.
65

1.
53

0.
6

10
0

1.
3
×

10
5

35
.8

3
9.

83
10

0
1.

4
×

10
5

11
.8

4
10

0
2
×

10
5

10
.3

4
10

0
O

D
F

IT
S

−2
22

5.
33
−2

37
9.

4
5.

56
10

0
−1

44
2.

48
−2

37
9.

4
6.

95
10

0
93

93
.4

5
26

99
.0

4
21

.1
5

10
0

94
97

.4
3

20
.4

8
10

0
10

32
0.

3
24

.3
2

10
0

O
P

T
C

N
T

R
L

54
9.

61
54

9.
49

12
.3

6
10

0
54

9.
61

54
9.

49
10

3.
34

10
0

55
0.

00
55

0.
00

13
76

.4
5

10
0

55
0.

00
14

87
.7

3
10

0
55

0.
00

14
32

.5
4

10
0

O
P

T
P

R
L

O
C
−1

6.
42

−1
6.

42
6.

23
10

0
−1

6.
42

−1
6.

42
29

6.
49

10
0
−1

6.
42

−1
6.

42
13

81
.4

6
10

0
−1

6.
42

87
2.

43
10

0
−1

6.
42

78
7.

42
10

0
P

E
N

T
A

G
O

N
0.

00
0.

00
0.

4
10

0
0.

00
0.

00
6.

92
10

0
0.

00
0.

00
47

.3
2

93
0.

00
49

.3
8

75
0.

00
36

.3
4

94
P

O
L

A
K

5
50

.0
0

50
.0

0
0.

03
10

0
50

.0
0

50
.0

0
0.

43
10

0
50

.0
0

50
.0

0
1.

68
10

0
50

.0
0

1.
83

10
0

50
.0

0
1.

98
10

0
Q

C
−9

98
.6

4
−1

01
8.

09
0.

33
10

0
−9

70
.1

9
−1

00
7.

35
5.

77
10

0
−7

63
.8

0
−9

56
.1

4
29

.5
6

10
0
−7

43
.6

5
30

.5
6

10
0
−7

43
.2

2
23

.4
9

10
0

R
E

A
D

IN
G

6
−5

8.
45

−1
05

.4
5

20
2.

86
10

0
−5

4.
71

−9
7.

3
30

59
.2

5
10

0
−6

6.
12

−9
4.

72
26

02
7a

10
0
−6

6.
33

29
82

0a
10

0
−6

8.
12

30
22

3a
10

0



28 J Glob Optim (2007) 39:1–37

Ta
bl

e
1

co
nt

in
ue

d

R
K

23
25

90
6.

32
13

01
6.

09
0.

88
39

29
61

4.
39

16
92

8.
29

7.
45

13
–

–
–

–
–

–
–

–
–

–
R

O
B

O
T

5.
51

5.
46

0.
21

10
0

5.
47

5.
46

4.
86

10
0

5.
46

5.
46

38
.8

5
10

0
5.

46
40

.6
6

10
0

5.
46

38
.9

5
10

0
S3

16
-3

22
33

4.
13

33
4.

13
0.

01
10

0
33

4.
13

33
4.

13
0.

25
10

0
33

4.
30

33
4.

30
1.

20
10

0
33

4.
30

1.
24

10
0

33
4.

30
1.

50
10

0
SI

N
R

O
SN

B
0.

00
0.

00
0.

02
10

0
0.

00
0.

00
0.

4
10

0
–

–
–

–
–

–
–

–
–

–
SN

A
K

E
0.

00
0.

00
0.

02
10

0
79

.1
2

0.
00

0.
38

10
0

26
7.

08
0.

00
2.

45
10

0
26

8.
54

2.
56

10
0

26
9.

18
2.

48
10

0
SP

IR
A

L
36

0.
21

0.
00

0.
05

10
0

36
0.

86
0.

00
0.

88
10

0
50

5.
70

0.
00

2.
70

10
0

51
2.

56
2.

