
DOI 10.1007/s10898-005-4388-1
Journal of Global Optimization (2006) 34: 317–337 © Springer 2006

Nontrivial Solutions for Resonant Hemivariational
Inequalities

ZDZISŁAW DENKOWSKI1, LESZEK GASIŃSKI1,† and NIKOLAOS
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1. Introduction

Let Z ⊆ R
N be bounded domain with a C1-boundary. In this paper we

study the following resonant semilinear elliptic problem with a nonsmooth
potential (hemivariational inequality):

−�x(z)−λkx(z)∈ ∂j
(
z, x(z)

)
for a.a. z∈Z,

x|∂Z =0,
(1.1)

where λk, k�2, is an eigenvalue of
(−�,H 1

0 (Z)
)
. We prove the existence of

nontrivial solutions under the assumption that the subdifferential ∂j (z, ζ ) is
bounded by an L∞(Z) function. So our analysis incorporates the so called
“strongly resonant case”, according to the terminology of Bartolo et al.
[1]. It is well known that in this case the difficulty arises from the lack
of compactness, namely the Palais–Smale condition (in this case its non-
smooth variant) does not hold for all c∈R. Moreover, in this case for every
u∈ ∂j (z, ζ ), we have

u+λkζ
ζ

−→ λk as |ζ |→+∞,

which means that we have a completely resonant problem.

†This paper has been partially supported by the State Committee for Scientific Research of Poland
(KBN) under research grants no. 2 P03A 003 25 and no. 4 T07A 027 26.
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In the past, problem (1.1) was investigated primarily in the context
of “smooth problems”, (i.e. j (z, ·) ∈ C1(R)). We refer to the works of
Solimini [2], de Figueiredo and Gossez [3], Capozzi et al. [4], Hirano
and Nishimura [5], Iannacci and Nkashama [6] and the references therein.
De Figueieredo and Gossez [3] and Iannacci and Nkashama [6] examined
the incomplete resonant case. De Figueieredo and Gossez [3] employed
density conditions for j (z, ζ ) at ±∞ with respect to the first eigenvalue,
while Iannacci and Nkashama [6] deal with resonance at higher eigen-
values. Solimini [2], Capozzi et al. [4], Hirano and Nishimura [5] consider
the strongly resonant problem. In all these works the right-hand side non-
linearity is independent on z∈Z and has restrictive differentiability prop-
erties. Hirano and Nishimura [5] prove multiplicity results.

The study of this problem for hemivariational inequalities is lagging
behind. There are some recent works of Goeleven et al. [7], Gasiński and
Papageorgiou [8]. Goeleven et al. employ certain Landesman–Lazer type
condition, suitably adopted to the nonsmooth, multivalued setting pro-
vided by hemivariational inequalities. On the other hand, Gasiński and
Papageorgiou [8] consider nonlinear problems driven by the p-Laplacian
but their analysis does not include the strongly resonant case.

2. Mathematical Background

As we already mentioned our approach is based on the theory of the
nonsmooth critical point theory for locally Lipschitz functionals. For the
convenience of the reader in this section we present some basic definitions
and facts from this theory which we shall need in the sequel.

Let X be a Banach space and X∗ its topological dual. By ‖ · ‖X we
denote the norm of X and by 〈·, ·〉X the duality pairing for the pair
(X,X∗). In our nonsmooth case crucial role play locally Lipschitz function-
als.

A function ϕ: X→R is said to be locally Lipschitz, if for every x ∈
X there exists a neighbourhood U of x and a constant kU > 0 such
that

|ϕ(z)−ϕ(y)|�kU‖z−y‖X ∀z, y ∈U.

From convex analysis it is known that a proper (i.e. not identically
+∞), convex and lower semicontinuous function ψ: X→R

df= R ∪ {+∞}
is locally Lipschitz in the interior of its effective domain domψ

df= {x ∈X:
ψ(x)<+∞}. In analogy with the directional derivative of a convex func-
tion, for a locally Lipschitz function ϕ: X→R, we introduce the general-
ized directional derivative of ϕ at x ∈X in the direction h∈X, defined by
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ϕ0(x;h) df= lim sup
x′ →x
t↘0

ϕ(x ′ + th)−ϕ(x ′)
t

(see Ref. [9]). If ϕ is also convex, then ϕ0(x; ·)=ϕ′(x; ·), where ϕ′(x; ·) is the
usual directional derivative at x ∈X of the convex function ϕ. It is easy to
check that the function X
h→ϕ0(x;h)∈R is sublinear, continuous, so by
the Hahn–Banach theorem, ϕ0(x; ·) is the support function of a nonempty,
convex and w∗-compact set ∂ϕ(x), defined by

∂ϕ(x)
df= {x∗ ∈X∗:〈x∗, h〉X�ϕ0(x;h) for all h∈X}.

