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1. Introduction

Let Z CR" be bounded domain with a C!-boundary. In this paper we
study the following resonant semilinear elliptic problem with a nonsmooth
potential (hemivariational inequality):

—Ax(z) — Mx(z) €0j(z,x(z))  for aa. z€Z,
xlpz =0,

(1.1)

where A, k>2, is an eigenvalue of (A, H; (Z)). We prove the existence of
nontrivial solutions under the assumption that the subdifferential 95 (z, ¢) is
bounded by an L*°(Z) function. So our analysis incorporates the so called
“strongly resonant case”, according to the terminology of Bartolo et al.
[1]. It is well known that in this case the difficulty arises from the lack
of compactness, namely the Palais—Smale condition (in this case its non-
smooth variant) does not hold for all c€RR. Moreover, in this case for every
uedj(z, ), we have

u—+A
—ké —> Ax as |¢]|— 400,

which means that we have a completely resonant problem.

fThis paper has been partially supported by the State Committee for Scientific Research of Poland
(KBN) under research grants no. 2 PO3A 003 25 and no. 4 TO7A 027 26.
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In the past, problem (1.1) was investigated primarily in the context
of “smooth problems”, (i.e. j(z,-) € C!(R)). We refer to the works of
Solimini [2], de Figueiredo and Gossez [3], Capozzi et al. [4], Hirano
and Nishimura [5], Iannacci and Nkashama [6] and the references therein.
De Figueieredo and Gossez [3] and Iannacci and Nkashama [6] examined
the incomplete resonant case. De Figueieredo and Gossez [3] employed
density conditions for j(z,¢) at +oo with respect to the first eigenvalue,
while Iannacci and Nkashama [6] deal with resonance at higher eigen-
values. Solimini [2], Capozzi et al. [4], Hirano and Nishimura [5] consider
the strongly resonant problem. In all these works the right-hand side non-
linearity is independent on z € Z and has restrictive differentiability prop-
erties. Hirano and Nishimura [5] prove multiplicity results.

The study of this problem for hemivariational inequalities is lagging
behind. There are some recent works of Goeleven et al. [7], Gasinski and
Papageorgiou [8]. Goeleven et al. employ certain Landesman-—Lazer type
condition, suitably adopted to the nonsmooth, multivalued setting pro-
vided by hemivariational inequalities. On the other hand, Gasinski and
Papageorgiou [8] consider nonlinear problems driven by the p-Laplacian
but their analysis does not include the strongly resonant case.

2. Mathematical Background

As we already mentioned our approach is based on the theory of the
nonsmooth critical point theory for locally Lipschitz functionals. For the
convenience of the reader in this section we present some basic definitions
and facts from this theory which we shall need in the sequel.

Let X be a Banach space and X* its topological dual. By | - ||x we
denote the norm of X and by (-, -)x the duality pairing for the pair
(X, X*). In our nonsmooth case crucial role play locally Lipschitz function-
als.

A function ¢: X — R is said to be locally Lipschitz, if for every x €
X there exists a neighbourhood U of x and a constant ky > 0 such
that

lp(2) —pI<kuvllz=yllx Vz,yeU.

From convex analysis it is known that a proper (i.e. not identically
400), convex and lower semicontinuous function v: X SREZRU {+00}
is locally Lipschitz in the interior of its effective domain domwd=f {xeX:
¥ (x) < 4o00}. In analogy with the directional derivative of a convex func-
tion, for a locally Lipschitz function ¢: X — R, we introduce the general-
ized directional derivative of ¢ at x € X in the direction h € X, defined by
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p(x'+1h) — (")
p

o' (x; ) Y lim su t

x'—x

t\ 0

(see Ref. [9]). If ¢ is also convex, then ¢°(x;-)=¢'(x;-), where ¢’(x; -) is the
usual directional derivative at x € X of the convex function ¢. It is easy to
check that the function X 34 — ¢°(x; h) €R is sublinear, continuous, so by
the Hahn—Banach theorem, ¢°(x; -) is the support function of a nonempty,
convex and w*-compact set d¢(x), defined by

dp(x) Y (x*e X*:(x* h)x <¢"(x; h) for all heX).
The multifunction 3¢ : X —2X"\{#} is known as the generalized (or
Clarke) subdifferential of ¢. From convex analysis we know that if ¢ : X —

