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Abstract With the completion of the Human Genome Project
and the development of high throughput technologies, such as
next-generation sequencing, the use of multiplex genetic testing,
in which multiple genes are sequenced simultaneously to test for
one or more conditions, is growing rapidly. Reflecting underly-
ing heterogeneity where a broad range of genes confer risks for
one or more cancers, the development of genetic cancer panels to
assess these risks represents just one example of how multiplex
testing is being applied clinically. There are a number of issues
and challenges to consider when conducting genetic testing for
cancer risk assessment, and these issues become exceedingly
more complex when moving from the traditional single-gene
approach to panel testing. Here, we address the practical consid-
erations for clinical use of panel testing for breast, ovarian, and
colon cancers, including the benefits, limitations and challenges,
genetic counseling issues, and management guidelines.
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Introduction

The development of next-generation sequencing (NGS) has
significantly reduced the cost and increased the efficiency of

gene sequencing, and the use of multiplex genetic testing is
rapidly growing. Genetic cancer panels that assess risks of
multiple different cancers and multiple different risk variants
simultaneously are one example of how multiplex testing is
being applied clinically. Cancer gene panels utilize this cost-
effective technology by sequencing numerous targets associat-
ed with cancer risk (Meldrum et al. 2011). There are a number
of issues and challenges to consider when counseling for ge-
netic cancer risks, and these issues become exceedingly more
complex when moving from the traditional single-gene ap-
proach to panel testing (Multiplex genetic testing. The
Council on Ethical and Judicial Affairs and American
Medical Association 1998). Since technological advances seem
to be outpacing the clinical considerations of panel testing, it is
important to address these issues and identify gaps in our
knowledge as the demand for such tests continues to grow.

In this review of cancer gene panels, we sought to explore
the issues pertaining to the development and provision of
cancer panels. We first address how to determine the genes
that should be included on a panel. We then assess the prac-
tical considerations pertaining to the clinical use of cancer
panels, including the benefits, limitations and challenges,
genetic counseling issues, and management guidelines. From
this review of the literature, we developed the Einstein/
Montefiore cancer gene panel for the assessment of breast,
ovarian, and colon cancer risks.

Cancer Risk Genes

Breast cancer and colon cancer represent two of the most com-
mon types of cancers in the United States (“Common Cancer
Types”, n.d. http://www.cancer.gov/cancertopics/types/
commoncancers#1. Both of these cancers have well character-
ized, high penetrance risk genes associated with them, and
clinical genetic testing for risk assessment is available
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(Bonadona et al. 2011; Ford et al. 1994; King et al. 2003; Vasen
et al. 2001). There are a number of other genes that have been
associated with an increased risk for breast and colon cancer,
some of which are part of well known cancer syndromes that
confer high risk, while others have been less well studied and
confer lower levels of risk. Many of these genes share molecular
pathways and play a role in the repair of DNA damage, making
them good candidates for cancer susceptibility genes.

FANC-BRCA Pathway

BRCA1 and BRCA2 are well characterized genes associated
with a significantly increased risk of breast and ovarian cancer
(Ford et al. 1994; King et al. 2003). These genes are part of the
Fanconi Anemia (FA)-BRCA Molecular Pathway. There are
14 genes identified in this pathway, and improved understand-
ing of molecular mechanisms has led to the identification of
new cancer susceptibility genes (Pennington and Swisher
2012). The FA genes work together in concert with BRCA1
in a common DNA repair pathway. In response to DNA
damage, ATM (ataxia telangiectasia mutated) and ATR (ataxia
telangiectasia and Rad3-related) kinases activate the FA core
complex comprising FANCA, B, C, E, F, G, L, and M, which
then monoubiquinates FANCD2 and FANCI. This complex
then interacts with other downstream proteins FANCD1/
BRCA2, FANCN/PALB2, and FANCJ/BRIP1 to incite
DNA repair through homologous recombination (Schwartz
and D’Andrea 2010). BRCA1 has also been identified as an
upstream regulator of the PALB2-BRCA2 complex, promot-
ing its localization to DNA damage sites (Casadei et al. 2011).
BRCA1 exists mostly as a heterodimer with BARD1 forming
a ubiquitin ligase that is instrumental in BRCA1 response to
DNA damage (Starita and Parvin 2006). Not surprisingly,
PALB2, BRIP1, and BARD1 gene mutations have been asso-
ciated with an increased risk of breast cancer of 2–4 fold
(Casadei et al. 2011; Seal et al. 2006; Stacey et al. 2006).
Biallelic mutations in the FANC genes have been shown to
cause Fanconi anemia, a rare disorder of chromosome insta-
bility and defect of repair of double-stranded breaks in DNA,
resulting in childhood aplastic anemia, multiple congenital
anomalies, and susceptibility to leukemia and other cancers.
It is inherited in an autosomal recessive manner, except for an
X-linked recessive subtype (Schwartz and D’Andrea 2010).

