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1 Introduction

Consider the following quadratic minimization model problem with box constraints

(QP) min
x∈IRn

1

2
xT Ax + aTx

s.t. x ∈
n∏

i=1

[ui , vi ]

where ui , vi ∈ IR and ui ≤ vi , i = 1, . . . , n, a ∈ IRn and A ∈ Sn , the space of n × n
symmetric real matrices. Model problems of the form (QP) arise in many applications [1, 2].
For instance, a continuous relaxation of a quadratic minimization problem with binary con-
straints, known as bivalent quadratic programming problems (see [3, 4]) is of the form (QP).
Such problems arise in various combinatorial optimization problems such as the max-cut
problem and are known to be NP hard (see [5]). Due to the importance of finding global
minimizers of quadratic problems of the form (QP), a significant amount of different compu-
tational approaches to solving these problems has been developed in the literature [6–10, 1].

In recent years, a great deal of attention has been focused on characterizing global mini-
mizers of quadratic minimization problems (see [11–13, 3] and other references therein). In
particular, Beck and Teboulle [3] have given elegant global optimality conditions for bivalent
quadratic minimization problems.

The purpose of this paper is to establish conditions which ensure that a feasible point
is a global minimizer of a quadratic minimization problem subject to box constraints or
binary constraints. Our conditions completely characterize global optimality of weighted
least squares minimization problems. Moreover, our sufficient global optimality conditions
for bivalent quadratic programming problems generalize the corresponding results of [3].

We examine optimality conditions in terms of a global subdifferential, called
L-subdifferential (see [14, 15]). It is formed by functions which are not necessarily lin-
ear. This subdifferential enjoys explicit descriptions for quadratic functions and allows us to
obtain global optimality conditions for non-convex quadratic minimization problems, includ-
ing indefinite quadratic minimization problems, in terms of the problem data. We show how
an L-subdifferential can be explicitly calculated for quadratic functions and then develop
global optimality conditions for (QP). We demonstrate how the L-subdifferential approach
can also be used to derive general sufficient global optimality conditions for bivalent qua-
dratic minimization problems, covering the corresponding conditions of [3]. We also give
numerical examples to discuss our results.

The layout of the paper is as follows. Section 2 presents the notion of the L-subdifferential
and develops sufficient conditions for global minimizers of (QP). Section 3 provides suffi-
cient global optimality conditions for bivalent quadratic minimization problems. Section 4
provides a summary and an outline for future work.

2 L-Subdifferentials and quadratic minimization

In this section, we investigate a general quadratic minimization problem with box constraints
and derive sufficient global optimality conditions. We begin by presenting basic definitions
and notations that will be used throughout the paper.

The real line is denoted by IR and the n-dimensional Euclidean space is denoted by IRn .
For vectors x, y ∈ IRn , x ≥ y means that xi ≥ yi , for i = 1, . . . , n. The identity matrix
is denoted by I . The notation A � 0 means that the matrix A is a positive semi-definite. A
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diagonal matrix with diagonal elements α1, . . . , αn is denoted by diag(α1, . . . , αn). Let L
be a set of real-valued functions defined on IRn .
L−Subdifferentials (see [14, 15]). Let f : IRn → IR and x0 ∈ IRn . An element l ∈ L is called
an L-subgradient of f at a point x0 ∈ IRn if

f (x) ≥ f (x0) + l(x) − l(x0), ∀x ∈ IRn .

The set ∂L f (x) of all L-subgradients of f at x0 is referred to as L-subdifferential of f at x0.
Note that if L is chosen as the set of all linear functions defined on IRn , then for any

real-valued convex function f defined on IRn , ∂L f (x) = ∂ f (x), where ∂ f (x) is the sub-
differential in the sense of convex analysis [16]. Note also that it follows easily from the
definition that if f ∈ L , then ∂L f (x) is non-empty at every x . In the following, we explicitly
calculate ∂L f (x) for quadratic functions by suitably choosing L .

Consider the quadratic minimization problem, given in the introduction:

(QP) min
x∈IRn

f (x) := 1

2
xT Ax + aTx

s.t. x ∈ S :=
n∏

i=1

[ui , vi ],

where A ∈ Sn , the space of n × n symmetric real matrices. Without loss of generality, we
suppose that ui < vi . If ui = vi , we can replace S by

∏i−1
j=1 S j × ∏n

j=i+1 S j and replace f

by f̄ , where f̄ (x) = f (x̄), x̄ = (x1, . . . , xi−1, ui , xi+1, . . . , xn)T and S j = [u j , v j ].
Unless stated otherwise, throughout the rest of the paper, the set L is given by

L =
{

1

2
xT Qx + xTβ | Q = diag(α1, . . . , αn), αi ∈ IR, β ∈ IRn

}
.