72
10

0
50

5.
80

2.
67

10
0

ST
A

N
C

M
IN

4.
29

4.
25

0.
03

10
0

4.
25

4.
25

0.
63

10
0

4.
25

4.
25

2.
53

10
0

4.
25

2.
57

10
0

4.
25

2.
54

10
0

SV
A

N
B

E
R

G
15

.7
3

15
.7

3
0.

78
10

0
15

.7
3

15
.7

3
16

.2
10

0
–

–
–

–
–

–
–

–
–

–
SY

N
T

H
E

S1
2.

76
0.

76
0.

13
10

0
2.

33
0.

76
2.

2
10

0
2.

61
0.

76
18

.9
3

10
0

2.
98

19
.2

3
10

0
2.

86
13

.4
3

10
0

SY
N

T
H

E
S2

−0
.5

6
-0

.5
6

0.
77

10
0
−0

.5
6

-0
.5

6
17

.6
3

10
0
−0

.5
5

−0
.5

5
95

.3
6

10
0
−0

.5
5

92
.9

8
10

0
−0

.5
5

92
.2

1
10

0
SY

N
T

H
E

S3
15

.0
8

15
.0

8
4.

85
10

0
15

.0
9

15
.0

8
48

.5
4

10
0

15
.0

8
15

.0
8

33
6.

45
10

0
15

.0
8

45
8.

92
10

0
15

.0
8

49
2.

3
10

0
T

E
N

B
A

R
S4

15
86

.9
7

15
86

.9
7

11
.5

4
77

25
66

.8
2

50
9.

5
15

.5
5

9
–

–
–

–
–

–
–

–
–

–
Z

A
M

B
2-

8
−0

.1
3

−0
.1

5
36

4.
06

10
0

1.
35

−0
.1

5
62

47
.5

7
83

–
–

–
–

–
–

–
–

–
–

a
O

nl
y

te
n

ru
ns

w
er

e
m

ad
e

fo
r

th
es

e
pr

ob
le

m
s

du
e

to
th

e
ex

te
ns

iv
e

C
P

U
ti

m
e

re
qu

ir
ed

fo
r

ea
ch

ru
n.

E
ac

h
in

st
an

ce
w

as
so

lv
ed

by
a

so
lv

er
10

0
ti

m
es

fr
om

ra
nd

om
st

ar
ti

ng
po

in
ts

.T
he

be
st

Q
av

g
(r

es
p.

,Q
be

st
)

am
on

g
th

e
fiv

e
so

lv
er

s
ar

e
un

de
rl

in
ed

.′
−′

m
ea

ns
th

at
no

fe
as

ib
le

so
lu

ti
on

w
as

fo
un

d
in

a
ti

m
e

lim
it

of
36

,0
00

s.
A

ll
ru

ns
w

er
e

do
ne

on
an

A
M

D
A

th
lo

n
M

P
28

00
P

C
w

it
h

R
H

L
in

ux
A

S4
.



J Glob Optim (2007) 39:1–37 29

6 Conclusions

We have reported in this paper CSA and CPSA, two dynamic-penalty methods for
finding constrained global minima of discrete constrained optimization problems.
Based on the theory of ESPs, our methods look for the local minima of a penalty
function when the penalties are larger than some thresholds and when the constraints
are satisfied. To reach an ESP, our methods perform probabilistic ascents in the penalty
subspace, in addition to probabilistic descents in the problem-variable subspace as in
conventional SA. Because both methods are based on sampling the search space of
a problem during their search, they can be applied to solve continuous, discrete, and
mixed-integer optimization problems without continuity and differentiability.

Based on the decomposition of the ESP condition into multiple necessary condi-
tions [27], we have shown that many benchmarks with highly structured and localized
constraint functions can be decomposed into loosely coupled subproblems that are
related by a small number of global constraints. By exploiting constraint partitioning,
we have demonstrated that CPSA can significantly reduce the complexity of CSA.