The multifunction ∂ϕ : X→2X
∗\{∅} is known as the generalized (or

Clarke) subdifferential of ϕ. From convex analysis we know that if ψ :X→
R is continuous convex (hence locally Lipschitz), its subdifferential in the
sense of convex analysis is given by

∂ψ(x)
df= {x∗ ∈X∗:〈x∗, h〉X�ψ ′(x;h) for all h∈X}.

Since ψ ′(x, ·)=ψ0(x, ·), we see that for continuous convex (hence locally
Lipschitz) functions, the convex subdifferential and the Clarke subdifferen-
tial coincide. If ϕ,ψ:X→R are two locally Lipschitz functions and t ∈ R,
then

∂(ϕ+ψ)(x)⊆ ∂ϕ(x)+ ∂ψ(x) ∀x ∈X

(with equality if in addition ψ is convex) and

∂(tϕ)(x)= t∂ϕ(x) ∀x ∈X.

If ϕ ∈C1(X), then ∂ϕ(x)={ϕ′(x)}. The multifunction ∂ϕ is upper semi-
continuous from X into X∗

w∗ (by X∗
w∗ we denote the space X∗ with

w∗-topology). So for every w∗-open subset U ⊆X∗, the set

∂ϕ+(U)
df= {x ∈X:∂ϕ(x)⊆U}

is strongly open. In particular, the graph of ∂ϕ, i.e.

Gr ∂ϕ={(x, x∗)∈X×X∗:x∗ ∈ ∂ϕ(x)}

is sequentially closed in X×X∗
w∗ (see Ref. [10, p. 43]). A point x ∈X is a

critical point of the locally Lipschitz function ϕ, if 0∈ ∂ϕ(x). If x ∈X is a
critical point, the value c=ϕ(x) is a critical value of ϕ. It is easy to check
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that if x∈X is a local extremum of ϕ (i.e. a local minimum or a local max-
imum), then 0∈ ∂ϕ(x) (i.e. x ∈X is a critical point). For further details on
the subdifferential theory of locally Lipschitz functions, we refer to Ref. [9].

In the smooth critical point theory, a basic tool in the derivation of
minimax characterizations of the critical values, is a compactness con-
dition, known as the Palais–Smale condition. In the present nonsmooth
setting this condition takes the following form (see Ref. [11]):

A locally Lipschitz function ϕ: X→R satisfies the nonsmooth Palais–
Smale condition at level c ∈ R (nonsmooth PSc-condition for short), if any
sequence {xn}n�1 ⊆X such that

ϕ(xn)−→ c and mϕ(xn)−→0,

where

mϕ(xn)
df= min{‖x∗‖X∗ :x∗ ∈ ∂ϕ(xn)},

has a strongly convergent subsequence.
Since for ϕ ∈C1(X) we have ∂ϕ(x)={ϕ′(x)}, we see that the above defi-

nition is an extension of the smooth PSc-condition.
We shall need the following nonsmooth version of the linking Theorem

(see Ref. [12]). Actually the result of Kourogenis and Papageorgiou [12] is
more general, but the formulation that follows suffices for our purposes.

THEOREM 2.1. If X is a reflexive Banach space, X=Y ⊕ Ŷ with dim Y <

+∞, ϕ: X−→R is a locally Lipschitz function, which satisfies the following
hypotheses:

(i) there exist r >0 and β ∈R such that ϕ(x)�β for all x ∈ Ŷ ∩ ∂Br ;
(ii) there exist R>r, e∈ Ŷ , ‖e‖X=1 and α<β such that if

Q={x= te+y:y ∈Y , ‖y‖X�R, 0� t�R}

and ∂Q is the boundary of Q in Y ⊕ Re, we have that ϕ(x)�α for all
x ∈ ∂Q;

(iii) if

	
df= {γ ∈C(Q;X):γ |∂Q= id∂Q},
c

df= inf
γ∈	

max
x∈Q

ϕ(γ (x))

and ϕ satisfies the nonsmooth PSc-condition,
then c�β and c is a critical value of ϕ.
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Recall that, if {λn}n�1 are the distinct eigenvalues of
(−�,H 1

0 (Z)
)
, then

λn−→+∞ and λ1 is positive, simple and isolated. Also there is an ortho-
normal basis {un}n�1 ⊆H 1

0 (Z)∩C∞(Z) of L2(Z), which are eigenfunctions
corresponding to the eigenvalues {λn}n�1, i.e.

−�un(z)=λnun(z) ∀z∈Z,
un|∂Z =0,

for n�1.
If the boundary ∂Z of Z is a Ck-manifold (respectively, a C∞-manifold)

then un∈Ck(Z) (respectively, un∈C∞(Z)). The sequence
{
(1/

√
λn)un

}
n�1 is

an orthonormal basis of H 1
0 (Z). For every integer m�1, let E(λm) be the

eigenspace corresponding to the eigenvalue λm. We define

Hm
df=

m−1⊕

i=1

E(λi) and Ĥm
df=

∞⊕

i=m+1

E(λi).