Note that L satisfies the property that −l ∈ L for each l ∈ L . We begin by calculating ∂L f (x)

for the quadratic function f (x) = 1
2 xT Ax + aTx .

Proposition 2.1. Let f (x) := 1
2 xT Ax + aTx and let x̄ = (x̄1, . . . , x̄n)T ∈ IRn. Then,

∂L f (x̄) =
{

1

2
xT Qx + βTx

∣∣∣∣
A − Q � 0, Q = diag(α1, . . . , αn), αi ∈ IR

β = a + (A − Q)x̄, β ∈ IRn

}
.

Proof Note, by definition, that l0 ∈ ∂L f (x̄) if and only if

l0(x) − l0(x̄) ≤ f (x) − f (x̄), ∀x ∈ IRn . (1)

Let l0(x) = 1
2 xT Qx + βTx and let ϕ(x) = f (x) − l0(x). Then ϕ(x) = 1

2 xT(A − Q)x +
(a − β)Tx . By (1), for each x ∈ IRn ,

ϕ(x) = 1

2
xT(A − Q)x + (a − β)Tx ≥ f (x̄) − l0(x̄).

Thus, ϕ is bounded below and attains its minimum at x̄ . So, A− Q � 0. Hence, ϕ is a convex
function on IRn , and so, ϕ attains its minimum at x̄ if and only if ∇ϕ(x̄) = 0. This gives us
that

(A − Q)x̄ + (a − β) = 0 and β = a + (A − Q)x̄ .

�	
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For (QP), let

v : = (v1, . . . , vn)T, (2)

u : = (u1, . . . , un)T, (3)

a : = (a1, . . . , an)T. (4)

For x̄ = (x̄1, . . . , x̄n)T ∈ S, define

x̃i : =





−1 if x̄i = ui

1 if x̄i = vi

ai + (Ax̄)i if x̄i ∈ (ui , vi ),

(5)

X̃ : = diag(̃x1, . . . , x̃n). (6)

For Q = diag(α1, . . . , αn), αi ∈ IR, i = 1, . . . , n, define

α̂i : = min{0, αi } =
{

0 if αi ≥ 0
αi if αi < 0,

(7)

Q̂ : = diag(̂α1, . . . , α̂n). (8)

Using Proposition 2.1, we obtain the following sufficient optimality condition for (QP).

Theorem 2.1. For (QP), let x̄ = (x̄1, . . . , x̄n)T ∈ S. Suppose that there exists a diagonal
matrix Q := diag(α1, . . . , αn), αi ∈ IRn, i = 1, . . . , n such that A − Q � 0 and

X̃(a + Ax̄) − 1

2
Q̂(v − u) ≤ 0. (9)

Then x̄ is a global minimizer of problem (QP).

Proof Let Q := diag(α1, . . . , αn), αi ∈ IRn, i = 1, . . . , n such that A − Q � 0 and (9)
holds. Let β := a + (A − Q)x̄ . Then, by Proposition 2.1, l = 1

2 xT Qx +βTx ∈ ∂L f (x̄), i.e.,

f (x) − f (x̄) ≥ l(x) − l(x̄), ∀x ∈ IRn .

If l(x) − l(x̄) ≥ 0 for each x ∈ S, then x̄ is a global minimizer of (QP). To see this, we first
note from (7 ) that, for each i = 1, . . . , n,

αi ≥ α̂i .

By (9), for each i = 1, . . . , n,

− α̂i

2
(vi − ui ) + x̃i (ai + (Ax̄)i ) ≤ 0.

Since α̂i ≤ 0, for each xi ∈ [ui , vi ], i = 1, . . . , n,

− α̂i

2
(xi − ui ) + x̃i (ai + (Ax̄)i ) ≤ 0 and

α̂i

2
(xi − vi ) + x̃i (ai + (Ax̄)i ) ≤ 0.