Last, we have proved the asymptotic convergence of CSA and CPSA to a CGM
with probability one. The result is theoretically important because it extends SA,
which guarantees asymptotic convergence in discrete unconstrained optimization, to
that in discrete constrained optimization. Moreover, it establishes a condition under
which optimal solutions can be found in constraint-partitioned nonlinear optimization
problems.

Appendix A: proof of Theorem 3

The proof of strong ergodicity follows the steps used to show the weak ergodicity
of SA [1] and uses the strong ergodicity conclusions [2,3]. Let G be the generation
probability that satisfies (23).

(a) Let �G = min
y′∈Nd(y),

y∈S
G(y, y′). For all y ∈ S and y′ ∈ Nd(y), we have:

PTk(y, y′) = G(y, y′)ATk(y, y′) ≥ �G e−�L/Tk . (55)

The above is true because, according to the definition of�L in the theorem, (Ld(y′)−
Ld(y))+ ≤ �L for y′ = (y′,α)T and (Ld(y)− Ld(y′))+ ≤ �L for y′ = (y,α′)T .

(b) Let Ŝ be the set of points that are local maximum of Ld
(
(y,α)T

)
with respect to

y for any given α. Then for every y = (y,α)T ∈ S − Ŝ, there always exists some y′′ =
(y′′,α)T ∈ Nd(y) such that Ld(y′′) ≥ Ld(y). Let δ = min y∈S−Ŝ,

y′′∈Nd(y)

{Ld(y′′)− Ld(y)} ≥ 0.

We have:

PTk(y, y) = 1−
∑

y′′′∈Nd(y)

G(y, y′′′)ATk(y, y′′′) ≥ 1−G(y, y′′)e
−δ
Tk −

∑

y′′′∈Nd(y),
y′′′ �=y′′

G(y, y′′′)

= G(y, y′′)
(

1− e
−δ
Tk

)
≥ �G

(
1− e

−δ
Tk

)
.
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Because Tk is a decreasing sequence, it is always possible to find k0 > 0 such that for
all k ≥ k0, 1− e−δ/Tk ≥ e−�L/Tk . Thus, for y ∈ S − Ŝ, we get:

PTk(y, y) ≥ �Ge
−�L

Tk . (56)

(c) Based on (55) and (56), for all y, y′ ∈ S and k ≥ k0, the NT -step transition
probability from y = y0 to y′ = yNT

satisfies the following:

PNT
Tk
(y, y′) ≥ PTk(y0, y1)PTk(y1, y2) . . .PTk(yNT−1 , yNT

) ≥
(
�Ge

−�L
Tk

)NT

.

Let τ1(P) be the coefficient of ergodicity of matrix P. Then the lower bound of

1− τ1

(
PNT

Tk

)
is:

1− τ1

(
PNT

Tk

)
= min

y,y′∈S

∑
y′′∈S

min
(

PNT
Tk
(y, y′′), PNT

Tk
(y′, y′′)

)

≥ min
y,y′∈S

min
y′′∈S

(
PNT

Tk
(y, y′′), PNT

Tk
(y′, y′′)

)
≥
(
�Ge

−�L
Tk

)NT

= �NT
G e

−�LNT
Tk .

Hence, the following holds when using any cooling schedule that satisfies (41):
∞∑

k=0

[
1− τ1

(
PNT

Tk

)]
≥
∞∑

k=k0

�NT
G e

−�LNT
Tk ≥ �NT

G

∞∑
k=k0

1
k+ 1

= ∞. (57)

Therefore, the Markov chain is weakly ergodic.
(d) In addition, because transition probability PTk(y, y′) for all y, y′ ∈ S belongs

to the exponential rationals in a closed class of asymptotically monotone functions
(CAM) [2,3], the Markov chain is strongly ergodic.

Appendix B: proof of Theorem 4

Our strategy in proving the theorem is through a sequence of homogeneous Markov
chairs, using ergodic sequences under fixed temperatures. Alternatively, the proof can
be accomplished based on the approach of Mitra et al. [23] by using inhomogeneous
Markov chains.

