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Abstract. In this paper, the concept of a vector semi-monotone operator is introduced. This
concept is applied to establish several existence results of vector variational inequalities.
These extend some results of others.
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1. Introduction

In scalar optimization, a variational inequality problem has shown to be a
very useful model both for unifying the mathematical analysis and for over-
coming the difficulty of defining the objective function. The same advan-
tages are expected in the vector cases. About two decades ago, a vector
variational inequality problem was introduced in finite dimensional spaces
by Giannessi (1980). Since then, this problem has become one of the most
active fields in mathematics. A vector variational inequality problem has
shown to be a powerful tool in the mathematical investigation of optimi-
zation topics. It has many applications in the study of vector equilibrium
problems, and vector extremal problems. Chen and many others have inten-
sively studied vector variational inequalities problem in abstract spaces,
where the dimension of the space is not necessarily finite, and made a lot
of progresses.

It is well known that the compactness and monotonicity of operators are
two important concepts in nonlinear functional analysis and its applica-
tions. They play important roles in the study of both ordinary and partial
differential equations, variational inequality problems, fixed point theory,
etc. It was Browder (1968) who first combined the compactness and accre-
tion of operators, and posed the concept of a semi-accretive operator.
More recently, motivated by this idea, Chen (1999) posed the concept of
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a semi-monotone operator, which combines the compactness and monoto-
nicity of an operator, and applied it to the study of scalar value variational
inequalities.

In this paper, we pose the concept of a vector semi-monotone operator,
investigate a vector variational inequality problem and obtain some exis-
tence results. These extend the results of Chen (1999).

2. Preliminaries

In order to study a vector variational inequality problem, we need some
background about the partial orderings in a Banach space. Let’s first give
a brief recall.

Let X be a real Banach space. A nonempty subset P of X is called a
convex cone if λP ⊂P for all λ� 0 and P +P =P . A cone P is called a
pointed cone if P ∩ (−P) = 0, where the 0 denotes the zero vector of X.
Also a cone is called proper if it is properly contained in X. The partial
order �P in X, induced by the pointed cone P , is defined by declaring
x �P y if and only if y − x ∈ P for all x, y in X, and P is called a pos-
itive cone of X. An ordered Banach space is a pair (X,P ), where X is
a real Banach space and P a pointed convex cone with the partial order
induced by P . The weak order ��intP in an ordered Banach space (X,P )

with intP �=∅ is defined as x ��intP y if and only if y −x �∈ intP for x, y in X,
where int denotes the interior of a subset.

In this paper, X,Y are always real Banach spaces, L(X,Y ) denotes the
set of all the bounded linear operators from X to Y . T ∈L(X,Y ), x ∈ X,

〈T , x〉 denotes the value of T at x.
Now, we give the definition of a vector semi-monotone operator. In

order to do so, the following definition of a vector monotone operator is
needed, which was posed by Chen (1992).

DEFINITION 2.1. (Chen (1992)). Let T : K → L(X,Y ) be a mapping,
K ⊂X be a nonempty, closed, and convex subset in X. Let {C(x) :x ∈K} be
a family of closed, pointed, and convex cones of Y such that intC(x) �= ∅
for each x ∈K. Suppose C− =∩x∈KC(x) �=∅. T is said to be C−-monotone
on K if and only if it satisfies the following condition:

〈T (y)−T (x), y −x〉�C− 0,

for all x, y ∈K.
We now give the concept of a vector semi-monotone operator.

DEFINITION 2.2. Let {C(x) : x ∈ K} be a family of closed, pointed and
convex cones of Y satisfying intC(x) �= ∅ for all x ∈ K. Suppose C− =
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∩x∈KC(x) �= ∅. We say A: K × K → L(X,Y ) is a C− semi-monotone oper-
ator, if and only if the following two conditions are satisfied:

(1) for every u∈K,A(u, ·) is a C−-monotone operator;
(2) for every v ∈ K,A(·, v) is completely continuous, that is, when

un →w u,A(un, v) → A(u, v) (by the norm of operators), where →w

denotes the weak convergence.

Now we will give an example of a vector semi-monotone operator.

EXAMPLE 2.1. Let X=Y =R2,K = [0,1]× [0,1], where R denotes the set
of all real numbers. A vector of R2 will be denoted by x = (x1, x2), and let
C:K →2Y be defined by

C(x)={(y1, y2)∈Y |y1 �0, y2 �0}, x ∈K.

So C− ={(y1, y2)∈Y |y1 �0, y2 �0}. Let A:K ×K −→L(X,Y ) be defined by

A(x, y)=
(

x1 x2

y1 y2

)
.