We have the following orthogonal direct sum decomposition:

H 1
0 (Z) = Hm⊕E(λm)⊕ Ĥm. (2.1)

The eigenspace E(λm) ⊆ H 1
0 (Z) ∩ C∞(Z) has the unique continuation

property, namely if u∈E(λm) is such that u vanishes on a set of positive
measure, then u(z)=0 for all z∈Z.

If we set

V m
df=Hm⊕E(λm) and Ŵm

df= E(λm)⊕ Ĥm,

then we have the following variational characterizations of the eigenvalues
(the so called Rayleigh quotients):

λ1 = min
x ∈H 1

0 (Z)

x �=0

‖∇x‖2
2

‖x‖2
2

and for m�2, we have

λm = max
v∈Vm
v �=0

‖∇v‖2
2

‖v‖2
2

, (2.2)



322 ZDZISŁAW DENKOWSKI ET AL.

where the maximum is attained on E(λm). Also

λm = min
w∈ Ŵm
w �=0

‖∇w‖2
2

‖w‖2
2

, (2.3)

where the minimum is attained on E(λm) and finally, we have

λm = min
Y ⊆H 1

0 (Z)

dimY =m

max
y ∈Y
y �=0

‖∇y‖2
2

‖y‖2
2

. (2.4)

3. Main Result

Our hypotheses on the nonsmooth potential j are the following:

H(j) j :Z×R−→R is a function, such that

(i) for all ζ ∈R, the function z �−→ j (z, ζ ) is measurable;

(ii) for almost all z ∈Z, the function ζ �−→ j (z, ζ ) is locally Lips-
chitz and j (z,0)=0;

(iii) there exists η∈L∞(Z), such that

|u|�η(z) for a.a. z∈Z, all ζ ∈R and all u∈ ∂j (z, ζ );

(iv) there exists m∈N, m�k, such that

lim sup
ζ→0

u

ζ
<λm−λk,

uniformly for almost all z∈Z and all u∈ ∂j (z, ζ ) and

sup
u∈∂j (z,ζ )

|u|−→0 as |ζ |→+∞

for almost all z∈Z;

(v) we have

lim inf
|ζ |→+∞

j (z, ζ )�0,

uniformly for almost all z∈Z and

j (z, ζ )� 1
2(λm−1 −λk)ζ 2,

uniformly for almost all z∈Z, and all ζ ∈R.
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Evidently hypothesis H(j)(iii) implies that for almost all z∈Z, j (z, ·) is
globally Lipschitz.

Let ϕ: H 1
0 (Z)−→R be the energy functional defined by

ϕ(x)
df= 1

2
‖∇x‖2

2 − λk

2
‖x‖2

2 −
∫

Z

j
(
z, x(z)

)
dz ∀x ∈H 1

0 (Z).

We know that ϕ is locally Lipschitz (see e.g. Ref. [13, p. 313]).

THEOREM 3.1. If hypotheses H(j) hold, then ϕ satisfies the nonsmooth
PSc condition for c>0.
Proof. Let {xn}n�1 ⊆H 1

0 (Z) be a sequence, such that

ϕ(xn)−→ c>0 and mϕ(xn)−→0. (3.1)

Let x∗
n ∈ ∂ϕ(xn) be such that

‖x∗
n‖H−1(Z)=mϕ(xn) ∀n�1. (3.2)

The existence of such elements follows from the weak compactness of
sets ∂ϕ(xn)⊆H 1

0 (Z) and the weak lower semicontinuity of the norm func-
tional in Banach spaces. We have

x∗
n = Axn−λkxn−u∗

n, (3.3)

with A∈L(
H 1

0 (Z),H
−1(Z)

)
being the operator defined by

〈Ax,y〉H 1
0 (Z)

df=
∫

Z

(∇x(z),∇y(z))
RNdz ∀x, y ∈H 1

0 (Z)

and u∗
n ∈L2(Z), with u∗

n(z)∈ ∂j
(
z, xn(z)

)
for almost all z∈Z (see Ref. [10,

p. 83]). Evidently A�0 and so A is maximal monotone.
Let 0<λ1<λ2< · · ·<λk < · · · be the sequence of distinct eigenvalues of(−�,H 1

0 (Z)
)

and let E(λi) be the eigenspace corresponding to the eigen-
value λi for i�1. From (2.1), for every n�1, we can write that

xn=vn+x0
n +wn with vn∈Hk, x0

n ∈E(λk), wn∈ Ĥk.