Also involved in the FANC-BRCA pathways is the NBN
gene. Biallelic mutations in the NBN gene cause Nijmegen
breakage syndrome (NBS), an autosomal recessive chromo-
some instability syndrome. Clinical features include micro-
cephaly, growth retardation, intellectual disability, immuno-
deficiency, and increased risk of malignancy (Bogdanova
et al. 2008). The NBN protein forms a complex with
MRE11A and RAD50 producing the Mre11 complex neces-
sary for repair of double stranded breaks in DNA (Desjardins
et al. 2009; Heikkinen 2005). This complex co-localizes with

BRCA1 aswell as with FANCD2 in response to DNA damage
(Wang et al. 2000). Heterozygous mutations in NBN,
MRE11A, or RAD50 have been found to be associated with
an increased risk of breast cancer of about 2–4 fold
(Bogdanova et al. 2008; Heikkinen 2005; Hsu et al. 2007).
All of the genes in the FANC-BRCA pathway and those
associated with NBS have been implicated in an increased
risk of ovarian cancer, the magnitude of which has not yet
been defined (Pennington and Swisher 2012).

CHEK2 Pathway

BRCA1 is also part of the CHEK2 pathway. The CHEK2
pathway plays an integral role in the prevention of cancer
through its response to DNA damage. In response to DNA
damage, ATM and ATR are activated, inducing the phosphor-
ylation of the CHK2 protein. CHK2 interacts with the prod-
ucts of breast cancer susceptibility genes BRCA1, TP53, and
ATM. CHEK2 mutations have been implicated in the in-
creased risk of both breast and ovarian cancer (Cybulski
et al. 2011; Meijers-Heijboer et al. 2002; Tung and Silver
2011). CHEK2 risks appear to be dependent on family history
of breast cancer, with women who have a CHEK2mutation in
the context of a positive family history of breast cancer (ie.
both a first and second degree affected relative) having an
even higher breast cancer risk than those without a family
history (Cybulski et al. 2011; Narod 2010).

As one of the first responders to DNA damage, ATM plays
a significant role in DNA repair. Homozygous mutations
in ATM cause ataxia-telangiectasia, a rare autosomal recessive
neurological disorder characterized by progressive
cerebellar ataxia, immunodeficiency, and increased risk of
malignancy (“Ataxia-Telangiectasia - GeneReviews”, n.d
http://www.ncbi.nlm.nih.gov/books/NBK26468/). Carriers of
ATM mutations have been found to have a 2–4 fold increased
risk of breast cancer (Swift et al. 1991; Thompson et al. 2005;
Thorstenson et al. 2003). The tumor suppressor protein TP53
also plays a significant role in this DNA repair pathway. In
response to DNA damage, it can induce cell senescence and
apoptosis (Tung and Silver 2011). Homozygous mutations in
TP53 cause Li-Fraumeni syndrome characterized by signifi-
cantly increased risk of both childhood and adult
cancers including leukemia, soft tissue sarcomas, osteosarco-
mas, brain tumors, and adrenal cortical carcinomas
(“Li-Fraumeni Syndrome - GeneReviews”, n.d. http://
www.ncbi.nlm.nih.gov/books/NBK1311/). Carriers of TP53
mutations also have an increased risk of breast cancer (Birch
et al. 1998; Chompret et al. 2000).