The norm of A is defined as follows

‖A‖= |x1|+ |x2|+ |y1|+ |y2|.

Next we show that A is a vector semi-monotone operator. Indeed, for each
u= (u1, u2), v = (v1, v2)∈K,

〈A(y,u)−A(y, v), u−v〉=
(

0 0
u1 − v1 u2 − v2

)(
u1 − v1

u2 − v2

)

=
(

0
(u1 −v1)

2 + (u2 −v2)
2

)
�C− 0.

On the other hand, for fixed u∈K, if yn ∈K,y ∈K,yn −→w y, it is easy to
see that ‖A(u, yn)−A(u, y)‖−→0. Hence the operator defined as above is
a vector semi-monotone operator.

REMARK 2.1. When Y =R, this is just the definition of a semi-monotone
operator introduced by Chen (1999).

3. Lemmas and Main Results

Let T :X→L(X,Y ) be a mapping, K ⊂X be a nonempty, closed, and con-
vex subset in X. Let {C(x) : x ∈ K} be a family of closed, pointed, and
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convex cones of Y such that intC(x) �= ∅ for each x ∈ K. Suppose C− =
∩x∈KC(x) �=∅. In Chen (1992), G.Y. Chen studied the following vector var-
iational inequality problem of finding an x0 ∈K such that

〈T (x0), x −x0〉 ��intC(x0) 0, ∀x ∈K.

If Y =R,L(X,Y ) is the dual space X∗ of X. In Chen (1999), Y.Q. Chen
investigated the following variational inequality problem of finding a w0 ∈K

such that

(f (w0,w0), u−w0)�0, ∀u∈K.

where f :X×X−→X∗, (f, x) is the value of the functional f ∈X� at x ∈X.
He obtained some existence results and discussed their applications in par-
tial differential equations of divergence form.

We are now in a position to pose the main problem of our study in this
paper. We will study the following vector variational inequality problem of
finding a w0 ∈K such that

〈A(w0,w0), u−w0〉 ��intC(w0) 0, ∀u∈K,

where A:K ×K −→L(X,Y ).
The following famous fixed point theorem will play a key role in the

proof of the main theorem.

LEMMA 3.1 (Zeidle (1998)) (Fan, Glicksberg). The set-valued mapping F :
M ⇒M has a fixed point if the following conditions are satisfied:

(1) M is a compact, convex, and nonempty set in a locally convex space;
(2) F(x) is convex, closed, and nonempty for every x ∈M; and
(3) F is upper semi-continuous on M.

The next lemma is an existence result about a vector variational inequality
problem related to a C−-monotone operator, which is needed in our proof
of the main theorem.

LEMMA 3.2 (Chen (1992)). Let X be a reflexive Banach space, Y a Banach
space. Let K ⊂X be a nonempty, bounded, closed, and convex subset in X.
Let C : K → 2Y be a set-valued mapping such that for all x ∈ K,C(x) is a
closed, pointed, and convex cone of Y with intC(x) �= ∅ and C− =∩x∈KC(x)

with intC− �=∅. Suppose the set-valued mapping W(x)=Y \−intC(x) is upper
semi-continuous on K, and T : K −→L(X,Y ) is C−-monotone and hemicon-
tinuous mapping on K. Then there exists an u0 ∈K such that

〈T (u0), u−u0〉 ��intC(u0) 0, ∀u∈K.
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LEMMA 3.3 (Chen (1992)). Let K ⊂X be a nonempty, closed, and convex
subset in X. Let {C(x) : x ∈ K} be a family of closed, pointed, and convex
cones of Y such that intC(x) �=∅ for each x ∈K. Suppose C− =∩x∈KC(x) �=∅.
Let T : K →L(X,Y ) be a C−-monotone and hemicontinuous mapping on K.
Then the following problems (i) and (ii) are equivalent:

(i) x ∈K, 〈T (x), y −x〉 ��intC(x) 0, ∀y ∈K,

(ii) x ∈K, 〈T (y), y −x〉 ��intC(x) 0, ∀y ∈K.

THEOREM 3.1. Let X be a reflexive Banach space, Y a Banach space. Let
K ⊂X be a nonempty, bounded, closed, and convex subset in X. Let C :K →
2Y be a setvalued mapping such that for all x ∈K,C(x) is a closed, pointed,
and convex cone with intC(x) �= ∅ and C− = ∩x∈KC(x) with intC− �= ∅.
Suppose the set-valued mapping W(x)=Y \−intC(x) is weakly upper semi-
continuous (w −w) on K, and satisfies

λW(x)+ (1−λ)W(y)⊆W(λx + (1−λ)y),

for all 0<λ<1. If A :X ×X →L(X,Y ) satisfies the following conditions:

(a) A is a C−-semi-monotone operator;
(b) for all v ∈ K, A(v, ·) is continuous on each finite dimensional subspace

of X.

