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Abstract We propose a general approach for constructing bounds required for the
“Big Triangle Small Triangle” (BTST) method for the solution of planar location
problems. Optimization problems, which constitute a sum of individual functions,
each a function of the Euclidean distance to a demand point, are analyzed and solved.
These bounds are based on expressing each of the individual functions in the sum
as a difference between two convex functions of the distance, which is not the same
as convex functions of the location. Computational experiments with nine different
location problems demonstrated the effectiveness of the proposed procedure.

Keywords Planar location · Global optimization · Big triangle Small triangle ·
Single facility

1 Introduction

Hansen et al. (1981) suggested the “Big Square Small Square” (BSSS) technique for
finding the global optimum for two dimensional location problems. The method is a
branch and bound approach. We describe it for a maximization objective. A square
containing the optimal solution point is constructed, and the process splits each square
into four smaller squares. A lower bound (LB) and an upper bound (UB) for the value
of the objective function for all the points in the square are calculated for each square.
Squares whose UB does not exceed the best found solution are discarded from the
search until the sizes of the remaining squares are all less than a tolerance ε. This
approach was improved to the “Generalized Big Square Small Square” (GBSSS)
algorithm by Plastria (1992). Drezner and Suzuki (2004) proposed to replace the
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squares with triangles hence the name “Big Triangle Small Triangle” (BTST). This
global optimization approach is shown to be more efficient than BSSS and GBSSS.

Two problems were solved in Drezner and Suzuki (2004): an obnoxious facility
location problem (Hansen et al. 1981) and the Weber location problem with some
negative weights (Tellier and Polanski 1989; Drezner and Wesolowsky 1991; Maranas
and Floudas 1994; Tuy et al. 1995; Krarup 1998). This method was applied successfully
to the solution of numerous location problems. Berman et al. (2003) considered the
weighted minimax (1-center) location problem in the plane when the weights are
not given but rather drawn from independent uniform distributions. In Drezner and
Drezner (2004) the Huff competitive location problem was optimally solved using
BTST. In Drezner and Drezner (2006a, accepted for publication) two equity objec-
tives are solved: minimizing the variance of the distances to the facility and minimizing
the range of the distances to the facility. In Drezner and Drezner (2006b) the Huff
competitive location problem is modified to account for lost demand. The accelera-
tion–deceleration distance is defined in Drezner et al. (2006) and the single facility
location problem based on this distance is optimally solved using BTST. This problem
is especially difficult because every demand point is a local minimum and, for exam-
ple, a problem with 10,000 demand points has at least 10,000 local optima. In Drezner
and Scott (2006) a queueing-location model is analyzed when some of the demand is
lost. In Drezner et al. (2003) an inventory-location model in the plane is investigated.
The gradual cover problem is defined and solved in Drezner et al. (2004). In stan-
dard covering problem there is a well defined covering radius. In the gradual covering
problem there are minimum and maximum cover radii. A point is fully covered within
the minimum radius and it is not covered at all beyond the maximum radius. Between
these two radii coverage declines linearly.

The successful application of BTST requires good bounds on the value of the objec-
tive function in a triangle. The purpose of this paper is to propose a general method for
deriving good bounds for many common location problems. The objective function is
either a minimization or maximization of a sum of functions, each function associated
with a demand point. These functions are functions of the Euclidean distance to a
demand point. This general approach was tested on many of the problems mentioned
above and computational results are reported.

The paper is organized as follows. In Sect. 2, we summarize the BTST algorithm.
In Sect. 3, we construct the general bounds and prove their properties. In Sect. 4, we
investigate the implementation of these general bounds to eleven location problems.
In Sect. 5, issues of implementation are discussed and in Sect. 6 computational exper-
iments with nine different location problems are reported. We conclude the paper in
Sect. 7.

2 The big triangle small triangle method

The framework of the BTST approach is summarized below. The complete details
are given in Drezner and Suzuki (2004). A feasible region, which consists of a finite
number of convex polygons is given. The algorithm is detailed as follows:

Phase 1: Each convex polygon is triangulated using the Delaunay triangulation
(Drezner and Suzuki 2004). The vertices of the triangles are the demand points
and the vertices of the convex polygon. The union of the triangulations is the initial
set of triangles.
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Fig. 1 The split of a triangle
into four small triangles

Phase 2: Calculate a LB, and an UB, for each triangle. Let the largest LB be LB.
Discard all triangles, for which UB ≤ LB(1 + ε).