We now consider the following three cases:
Case 1 Let x̄i ∈ (ui , vi ). Then x̃i = ai + (Ax̄)i . So, α̂i = 0 and ai + (Ax̄)i = 0. This gives
us that

αi

2
(xi − x̄i )

2 + (ai + (Ax̄)i )(xi − x̄i )

≥ α̂i

2
(xi − x̄i )

2

= 0.
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Case 2 Let x̄i = ui . Then

αi

2
(xi − x̄i )

2 + (ai + (Ax̄)i )(xi − x̄i )

≥ α̂i

2
(xi − x̄i )

2 + (ai + (Ax̄)i )(xi − x̄i )

= −
[
− α̂i

2
(xi − ui ) + x̃i (ai + (Ax̄)i )

]
(xi − ui )

= −
[
− α̂i

2
(xi − ui ) + x̃i (ai + (Ax̄)i )

]
(xi − ui )

≥ 0.

Case 3 Let x̄i = vi . Then

αi

2
(xi − x̄i )

2 + (ai + (Ax̄)i )(xi − x̄i )

≥ α̂i

2
(xi − x̄i )

2 + (ai + (Ax̄)i )(xi − x̄i )

=
[

α̂i

2
(xi − vi ) + x̃i (ai + (Ax̄)i )

]
(xi − vi )

≥ 0.

Hence, if (9) holds, then

l(x) − l(x̄) =
n∑

i=1

αi

2
(xi − x̄i )

2 + (a + Ax̄)T(x − x̄) ≥ 0. �	

Let us examine how we can obtain a simple sufficient condition for global optimality of
(QP) using (9). Recall that a matrix A := (ai j ) ∈ Sn is said to be diagonally dominant
if |aii | ≥ ∑n

j 
=i, j=1 |ai j |, for i = 1, . . . , n. Every diagonally dominant matrix A ∈ Sn

with non-negative diagonal elements is positive semi-definite. For details see [17]. Let A =
(ai j ) ∈ Sn and let

āi := aii −
n∑

j 
=i, j=1

|ai j |, (10)

ā := (ā1, . . . , ān)T, (11)

Ā := diag(ā1, . . . , ān). (12)

Let µi , i = 1, . . . , n be the eigenvalues of A and let

µ = min{µi | i = 1, . . . , n}. (13)

Clearly A � 0 if and only if µ ≥ 0. For λ ∈ [0, 1], let

Aλ := λ Ā + (1 − λ)(µI ) = diag(α1,λ, . . . , αn,λ) (14)

and

Âλ := diag(̂α1,λ, . . . , α̂n,λ), (15)

where αi,λ = λāi + (1 − λ)µ and α̂i,λ = min{0, αi,λ}, for i = 1, . . . , n. We now derive a
sufficient condition for global optimality.
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Corollary 2.1. For (QP), let x̄ ∈ S.

1◦. If µ ≥ 0 then x̄ is a global minimizer of (QP) if and only if

X̃(Ax̄ + a) ≤ 0.

2◦. If µ < 0 and if there exists λ ∈ [0, 1] such that

X̃(Ax̄ + a) − 1

2
Âλ(v − u) ≤ 0, (16)

then x̄ is a global minimizer of (QP).

Proof 1◦. Let µ ≥ 0. Then A is positive semi-definite. If X̃(Ax̄ + a) ≤ 0 then by choosing
Q = Q̂ = 0, (9) holds and so, by Theorem 2.1, x̄ is a global minimizer of (QP). Conversely,
if x̄ is a global minimizer then −∂ f (x̄) ∩ NS(x̄) 
= ∅. So, −Ax̄ − a ∈ NS(x̄). Thus, for each
x ∈ S, (Ax̄ + a)T(x − x̄) ≥ 0. Using the same line of arguments as in the proof of Theorem
2.1, we obtain that X̃(Ax̄ + a) ≤ 0.

2◦. Let µ < 0. Then, A−µI � 0. Also, it is easy to verify that A− Ā is a diagonally dom-
inant matrix with non-negative diagonal elements, and so, A − Ā � 0. Hence, A − Aλ � 0.
The conclusion now follows from Theorem 2.1 by taking Q = Aλ and Q̂ = Âλ. �	

We now show, for certain special class of quadratic minimization problems, that Theorem
2.1 yields complete characterization of global optimality. Consider the problem

(QP0) min
x∈IRn

n∑

i=1

γi

2
x2

i +
n∑

i=1

ai xi

s.t. x ∈ S :=
n∏

i=1

[ui , vi ],

where γi , ai ∈ IR, ui , vi ∈ IR and ui ≤ vi , i = 1, . . . , n. Define

γ̂i : = min{0, γi } =
{

0 if γi ≥ 0
γi if γi < 0.