Then there exists an u0 ∈K such that

〈A(u0, u0), u−u0〉 ��int C(u0) 0, ∀u∈K. (1)

Proof. Let F be a finite dimensional subspace of X and KF ≡K ∩F �=∅.
For each v ∈K, the operator A(v, ·) satisfies the conditions of Lemma 3.2,
so there exists an u0 ∈KF such that

〈A(v,u0), u−u0〉 ��int C(u0) 0, ∀u∈KF .

Define a set-valued mapping F :KF ⇒KF as follows:

F(v)={w ∈KF : 〈A(v,m), u−w〉 ��int C(w) 0,∀u∈KF }.

By the linearization lemma, we have

F(v)={w ∈KF : 〈A(v,w), u−w〉 ��int C(w) 0,∀u∈KF }
={w ∈KF : 〈A(v,u), u−w〉 ��int C(w) 0,∀u∈KF }.
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Now we shall use the fixed point theorem to verify the existence of the
solution of the variational inequality problem in a finite dimensional sub-
space. Obviously, KF is compact, since F is of finite dimension.

First, we know that ∀v∈KF ,F (v) is a nonempty bounded convex subset.
Indeed, if w1,w2 ∈F(v), then 〈A(v,u), u−wi〉∈W(wi), i =1,2. Thus for all
0<λ<1, we have

〈A(v,u), u− (λw1 + (1−λ)w2)〉 ∈ λW(w1)+ (1−λ)W(w2)

⊆ W(λw1 + (1−λ)w2).

This means that λw1 + (1−λ)w2 ∈F(v), i.e., F(v) is convex.
We say that F(v) is closed. In fact, let wj → w,wj ∈ F(v), then 〈A(v,u),

u−wj 〉∈W(wj), and A(v,u)∈L(X,Y ), 〈A(v,u), u−wj 〉→〈A(v,u), u−w〉.
Since W is upper semi-continuous,

〈A(v,u), u−w〉∈W(w).

This means w ∈F(v), hence F(v) is closed.
We say that F is upper semi-continuous. Let vj →v,wj ∈F(vj ),wj −→w,

〈A(vj , u), u−wj 〉∈W(wj).

From the complete continuity of A(·, u),

〈A(vj , u), u−wj 〉−→〈A(v,u), u−w〉,

and the upper semi-continuity of W , we have

〈A(v,u), u−w〉∈W(w).

This means w ∈F(v), thus F is upper semi-continuous.
By applying the fixed point theorem, Lemma 3.1, there exists a v0 ∈F(v0),
i.e., there exists a v0 ∈KF such that

〈A(v0, v0), u−v0〉 ��intC(v0) 0, u∈KF .

We now generalize this result to the whole space. Let

�≡{F ⊂E : dimF <∞,F ∩K �=∅},
WF ≡{w ∈K : 〈A(w,u), u−w〉 ��intC(w) 0,∀u∈KF }.

From above we know for ∀F ∈�,WF �=∅.
Let WF

w
denote the weak closure of WF . Obviously we have
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W∪n
i=1Fi

⊆∩n
i=1WFi

⊆∩n
i=1WFi

w
.

So ∩n
i=1WFi

w �= ∅. Since K is weakly compact, from the finite intersection
property, we have ∩F∈�Ww

F �=∅. Take a w0 ∈∩F∈�Ww
F , we see that

〈A(wo,w0), u−w0〉 ��intC(wo) 0.

Indeed, for ∀u ∈ K, take an F from � such that u ∈ KF , w0 ∈ KF . From
w0 ∈ WF

w
, there exists wj ∈ WF , i.e. 〈A(wj , u), u − wj 〉 �∈ −intC(wj), which

also means that 〈A(wj , u), u−wj 〉∈W(wj), such that wj →w w0. From the
property of A(·, u), we have

〈A(wj , u), u−wj 〉→w 〈A(w,u), u−w〉.

It follows from the weak upper semi-continuity of W that

〈A(w0, u), u−w0〉∈W(w0),

i.e.,

〈A(w0, u), u−w0〉 ��intC(w0) 0.

From the linearization lemma

〈A(w0,w0), u−w0〉 ��intC(w0) 0.

This completes the proof.
Note that the subset K in the last theorem is bounded, when it is

unbounded we have the following theorem.