R is continuous convex (hence locally Lipschitz), its subdifferential in the
sense of convex analysis is given by

a0 Y (x* e X*:(x*, h)x <¥'(x: h) for all heX).
Since ¥'(x, ) =v"(x, -), we see that for continuous convex (hence locally
Lipschitz) functions, the convex subdifferential and the Clarke subdifferen-

tial coincide. If ¢, ¥: X — R are two locally Lipschitz functions and ¢ € R,
then

Ae+9Y)(x) Sopx)+dy(x) VxeX
(with equality if in addition ¢ is convex) and
A(tp)(x)=tdp(x) VxeX.
If ¢ € C'(X), then d¢(x) ={¢'(x)}. The multifunction d¢ is upper semi-

continuous from X into X;. (by X;. we denote the space X* with
w*-topology). So for every w*-open subset U C X*, the set

99" (U) £ {xeX:dp(x) CU}
is strongly open. In particular, the graph of d¢, i.c.
Grogp={(x,x")eX x X"x"€dpx)}
is sequentially closed in X x X}. (see Ref. [10, p. 43]). A point xe X is a

critical point of the locally Lipschitz function ¢, if 0€dgp(x). If xe X is a
critical point, the value c=¢(x) is a critical value of ¢. It is easy to check
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that if x € X is a local extremum of ¢ (i.e. a local minimum or a local max-
imum), then 0 €d¢(x) (i.e. x € X is a critical point). For further details on
the subdifferential theory of locally Lipschitz functions, we refer to Ref. [9].

In the smooth critical point theory, a basic tool in the derivation of
minimax characterizations of the critical values, is a compactness con-
dition, known as the Palais—Smale condition. In the present nonsmooth
setting this condition takes the following form (see Ref. [11]):

A locally Lipschitz function ¢: X — R satisfies the nonsmooth Palais—
Smale condition at level ¢ € R (nonsmooth P S.-condition for short), if any
sequence {x,},>1 € X such that

¢(x,)—c¢ and m¥(x,) — 0,
where
1) af . * Lk
m? (x,) = min{||x™| x+:x™ € dp(x,)},

has a strongly convergent subsequence.

Since for ¢ € C'(X) we have d¢(x)={¢'(x)}, we see that the above defi-
nition i1s an extension of the smooth PS.-condition.

We shall need the following nonsmooth version of the linking Theorem
(see Ref. [12]). Actually the result of Kourogenis and Papageorgiou [12] is
more general, but the formulation that follows suffices for our purposes.

THEOREM 2.1. If X is a reflexive Banach space, X =Y®Y withdim Y <
400, ¢: X —> R is a locally Lipschitz function, which satisfies the following
hypotheses.

() there exist r >0 and B R such that ¢(x) > p for all x € YNaB,;
(ii) there exist R>r, ecY, |lellx=1 and a < B such that if

Q={x=te+yyeY, [lylx<R, 0<t<R}

and dQ is the boundary of Q in Y ®Re, we have that ¢(x)<a for all
x€00;
(i) if
df .
I'={yeC(Q; X):ylsp=idyo},
ds .
c= ;rg; r){leaéw(y(x))

and ¢ satisfies the nonsmooth P S.-condition,
then ¢ > B and c is a critical value of ¢.
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Recall that, if {,},>) are the distinct eigenvalues of (— A, H;(Z)), then
An —> 00 and A is positive, simple and isolated. Also there is an ortho-
normal basis {u,},>1 € Hj (Z)NC>(Z) of L*(Z), which are eigenfunctions
corresponding to the eigenvalues {A,},>1, 1.e.

—Aun(2) =Aruy(z) VzZ€EZ,
uplaz =0,

for n>1.

If the boundary 9Z of Z is a C*-manifold (respectively, a C*°-manifold)
then u, € CK(Z) (respectively, u, € C*(Z)). The sequence {(1/\/)»_,,)14,1}’121 is
an orthonormal basis of H(}(Z). For every integer m > 1, let E(A,,) be the
eigenspace corresponding to the eigenvalue A,,. We define

m—1 [ee)
H,2 @EG) and A, £ @ E0).
i=1 i=m+1

We have the following orthogonal direct sum decomposition:
H\(Z)=H,®EQ(.,)® H,. 2.1)

The eigenspace E(M,,) C HOI(Z) N C*(Z) has the unique continuation
property, namely if u € E(A,) is such that u vanishes on a set of positive
measure, then u(z) =0 for all z€ Z.