(17)

Corollary 2.2. For (QP0), let x̄ ∈ S and let x̃i , γ̂i be defined by (5) and (17), respectively.
Then x̄ is a global minimizer of (QP0) if and only if, for each i = 1, . . . , n,

x̃i (ai + γi x̄i ) − 1

2
γ̂i (vi − ui ) ≤ 0. (18)

Proof Let f (x) := ∑n
i=1

γi
2 x2

i + ∑n
i=1 ai xi . By the definition, x̄ is a global minimizer of

(QP0) if and only if, for each x ∈ S = ∏n
i=1[ui , vi ],

f (x) − f (x̄) =
n∑

i=1

γi

2
x2

i +
n∑

i=1

ai xi −
[

n∑

i=1

γi

2
x̄2

i +
n∑

i=1

ai x̄i

]

=
n∑

i=1

γi

2
(xi − x̄i )

2 +
n∑

i=1

(ai + γi x̄i )(xi − x̄i )

≥ 0.

Thus, x̄ is a global minimizer of (QP0) if and only if, for each i = 1, . . . , n, xi ∈ [ui , vi ],
γi

2
(xi − x̄i )

2 + (ai + γi x̄i )(xi − x̄i ) ≥ 0. (19)
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We now show that (19) implies (18). Assume that (19) holds.
Case 1 Let x̄i = ui . Then

γi

2
(xi − ui ) + (ai + γi x̄i ) ≥ 0, for each xi ∈ [ui , vi ]. (20)

If γi ≥ 0, then (20) holds if and only if ai + γi ≥ 0. If γi < 0, (20) holds if and only if
γi
2 (vi − ui ) + (ai + γi x̄i ) ≥ 0.

Case 2 Let x̄i = vi . Then
γi

2
(xi − vi ) + (ai + γi x̄i ) ≤ 0, for each xi ∈ [ui , vi ]. (21)

If γi ≥ 0, (21) holds if and only if ai + γi x̄i ≤ 0. If γi < 0, Eq. (21) holds if and only if
γi
2 (ui − vi ) + (ai + γi x̄i ) ≤ 0.

Case 3 Let x̄i ∈ (ui , vi ). Then γi ≥ 0 and ai + γi x̄i = 0. Thus, (18) holds. To prove the
converse implication, choose Q = diag(γ1, . . . , γn). Then (18) collapses to (9). �	

Let us now give two numerical examples to apply our results to quadratic program.

Example 2.1. Consider the following problem:

(EP1) min
x∈IR3

f (x) = −1

2
x2

1 − x2
2 − 3

2
x2

3 + x1 − x2 + 2x3

s.t. x ∈ S =
3∏

i=1

[−1, 1].

Let γ1 = −1, γ2 = −2, γ3 = −3, a1 = 1, a2 = −1 and a3 = 2. Let x̄ = (−1, 1,−1)T and
ȳ = (−1,−1,−1)T. It is easy to check that (18) of Corollary 2.2 is satisfied at x̄ , but not at
ȳ. Thus, x̄ is a global minimizer of (EP1) and ȳ is not a global minimizer of (EP1).

Example 2.2. Consider the following problem:

(EP2) min
x∈IR4

f (x) = −1

2
x2

1 + 2x1x2 + x1x4 − 1

2
x2

2 + x2x3 + 3x2
3

−x3x4 − x2
4 + 4x1 + 9

2
x2 − x3 − x4

s.t. x ∈ S =
4∏

i=1

[−1, 1].

Let

A =





−1 2 0 1
2 −1 1 0
0 1 6 −1
1 0 −1 −2





and a1 = 4, a2 = 9
2 , a3 = −1, a4 = −1, ui = −1 and vi = 1, i = 1, 2, 3, 4. Let

x̄ = (−1,−1, 1
2 , 1)T. Then Ax̄ = (0,− 1

2 , 1,− 7
2 )T and Âλ = diag(−4,−4, 0,−4) with

λ = 1. Then,

X̃(Ax̄ + a) − 1

2
Âλ(v − u) =

(
0, 0, 0,−1

2

)T

≤ 0.