Phase 3: Choose the triangle with the largest LB and split it into four small triangles
by connecting the centers of its sides as depicted in Fig. 1. Calculate LB and UB
for each triangle, and update LB if necessary. The large triangle and all triangles,
for which UB ≤ LB(1 + ε) are discarded.

Stopping Criterion: The branch and bound is terminated when there are no triangles
left. The solution LB is within a relative accuracy of ε from the optimum.

Since the triangulation is based on the demand points as vertices, no demand point
is in the interior of a triangle. This property is maintained throughout the algorithm
because the interiors of small triangles constructed by splitting a large triangle are
part of the interior of the large triangle. This property is helpful in constructing the
bounds.

3 General upper and lower bounds

3.1 Notation and preliminary discussion

T A given triangle
Tk Vertex k of triangle T, for k = 1, 2, 3
n The number of demand points
X The unknown location of the new facility
di(X) The Euclidean distance between demand point i and X
d(X, Y) The Euclidean distance between points X and Y
φ(d) A known function of the distance
φi(d) The function associated with demand point i
F(X) The objective function = ∑n

i=1 φi[di(X)].
We construct UB and LB in a triangle T based on three vertices T1, T2, T3. The

objective function in the triangle is F(X) = ∑n
i=1 φi[di(X)] for X ∈ T. For clarity of

presentation we treat the case of maximizing F(X). If the problem is a minimization
problem, we can maximize −F(X).

Most expressions involve a particular demand point. For simplicity of notation, the
index i (indicating demand point i) is omitted from many of these expressions.

The UB and LB are applicable to functions φ(d), which can be expressed as a
difference between two convex functions in d. This condition is not the customary
condition in DC-optimization (Tuy et al. 1995; Tuy 1998) when the assumption is that
φ(d(X)), is a difference between convex functions in the location X. The distance
function d(X) is a convex function in X. However, a convex function of a convex
function is not necessarily convex. φ(d(X)) is convex in X when φ(d) is a monoton-
ically increasing convex function of d. So, for example, φ(d) = e−d is convex but
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monotonically decreasing in d and e−d(X) is not convex in X. It is usually not difficult
to express a function of one variable as a difference between two convex functions.
For example, if the second derivative of φ(d) exists in the triangle and is bounded such
that ∂2φ/∂d2 ≥ −M, then φ(d) = [φ(d) + Md2/2] − Md2/2 is a difference between
two convex functions. It is recommended however, if possible, to express φ(d) as a
difference between two convex functions, which have no artificially large values.

Consider a point Y, which is not in the interior of the triangle. As data, we use
the three distances between Y and the vertices d1, d2, d3, and the sides of the triangle
d12, d13, d23 (dij is the length of the side connecting Ti and Tj).

Let the minimum and maximum distance from a point Y to all points in the triangle
be dmin(Y) and dmax(Y), respectively. This means that dmin(Y) ≤ d(X, Y) ≤ dmax(Y)

for any point X in the triangle.
Since, the distance function is convex, dmax(Y) = max

i=1,2,3
{di}. The calculation of the

minimum distance is described in Drezner and Drezner (2004). We suggest a different
way to calculate dmin(Y).

3.2 Finding the shortest distance to all the points of a triangle

Since, point Y is not in the interior of the triangle, the shortest distance must be to
a point X on the boundary of the triangle. It is possible that the shortest distance is
to one of the three vertices. We need to find whether there is a point X ∈ T, which
is closer than the closest vertex. We first find the shortest distance from a point Y to
all points on the side connecting Ti and Tj. Point Y, Ti, and Tj form a triangle whose
sides are di, dj and dij (see Fig. 2). If one of the angles opposite di or dj is greater
than 90◦, then the minimum distance from point Y to this side is obtained to one of
the two vertices. We are therefore interested in the shortest distance to the side only
when both angles do not exceed 90◦. This condition is equivalent to:

d2
i ≤ d2

j + d2
ij and d2

j ≤ d2
i + d2

ij.

These conditions can be summarized as
∣
∣
∣d2

i − d2
j

∣
∣
∣ ≤ d2

ij. (1)

Define θij =
(

d2
i − d2

j

)2/
d4

ij, then condition (1) is equivalent to θij ≤ 1.

Fig. 2 The shortest distance to
a triangle
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Let xij be the shortest distance to the side TiTj of the triangle (assuming that θij ≤ 1)
(see Fig. 2). xij is the height of the triangle perpendicular to the segment TiTj. Then,

√
d2

i − x2
ij +

√
d2

j − x2
ij = dij

or
√

d2
i − x2

ij = dij −
√

d2
j − x2

ij.