If we set

df

VoL Hy ®EGw) and W2 E(u) @ Ay,

then we have the following variational characterizations of the eigenvalues
(the so called Rayleigh quotients):

2
IVxll3

verml@ x5
x#0

A=

and for m >2, we have

Vvl
= max 19V
veVy Iv]3

v#0

2.2)
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where the maximum is attained on E(A,,). Also

Vw3
)\'m — i || ||2’ (23)
weW, (w3
w#0
where the minimum is attained on E(A,) and finally, we have
. vyl3
Am = min  max | y|2|2‘ 2.4)
vcHl(z)y ver |yl
dimY=m Yy#0

3. Main Result
Our hypotheses on the nonsmooth potential j are the following:
H(j) j:ZxR—R is a function, such that

(1) for all ¢ €R, the function z+—— j(z,¢) is measurable;

(i1) for almost all z € Z, the function ¢ +—— j(z,¢) is locally Lips-
chitz and j(z,0)=0;

(iii) there exists ne L*°(Z), such that

lu| <n(z) fora.a.zeZ, all ceR and all u€dj(z,);

(iv) there exists m € N, m <k, such that

. u
lim sup — < A, — Ag,
—0

uniformly for almost all ze Z and all u€dj(z,¢) and

sup |u|— 0 as |¢|— 400
u€dj(z,¢)

for almost all z € Z;

(v) we have

liminf j(z, ) >0,
[¢]—>+00

uniformly for almost all z€Z and

72 0) = 501 — A0 E2,

uniformly for almost all ze Z, and all ¢ €R.
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Evidently hypothesis H(j)(iii) implies that for almost all z€ Z, j(z,) is

globally Lipschitz.
Let ¢: HOI(Z) —> R be the energy functional defined by

dr 1 A .
so(x>=f§||w||§—7"||x||§—fJ(z,x(z>)dz Vx e H(Z).
V4

We know that ¢ is locally Lipschitz (see e.g. Ref. [13, p. 313]).

THEOREM 3.1. If hypotheses H(j) hold, then ¢ satisfies the nonsmooth
PSS, condition for c¢> 0.

Proof. Let {x,}n>1 gHol (Z) be a sequence, such that
() —c>0 and m?(x,) — 0. 3.
Let x € d¢(x,) be such that
Iyl g1 zy=m?(xy) Vn=1. (3.2)
The existence of such elements follows from the weak compactness of
sets dp(x,) C Hol(Z) and the weak lower semicontinuity of the norm func-
tional in Banach spaces. We have

X5 = Ax, — Axn — U, 3.3)

with A€ L(H,(Z), H"'(Z)) being the operator defined by
df 1
(Ax, ¥) gl (z) —/ (Vx(2), Vy(z))RNdz Vx,y€ Hy(Z)
VA

and u* € L*(Z), with u*(z) € 8j(z,xn(z)) for almost all z € Z (see Ref. [10,
p. 83]). Evidently A>0 and so A is maximal monotone.

Let 0<Xi; <Ay <---<Ag<--- be the sequence of distinct eigenvalues of
(— A, Hj(Z)) and let E(;) be the eigenspace corresponding to the eigen-
value A; for i > 1. From (2.1), for every n>1, we can write that

xn=vn+x2+wn with v, € Hy, x,?eE()\k), wneﬁk.

From the parallelogram identity and the orthogonality relations, we see
that

vn +wnll gy 2y = lvn = Wall g} (2 Vn>1. (3.4)
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Also from the variational characterization of the eigenvalues {A;}i>1, we
have

IVwall3 = Mgt lwall; Vo =1 (3.5)
and

IVvall3 < Mectllvall; Vo >1. (3.6)
From (3.3)—(3.6), we have

Ax, — Ax, —u*

*
(2 wn — W

Un )H o =l n = U")HO‘(Z)