So, x̄ satisfies (16) for λ = 1. Indeed, x̄ is a global minimizer of (EP2).
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3 Bivalent quadratic programming

In this section, we will apply the technique, developed in Sect. 2, to bivalent non-convex
quadratic minimization problem of the form:

(BQP) min
x∈IRn

f (x) = 1

2
xT Ax + aTx

s.t. x ∈
n∏

i=1

{ui , vi },

where a ∈ IRn and A ∈ Sn , ui < vi , i = 1, . . . , n are given real numbers. Let Si
B :=

{ui , vi }, i = 1, . . . , n and let SB := ∏n
i=1 Si

B = ∏n
i=1{ui , vi }. Using the same line of argu-

ments as in the proof of Theorem 2.1, we obtain sufficient global optimality conditions for
(BQP).

Theorem 3.1. Let x̄ = (x̄1, . . . , x̄n)T ∈ SB. Suppose that there exists a diagonal matrix
Q := diag(α1, . . . , αn), αi ∈ IRn, i = 1, . . . , n such that A − Q � 0 and

X̃(a + Ax̄) − 1

2
Q(v − u) ≤ 0. (22)

Then, x̄ is a global minimizer of problem (B Q P).

Proof Let Q := diag(α1, . . . , αn), αi ∈ IRn, i = 1, . . . , n such that A − Q � 0 and (22)
holds. Let β := a + (A − Q)x̄ . Then, by Proposition 2.1, l = 1

2 xT Qx +βTx ∈ ∂L f (x̄), i.e.,

f (x) − f (x̄) ≥ l(x) − l(x̄), ∀x ∈ IRn .

If l(x)− l(x̄) ≥ 0 for each x ∈ SB, then x̄ is a global minimizer of problem (BQP). For each
i = 1, . . . , n, xi ∈ {ui , vi }, we now consider the following two cases.
Case 1 Let x̄i = ui . Then

αi

2
(xi − x̄i )

2 + (ai + (Ax̄)i )(xi − x̄i ) ≥ 0

if and only if

αi

2
(vi − ui )

2 + (ai + (Ax̄)i )(vi − ui ) =
[αi

2
(vi − ui ) − x̃i (ai + (Ax̄)i )

]
(vi − ui ) ≥ 0.

Case 2 Let x̄i = vi . Then

αi

2
(xi − x̄i )

2 + (ai + (Ax̄)i )(xi − x̄i ) ≥ 0

if and only if

αi

2
(ui − vi )

2 + (ai + (Ax̄)i )(ui − vi ) =
[
−αi

2
(vi − ui ) + x̃i (ai + (Ax̄)i )

]
(ui − vi ) ≥ 0.

Thus, if (22) holds, then

l(x) − l(x̄) =
n∑

i=1

1

2
αi (xi − x̄i )

2 + (ai + (Ax̄)i )(xi − x̄i ) ≥ 0

and so, x̄ is a global minimizer of (BQP). �	



J Glob Optim (2006) 36:471–481 479

Corollary 3.1. Let x̄ = (x̄1, . . . , x̄n)T ∈ SB; let Aλ be defined by (14). Suppose that there
exists λ ∈ [0, 1] such that

X̃(Ax̄ + a) − 1

2
Aλ(v − u) ≤ 0. (23)

Then x̄ is a global minimizer of (BQP).

Proof (i) Let Q1 = µI and let Q2 = Ā. Then, we can easily verify that A−Qi � 0, i = 1, 2.
Let Q = Aλ. Then A− Q is also a positive semi-definite matrix. The conclusion now follows
from Theorem 3.1. �	

Let us consider certain special cases of (BQP). Firstly, consider the problem

(BQP0) min
x∈IRn

n∑

i=1

1

2
γi x2

i +
n∑

i=1

ai xi

s.t. x ∈ SB :=
n∏

i=1

{ui , vi },

where γi , ai ∈ IR, ui , vi ∈ IR and ui ≤ vi , i = 1, . . . , n.

Corollary 3.2. For the problem (BQP0), let x̄ ∈ SB. Let x̃i be defined by (5). Then x̄ is a
global minimizer of (BQP0) if and only if for each i = 1, . . . , n,

x̃i (ai + γi x̄i ) − γi

2
(vi − ui ) ≤ 0. (24)

Proof The proof is as similar to the proof of Theorem 2.2 and so it is omitted. �	
Now, consider the following special case of (BQP), where for each i = 1, . . . , n, ui = u0

and vi = v0.

(BQP1) min
x∈IRn

f (x) = 1

2
xT Ax + aTx

s.t. x ∈ SB =
n∏

i=1

{u0, v0},

where a ∈ IRn and A ∈ Sn , u0 < v0 are given real numbers. Let e = (1, . . . , 1)T.
The following Corollary extends Theorem 2.3 of [3].