Simple algebraic manipulations lead to:

x2
ij = d2

j −
(

d2
i − d2

j − d2
ij

)2

4d2
ij

= d2
i + d2

j

2
− d2

ij

4
−

(
d2

i − d2
j

)2

4d2
ij

,

= d2
i + d2

j

2
− (1 + θij)d2

ij

4
(2)

only for θij ≤ 1. If θij > 1 define xij = ∞. Note that when θij = 1, xij = min
{
di, dj

}
.

These calculations yield

d2
min(Y) = min

{

min
1≤i≤3

{
d2

i

}
, min

1≤i<j≤3

{
x2

ij

}}

. (3)

Note, that calculating d2
min(Y) and d2

max(Y) does not require a square root operation
when all the original data distances are squared.

3.3 Bounds on convex functions

In this section, we assume that φ(d) is convex and, we are interested in bounds for
dmin ≤ d ≤ dmax.

Lemma 1

φ(d) ≤ φ(dmin) + φ(dmax) − φ(dmin)

dmax − dmin

[
d − dmin

] = K1d + L1, (4)

where

K1 = φ(dmax) − φ(dmin)

dmax − dmin
, L1 = φ(dmin) − K1dmin.

Proof The Lemma follows the property that the function φ(d) is below the line con-
necting the endpoints of the segment [dmin, dmax]. ��

Let dc = dmin+dmax
2 be the center of the segment.

Lemma 2

φ(d) ≥ φ(dc) + ∂φ

∂d
(dc)

[
d − dc

] = K2d + L2, (5)

where

K2 = ∂φ

∂d
(dc), L2 = φ(dc) − K2dc.

Proof The function φ(d) is above the tangent line at dc. ��
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3.4 Properties of the bounds

Let ε = dmax − dmin. We assume that the second derivative of φ(d) by d exists and is
bounded by M. The second derivative must be positive because φ(d) is convex. The
error in the inequality of Lemma 1 is

e1(d) = φ(dmin) + φ(dmax) − φ(dmin)

dmax − dmin

[
d − dmin

] − φ(d). (6)

Lemma 3 0 ≤ e1(d) ≤ M ε2

2

Proof By Lemma 1 e1(d) ≥ 0. By the Taylor expansion:

φ(dmax) = φ(dmin) + ∂φ
∂d (dmin)

[
dmax − dmin

] + ∂2φ

∂d2 (ξ1)
(dmax−dmin)2

2
for dmin ≤ ξ1 ≤ dmax.
φ(d) = φ(dmin) + ∂φ/∂d(dmin) × [

d − dmin
] + ∂2φ/∂d2(ξ2) × (d − dmin)

2/2
for dmin ≤ ξ2 ≤ d.
Substituting into (6):

e1(d) = ∂2φ

∂d2 (ξ1)
(d − dmin)(dmax − dmin)

2
− ∂2φ

∂d2 (ξ2)
(d − dmin)

2

2
≤ M

ε2

2
.

��
The error in the inequality of Lemma 2 is

e2(d) = φ(d) − φ(dc) − ∂φ

∂d
(dc)

[
d − dc

]
. (7)

Lemma 4 0 ≤ e2(d) ≤ M ε2

8

Proof By Lemma 2 e2(d) ≥ 0. By the Taylor expansion:

φ(d) = φ(dc) + ∂φ

∂d
(dc)

[
d − dc

] + ∂2φ

∂d2 (ξ)
(d − dc)

2

2
for dmin ≤ ξ ≤ dmax.

Substituting into (7):

e2(d) = ∂2φ

∂d2 (ξ)
(d − dc)

2

2
≤ M

ε2

8
because |d − dc| ≤ ε

2 . ��
3.5 The proposed upper bound

Suppose, that the function φ(d) can be expressed as a difference between two convex
functions φ(d) = φ1(d) − φ2(d). In this section, we assume that the problem is a max-
imization problem. If the problem is a minimization problem, we simply reverse the
role of φ1(d) and φ2(d).

A LB for the maximum possible value of the objective function in a triangle is
the value of the objective function at any point in the triangle. We propose to use
the value of the objective function at the center of gravity of the triangle: φ(T0) for
T0 = (T1 + T2 + T3)/3. We construct a general UB for all the points X ∈ T.

By applying Lemma 1 to φ1(d), we get

φ1(d) ≤ K1d + L1.



J Glob Optim (2007) 37:305–319 311

By applying Lemma 2 to φ2(d), we get

φ2(d) ≥ K2d + L2.