= [IVw, I3 = [IVUall3 = Aellwa 13 + A llvall3
- / (@) (1w — ) (2)dz
V4

Ak A
(1——) IV w, |3 — ( ——) 1V, 113
Akt1 Ak—1

—/u;(z)(w,, —v,)(2)dz.

z

Thus from hypothesis H(j)(iii), we obtain
”x:”H*I(Z) |wn — vy ||H1<Z)
1= 25 ) [, 2 a3 T AR pr—
- - a5 —crllw, — v ,
Ak+1 il Ak-1 mi2 O ey @)
for some ¢; >0 and from (3.4), also

1, 1 -1 2 lwp + v a2 (z)

A Ak 5
I_T ||Vw,,||2 1_)\._ ||an||2_Cl||wn+vn||H(}(z)~

k+1 k—1

Using also Poincaré’s inequality, we have

(Cl + ”x:”H*I(Z)) lwn +vall 5 (2)

(1 L )nv 12 (1 il )nv 2
- wn - vn
Akt 2 Ak—1 :

2
= c2 (IVwall3 + 1V val3) > esllwn +vall7, ).

for some ¢, ¢3>0. Thus the sequence {w, +v,}, ., < H;(Z) is bounded.
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So passing to a subsequence, we may assume that
w, +v, —> h weakly in HO1 (2)
and from the compactness of the embedding HO1 (Z2)C L*(Z), also
Wy +v, — h in L*(Z).
Then, from (3.2) and (3.1), we have

<Axn—)»kx,,—uz,w,,—i—vn—h):(xn,w,,—l—v,, >H01(Z)
e ||wn+vn_h”H0](Z)’

for some ¢,\,0. Exploiting the orthogonality relations, we have

<)\kxn, wy + v, — h>H01 (2) = / )kan (Z) (wn + v, — h)(Z)dZ
VA

325

(3.7)

(3.8)

(3.9)

=/ kk(wn—l—v,,)(z)(wn+v,,—h)(z)dz—>0. (3.10)
z

Also because the sequence {u)},>1 C L?*(Z) is bounded, from (3.8) we

have that

(ur, wy + v, — h)Hol(Z) :/ ) (2) (wy + v, —h)(2)dz —> 0.
z

(3.11)

Passing to the limit as n — 400 in (3.9) and using (3.10) and (3.11), we

obtain
lim sup(Ax,,, w, +v, — h)H 1(2) <0,
n—+0oo
thus
lim sup(A(wn +v,), w, +v, — h)H '(2) <0,

n—+00

so, by the maximal monotonicity of A, we have

<A(wn+vn)’ wn+Un> —)(A/’l,h>

H(Z) H{(Z)

and finally

[V @a + v ], — VA,
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Recalling that
V(w, +v,) — Vh weakly in L*(Z;RM)
(see (3.7)), from the Kadec—Klee property of Hilbert spaces, it follows that
V(w, +v,) — Vh in L*(Z;R")
and thus, we have
w, +v,—>h In H(}(Z). (3.12)

Next we claim that the sequence {x°} C E(A;) C HO1 (Z) is bounded. Sup-
pose that this is not the case. Then by passing to a subsequence if neces-
sary, we may assume that

af o
tn = 12,1l g1 (z) —> +00.

Let us set

df x
0L T owp>,

Mn

Because E(A;) is finite dimensional (and so all norms are equivalent), we
may assume that

W —3y% in C(2),

for some y’#0 and by the unique continuation property of the eigenfunc-
tions of (— A, Hy(Z)), we have that y°(z) #0 for almost all z€ Z. We have

i (2) €3j(z, wa (@) + v, (2) + 1ayy(z)) for aa. zeZ,

with u, — +o00. From (3.12), by passing to a subsequence if necessary, we
may assume that

w, +v, — h in L*(Z),
w, (2) +v,(z) — h(z) for a.a. ze€Z,
|w,(2) +v,(2)| <P (z) for aa. zeZ,

with ¢ € L?(Z). We have

%2 (2)| = |wa (2) + v2(2) + 1Y) ()|
2,un|y,?(z)‘—z9(z)—>+oo for a.a. zeZ. (3.13)
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From the choice of the sequence {x,},>1 C HOI(Z), we have
Xy = Ax, — Mxp—u, —0 in H'(2).
Since
Au® = v’ VUl e EQw)
for every n>1, we have

Xy =Ax, — Ax, —u,

=A(w, +v,) — A (w, +v,)+ Ax,(l) — Akx,? —u;
=A(w, +v,) — (W, +v,) —u,. (3.14)

From (3.7) and the fact that A€ L(H]}(Z), H"(Z)), we have
A(w, +v,) — Ah weakly in H™'(2)
and from (3.8), we have
AWy +v,) —> Axh in L*(2).