Mismatch Repair Pathway

The mismatch repair (MMR) pathway is the main pathway for
the repair of base mismatch mutations resulting from errors in
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DNA replication. The MMR pathway is comprised of several
different proteins which include MSH1-6, MLH1, MLH2,
MLH3, PMS1, and PMS2. Each protein has a unique role
within the pathway. The MSH2 protein forms a heterodimer
with MSH6 to repair single base substitutions and small
insertion-deletions (indels), whereas the heterodimer between
MSH2 and MSH3 is responsible for large indel repair. MLH1
forms heterodimers with PMS1, PMS2, or MLH3, each with
specific repair roles (Martin et al. 2010; Peltomäki 2003; Wu
et al. 2003). Germline mutations in MMR genes cause Lynch
syndrome, or hereditary non-polyposis colorectal cancer
(HNPCC), and greatly increase the risk for different types of
cancers including colon, endometrium, ovary, gastric, and
brain. The associated risks may vary depending on which
gene is involved. The association between MMR genes and
breast cancer remains unconfirmed (Barrow et al. 2009;
Bonadona et al. 2011; Shanley et al. 2009). Since breast
cancer is the most common malignancy in women, the pres-
ence of breast cancer in families with Lynch syndromemay be
coincidental or there may be a subset of breast cancer which
are indeed related to mutations in mismatch repair genes.
Mutations in a non-MMR gene, EPCAM, can also lead to
Lynch syndrome through its inactivation of MSH2. EPCAM
deletion carriers appear to have a similarly increased risk of
colon cancer as MSH2 deletion carriers, however the risk of
endometrial cancer is somewhat lower (Kempers et al. 2011;
Ligtenberg et al. 2012).

Determination of Genes on a Cancer Panel

The research detailed above has informed the development of
cancer genetic testing panels that are currently being offered
clinically for the assessment of breast, ovarian, and colon
cancer risk. In light of the Supreme Court decision to invali-
date the gene patents held by Myriad BROCA (“Supreme
Court,” n.d. https://www.aclu.org/womens-rights/supreme-
court-invalidates-patents-breast-and-ovarian-cancer-genes),
more cancer panels that include BRCA1 and BRCA2 are
expected to emerge in the future (“genetics/BROCA,” n.d.;
“Next-gen Cancer Panels,” n.d.; “Comprehensive Cancer
Panel,” n.d. http://www.genedx.com/test-catalog/available-
tests/comprehensive-cancer-panel/ “Myriad to Replace
BRACAnalysis,” n.d.). GeneDx offers a Breast/Ovarian Can-
cer Panel that targets 26 susceptibility genes, as well as a
Colorectal Cancer Panel that targets 18 susceptibility genes
(GeneDx, n.d.). Ambry Genetics offers a breast cancer panel
(BreastNext) comprised of 18 risk genes, an ovarian cancer
panel (OvaNext) comprised of 23 risk genes, and a colon
cancer panel (ColoNext) comprised of 14 risk genes (Ambry
Genetics, n.d. (http://www.ambrygen.com/tests/breastnext;
ht tp: / /www.ambrygen.com/tests /colonext ; ht tp: / /
www.ambrygen.com/tests/ovanext). The University of

Washington offers the BROCA Cancer Risk Panel comprised
of 40 genes that assess the risk of cancer syndromes that
include breast, ovarian, and colon cancer, as well as other
types of cancer such as endometrial, pancreatic, endocrine,
and melanoma (“genet ics /BROCA,” n.d . ht tp : / /
web.labmed.washington.edu/tests/genetics/BROCA).
Sistemas Genomicos based in Spain has a 15 gene breast/
ovarian cancer panel, as well as a variety of tests for colon
cancer risk assessment (Sistemas Genómicos, n.d. https://
www.sistemasgenomicos.com/web_sg/webing/areas-
biomedicina-ugm3.php). CeGaT based in Germany has a 35
gene breast/ovarian cancer panel as well as a 17 gene colon
cancer panel (Tumor Syndromes, n.d. http://www.cegat.de/
Tumor-syndromes_l=1_171.html; Personal Communication).