Therefore,

φ(d) = φ1(d) − φ2(d) ≤ [K1 − K2] d + L1 − L2. (8)

By applying Eq. 8 to demand point i not in the interior of the triangle, we define

φi(di(X)) ≤ K(i)di(X) + L(i) (9)

yielding

F(X) =
n∑

i=1

φi(di(X)) ≤ UB(X) =
n∑

i=1

[
K(i)di(X) + L(i)

]
for X ∈ T. (10)

The maximum of UB(X) in the triangle is an UB for F(X) in the triangle. We
separate the terms in UB(X) to those with K(i) ≥ 0 and those with K(i) < 0.
Define UB1(X) = ∑

K(i)≥0 K(i)di(X); UB2(X) = ∑
K(i)<0 K(i)di(X); C = ∑n

i=1 L(i),
then UB(X) = UB1(X) + UB2(X) + C.

The function UB1(X) is convex, and the function UB2(X) is concave. We further
bound UB2(X) as follows. Since, UB2(X) is concave, it is below the tangent plane at
T0 = (T1 + T2 + T3)/3 = (x0, y0). This yields for X = (x, y):

UB2(X) ≤ UB3(X)

=
∑

K(i)<0

K(i)
{

di(T0) + (x − x0)(x0 − xi) + (y − y0)(y0 − yi)

di(T0)

}

. (11)

The UB3(X) is linear and therefore convex. Therefore, UB1(X) + UB3(X) + C is
convex and obtains its maximum value in the triangle at one of the three vertices. The
upper bound in the triangle UB is:

UB = max
k=1,2,3

{UB1(Tk) + UB3(Tk)} + C. (12)

Let ε be the largest distance between two points in triangle T. It is clear by the
triangle inequality that dmax − dmin ≤ ε for any point Y. We prove that UB ≤
maxX∈T {F(X)} + O(ε2).

Theorem 1 UB − max
X∈T

{F(X)} ≤ O(ε2)

Proof By Lemmas 3 and 4 and definition (10) UB(X) − max
X∈T

{F(X)} ≤ O(ε2). To

complete the proof, we need to show that UB3(X) − UB2(X) ≤ O(ε2). Consider, the
error associated with demand point i

e3(X) = di(T0) + (x − x0)(x0 − xi) + (y − y0)(y0 − yi)

di(T0)
− di(X).

By the Taylor expansion, there exist a point (ξ , η) in the triangle such that

di(X) = di(T0) + (x − x0)(x0 − xi) + (y − y0)(y0 − yi)

di(T0)

+ (η − yi)
2(x − x0)

2 + (ξ − xi)
2(y − y0)

2 − 2(ξ − xi)(η − yi)(x − x0)(y − y0)

2d3
i (T0)

.
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The last term is equal to:

[(η − yi)(x − x0) − (ξ − xi)(y − y0)]2

2d3
i (T0)

.

Therefore,

e3(X) = [(η − yi)(x − x0) − (ξ − xi)(y − y0)]2

2d3
i (T0)

= O(ε2). ��

Theorem 1 shows that if a triangle is split into four triangles, the error in the UB for
each of the four smaller triangles is reduced by about four fold. Five splits of triangles
reduces the error by about 1,000 times.

4 Examples

In this section, we compare the general approach with bounds suggested in other
papers.

4.1 Obnoxious facility location

The problem is minimizing
∑n

i=1
wi

d2
i (X)

for positive weights (wi > 0) (Drezner and

Suzuki 2004). Since, it is a minimization problem, φ1(d) = 0; φ2(d) = wi/d2. By
(5) K2d + L2 = wi(3dc − 2d)/d3

c . Since, K2 < 0, the approximation (11) will not be
applied and the LB is based on UB1(X) + C. In Drezner and Suzuki (2004) a similar
approach was taken by using φ(x) = 1/x and substituting x = d2

i (X) in the resulting
tangent line leading to: wi(2d2

c − d2)/d4
c rather than wi3dc − 2d/d3

c .
Note that (3dc − 2d)/d3

c = (3d2
c − 2dcd + d2 − d2)/d4

c = (2d2
c − d2 + (dc − d)2)/d4

c
≥ (2d2

c − d2)/d4
c . Therefore, the bound proposed here by the general approach is

actually better than the specific bound used in Drezner and Suzuki (2004). We also
mention that in Drezner and Suzuki (2004) dc was selected as the distance to the
center of gravity rather than (dmax + dmin)/2 thus avoiding the need to calculate dmin

and dmax.

4.2 Weber problem with some negative weights

The problem is minimizing
∑n

i=1 widi(X) when some of the weights may be negative
(Drezner and Suzuki 2004). Since, φ(d) is linear, the problem is unaltered by (4) and
(5). The UB (12) is the same as suggested in Drezner and Suzuki (2004).