The proof consists of two parts. First, we show that the virtual energy decreases with
increasing α for a given y (any horizontal direction in Fig. 9); that is, W(y′) ≤ W(y)
where y = (y,α)T and y′ = (y,α′)T for any α′ > α. Second, we show that W is mini-
mized at y∗ when α is at the maximum penalty value αmax (the vertical direction along
the α = αmax column in Fig. 9); that is, W(y∗) < W(yα

max
) where y∗ = (y∗,αmax)T ,

yα
max = (y,αmax)T , y∗ ∈ Yopt, and y ∈ Y − Yopt. These two parts allow us to conclude

that W(y) is minimized at y∗.
In the first part, we compare W(y) and W(y′) when y is fixed. The comparison

depends on whether h(y) = 0 is satisfied or not.
(a1) Consider the case in which h(y) �= 0 and y′ ∈ Nd(y). This means that at least

one hi(y) �= 0 and that there exists an edge y → y′. Let MT(y) be a minimum-cost
spanning tree rooted at y (Fig. 10a). We construct a spanning tree T(y′) rooted at y′
(Fig. 10b) as follows: (1) add an edge y→ y′ to MT(y), and (2) delete an edge y′ → y′′,
where y′′ is on the path from y′ to y in MT(y). Note that y′ → y′′ always exists. Then
V(y′), the cost of spanning tree T(y′), satisfies:



J Glob Optim (2007) 39:1–37 31

V(y′) =W(y)+ v(y, y′)− v(y′, y′′) =W(y)− v(y′, y′′) ≤W(y).

The equation is true because, according to (42), v(y, y′) = [Ld(y)− Ld(y′)]+ = [(α −
α′)T |h(y)|]+ = 0 and v(y′, y′′) ≥ 0. In addition, W(y′) ≤ V(y′) due to the fact that
W(y′) is the cost of a minimum-cost spanning tree. Therefore, we have W(y′) ≤
V(y′) ≤W(y).

(a2) Consider the case in which h(y) = 0. This means that there is no edge from y
to y′ because h(y) = 0 is satisfied and α is not allowed to change according to (22).
The minimum-cost spanning tree rooted at y must have has a directed path from
y′ to (ŷ,α′)T: P1 = y′ → (y1,α′)T → · · · ,→ (yj−1,α′)T → (ŷ,α′)T ; and a directed
path from (ŷ,α)T to y: P2 = (ŷ,α)T → (ȳl−1,α)T → · · · ,→ (ȳ1,α)T → y (Fig. 11a).
Here, (ŷ,α)T and (ŷ,α′)T are points shown as shaded nodes in Fig. 11 with h(ŷ) �= 0
(meaning that at least one constraint is not satisfied at ŷ), h(yi) = 0 (i = 1, 2, . . . , j−1),
and h(ȳi) = 0 (i = 1, 2, . . . , l− 1). Such j and l always exist due to the ergodicity of the
Markov chain proved in Theorem 3, and path P1 may differ from path P2. Note that
there is no relationship between f (y) and f (ŷ) and that the spanning tree at yi and
ȳi can only move along the y subspace because the constraints at these points are all
satisfied.

In contrast, the minimum-cost spanning tree at y′ must have a directed path from
y to (ŷ,α)T : P′1 = y → (y1,α)T → · · · → (yj−1,α)T → (ŷ,α)T ; and another from
(ŷ,α′)T to y′: P′2 = (ŷ,α′)T → (ȳl−1,α′)T → · · · → (ȳ1,α′)T → y′ (Fig. 11b). Then the
costs of P1 and P′1 satisfy:

C(P1) = v
(
y′, (y1,α′)T

)+ · · · + v
(
(yj−2,α′)T , (yj−1,α′)T

)+ v
(
(yj−1,α′)T , (ŷ,α′)T

)