From review of the literature, cancer gene databases, and
existing panels, we developed a panel of genes that is represen-
tative of the available data on breast, ovarian, and colon cancer
risks. The resulting Einstein/Montefiore panel strongly resem-
bles what is currently being offered by other labs, illustrating
that there is general consensus regarding what genes are appro-
priate to include when assessing high and moderately increased
risks for these cancers (Table 1). Most of these genes participate
in the molecular pathways detailed above, thus supporting their
contribution to increased cancer risk. It is likely that in the
future additional risk genes involved in these pathways will
be identified, further expanding cancer risk panels.

Advantages of Cancer Panel Testing

Assessing genetic risk of a broad spectrum of cancer-
predisposition genes using a single test has many advantages.
Due to the genetic heterogeneity of most cancers, panel testing
can be successfully applied to cancer risk assessment, and can
convey greater sensitivity for assessing cancer risks compared
to sequential genetic testing of individual genes. This person-
alized approach can provide a more objective risk, and is able
to parse out who is at risk for a highly penetrant cancer
syndrome, who is at moderate risk due to lower penetrance
variants or multifactorial inheritance, and who is at average
population risk (Gail 2011; Riley et al. 2012). This allows
providers to more accurately weigh the risks and benefits of
medical intervention, and affords those who would likely not
benefit from intervention to be spared the potential risks,
while providing those at high risk with potential risk reducing
strategies (Gail 2011). For women whose a priori risk is close
to a threshold level that would warrant intervention, incorpo-
rating additional factors into the risk assessment will likely
change their risk classification, impacting clinical care
decision-making (Mealiffe et al. 2010). Improving discrimi-
natory accuracy of risk assessment can also aid clinicians in
making more cost-effective decisions about testing and
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treatment by identifying those most likely to benefit from
these interventions (Mealiffe et al. 2010;Williams et al. 2006).

Another significant benefit of cancer panel screening is the
ability to assess risks in those who would not routinely come
to attention because they do not meet the standard high risk
criteria. This could be due to incomplete penetrance of the

syndrome, sex-limited expression, or lack of or limited per-
sonal and/or family history (Rubinstein et al. 2009). Personal
and family histories are routinely used to determine who
would be appropriate for cancer genetic risk assessment. In
the case of breast and ovarian cancer, models such as Gail,
Couch, Frank, BRCAPRO, and the FHAT tool are used to