4.3 Huff competitive location

The problem is to maximize
∑n

i=1
bi

1+hidλ (Drezner and Drezner 2004). For this max-

imization problem φ(d) = b/(1 + hdλ) where h and b are positive constants and
λ ≥ 1. ∂2φ/∂d2 ≥ −bλ(λ − 1)hdλ−2. Therefore, φ(d) + bhdλ is convex and, we can
use φ1(d) = φ(d) + bhdλ; φ2(d) = bhdλ. The LB suggested in Drezner and Drezner
(2004) is much more contrived.
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4.4 Stochastic weighted minimax

The minimization objective function can be written using φ(d) = ln d − ln(T − ad)

(Berman et al. 2003) which is a difference between two concave functions. One can
use φ1(d) = − ln(T − ad); φ2(d) = − ln d. A more complicated bound is suggested in
Berman et al. (2003).

4.5 Minimizing variance

The objective is to minimize:

n∑

i=1
wid2

i (X)

n∑

i=1
wi

−








n∑

i=1
widi(X)

n∑

i=1
wi








2

.

Drezner and Drezner 2006a, accepted, which is a difference between two convex
functions of the distance di(X). A modification is convenient in this case: express
φ(d) = φ1(d) − [

φ2(d)
]2. Also, the simplifications suggested in Drezner and Drezner

(2006a, accepted for publication) can simplify the solution of this particular problem.
However, the structure of this problem is not suitable for the direct application of the
general approach suggested in the present paper. Special bounds were constructed
in Drezner and Drezner (2006a, accepted for publication) successfully solving this
problem using BTST.

4.6 Minimizing range

The objective is to minimize: max1≤i≤n {di(X)}−min1≤i≤n {di(X)} (Drezner and Drez-
ner 2006a, accepted for publication), which is a difference between convex functions
of the distances. Since, the objective function is not a sum, the procedure needs to
be adjusted for this particular problem as is done in Drezner and Drezner (2006a,
accepted for publication).

4.7 Unserviced demand

The problem is transformed to maximizing the sum based on φ(d) = e−d or φ(d) =
1/(1 + d) which are both convex functions in d (Drezner and Scott 2006). In this case
apply φ1(d) = φ(d) and φ2(d) = 0. This leads to the same bound proposed in Drezner
and Scott (2006).

4.8 Inventory-location problem

The model leads to minimizing

n∑

i=1

(

αidi(X) + wi

√
Aid2

i (X) + Bidi(X) + Ci

)

(Drezner et al. 2003). The function φ(d) = αd + w
√

Ad2 + Bd + C is concave in d
for the specific parameters of the problem (Drezner et al. 2003). We propose to apply
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Fig. 3 The gradual covering functions

φ1(d) = −φ(d) and φ2(d) = 0. This model was solved heuristically in Drezner et al.
(2003) and no global optimization technique was used.

4.9 Gradual covering

For this minimization problem: φ(d) =





0 d ≤ l
w(d − l) l ≤ d ≤ u
w(u − l) d ≥ u

. (Drezner et al. 2003)

The function φ(d) is neither convex nor concave and is depicted in the left graph in
Figure 3. It can easily be expressed as a difference between two convex functions as
depicted in the right graph of the figure.

φ1(d) =
{

0, d ≤ l,
w(d − l), d ≥ l,

φ2(d) =
{

0, d ≤ u,
w(d − u), d ≥ u.

A specific lower bound which is different from the one proposed here was constructed
in Drezner et al. (2003).

4.10 Lost demand

4.10.1 Model 1

Maximize
∑n

i=1 bie−λdi(X) (Drezner and Drezner 2006b). The function φ(d) = e−λd

is convex. This model is similar to the unserviced demand model in Sect. 4.7.

4.10.2 Model 2

Maximize
∑n

i=1(αi + βie−λdi(X))γi + e−λdi(X)/δi + e−λdi(X) (Drezner and Drezner
2006b). All coefficients are non-negative and δi ≥ γi. As pointed out in Drezner
and Drezner (2006b) the function φ(d) = (α + βe−λd)(γ + e−λd/δ + e−λd) is not nec-
essarily convex. Following algebraic manipulations

φ(d) = α + (γ − δ)β +
{

(δ − γ )α + βδγ

δ2

}

e−λd+(δ−γ )(βδ−α)

{
1

e−λd + δ
+ e−λd

δ2

}

.
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The function inside the braces of the last term is convex. Therefore, depending on the
sign of βδ − α, the function φ(d) is expressed as either a sum of two convex functions
and thus convex or a difference between two convex functions. The LB suggested in
Drezner and Drezner (2006b) are the same ones suggested here.