From the parallelogram identity and the orthogonality relations, we see
that

‖vn+wn‖H 1
0 (Z)

=‖vn−wn‖H 1
0 (Z)

∀n�1. (3.4)
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Also from the variational characterization of the eigenvalues {λi}i�1, we
have

‖∇wn‖2
2 �λk+1‖wn‖2

2 ∀n�1 (3.5)

and

‖∇vn‖2
2 �λk−1‖vn‖2

2 ∀n�1. (3.6)

From (3.3)–(3.6), we have

〈
x∗
n,wn−vn

〉
H 1

0 (Z)
= 〈
Axn−λkxn−u∗

n,wn−vn
〉
H 1

0 (Z)

=‖∇wn‖2
2 −‖∇vn‖2

2 −λk‖wn‖2
2 +λk‖vn‖2

2

−
∫

Z

u∗
n(z)

(
wn−vn

)
(z)dz

�
(

1− λk

λk+1

)
‖∇wn‖2

2 −
(

1− λk

λk−1

)
‖∇vn‖2

2

−
∫

Z

u∗
n(z)

(
wn−vn

)
(z)dz.

Thus from hypothesis H(j)(iii), we obtain

‖x∗
n‖H−1(Z)‖wn−vn‖H 1

0 (Z)

�
(

1− λk

λk+1

)
‖∇wn‖2

2 −
(

1− λk

λk−1

)
‖∇vn‖2

2 − c1‖wn−vn‖H 1
0 (Z)

,

for some c1>0 and from (3.4), also

‖x∗
n‖H−1(Z)‖wn+vn‖H 1

0 (Z)

�
(

1− λk

λk+1

)
‖∇wn‖2

2 −
(

1− λk

λk−1

)
‖∇vn‖2

2 − c1‖wn+vn‖H 1
0 (Z)

.

Using also Poincaré’s inequality, we have

(
c1 +‖x∗

n‖H−1(Z)

)‖wn+vn‖H 1
0 (Z)

�
(

1− λk

λk+1

)
‖∇wn‖2

2 −
(

1− λk

λk−1

)
‖∇vn‖2

2

� c2
(‖∇wn‖2

2 +‖∇vn‖2
2

)
� c3‖wn+vn‖2

H 1
0 (Z)

,

for some c2, c3>0. Thus the sequence
{
wn+vn

}
n�1 ⊆H 1

0 (Z) is bounded.
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So passing to a subsequence, we may assume that

wn+vn−→h weakly in H 1
0 (Z) (3.7)

and from the compactness of the embedding H 1
0 (Z)⊆L2(Z), also

wn+vn−→h in L2(Z). (3.8)

Then, from (3.2) and (3.1), we have

〈
Axn−λkxn−u∗

n,wn+vn−h〉= 〈
x∗
n,wn+vn−h〉

H 1
0 (Z)� εn‖wn+vn−h‖H 1
0 (Z)

, (3.9)

for some εn↘0. Exploiting the orthogonality relations, we have

〈
λkxn,wn+vn−h〉

H 1
0 (Z)

=
∫

Z

λkxn(z)
(
wn+vn−h)(z)dz

=
∫

Z

λk
(
wn+vn

)
(z)

(
wn+vn−h

)
(z)dz−→0. (3.10)

Also because the sequence {u∗
n}n�1 ⊆ L2(Z) is bounded, from (3.8) we

have that

〈
u∗
n,wn+vn−h〉

H 1
0 (Z)

=
∫

Z

u∗
n(z)

(
wn+vn−h)(z)dz−→0. (3.11)

Passing to the limit as n→ +∞ in (3.9) and using (3.10) and (3.11), we
obtain

lim sup
n→+∞

〈
Axn,wn+vn−h〉

H 1
0 (Z)

�0,

thus

lim sup
n→+∞

〈
A(wn+vn),wn+vn−h〉

H 1
0 (Z)

�0,

so, by the maximal monotonicity of A, we have

〈
A(wn+vn),wn+vn

〉
H 1

0 (Z)
−→ 〈

Ah,h
〉
H 1

0 (Z)

and finally

∥∥∇(wn+vn)
∥∥

2 −→∥∥∇h∥∥2.
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Recalling that

∇(wn+vn)−→∇h weakly in L2(Z;R
N)

(see (3.7)), from the Kadec–Klee property of Hilbert spaces, it follows that

∇(wn+vn)−→∇h in L2(Z;R
N)

and thus, we have

wn+vn−→h in H 1
0 (Z). (3.12)

Next we claim that the sequence {x0
n}⊆E(λk)⊆H 1

0 (Z) is bounded. Sup-
pose that this is not the case. Then by passing to a subsequence if neces-
sary, we may assume that

µn
df= ‖x0

n‖H 1
0 (Z)

−→+∞.

Let us set

y0
n

df= x0
n

µn
∀n�1.