Corollary 3.3. Let x̄ = (x̄1, . . . , x̄n)T be a feasible point of (BQP1). Let Aλ be defined by
(14). Suppose that there exists λ ∈ [0, 1] such that

X̃(Ax̄ + a) − 1
2 Aλ(v0 − u0)e ≤ 0. (25)

Then x̄ is a global minimizer of (BQP1).

Proof The conclusion easily follows from Corollary 3.1 by taking ui = u0 and vi = v0, for
each i = 1, 2, . . . , n. �	

Note from Corollary 3.3 that if

µ

2
(v0 − u0)e − X̃(Ax̄ + a) ≥ 0, (26)

at a feasible point x̄ = (x̄1, . . . , x̄n)T of (BQP1) then x̄ is a global minimizer of (BQP1),
since (25) holds for λ = 0.
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Observe that (26) collapses to the condition that
(

v0 − u0

2

)
µe ≥

(
v0 − u0

2

)
X̃ Ax̃ + X̃a +

(
v0 + u0

2

)
X̃ Ae, (27)

where x̃ =
(

2
v0−u0

)
x̄ + (

v0+u0
2

)
e. So, (27) is just (2.7) of [3].

Corollary 3.4. (Theorem 2.3 [3]) For (BQP1), let u0 = −1 andv0 = 1. Let x̄ = (x̄1, . . . , x̄n)T

be a feasible point of (BQP1). If

µe − X̃(Ax̄ + a) ≥ 0 (28)

then x̄ is a global minimizer of problem (BQP1).

Proof The inequality (28) gives us that (25) holds for λ = 0, u0 = −1 and v0 = 1. The
conclusion follows from Corollary 3.3 by taking λ = 0, u0 = −1 and v0 = 1. �	

The following example illustrates the case where (28) is not satisfied at a global minimizer,
whereas (25) holds at a global minimizer.

Example 3.1. Consider the following problem:

(EP3) min
x∈IR4

f (x) = −1

2
x2

1 + 2x1x2 + x1x4 − 1

2
x2

2 + x2x3 + 3x2
3

−x3x4 − x2
4 + 4x1 + 9

2
x2 − x3 − x4

s.t. x ∈ SB =
4∏

i=1

{−1, 1},

where the objective function is the same as in Example 2.2. Let

A =





−1 2 0 1
2 −1 1 0
0 1 6 −1
1 0 −1 −2





and a1 = 4, a2 = 9
2 , a3 = −1, a4 = −1, ui = −1 and vi = 1, i = 1, 2, 3, 4. Let

x̄ = (−1,−1, 1, 1)T. Then Ax̄ = (0, 0, 4,−4)T and Âλ = diag(−4,−4, 4,−4) with λ = 1.
Thus,

X̃(Ax̄ + a) − 1

2
Aλ(v − u) =

(
0,−1

2
,−1,−1

)T

≤ 0,

and so, x̄ satisfies (25) for λ = 1 and is a global minimizer of (EP3). Using MATLAB,
we obtain that the least eigenvalue of A is µ = −3.4. Thus, A is an indefinite matrix. But
x̄ = (−1,−1, 1, 1)T does not satisfy (28) since for i = 3, µ = −3.4 < a3 + (Ax̄)3 = 3. It
is easy to check that x̄ = (−1,−1, 1, 1)T is not a global minimizer of (EP2) with the box
constraints.

4 Conclusion and future work

In this paper, we have established conditions which ensure that a feasible point is a global
minimizer of a general quadratic minimization problem with box constraints or binary con-
straints. Our global optimality conditions apply to concave quadratic minimization problems
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as well as to indefinite quadratic programs and they completely characterize global optimality
for weighted least squares problems. We have presented a new approach to studying global
minimizers of non-convex quadratic optimization problems using a global subdifferential.
We have shown how a global subdifferential can be calculated for a quadratic function.

This approach together with the well-known Lagrangian method would allow us to char-
acterize global minimizers of quadratic optimization problems involving quadratic inequality
constraints. On the other hand, the problem of calculating L-subdifferentials for suitably cho-
sen L , which is formed by not necessary quadratic functions, remains open. An affirmative
response to this problem will result in the development of global optimality conditions for
more general non-convex optimization problems. These problems will be treated elsewhere.
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