4.11 The acceleration-deceleration distance

For this minimization problem φ(d) =
{

2
√

dd0 | d ≤ d0
d + d0 | d ≥ d0

for a given parameter

d0 > 0 (Drezner et al., 2006). As is proven in Drezner et al. (2006), φ(d) is concave.
Therefore, apply φ1(d) = −φ(d) and φ2(d) = 0.

5 Implementation

In order to implement the general approach proposed in this paper, one needs to
code four functions: φ1(d), φ2(d), ∂φ1/∂d(d), and ∂φ2/∂d(d). All these functions may
be different for different demand points. We must make sure that φ1(d) and φ2(d) are
convex. All the bounds can be calculated based on these four functions, and other
values such as dmin and dmax do not depend on the specific functions used. One can
code two different programs, one for minimization and one for maximization. It is eas-
ier to code just one approach (e.g. maximization) and apply −φ(d) for minimization
problems.

We coded such a program1 and for each particular objective function (which is a
sum of individual functions each based on a distance to one demand point) we need
to code only these four functions. Note, that such a general program may require a bit
more overhead in cases where not all features of the general approach are utilized.
For example, if φ2(d) = 0, there is no need to “call” this function and its derivative
and unnecessary additions of zeros will be included in the program.

6 Computational experiments

A program was coded in Fortran, double precision arithmetic, compiled by Compaq
Fortran 6.6 and ran on a 2.8 GHz computer. The solutions were found to a relative
accuracy of 10−10. We experimented with nine different problems as described in
Sect. 4. Demand points for all problems were randomly generated in a unit square.
We found a solution to these problems in the convex hull of the demand points. All
these problems conform to the special structure required for our general approach
and the bounds in the original papers were calculated in a different way or with less
overhead as follows.

1. The obnoxious facility location problem (equal weights).
2. The Weber problem with some negative weights (weights randomly generated in

[-1, 1]).
3. The Huff competitive location problem (ten existing stores, λ = 2, and all buying

power values and attractiveness of facilities are equal).
4. The stochastic weighted minimax location problem (using T = 2, a = 1).

1 We thank Atsuo Suzuki for his Fortran program that finds the triangulation based on Sugihara and
Iri (1994) subroutines first developed in Ohya et al. (1984).
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5. The inventory location problem (using αi, wi, Ai, Ci generated in [0,1] and Bi =
2Ai + Ci).

6. The unserviced demand problem (using φ(d) = e−d).
7. The unserviced demand problem (using φ(d) = 1/(1 + d)).
8. The gradual covering problem (using l = 0.1, u = 0.3, w = 5).
9. The acceleration–deceleration distance Weber problem (with d0 = 1).

In Tables 1–3 we report computational results with these problems. Each problem
was run ten times for each value of n. We report the results (minimum, maximum,
and average) for the number of iterations, the maximum number of triangles during
the branch and bound phase, and the run time in seconds.

6.1 discussion of results

Six of the nine problems (see Tables 1–3) were solved very efficiently in all cases.
All n = 10, 000 problems were solved in less than 100 s with very little variance. The

Table 1 Computational results (first set of three problems)

n Iterations Max triangles Time (seconds)

Min Max Ave Min Max Ave Min Max Ave

Obnoxious facility
10 601 1,682 926.1 54 132 74.4 0.00 0.03 0.01
20 597 1,778 1336.3 54 98 77.9 0.01 0.05 0.03
50 1,298 2,357 1857.7 75 131 93.7 0.07 0.12 0.10
100 1,208 4,106 2623.2 83 170 117.8 0.14 0.43 0.28
200 1,093 5,657 3697.2 98 208 150.5 0.25 1.17 0.77
500 2,201 10,581 5355.0 126 293 191.2 1.23 5.35 2.80
1,000 1,656 12,410 6658.7 102 293 209.3 2.14 12.68 7.09
2,000 4,982 13,199 7500.8 169 307 243.5 11.78 28.00 16.70
5,000 4,372 25,483 11725.3 156 615 355.6 33.74 136.74 69.76
10,000 3,991 23,321 11122.3 160 600 350.4 89.09 275.08 157.29