Because E(λk) is finite dimensional (and so all norms are equivalent), we
may assume that

y0
n −→y0, in C(Z),

for some y0 �=0 and by the unique continuation property of the eigenfunc-
tions of

(−�,H 1
0 (Z)

)
, we have that y0(z) �=0 for almost all z∈Z. We have

u∗
n(z)∈ ∂j

(
z,wn(z)+vn(z)+µny0

n(z)
)

for a.a. z∈Z,

with µn→+∞. From (3.12), by passing to a subsequence if necessary, we
may assume that

wn+vn−→h in L2(Z),

wn(z)+vn(z)−→h(z) for a.a. z∈Z,∣
∣wn(z)+vn(z)

∣
∣�ϑ(z) for a.a. z∈Z,

with ϑ ∈L2(Z). We have
∣
∣xn(z)

∣∣= ∣∣wn(z)+vn(z)+µny0
n(z)

∣∣

�µn
∣∣y0
n(z)

∣∣−ϑ(z)−→+∞ for a.a. z∈Z. (3.13)
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From the choice of the sequence {xn}n�1 ⊆H 1
0 (Z), we have

x∗
n = Axn−λkxn−u∗

n−→0 in H−1(Z).

Since

Au0 = λku
0 ∀u0 ∈E(λk)

for every n�1, we have

x∗
n =Axn−λkxn−u∗

n

=A(wn+vn)−λk(wn+vn)+Ax0
n −λkx0

n −u∗
n

=A(wn+vn)−λk(wn+vn)−u∗
n. (3.14)

From (3.7) and the fact that A∈L(
H 1

0 (Z),H
−1(Z)

)
, we have

A(wn+vn)−→Ah weakly in H−1(Z)

and from (3.8), we have

λk(wn+vn)−→λkh in L2(Z).

Moreover, from the second part of hypothesis H(j)(iv) and (3.13), we
know that

u∗
n(z)−→0 for a.a. z∈Z

and by the Lebesgue dominated convergence theorem, it follows that

u∗
n−→0 in L2(Z).

So, if we pass to the limit in (3.14), we obtain

0 = Ah−λkh,

so

Ah = λkh,

thus

−�h(z)=λkh(z) for a.a. z∈Z,
h|∂Z =0.
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But h∈E(λk)⊥, so it follows that h=0 and

wn+vn−→0 in H 1
0 (Z), (3.15)

Again from the choice of the sequence {xn}⊆H 1
0 (Z), using (3.15) we have

0<c= lim
n→+∞ϕ(xn)

= lim
n→+∞

[
1
2
‖∇xn‖2

2 − λk

2
‖xn‖2

2 −
∫

Z

j
(
z, xn(z)

)
dz

]

= lim
n→+∞

[
1
2
‖∇(wn+vn)‖2

2 − λk

2
‖wn+vn‖2

2 −
∫

Z

j
(
z, xn(z)

)
dz

]

� lim sup
n→+∞

(
−

∫

Z

j
(
z, xn(z)

)
dz

)
. (3.16)

On the other hand by (3.13), Fatou’s lemma and the first part of hypoth-
esis H(j)(v), we have

lim sup
n→+∞

(
−

∫

Z

j
(
z, xn(z)

)
dz

)
�−

∫

Z

lim inf
n→+∞ j

(
z, xn(z)

)
dz�0. (3.17)

From (3.16) and (3.17), we obtain a contradiction. So indeed the
sequence {x0

n}n�1 ⊆E(λk)⊆H 1
0 (Z) is bounded. From this it follows that the

sequence {xn}n�1 ⊆H 1
0 (Z) is bounded. Thus we may assume that

xn−→x weakly in H 1
0 (Z),

xn−→x in L2(Z).

From (3.13), we have that
〈
x∗
n, xn−x〉

H 1
0 (Z)

= 〈
Axn−λkxn−u∗

n, xn−x〉
H 1

0 (Z)
� εn‖xn−x‖H 1

0 (Z)
,

with εn↘0. Since, from hypothesis H(j)(iii), we have

〈
u∗
n, xn−x〉

H 1
0 (Z)

=
∫

Z

u∗
n(z)

(
xn−x)(z)dz−→0

and

〈
λkxn, xn−x〉

H 1
0 (Z)

=
∫

Z

λkxn(z)
(
xn−x)(z)dz−→0

so also

lim sup
n→+∞

〈
Axn, xn−x〉

H 1
0 (Z)

� 0.
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As A is maximal monotone, it is also generalized pseudomonotone, so
〈
Axn, xn

〉−→ 〈
Ax,x

〉
,

and

‖∇xn‖2 −→‖∇x‖2

and finally

xn−→x in H 1
0 (Z). �

Now we can formulate our main theorem and establish the existence of
non-trivial solutions for problem (1.1). By a solution of (1.1) we under-
stand a function x ∈H 1

0 (Z) such that it satisfies the equation pointwise for
almost all z∈Z. Evidently such a solution belongs in H 2(Z). In fact stan-
dard linear elliptic regularity theory implies that x ∈C1(Z).