= v
(
y, (y1,α)T

)+ · · · + v
(
(yj−2,α)T , (yj−1,α)T

)+
[
Ld

(
(ŷ,α′)T

)− Ld
(
(yj−1,α′)T

)]+

≥ v
(
y, (y1,α)T

)+ · · · + v
(
(yj−2,α)T , (yj−1,α)T

)+
[
Ld

(
(ŷ,α)T

)− Ld
(
(yj−1,α)T

)]+

= C(P′1),

Fig. 9 Strategy for proving
Theorem 4

y

α

≥ ≥

≥ ≥

≥ ≥

≥ ≥

≥

≥

≥

≥

≥ ≥ ≥

≥ ≥ ≥

≥ ≥ ≥

≥ ≥ ≥

y∗ = (y∗ αmax)T

α = αmax

y = y∗

W space

,

α

y

α
y y

y = (y α)T y = (y α )T y = (y α)T y = (y α )T

a) b)MT (y) constructed tree T (y )

y

, , , ,

Fig. 10 Proof of part (a1) in Theorem 4 (a solid arrow indicates an edge in the spanning tree)
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a) b)

Fig. 11 Proof of part (a2) in Theorem 4 (a solid arrow indicates an edge in the spanning tree)

where v
(
(yi−1,α′)T , (yi,α′)T

) = v
(
(yi−1,α)T , (yi,α)T

)
, i = 1, . . . , j − 1, and

Ld
(
(yj−1,α′)T

) = Ld
(
(yj−1,α)T

)
are true because h(yi) = 0. Further, Ld

(
(ŷ,α′)T

) ≥
Ld
(
(ŷ,α)T

)
is true because h(ŷ) �= 0 and α′ > α.

Similarly, the costs of P2 and P′2 satisfy:

C(P2) = v
(
(ŷ,α)T , (ȳl−1,α)T

)+ v
(
(ȳl−1,α)T , (ȳl−2,α)T

)+ · · · + v
(
(ȳ1,α)T , y

)

=
[
Ld
(
(ȳl−1,α)T

)− Ld
(
(ŷ,α)T

)]+ + v
(
(ȳl−1,α′)T , (ȳl−2,α′)T

)

+ · · · + v
(
(ȳ1,α′)T , y′

)

≥
[
Ld
(
(ȳl−1,α′)T

)− Ld
(
(ŷ,α′)T

)]+ + v
(
(ȳl−1,α′)T , (ȳl−2,α′)T

)

+ · · · + v
(
(ȳ1,α′)T , y′

)
= C(P′2),

where v
(
(ȳi,α′)T , (ȳi−1,α′)T

) = v
(
(ȳi,α)T , (ȳi−1,α)T

)
, i = 1, . . . , l − 1, and

Ld
(
(ȳl−1,α)T

) = Ld
(
(ȳl−1,α′)T

)
are true because h(ȳi) = 0. Further, Ld

(
(ŷ,α′)T

) ≥
Ld
(
(ŷ,α)T

)
is true because h(ŷ) �= 0 and α′ > α.

Moreover, for any ŷ, v
(
(ŷ,α)T , (ŷ,α′)T

) = [
Ld
(
(ŷ,α)T

)− Ld
(
(ŷ,α′)T

)]+ =[
(α − α′)T |h(ŷ)|]+ = 0 in MT(y′), and v

(
(ŷ,α′)T , (ŷ,α)T

) = [
(α′ − α)T |h(ŷ)|]+ ≥ 0 in

MT(y). Hence, W(y′) ≤W(y).
In the second part, we compare W(y) and W(y′) when α is fixed at αmax. For any

y ∈ Y and α ∈ 
, there exists a path such that α < α1 < · · · < α� < αmax. From the first
part, we know that W(yα

max
) ≤ W

(
(y,α�)T

) ≤ · · · ≤ W
(
(y,α1)

T
) ≤ W(y). Hence, a

probabilistic descent algorithm starting from y will arrive at yα
max

eventually. Accord-
ingly, if we can show that W(y∗) ≤ W(yα

max
), then the same probabilistic descent will

converge to y∗.
Let MT(yα

max
) be the minimum-cost spanning tree at yα

max
, and W(yα

max
) be its

associated virtual energy. There must exist a path of length q from y∗ to yα
max

in
MT(yα

max
): P = y0(= y∗) → y1 → · · · → yq−1 → yq(= yα

max
) (Fig. 12a). Reversing

this path, we obtain a path from yα
max

to y∗ and also a spanning tree T(y∗) at y∗ with
cost V(y∗) (Fig. 12b). These costs satisfy:
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a)

b)