Weber with some negative weights
10 33 49 39.3 6 13 10.2 0.00 0.00 0.00
20 33 75 45.9 7 20 12.4 0.00 0.00 0.00
50 33 88 46.6 10 21 14.3 0.00 0.02 0.00
100 31 65 44.5 7 19 11.0 0.00 0.02 0.01
200 32 68 53.7 5 17 11.3 0.03 0.05 0.03
500 32 66 50.2 12 22 16.5 0.14 0.18 0.16
1000 36 85 57.2 9 25 15.8 0.58 0.63 0.60
2000 35 63 46.5 11 21 16.3 2.22 2.28 2.25
5000 30 69 57.8 7 24 13.2 13.51 13.80 13.69
10000 38 67 53.3 7 23 15.4 53.86 54.25 54.05

Huff competitive location problem
10 580 8501 2553.8 127 1,723 543.9 0.01 0.14 0.04
20 969 27897 5980.1 274 4,837 1302.8 0.02 0.99 0.18
50 2,517 38375 10219.4 749 6,288 1917.4 0.16 2.81 0.67
100 5,168 16367 9905.4 762 4,029 2257.8 0.59 1.92 1.15
200 8,054 71394 22952.9 2,067 9,125 4413.6 1.85 18.02 5.47
500 1,7980 47297 27252.8 2,912 9,569 5253.0 10.19 26.98 15.30
1,000 1,3879 113251 36439.1 2,474 14,596 6123.8 15.70 128.83 41.07
2,000 1,4574 71753 39192.3 1,849 10,796 5885.3 33.51 158.17 87.84
5,000 1,6310 86444 50891.5 2,557 12,076 7000.0 101.25 482.83 290.21
10,000 19,295 168686 57944.7 2,695 38,635 9663.8 260.83 1870.78 680.90
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Table 2 Computational results (second set of three problems)

n Iterations Max triangles Time (seconds)

Min Max Ave Min Max Ave Min Max Ave

Stochastic weighted minimax
10 77 136 101.2 47 84 62.4 0.00 0.02 0.00
20 76 120 92.8 45 67 55.6 0.00 0.02 0.00
50 67 108 82.7 45 62 52.3 0.00 0.02 0.01
100 68 115 90.3 40 64 46.7 0.01 0.04 0.02
200 75 100 88.0 41 67 51.5 0.06 0.08 0.06
500 76 97 87.2 36 57 42.7 0.26 0.30 0.29
1,000 66 108 82.4 32 56 42.1 0.95 1.03 0.98
2,000 69 118 86.7 25 67 43.5 3.60 3.75 3.65
5,000 68 106 81.6 25 52 36.3 21.53 21.84 21.65
10,000 52 138 85.1 29 52 38.5 84.77 86.23 85.28

The inventory location problem
10 112 260 156.8 11 34 22.5 0.00 0.02 0.00
20 112 273 160.9 17 37 24.2 0.00 0.02 0.00
50 107 156 130.4 19 27 21.9 0.00 0.02 0.01
100 91 245 124.4 16 41 22.4 0.01 0.05 0.02
200 90 207 121.9 18 35 22.7 0.03 0.06 0.05
500 91 150 113.9 18 26 21.0 0.19 0.22 0.21
1,000 85 163 108.7 17 29 20.8 0.65 0.75 0.69
2,000 80 206 127.8 15 35 25.4 2.40 2.69 2.51
5,000 74 111 89.2 16 25 19.3 14.28 14.49 14.37
10,000 71 122 91.4 17 28 20.2 56.86 57.44 57.11

The unserviced demand problem with φ(d) = e−d

10 133 432 215.9 15 38 27.2 0.00 0.02 0.00
20 119 199 162.4 20 36 26.9 0.00 0.02 0.01
50 130 510 197.7 22 64 31.5 0.01 0.06 0.02
100 133 216 161.6 22 34 26.8 0.03 0.06 0.04
200 113 191 145.5 20 31 25.5 0.08 0.11 0.09
500 88 205 145.8 19 37 28.0 0.31 0.42 0.36
1,000 95 275 147.3 22 49 28.7 1.10 1.42 1.19
2,000 93 215 124.3 19 38 23.7 3.98 4.42 4.10
5,000 82 299 140.4 20 61 29.8 23.52 25.45 24.03
10,000 87 148 109.6 20 31 24.2 92.59 93.67 92.97

number of iterations and the maximum number of triangles were very small. This is
especially impressive since an accuracy of ε = 10−10 was applied to all problems while
the customary accuracy in the literature is ε = 10−5 or 10−6.

The gradual covering problem (see Table 3) had very few cases (for n = 10 and
n = 50) where more iterations were required and the maximum number of triangles
was quite high. This is caused by the discontinuity in the first derivative for this par-
ticular function (“jumping” from 0 to 5 and back), which necessitated more triangle
splits when the discontinuity occured inside a triangle. Increasing ε to 10−6 shortens
the run time for these few cases.