THEOREM 3.2. If hypotheses H(j) hold, then problem (1.1) has at least
one nontrivial solution.
Proof. By virtue of the first part of hypothesis H̄ (j)(iv), we can find ξ <

λm−λk � 0 and δ>0 such that

u

ζ
� ξ for a.a. z∈Z, all |ζ |� δ and all u∈ ∂j (z, ζ ). (3.18)

Also from hypothesis H(j)(iii), we have
∣∣∣∣
u

ζ

∣∣∣∣ � η1(z) for a.a. z∈Z, all |ζ |� δ and all u∈ ∂j (z, ζ ),

for some η1 ∈L∞(Z). Therefore we can find ξ1>0 and i >k such that

u

ζ
� ξ1 � 1

3(λi −λk) for a.a. z∈Z, all ζ �=0 and all u∈ ∂j (z, ζ )
(3.19)

and

32ξ 2

λm−λk − ξ +λk +3ξ1<λi. (3.20)

Let

Hm,i
df=

i−1⊕

j=m
E(λj ) and Ŵi

df=
⊕

j�i
E(λj ).
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Let w∈ Ŵi and y ∈Hm,i . Using the variational expressions for the eigen-
values of

(−�,H 1
0 (Z)

)
, we have

ϕ(w+y)= 1
2
‖∇(w+y)‖2

2 − λk

2
‖w+y‖2

2 −
∫

Z

j
(
z, (w+y)(z))dz

= 1
2
‖∇w‖2

2 + 1
2
‖∇y‖2

2 − λk

2
‖w‖2

2 − λk

2
‖y‖2

2

−
∫

Z

j
(
z, (w+y)(z))dz

� 1
4
‖∇w‖2

2 + 1
4
‖∇y‖2

2 − λk

2
‖w‖2

2 − λk

2
‖y‖2

2

+λi
4

‖w‖2
2 + λm

4
‖y‖2

2 −
∫

Z

j
(
z, (w+y)(z))dz. (3.21)

For z∈Z \N with |N |=0, we consider two cases:

Case 1. |w(z)+y(z)|>δ.
First suppose that w(z) + y(z) > δ. Invoking the Lebourg mean value

theorem (see Ref. [10, p. 41] or Lebourg [2]), we obtain

j
(
z, (w+y)(z))− j (z, δ) = u∗

t

[
(w+y)(z)− δ]

and
j (z, δ) = j (z, δ)− j (z,0) = v∗

t δ,

where
u∗
t ∈ ∂j(z, t (z)(w+y)(z)+ (1− t (z))δ), 0<t(z)<1

and
v∗
t ∈ ∂j(z, t1(z)δ

)
, 0<t1(z)<1.

Then, using (3.19), we have

u∗
t � ξ1

[
t (z)(w+y)(z)+ (1− t (z))δ] � ξ1(w+y)(z)

and using (3.18), we have

v∗
t � ξ t1(z)δ � ξδ.

So it follows that

j (z, δ) � ξδ2
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and

j
(
z, (w+y)(z)) � ξ1(w+y)(z)[(w+y)(z)− δ]+ ξδ2

� ξ1(w+y)2(z)− ξ1δ
2 + ξδ2

= ξ1(w+y)2(z)− (ξ1 − ξ)δ2. (3.22)

Next suppose that w(z)+ y(z)<−δ. Again via the Lebourg mean value
theorem, we have

j
(
z, (w+y)(z))− j (z,−δ) = u∗

t

(
(w+y)(z)+ δ),

and

j (z,−δ) = j (z,−δ)− j (z,0) = v∗
t (−δ).

where

v∗
t ∈ ∂j(z, t1(z)(−δ)

)
, 0<t1(z)<1

and

u∗
t ∈ ∂j(z, t (z)(w+y)(z)+ (1− t (z))(−δ)), 0<t(z)<1.

In this case, we have

u∗
t � ξ1(w+y)(z) and v∗

t � ξ(−δ)
and so

j (z, δ) � ξδ2

and

j
(
z, (w+y)(z)) � ξ1(w+y)2(z)− (ξ1 − ξ)δ2.