Moreover, from the second part of hypothesis H(j)(iv) and (3.13), we
know that

u(z)—0 fora.a. zeZ
and by the Lebesgue dominated convergence theorem, it follows that
u*—0 in L*(2).
So, if we pass to the limit in (3.14), we obtain
0= Ah— A\h,
SO
Ah = Aih,

thus

—Ah(z)=Ah(z) for aa. zeZ,
hlaz=0.
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But he E(A)*, so it follows that =0 and
w,+v,—>0 in Hol(Z), (3.15)
Again from the choice of the sequence {x,}C HOI(Z), using (3.15) we have

O<c= HIP ©(x,)
. 1 2 )Lk 2 .
= tim 13- S - [ jen @)z

) 1 A )
— lim [EIIV(wn+vn)II§—fllwn-%vnllﬁ—/J(z,xn(z))dz]
A

n—+00

<limsup <— / j(z,xn(z))dz). (3.16)
z

n—+00

On the other hand by (3.13), Fatou’s lemma and the first part of hypoth-
esis H(j)(v), we have

lim sup (—f j(z,xn(z))dz> g—/ liminf j(z, x,(z))dz <O0. (3.17)
z

n—+00 z >t

From (3.16) and (3.17), we obtain a contradiction. So indeed the
sequence {x'},>1 € E(h) C Hj (Z) is bounded. From this it follows that the
sequence {x,},>1 C HOI(Z) is bounded. Thus we may assume that

x, —> x weakly in HOI(Z),
X, —> x in L*(2).

From (3.13), we have that
(s X = ) o g = (A% = Dt — 3, X0 = X) 1 ) < EnllX =Xy 2,

with g, \ 0. Since, from hypothesis H(j)(iii), we have
<uj, Xn _X>HO'(Z) :/Zui(z)(x,, —x)(z)dz —0

and
(A X0 =) 1 ) = /Z Mexn (2) (% — x) (2)dz —> 0

so also

lim sup(Ax,,, X, — x> < 0.

1
n——+00 Hy (2
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As A is maximal monotone, it is also generalized pseudomonotone, so

<Axn, xn> — (Ax, x>,

and
IVxplla — Vx|l
and finally
X, —>x in H}(Z). O

Now we can formulate our main theorem and establish the existence of
non-trivial solutions for problem (1.1). By a solution of (1.1) we under-
stand a function x € HO1 (Z) such that it satisfies the equation pointwise for
almost all z € Z. Evidently such a solution belongs in H*(Z). In fact stan-
dard linear elliptic regularity theory implies that x € C'(Z).

THEOREM 3.2. If hypotheses H(j) hold, then problem (1.1) has at least
one nontrivial solution.

Proof. By virtue of the first part of hypothesis H(j)(iv), we can find & <
Am—Ar <0 and § >0 such that

u
¢
Also from hypothesis H (j)(iii), we have

<& foraa. zeZ, all [¢|<é and all u€dj(z,¢). (3.18)

'?‘ <n(z) foraa.zeZ, all [c|>=8 and all ue€dj(z, ),

for some 1 € L*°(Z). Therefore we can find & >0 and i >k such that

; <& < %(Ai—kk) for a.a. zeZ, all ¢#0 and all u€dj(z,¢)
(3.19)
and
ng+xk+3$1 <A (3.20)
A — A —&
Let

i—1
H,i 2L @ER) and W< @EG).

j=m jzi
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Let we W,- and y eﬁm,i. Using the variational expressions for the eigen-
values of (— A, H;(Z)), we have

1 A
¢<w+y)=§||ww+y>||§—7"||w+y||§—/j(z, (w+y)(2))dz

z
1 1 Ak Ak
=3 IVwl3+31VyIz = lwlz = iyi3
- / Jj(z, (w+y)(2)dz
z
1 1 Ak Ak
> ZIVwi3+ 21915 = S lwlz = ZHyI3
)\,i )\rm .
HwB+ 2 - [ @) (.21)
z