Table 1 Cancer Gene Panels

Cancer Risk
Genes

Cancer Risks Ambry BreastNext,
OvaNext, ColoNext

GeneDx Breast/Ovarian
and Colon Cancer Panels

U Wash
BROCA

Einstein/
Montefiore Panel

AKT Breast, Thyroid X

APC Colon, Small bowel, Thyroid X X X X

ATM Breast, Pancreatic X X X X

AXIN2 Colon X

BARD1 Breast, Ovarian X X X X

BLM Breast, Ovarian X

BMPR1A Colon, Gastric X X X X

BRCA1 Breast, Ovarian X X X X

BRCA2 Breast, Ovarian, Melanoma, Pancreatic X X X X

BRIP1 Breast, Ovarian X X X X

CDH1 Breast, Ovarian, Colon, Gastric X X X X

CHEK2 Breast X X X X

EPCAM Breast, Ovarian, Colon, Endometrial X X X X

FAM175A Breast X X

FANCC Breast X

GALNT12 Colon X

GEN1 Breast X

GREM1 Colon X

HOXB13 Breast X

MLH1 Ovarian, Colon, Gastric, Endometrial, Brain X X X X

MRE11A Breast X X X X

MSH2 Ovarian, Colon, Gastric, Endometrial, Brain X X X X

MSH6 Colon, Gastric, Endometrial, Brain X X X X

MUTYH Breast, Colon X X X X

NBN Breast X X X X

NF Breast, Ovarian X

PALB2 Breast, Pancreatic X X X X

PIK3CA Breast, Thyroid X

PMS1 Colon, Ovarian, Gastric, Endometrial, Brain X

PMS2 Colon, Ovarian, Endometrial, Brain X X X X

POLD1 Colon, Endometrial X

POLE Colon X

PTEN Breast, Colon, Thyroid, Renal X X X X

RAD50 Breast X X X X

RAD51C Breast, Ovarian X X X X

RAD51D Breast, Ovarian X X X

RB1 Breast, Lung, Bladder, Melanoma X

SMAD4 Colon, Gastric X X X X

STK11 Breast, Colon, Pancreatic, Gastric, Lung X X X X

TP53 Breast, Ovarian, Soft Tissue, Brain X X X X

XRCC2 Breast, Colon X X
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determine who would benefit from cancer genetic counseling
and subsequent testing (Couch et al. 1997; Frank et al. 1998;
Gilpin et al. 2000). The Gail model is an epidemiological
model that predicts lifetime breast cancer risk, while the
Couch, Frank, and BRCAPRO models are genetic models
that predict the probability of being a BRCA1/2 mutation
carrier (Rubinstein et al. 2002). The FHAT tool uses family
history to devise a cumulative score above which referral to
genetic counseling is warranted (Gilpin et al. 2000). However,
relying on these criteria may overlook those who carry signif-
icant cancer risks. It is now recognized that those who do not
meet standard genetic testing criteria may still benefit from
genetic risk assessment (Berliner et al. 2013). The American
Society of Clinical Oncology (ASCO) recently updated their
recommendations on genetic testing for cancer susceptibility
in response to the rapid advancements in technology. Initially
ASCO recommended that clinical genetic testing only be
offered to those with a personal or family history suggestive
of an inherited cancer syndrome. ASCO has since amended
this recommendation indicating that those without a family
history may be appropriate candidates for cancer susceptibility
testing if analytic and clinical utility has been established,
meaning that the results can be adequately interpreted, and
can impact medical decision making and clinical outcomes
(Robson et al. 2010).

In addition to extending genetic risk assessment to a wider
population, cancer gene panels broaden the number of gene
targets used to assess risk. Increasing the number of gene
targets to include variants with lower frequency and lower
penetrance provides a more comprehensive risk assessment
and can further refine risk estimates (Meldrum et al. 2011). In
the case of familial breast/ovarian cancer, BRCA1 and BRCA2
mutations account for only about 20 % of familial breast
cancer cases (Hopper et al. 1999) and several other genes have
been implicated in increasing the risk of familial breast cancer
(Pennington and Swisher 2012). In the case of colon cancer,
only 3–5 % of cases are caused by a highly penetrant heritable
mutation (Burt 2007). Thus cancer gene panels may uncover
risks not previously anticipated based on clinical presentation.

Challenges to Utilizing Cancer Panel Testing

Defining the Target Population

Although there are several advantages to utilizing cancer
panels, there are also significant challenges to using this
approach. The first challenge comes with defining the target
population for this testing. When utilizing a gene panel that
assesses risks of multiple different cancers, it is unlikely that
an individual will meet criteria to warrant genetic assessment
of all of these cancers. As indicated above, those without a
personal or family history consistent with a hereditary cancer

syndrome may still harbor risk-increasing mutations and may
benefit from genetic assessment. In addition, many of the
models used to assess risk are imperfect, and often lack
sufficient discriminatory accuracy (Gail 2011). Therefore an
argument could be made for providing this testing to a wider
population who do not meet the standard testing criteria.