The last inequality is the same as (3.22). So (3.22) holds when
∣
∣(w +

y)(z)
∣∣>δ. Then, for

∣∣(w+y)(z)∣∣>δ, we can write

λi −λk + ξ1

4
w(z)2 + λm−λk + ξ

4
y(z)2 − j(z, (w+y)(z))

� λi −λk + ξ1

4
w(z)2 + λm−λk + ξ

4
y(z)2 − ξ1(w+y)2(z)+ (ξ1 − ξ)δ2

= λi −λk + ξ1

4
w(z)2 + λm−λk + ξ

4
y(z)2 − ξy(z)2

−(ξ1 − ξ)y(z)2 − ξ1w(z)
2 −2ξ1

(
wy

)
(z)+ (ξ1 − ξ)δ2
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= λi −λk −3ξ1

4
w(z)2 + λm−λk − ξ

4
y(z)2 − ξ

2
y(z)2

−(ξ1 − ξ)y(z)2 −2ξ1
(
wy

)
(z)+ (ξ1 − ξ)δ2

= λi −λk −3ξ1

8
w(z)2 + λm−λk − ξ

4
y(z)2 − ξ

2
y(z)2

+λi −λk −3ξ1

8
w(z)2 − (ξ1 − ξ)y(z)2 −2ξ1

(
wy

)
(z)+ (ξ1 − ξ)δ2

� λi −λk −3ξ1

8
w(z)2 + λm−λk − ξ

4
y(z)2 −2ξ

(
wy

)
(z)

+λi −λk −3ξ1

8
w(z)2 − (ξ1 − ξ)y(z)2

−2(ξ1 − ξ)(wy)(z)+ (ξ1 − ξ)δ2 (3.23)

(since ξ � 0).

Case 2.
∣∣w(z)+y(z)∣∣ � δ.

In this case, using the Lebourg mean value theorem, (3.18) and the facts
that ξ <0 � ξ1, λi −λk >3ξ1, we have

λi −λk + ξ1

4
w(z)2 + λm−λk + ξ

4
y(z)2 − j(z, (w+y)(z))

� λi −λk + ξ1

4
w(z)2 + λm−λk + ξ

4
y(z)2 − ξ(w+y)2(z)

� λi −λk + ξ1

4
w(z)2 + λm−λk + ξ

4
y(z)2 − ξ1w(z)

2 − ξy(z)2 −2ξ(wy)(z)

� λi −λk −3ξ1

4
w(z)2 + λm−λk − ξ

4
y(z)2 − ξ

2
y(z)2 −2ξ(wy)(z)

� λi −λk −3ξ1

8
w(z)2 + λm−λk − ξ

4
y(z)2 −2ξ(wy)(z). (3.24)

Note that on the right-hand side of (3.23) the first three summands are
the same as on the right-hand side of (3.24).

Now, we can find µ>0 such that for every σ ∈R and every τ ∈ [−µ,µ],
we have

(
λi −λk −3ξ1

)
σ 2 −8(ξ1 − ξ)τ 2 −16(ξ1 − ξ)στ + (ξ1 − ξ)δ2 � 0. (3.25)

Because Hm,i is finite dimensional, all norms are equivalent on Hm,i and
so we can find �> 0, such that, if ‖y‖H 1

0 (Z)
� �, y ∈Hm,i , then

∣
∣y(z)

∣
∣ � µ

for all z ∈ Z. Then, for ‖y‖H 1
0 (Z)

� �, y ∈Hm,i and w ∈ Ŵi , from (3.21),
(3.23)–(3.25), (3.20) and the fact that ξ <λm−λk, we have
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ϕ(w+y) � 1
4
‖∇w‖2

2 + 1
4
‖∇y‖2

2 − λk

2
‖w‖2

2 − λk

2
‖y‖2

2

+λi
4

‖w‖2
2 + λm

4
‖y‖2

2 −
∫

Z

j
(
z, (w+y)(z))dz

=
[

1
4
‖∇w‖2

2 + 1
4
‖∇y‖2

2 − ξ1

4
‖w‖2

2 − ξ

4
‖y‖2

2 − λK

4
‖w‖2

2−
λk

4
‖y‖2

2

]

+λi −λk + ξ1

4
‖w‖2

2 + λm−λk + ξ
4

‖y‖2
2 −

∫

Z

j
(
z, (w+y)(z))dz

=
[

1
4
‖∇w‖2

2 + 1
4
‖∇y‖2

2 − ξ1

4
‖w‖2

2 − ξ

4
‖y‖2

2 − λk

4
‖w‖2

2 − λk

4
‖y‖2

2

]

+ λi −λk −3ξ1

8
w(z)2 + λm−λk − ξ

4
y(z)2 −2ξ(wy)(z)

� 1
4
‖∇w‖2

2 + 1
4
‖∇y‖2

2 − ξ1

4
‖w‖2

2 − ξ

4
‖y‖2

2 − λk

4
‖w‖2

2 − λk

4
‖y‖2

2

� 1
4

(
1− λk

λi
− ξ1

λi

)
‖∇w‖2

2 + 1
4

(
1− λk

λm
− ξ

λm

)
‖∇y‖2

2>0. (3.26)

Next we consider

Hm=
m−1⊕

j=1

E(λj ),

Ŵm=
⊕

j�m
E(λj ) = Hm,i ⊕ Ŵi,

V m=
m⊕

j=1

E(λj ).