For ze€ Z\ N with |[N|=0, we consider two cases:

Case 1. |lw(z)+y(2)| >3.
First suppose that w(z) + y(z) > 8. Invoking the Lebourg mean value
theorem (see Ref. [10, p. 41] or Lebourg [2]), we obtain

J(z w+y)(@)—j(z8) = u[(w+y)(z)—§]

and
J(z,8) = j(z,8) = j(z,0) = v/,

where
uy €9j(z, t(@2)(w+y)(2)+(1-1(2)8), 0<r(z)<1

and
vy €9j(z,01(2)8), 0<n(x) <l

Then, using (3.19), we have
uf <E[HER)W+y) (@) + (1 —1(2)8] < &1(w+y)(2)
and using (3.18), we have
v <En(2)8 < &35,
So it follows that

Jj(z,8) < £82
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and

J(z W+ @) <EW+ @[ +y)(2) — 8] +£8
<EW+Y)(2) —£8%+&87
=& (w+y)2(2) — (& — )82 (3.22)

Next suppose that w(z) + y(z) < —§. Again via the Lebourg mean value
theorem, we have

J (@ w+3)2) = j 2 —8) = u; (w+y)(2) +9),
and
J(z—=8) = j(z,—8) — j(z,0) = v (=9).
where
v €dj(z,n()(=8), 0<n@ <l
and
uf €dj(z, 1@Qw+y@+A—-1@)(=8), 0<t(z)<l.
In this case, we have
ui=Ew+y)(z) and v >£(=9)
and so
Jj(z.8) < &8
and

J@ W+»@R) < s+ @) —E —§)§

The last inequality is the same as (3.22). So (3.22) holds when \(w +
¥)(z)| > 8. Then, for |(w+ y)(z)|>8, we can write

A — A+ A — M+
i k glw(z)z_i_ m k g:

2 .
2 ;Y@ =) (z, (w+)(2))

Ai — A+ &1 5 Am— A +E
2— - -
1 w(z)”+ 1

Ai — A+ &1 A+

_ 2 Am— 2 2
== w(z) +—4 y(@)*—§&y(2)

—(& — )y —&Ew(2)? =28 (wy) (@) + (& —£)8°

¥(2)? —&1(w+y)*(2) + (& — £)8?
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_)\i_)tk_3§1 2 }‘-m_)"k_é z_g 2
- w(z)” + — 1 y(2) 2)’(2)
—(& — &)y () =281 (wy) (2) + (61 — £)8°
_)ti_)tk_?’sl 2 )‘-m_)\'k_g z_g 2
=—— w(z) +—4 v(2) 2y(z)
Mi—X—3
++&w(z>2 — (&1 —&)y(2)* =28 (wy) (2) + (&1 — §)8°
AMi—A—3 Am — Ap —
> MR 2 P 2t () )
Mi—X—3
++&w<z>2 G- By
=28 — &) (wy) (2) + (&1 — )87 (3.23)

(since & < 0).

Case 2. |w(z)+y(2)| <.
In this case, using the Lebourg mean value theorem, (3.18) and the facts

that £ <0 < &, A; — Ar > 3&;, we have

m—z_wa W& + Wy(z)z — iz w+NE)
R - = S MELRPCE
> IR P T 0 b 9 - 26 )
R ==V MECRET e
e MO (3.24)

Note that on the right-hand side of (3.23) the first three summands are

the same as on the right-hand side of (3.24).
Now, we can find u >0 such that for every o € R and every t €[—pu, u],

we have
(hi = —3E1)0? =851 — )12 — 16(5) —&)oT + (£ —£)8* > 0. (3.25)

Because ﬁm,i is finite dimensional, all norms are equivalent on ﬁm,i and
so we can find ¢ >0, such that, if ||yl < o, y€H,,, then |y(@)| <
for all z € Z. Then, for ||y||H01(Z) <o, yeH,; and we W, from (3.21),
(3.23)-(3.25), (3.20) and the fact that & <A, — A, we have