Fig. 12 Proof of the second part in Theorem 4

W(yα
max
)− V(y∗) =

q∑
k=1

([
Ld(yk)− Ld(yk−1)

]+ − [Ld(yk−1)− Ld(yk)
]+)

=
q∑

k=1

(
Ld(yk)− Ld(yk−1)

) = Ld(yq)− Ld(y0)

= Ld
(
(y,αmax)T

)− Ld
(
(y∗,αmax)T

)
> 0

based on the definition of αmax and on evaluating the two possibilities Ld(yk) ≥
Ld(yk−1) and Ld(yk) < Ld(yk−1). Because W(y∗) ≤ V(y∗), we have W(y∗) ≤ V(y∗) <
W(yα

max
).

By combining the two parts of the proof, we conclude that W(y) is minimized at
y = y∗. Thus, the Markov chain converges to CGMd y∗ ∈ Yopt with probability one
according to Proposition 1.

Appendix C: proof of Theorem 5

The proof is similar to that of Theorem 4. The key difference, however, lies in the
partitioning of the neighborhood. The proof is centered on constructing, for y =
(y,αmax, γmax)T under a partitioned neighborhood, a minimum spanning tree rooted
at y has a cost higher than that at y∗ = (y∗,αmax, γmax)T , where y ∈ Y − Yopt and
y∗ ∈ Yopt. We first construct a path from y to y∗ in the minimum-cost spanning tree
rooted at y. We then reverse the path and prove that a tree rooted at y∗ has less
total cost than that rooted at y. However, because the neighborhoods in CPSA are
partitioned by their constraints, the construction of the path from y to y∗ is different
and must be done across the partitioned neighborhoods. By proving that the mini-
mum-cost spanning tree rooted at y∗ has less cost than that rooted at y, we conclude
that W(y∗) < W(y). Finally, we use Proposition 1 to show that the Markov chain
converges to y∗ with probability one.

The proof consists of two parts.
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Fig. 13 An illustration of the approach for proving Theorem 5, where (y∗(t),αmax, γmax)T is the
point with the minimum virtual energy in the tth subspace

(a) We show that W
(
(y,αmax, γmax)T

) ≤ W
(
(y,α, γ )T

)
for any y. This can be done

by showing W
(
(y,α′, γ )T

) ≤ W
(
(y,α, γ )T

)
and W

(
(y,α, γ ′)T

) ≤ W
(
(y,α, γ )T

)
for

α′ > α, γ ′ > γ . This proof is the same as the first part of the proof of Theorem 4,
except that α and γ are used instead of α.

Figure 13 shows the proof of of W
(
(y,α′, γ )T

) ≤ W
(
(y,α, γ )T

)
. The tth box in

the figure represents the subspace of (y(t),α(t))T similar to that in Fig. 9. Note that,
although y(1), . . . , y(N) may overlap with each other, we have drawn the subspaces
without overlap for clarity. In a way similar to that in Fig. 9, the search in the tth
subspace results in the solution (y∗(t),αmax(t))T with the minimum virtual energy
(indicated by a solid shaded circle). Likewise, along the γ dimension of each subprob-
lem, we can prove that W

(
(y,α, γ ′)T

) ≤W
(
(y,α, γ )T

)
.

These observations lead to the conclusion that, for any y, α, and γ , W
(
(y,αmax, γ )T

)
≤W

(
(y,α, γ )T

)
and W

(
(y,α, γmax)T

) ≤W
(
(y,α, γ )T

)
, which can be combined to get:

W
(
(y,αmax, γmax)T

) ≤W
(
(y,α, γ )T

)
. (58)

(b) We show that W(y∗) < W(y), where y = (y,αmax, γmax)T and y ∈ Y− Yopt. This
is done by constructing a path from y to y∗ that passes through the solution in each
subproblem (the dashed path that joins the N solid circles in Fig. 13). We then show
that the reverse path has less cost.