From (3.26), we see that we can find r >0 and β >0 such that

inf{ϕ(x) :x ∈ Ŵm, ‖x‖H 1
0 (Z)

= r} = β > 0.

We claim that for any 0<α<β, we can find R> r large enough, such
that if u∈V m with ‖u‖H 1

0 (Z)
=R, then ϕ(u) � α. Indeed if this is not the

case, we can find a sequence {un}n�1 ⊆V m with ‖un‖H 1
0 (Z)

−→+∞ and ε>

0, such that

ϕ(un) � ε ∀n�1,

thus

lim inf
n→+∞ ϕ(un) � ε,
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so

lim inf
n→+∞

[
1
2
‖∇un‖2

2 − λk

2
‖un‖2

2 −
∫

Z

j
(
z, un(z)

)
dz

]
� ε.

Since m � k and (1/2)‖∇un‖2
2 � (λk/2)‖un‖2

2, we have

lim inf
n→+∞

(
−

∫

Z

j
(
z, un(z)

)
dz

)
� ε.

Let

ên
df= un

‖un‖H 1
0 (Z)

∀n�1.

Then

ên−→ ê in H 1
0 (Z),

for some ê ∈ V m (since V m is finite dimensional). Moreover, from the
unique continuation property e(z) �=0 for almost all z∈Z and so

∣∣un(z)
∣∣ −→ +∞ for a.a. z∈Z.

So from Fatou’s lemma and the first part of hypothesis H(j)(v), we have

ε� lim inf
n→+∞

(
−

∫

Z

j
(
z, un(z)

)
dz

)
= − lim sup

n→+∞

∫

Z

j
(
z, un(z)

)
dz

� − lim inf
n→+∞

∫

Z

j
(
z, un(z)

)
dz � −

∫

Z

lim inf
n→+∞ j

(
z, un(z)

)
dz � 0, (3.27)

a contradiction.
In addition, using the second part of hypothesis H(j)(v), for any y∈Hm,

we have

ϕ(y)= 1
2
‖∇y‖2

2 − λk

2
‖y‖2

2 −
∫

Z

j
(
z, y(z)

)
dz

� 1
2
‖∇y‖2

2 − λk

2
‖y‖2

2 + λk

2
‖y‖2

2 − λm−1

2
‖y‖2

2

= 1
2
‖∇y‖2

2 − λm−1

2
‖y‖2

2 � 0,

i.e. ϕ|Hm
� 0.
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Therefore, let e∈E(λm) be such that ‖e‖H 1
0 (Z)

= 1 and let R>r be large
enough so that ϕ(u) � α for all u∈V m, ‖u‖H 1

0 (Z)
=R. Recall that

α < β = inf{ϕ(x) :x ∈ Ŵm, ‖x‖H 1
0 (Z)

= r}.

So we can apply Theorem 2.1 with Y =Hm and Ŷ = Ŵm and obtain x0 ∈
H 1

0 (Z), such that 0 ∈ ∂ϕ(x0) and ϕ(x0)�β > 0 =ϕ(0), so x0 �= 0. If follows
easily that x0 is the desired nontrivial solution of (1.1).

Remark 3.3. In the proof of Theorem 3.1 (see (3.17)) as well as in the
proof of Theorem 3.2 (see (3.27)), the application of Fatou’s lemma is per-
mitted since by the first part of hypothesis H(j)(v), we can find M>0 such
that

j (z, ζ ) � −1 for a.a. z∈Z and all |ζ |>M.
By hypothesis H(j)(iii) and the Lebourg mean value theorem, we have

∣∣j (z, ζ )
∣∣ � η1(z) for a.a. z∈Z and all |ζ | � M,

with η1 ∈L∞(Z). So finally

j (z, ζ ) � −η2(z) for a.a. z∈Z and all ζ ∈R,

with η2 ∈L∞(Z)+. This permits the use of Fatou’s lemma.

Remark 3.4. As a simple example of a superpotential j satisfying hypoth-
eses H(j), we can take the following function (for simplicity we drop the
z∈Z dependence; see Figure 1):

j (ζ ) df =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

a

ζ
if ζ �−1,

−aζ 2 if −1<ζ �1,

−a
ζ

if 1<ζ

for some 0<(λk −λm)/2<a� (λk −λm−1)/2.
Then we have (see Figure 2):

∂j (ζ )
df=

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

− a

ζ 2
if ζ <−1,

[−a,2a] if ζ =−1,
−2aζ if −1<ζ <1,
[−2a, a] if ζ =1,
a

ζ 2
if 1<ζ.
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�

�Figure 1.

−a
1−1 ζ

j (ζ )

�

�

�
�
�
�
�
�

Figure 2.

2a

a

−a
−2a

−1 1 ζ

∂j (ζ )
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