RESONANT HEMIVARIATIONAL INEQUALITIES 333

1 2 1 2 Ak 2 Ak 2
p(w+y) = Z||Vw||2+z||vy||z—?Hw”z—?”)’ﬂz

+Z||w||§+—||yll%—f j(z, (w+y)(@)dz
V4

— 7wl 0931 - Sl - Sy - S -0
+%"+glnwn% e LN BRSO
R 2 R A e M ERR
¥ #w(zﬂ@y(@z—zs(ww(@
RS T A IR ERT
2411(1‘%‘%) Vo ”2+;1(1_i_,i_f_m> IV3I3>0. (3.26)

From (3.26), we see that we can find r >0 and 8 >0 such that
inf{@(x):x € W, xllgyz=r)=8>0.

We claim that for any 0 <o < B, we can find R > r large enough, such
that if u e V,, with lull i z) =R, then ¢(u) < «. Indeed if this is not the

case, we can find a sequence {u,},>1 < V,, with ||u,,||H0 (zy— +oo and ¢ >
0, such that

p(u,) >2e VYn=1,
thus

liminf ¢(u,) >

n——+00
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SO
lim inf l||Vu ||2—ﬂ||u 12— j(z u (z))dz > e.
n—+oo | 2 ni2 2 nli2 7z o

Since m < k and (1/2)[|Vu, |3 < (Ae/2)llunll5, we have

lim inf <—/ j(z,un(z))dz> > e.
z

n——+00

Let

Uy

<

WV

o
ltall 2

Then
e,—>¢ in H)(Z),

for some ¢€ V,, (since V, is finite dimensional). Moreover, from the
unique continuation property e(z) #0 for almost all ze Z and so

lun(z)] — 400 for a.a. ze Z.

So from Fatou’s lemma and the first part of hypothesis H(j)(v), we have

R—>+00 n——+00

e < liminf (—/ j(z,un(z))dz) = —limsup/ Jj(z,un(2))dz
z z
< —liminf /Z J(zun(2)dz < — /Z liminf j(z, un(2))dz <0, (327)
a contradiction.

In addition, using the second part of hypothesis H(j)(v), for any ye H,,,
we have

1 A
p(y)= EIIVyH% — fllyllﬁ—/ Jj(z.y(@)dz
Z

1 2 Moo Ao Amel o
< IVyI =yl + Syl - ’”2 Ivli3
1 Am—1
=V 2 m 2 g 0’
SVl ===yl

i.e. (p|ﬁm < 0.
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Therefore, let e € E(),,) be such that ||€||H01(z> =1 and let R >r be large
enough so that ¢(u) < « for all ueV,, ||u||H01(Z) = R. Recall that

a<ﬁ=mﬁ¢wmeﬁmﬂﬂﬁm:”'

So we can apply Theorem 2.1 with Y =H,, and Y =W,, and obtain x, €
HJ(Z), such that 0€dg(xo) and ¢(x) =B >0=9(0), so xo#0. If follows
easily that x( is the desired nontrivial solution of (1.1). O

Remark 3.3. In the proof of Theorem 3.1 (see (3.17)) as well as in the
proof of Theorem 3.2 (see (3.27)), the application of Fatou’s lemma is per-
mitted since by the first part of hypothesis H(j)(v), we can find M >0 such
that

Jj(z,¢) 2 —1 foraa. zeZand all [¢|> M.

By hypothesis H(;j)(iii) and the Lebourg mean value theorem, we have
iz, 0| <mz) foraa. zeZ andall|¢|<M,

with n; € L*°(Z). So finally
Jj(z,8) = —ma(z) for a.a. zeZ and all ¢ eR,

with ;€ L*(Z) . This permits the use of Fatou’s lemma.

Remark 3.4. As a simple example of a superpotential j satisfying hypoth-
eses H(j), we can take the following function (for simplicity we drop the
z € Z dependence; see Figure 1):

2 ifr<—,
Jj@) =4 —at* if-1<¢<l,
_4 ifl<g
¢

for some 0 < (A — A1) /2 <a<(Ag—Apm_1)/2.
Then we have (see Figure 2):
a

5 ifg<—,

[—a,2a] if¢=-1,
—2act if—1<¢<l,
[—2a,a] ifc=1,

a if1<c.

d.

~

3j (&)

¢
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Figure 1. J (@) Figure 2. 49j (%)
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