THEOREM 3.2. Let X be a reflexive Banach space, Y a Banach space. Let
K ⊂X be a nonempty, unbounded, closed, and convex subset in X and 0∈K.
Let C : K → 2Y be a set-valued mapping such that for all x ∈ K, C(x) is a
closed, pointed, and convex cone with intC(x) �= ∅ and C− =∩x∈KC(x) with
intC− �=∅. Let the set-valued mapping W(x)=Y \−intC(x) be weakly upper
semi-continuous on K, and satisfy

λW(x)+ (1−λ)W(y)⊆W(λx + (1−λ)y),

for all 0<λ<1. If A :X ×X →L(X,Y ) satisfies the following conditions:

(a) A is a C−-semi-monotone operator;
(b) for all v ∈ K,A(v, ·) is continuous on each finite dimensional subspace

of X;
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(c) lim‖u‖→∞〈A(u,u), u〉∈C+, where C+ = intC−.

Then the vector variational inequality (1) has a solution.
Proof. For each r > 0, let B[0, r] denote the closed ball in the Banach

space X with center 0 and radius r. From Theorem 3.1, for each n ∈ N ,
there exists a wn ∈B[0, n]∩K such that

〈A(wn,wn), u−wn〉 ��intC(wn) 0, ∀u∈B[0, n]∩K.

Note 0∈K, thus

〈A(wn,wn),wn〉 ��−intC(wn) 0.

We say that the family {wn}n∈N is bounded. For otherwise, without loss of
generality, let’s suppose ‖wn‖→∞, when n→∞. From (3),

lim
n→∞〈A(wn,wn),wn〉∈C+.

From this, we know that when n is sufficiently large,

〈A(wn,wn),wn〉∈C+ ⊆ intC(wn),

i.e.,

〈A(wn,wn),wn〉∈ intC(wn).

This is a contradiction. Since X is reflexive, we can assume wn →w w. From
the complete continuity of A and the weak upper semi-continuity of W , we
have

〈A(w,u), u−w〉 ��intC(w) 0.

Utilizing the linearization lemma again, we obtain

〈A(w,w),u−w〉 ��intC(w) 0.

This completes the proof.
At the end of this section, we give three corollaries which appeared in

Chen (1999) as main results.

COROLLARY 3.1 (Chen (1999)). Let E be a reflexive Banach space, and
K ⊂E a bounded, closed, and convex subset. Let A :K ×K →E∗ be a map-
ping satisfying
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(a) A is semi-monotone;
(b) For each u∈K,A(u, ·) :K →E� is continuous on each finite dimensional

subspace of E.

Then the following variational inequality problem

(A(w,w), u−w)�0, ∀u∈K,

has a solution w ∈K.

COROLLARY 3.2 (Chen (1999)). Let E be a reflexive Banach space, and
K ⊂E an unbounded, closed, and convex subset with 0∈K. Let A:K×K→E�

be a mapping satisfying

(a) A is semi-monotone;
(b) For each u∈K, A(u, ·) :K →E� is continuous on each finite dimensional

subspace of E;
(c) lim inf ‖u‖→∞(A(u,u), u)>0.

Then the following variational inequality

(A(w,w), u−w)�0, u∈K,

has a solution w ∈K.

COROLLARY 3.3 (Chen (1992)). Let E be a reflexive Banach space, and
K ⊂E a nonempty, unbounded, closed, and convex subset of X. Let C:K →
2Y be a set-valued mapping such that for all x ∈K, C(x) is a closed, pointed,
and convex cone of Y with intC(x) �= ∅ and C− = ∩x∈KC(x) with intC− �=
∅. Suppose the set-valued mapping W(x) = Y \ −intC(x) is upper semi-
continuous on K, and T :K →L(X,Y ) is C−-monotone coercive and hemicon-
tinuous on K. Then there exists an u0 ∈K such that

〈T (u0), u−u0〉 ��intC(u0) 0, ∀u∈K.

Proof. Define A : K × K → L(X,Y ),A(x, y) = T (y). Since T is a C−-
monotone operator, A(u, ·) is a C−-monotone operator for every u ∈ K.
Obviously, for fixed v ∈K,A(·, v) is completely continuous on K. It is easy
to verify that the conditions of Theorem 3.2 are satisfied, so by Theorem
3.2, there exists an u0 ∈K such that

〈A(u0, u0), u−u0〉 ��intC(u0) 0, ∀u∈K,

i.e.,

〈T (u0), u−u0〉 ��intC(uo) 0, ∀u∈K.
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4. Concluding Remarks

Several extensions of the preceding results are conceivable. For instance,
it is interesting to pose the concept of a set-valued semi-monotone opera-
tors, and then study a vector variational inequality problem with this kind
of operator, which promise nice results in applications. The extension of
the theory of duality for this kind of vector variational inequalities is also
interesting both from a theoretical point of view and for finding solutions.
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