The obnoxious facility location problem (see Table 1) requires more iterations,
triangles, and run time than the seven problems mentioned above. In one case of
n = 10, 000 the computer run time was close to 5 min. The reason is that the function
1/d2 diverges to infinity when d approaches zero. When a demand point is a vertex
of a triangle, dmin = 0 and the bounds have large errors and φ(dmin) does not even
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Table 3 Computational results (third set of three problems)

n Iterations Max triangles Time (seconds)

Min Max Ave Min Max Ave Min Max Ave

The unserviced demand problem with φ(d) = 1/1 + d
10 135 434 231.3 19 40 29.6 0.00 0.02 0.00
20 138 486 210.8 19 74 32.3 0.00 0.02 0.01
50 138 493 208.6 25 61 33.2 0.00 0.03 0.01
100 131 305 186.1 20 46 30.1 0.01 0.03 0.03
200 127 239 165.5 22 36 28.9 0.05 0.07 0.06
500 124 227 174.2 25 43 32.3 0.18 0.24 0.21
1,000 104 309 164.9 23 58 31.9 0.59 0.79 0.66
2,000 111 223 135.5 23 43 26.9 2.16 2.37 2.21
5,000 100 311 158.1 25 62 33.8 12.57 13.53 12.80
10,000 91 164 119.5 23 32 27.3 48.81 49.51 49.09

The gradual covering problem
10 38 20,277 3323.8 15 2,426 488.3 0.00 0.37 0.06
20 82 6,337 757.4 24 826 112.9 0.00 0.14 0.02
50 50 22,766 2346.2 24 3,964 426.9 0.00 1.36 0.14
100 49 92 67.6 27 57 37.9 0.00 0.02 0.01
200 43 82 60.8 20 46 33.0 0.03 0.05 0.04
500 36 76 60.5 16 30 23.4 0.15 0.18 0.17
1,000 39 91 61.6 10 25 18.8 0.58 0.64 0.61
2,000 38 81 53.3 13 26 19.1 2.22 2.32 2.26
5,000 35 78 52.3 8 23 16.9 13.55 13.73 13.63
10,000 36 84 51.0 10 19 13.2 53.67 54.16 53.85

The acceleration–deceleration distance weber problem
10 33 49 39.3 6 13 10.2 0.00 0.00 0.00
20 33 75 45.9 7 20 12.4 0.00 0.00 0.00
50 33 88 46.6 10 21 14.3 0.00 0.02 0.00
100 31 65 44.5 7 19 11.0 0.00 0.02 0.01
200 32 68 53.7 5 17 11.3 0.03 0.05 0.03
500 32 66 50.2 12 22 16.5 0.14 0.18 0.16
1,000 36 85 57.2 9 25 15.8 0.58 0.63 0.60
2,000 35 63 46.5 11 21 16.3 2.22 2.28 2.25
5,000 30 69 57.8 7 24 13.2 13.51 13.80 13.69
10,000 38 67 53.3 7 23 15.4 53.86 54.25 54.05

exist. We therefore replaced d2 by d2 + 10−10. Even though φ(0) = 1010 may not be
good enough, it solved this issue and the resulting run times (reported in Table 1) are
reasonable. Note, that at the solution point all distances are relatively large because
a small distance results in a high value of the objective function. Therefore, adding
10−10 to each d2 hardly affect the optimal value of the objective function.

The competitive Huff location problem performed the worst. In one case of n =
10, 000 demand points it took over half an hour to solve the problem, required almost
170,000 iterations and 40,000 triangles. The reason is that when a demand point is close
to an existing facility, the value of hi may be very large. The function bi/(1 + hid2) is
actually negligible and does not contribute much to the value of the objective func-
tion. However, our “trick” of adding bihid2 to convexify the objective function (and
subtracting it as φ2(d)) did not work well and caused a large error in the upper bound.
One should try to find a better convexification scheme. The contrived upper bound in
Drezner and Drezner (2004) does not suffer from this deficiency and works better.
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7 Conclusions

We proposed a general approach to optimally solve a certain type of facility location
problems in the plane. The location problem is a minimization or maximization of a
sum of functions, each a function of the Euclidean distance between the facility and a
demand point. Such a function is expressed as a difference between two convex func-
tions of the distance. It should be emphasized that a convex function of the distance
is a weaker condition than requiring a convex function of the location. We propose
bounds to be used in the BTST method (Drezner and Suzuki 2004) for the solution of
such problems. The general procedure was tested on nine problems. All nine problems
were solved very efficiently, demonstrating the effectiveness of the proposed general
approach.
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