Interpreting Test Results

Interpreting and communicating the results of panel testing
presents additional challenges. As with any genetic test, dif-
ferent types of results are possible with panel testing. These
include a positive result in which a known pathogenic muta-
tion is detected, a negative result in which no genetic variant is
detected, and an ambiguous result in which a variant of
uncertain significance (VUS) is detected. However when
conducting tests on multiple targets simultaneously,
interpreting these results is more complex. The effect of
testing multiple targets on test performance must be consid-
ered, as false positive rates increase with an increasing number
of tests, and also when testing a low risk population (Multi-
plex genetic testing. The Council on Ethical and Judicial
Affairs and American Medical Association 1998”). In addi-
tion, the chance of detecting a VUS using panel testing is also
greatly elevated, and there is limited information available on
the impact of these rarer variants on risk (Walsh et al. 2010).
With the broadening scope of genetic testing, dealing with
VUS’s has become increasingly problematic. To address this,
in 2008 the International Agency for Research on Cancer
(IARC, the cancer research branch of the World Health Orga-
nization) convened a Working Group on Unclassified Se-
quence Variants in high-risk cancer susceptibility genes. Rec-
ommendations were put forward for classifying uncertain
variants in efforts to standardize this process and improve
the clinical utility of testing for patients at increased risk for
cancer (Tavtigian et al. 2008). Several different types of data
may be used in assessing the pathogenicity of a variant. These
can be divided into direct and indirect evidence. Direct evi-
dence is that which is garnered from observation of disease
and mutation transmission. Conditions that would increase the
likelihood that a variant is pathogenic include co-segregation
with the phenotype in families, a higher frequency of the
variant in cases versus controls, occurrence in families with
a stronger history of disease, and lack of co-occurrence with
another known pathogenic variant (for a presumed dominant
phenotype). Indirect evidence relies on the structural and
functional features of the gene and protein, including the
degree of species conservation, functional analysis of the
mutated protein, and the predicted consequences of a particu-
lar sequence variation (Goldgar et al. 2008). The difficulty
comes in trying to integrate the evidence in order to reach a
consensus on variant classification. An integrated Baysian
approach combines the various data to produce a quantitative
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prior probability of pathogenicity. In the absence of quantita-
tive measures of some types of evidence, qualitative measures
can be used to reclassify variants, with a panel of experts
assessing the quality of this evidence (Goldgar et al. 2008).

In the American College of Medical Genetics and Genomics
(ACMG) recommendations for the interpretation and reporting
of sequence variants, 6 categories of variants are delineated:

(1) sequence variation is previously reported and is a
recognized cause of the disorder; (2) sequence variation is
previously unreported and is of the type which is expected to
cause the disorder; (3) sequence variation is previously unre-
ported and is of the type which may or may not be causative of
the disorder; (4) sequence variation is previously unreported
and is probably not causative of disease; (5) sequence varia-
tion is previously reported and is a recognized neutral variant;
and (6) sequence variation is previously not known or expect-
ed to be causative of disease, but is found to be associated with
a clinical presentation (Richards et al. 2008). Once a variant is
more accurately classified, decisions can be made regarding
the best course of action for treatment and surveillance. The
ACMG also presents guidelines for test reports documenting
these variants. These reports should include (1) the gene
analyzed and the presence or absence of a variant, the nature
of the mutation, and whether it is conservative or non-
conservative; (2) The category (1–6) within which the variants
falls; (3) The basis upon which this classification was made;
(4) Testing methodology and analytic sensitivity; (5) Avail-
able data on penetrance and expressivity of previously report-
ed variants; (6) Strategies for further classification of novel
variants (Richards et al. 2008). It is recommended that novel
variants with unknown pathogenicity not be reported to the
patient, but be studied within the research context in efforts to
further refine the classification (Berg et al. 2011).

Risk Estimates

The ability to provide a genetic risk assessment is limited by
the availability of data on the risks associated with genetic
variants. For less penetrant, lower frequency variants, large
prospective studies that provide lifetime risk estimates are
generally lacking. Most published series are based on smaller
homogeneous populations, and while the majority use a case–
control design and express risks as odds ratios, some of the
studies present risks in other formats such as cumulative
lifetime risk, standard incidence rates, or absolute risk. This
presents a challenge for how to present risks to patients.
GeneDx categorizes genes based on level of risk, with “Sig-
nificantly Increased Risk” genes having a relative risk≥4,
“Moderately Increased Risk” genes having a relative risk of
2–4, and genes that confer an increased risk, the exact mag-
nitude of which is unknown due to lack of data. Correspond-
ing lifetime risk estimates are also provided (“Comprehensive
Cancer Panel,” n.d. http://www.genedx.com/test-catalog/

available-tests/comprehensive-cancer-panel/). Ambry Genet-
ics presents risks as either odds ratios or percentage lifetime
risks depending on the gene (“Next-gen Cancer Panels,” n.d.
http://ambrygen.com/next-gen-cancer-panels). Our review of
literature supports the high level of concordance in the risk
estimates that are provided by these labs (Table 2).