Let MT(yq) and W(yq) be the minimum-cost spanning tree of yq and its associ-
ated virtual energy. For this tree, there must exist a path from y∗ to yq: P = y0(=
y∗)→ y1 → · · · → yq−1 → yq of length q. The path exists because the Markov chain
modeling CPSA is ergodic.

Consider the spanning tree T(y∗) at y∗ with the following path from yq to y∗:

yq → y1,1 → y1,2 · · · → y∗
1
→ y2,1 → y2,2 · · · → yi,1 → y∗

2

→ · · · → y∗
N−1
→ yN,1 · · · → y∗

N
= y∗,
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Fig. 14 The construction of a path from y to y∗, where (y∗(t),αmax, γmax)T is the point with the
minimum virtual energy in the tth subspace

where yq ∈ N(1)
p (y1,1), y1,1 ∈ N(1)

p (y1,2), . . . , y1,i1
∈ N(1)

p (y∗
1
),

y∗
1
∈ N(2)

p (y2,1), y2,1 ∈ N(2)
p (y2,2), . . . , y2,i2

∈ N(2)
p (y∗

2
),

· · ·
y∗

N−1
∈ N(N)

p (yN,1), yN,1 ∈ N(N)
p (yN,2), . . . , yN,iN

∈ N(N)
p (y∗

N
)

and y∗i = (y′,αmax, γmax)T and y′(j) = y∗(j) for j = 1, . . . , i.

Figure 14 shows the construction of this path, where unshaded circles show the
partitioned components yq(1) to yq(N) of yq, solid circles show y∗(1) to y∗(N) of y∗,
and shaded circles indicate those components of y∗ that may be changed during the
path-construction process.

In the first step, we find a path from yq to y∗
1
. Since the only difference between

these two points is y∗(1), we only need to find a path from yq(1) to y∗(1). Such a path
always exists due to the ergodicity of the Markov chain. After moving from yq(1) to
y∗(1), the values of yq(2), . . . , yq(N)may be changed to y′q(2), . . . , y′q(N) because they
may share some variables with yq(1).

In the second step, we find a path from y∗
1

to y∗
2
. Since y∗(1) has already been

reached, the only difference between these two points is y∗(2), we only need to find
a path from y′q(2) to y∗(2). Again, such a path must exist due to the ergodicity of the
Markov chain.

In general, the path from y∗
t−1

to y∗
t

for t = 2, . . . , N, exists because the only
difference between these two points is in one component, and the ergodicity of the
Markov-chain ensures the existence of the path. We continue the process until we
reach y∗

N
= (y∗(0), y∗(1), . . . , y∗(N))T = y∗.

By comparing W(yq) of MT(yq) and the cost V(y∗) of T(y∗), we have:

W(yq)− V(y∗) =
q∑

k=1

([
Ld(yk)− Ld(yk−1)

]+ − [Ld(yk−1)− Ld(yk)
]+)

=
q∑

k=1

(
Ld(yk)− Ld(yk−1)

) = Ld(yq)− Ld(y0)

= Ld
(
(y,αmax, γmax)T

)− Ld
(
(y∗,αmax, γmax)T

)
> 0
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based on the definitions of αmax and γmax and on evaluating the two possibilities
Ld(yk) ≥ Ld(yk−1) and Ld(yk) < Ld(yk−1). Because W(y∗) ≤ V(y∗), we have W(y∗) ≤
V(y∗) < W(yq).

By combining the two parts of the proof, we conclude for any y = (y,α, γ )T and
y∗ = (y∗,αmax, γmax)T , where y ∈ Y − Yopt and y∗ ∈ Yopt, that the virtual energy W
is minimized at y∗. Hence, the Markov chain converges to y∗ with probability one
according to Proposition 1.
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