When conducting multiple genetic tests simultaneously, it
is quite possible that a patient may be found to carry more than
one mutation in more than one gene. Interpreting these mul-
tiple risks constitutes another challenge to panel testing. Inte-
grating SNP-associated risks has been based on additive
models and has shown moderate discriminatory accuracy
(Lalloo and Evans 2012; Rinella et al. 2013). However the
formalism for combining higher penetrance genetic risk vari-
ants to yield a composite risk score for multigenic diseases has
not yet been developed (Ng et al., 2009; Swan et al. 2010).
Combining genetic risk factors with clinical risk factors into
an integrated risk score is even more complex, but has been
piloted by combining the Gail model risk score, which en-
compasses personal medical history, reproductive history, and
family history, with a combined SNP risk score to yield a
classification of breast cancer risk (Mealiffe et al. 2010). Such
approaches may be used in the future once developed and
validated for higher penetrance mutations, risk SNPs, and
clinical risk factors.

Many of the genes on cancer panels confer risks for mul-
tiple different cancers. For those who are seeking testing
primarily based on their risk for the most common heritable
adult malignancies (breast, ovarian, colon), uncovering addi-
tional cancer risks may be an unanticipated outcome of the
testing that should be discussed in the pre-test session. For
genes that have distinct monoallelic and biallelic expression,
the patient must be informed of the potential to identify not
only personal cancer risks from having amutation, but also the
risk to have a child with a more severe autosomal recessive
cancer syndrome, a scenario that would have important family
implications (Rahman and Scott 2007). An example of this
phenomenon is the BRCA2 gene which in the heterozygous
state confers an increased risk of breast and ovarian cancers, as
well as other cancers, while homozygous inheritance causes a
severe form of Fanconi anemia and a high risk of childhood
cancers (Rahman and Scott 2007). Another example occurs
with the mismatch repair genes,MLH1, MSH2, MSH6, PMS2,
which in heterozygous form confer an increased risk for the
colon cancer syndrome HNPCC, and in homozygous form
causes mismatch repair deficiency syndrome which carries an
increased risk of childhood cancers and skin lesions (Rahman
and Scott 2007).

Communicating Results

It is important to communicate to patients that even if no
pathogenic variant is detected by the panel, this does not
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remove the risks conferred by other factors such as personal
medical history, family history, environmental exposures, and
demographics. The patient may still be at increased risk over
the general population, and additional screening and preven-
tion measures may be warranted. Given the intricacies in-
volved in panel testing and the range of possible complex
results, a certified genetic counselor and/or medical geneticist
should be an integral part of the testing process.

Another challenge to counseling for panel testing is that the
implications of a positive result differ for each gene and
variant detected. The type of cancer (expressivity) and level
of risk (penetrance) associated with eachmutation will be very
different. Depending on the variant detected, the availability
of risk-reduction, prevention, and treatment options, as well as
other implications for the individual and family may also vary
widely amongst the heritable cancer syndromes (Multiplex
genetic testing. The Council on Ethical and Judicial Affairs
and American Medical Association 1998; Rahman and Scott
2007). Communicating these intricacies to patients becomes
increasingly difficult as more testing targets are added.

Informed Consent

Modifications to the standard informed consent process for
single gene tests should be considered when counseling for
panel testing. Communicating the same amount of detail for
each gene in the panel that is usually conveyed with single
gene testing would likely lead to information overload, in
which there is too much information to absorb in a short time,
potentially impeding patient understanding and decision mak-
ing ability (Collins et al. 2001; White and Dorman 2000). In
addition, the time needed to have a detailed discussion about
each gene being tested may be prohibitive (Elias and Annas
1994). Given the vast amount of information that needs to be
conveyed to patients prior to undergoing panel testing, inno-
vative methods of communication will need to be developed
to effectively explain risks and benefits, and to assess patient
understanding (Domchek et al. 2013; Ormond et al. 2010;
Tabor et al. 2012). Healthcare professionals beyond genetic
counselors and medical geneticists will need to be trained to
convey this information in order to meet the growing demand
(Ormond et al. 2010).

Management Guidelines

For individuals who are at increased risk of cancer due to
having a known cancer syndrome, a strong family history of
cancer, or a significant personal medical history, established
guidelines exist for increased surveillance and risk reduction
options. The American Cancer Society (ACS) and the Nation-
al Comprehensive Cancer Network (NCCN) provide recom-
mendations for individuals at increased risk for breast and
colon cancer based on a number of different factors (American

Cancer Society, n.d. (http://www.cancer.org/cancer/
c o l o n a n d r e c t u m c a n c e r / m o r e i n f o r m a t i o n /
colonandrectumcancerearlydetection/colorectal-cancer-early-
detection-acs-recommendations; http://www.cancer.org/can-
cer/breastcancer/moreinformation/breastcancerearlydetection/
breast-cancer-early-detection-acs-recs). For BRCA1/2 muta-
tion carriers, annual mammograms andMRIs are recommend-
ed, as well as consideration of prophylactic surgery and che-
moprevention. Those carrying mutations for Lynch syndrome
are advised to have a colonoscopy every 1–2 years starting at
age 20–25 or 2–5 years prior to the earliest age of diagnosis in
the family. For individuals who do not carry a known high risk
mutation but are at increased risk of cancer due to family
history, clinical recommendations are often based on a thresh-
old level of risk above which it is warranted to offer surveil-
lance and risk reduction strategies. For those with a strong
family history of breast/ovarian cancer such that the lifetime
risk is >20 %, annual mammograms are recommended begin-
ning at age 30, with consideration given to MRI as well as
prophylactic surgery and chemoprevention options. For those
with a strong family history of colon cancer placing them at a
2X or higher lifetime risk, colonoscopy is recommended to
begin at age 40 or 10 years prior to the earliest age of diagnosis
in the family, and then repeated every 3–5 years. Uncovering
cancer risk mutations in those with less compelling family
histories could elevate their baseline empiric risks above the
threshold of action, in turn providing them with surveillance
and risk reduction options.

For lower penetrance genes that lack established manage-
ment guidelines, the implications for clinical care are less clear
(Robson et al. 2010). In these cases, existing recommenda-
tions for genes with comparable risk levels could be applied in
order to guide future management. Therefore, testing these
moderate risk genes does have clinical utility as it may modify
baseline empiric risk conferred by family and medical history
alone, providing a more personalized risk assessment. In
addition, testing these genes in a cancer panel may uncover
previously unknown risks of other cancers for which in-
creased surveillance may benefit the patient.

Additional factors play a role in cancer risk and manage-
ment recommendations and should be integrated with numer-
ical risk in order to provide a comprehensive risk assessment.
Other biological factors such as breast density may impact
breast cancer risk and screening decisions. Higher breast
density increases the risk of breast cancer and decreases the
sensitivity of mammography, therefore adjunct methods of
screening such as MRI or ultrasound are usually utilized in
these cases (Saadatmand et al. 2012). Behavioral factors and
comorbidities such as age, obesity, diabetes, heart disease,
alcohol intake, and smoking impact cancer risk and should
be taken into account in cancer risk assessment and manage-
ment recommendations (Akushevich et al. 2011; Chlebowski
2002; Yasmeen et al. 2012). In addition, ethnic and cultural
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differences, as well as personal preferences and values play a
role in decision making about management options, and
should be factored into the discussion (Julian-Reynier et al.
2001; Meiser et al. 2000; Trill and Holland 1993).

Knowledge of the molecular mechanisms of genes may
also help guide management. For instance, many of the genes
on the Einstein/Montefiore panel are involved in DNA repair
such as ATM, BRCA1/2, and p53. Ionizing radiation induces
double-stranded breaks in DNA, and carriers of mutations in
DNA repair genes show increased radiosensitivity and in-
creased risk of malignancy with radiation exposure. Therefore
special consideration should be given to the use of ionizing
radiation imaging techniques in those with DNA repair gene
mutations (Bernstein et al. 2010; Heymann et al. 2010; Pijpe
et al. 2012).

For gene mutations that lack established management
guidelines and have uncertain clinical utility, genetic risk
assessment can still provide benefit to patients. Personal utility
can be an important factor for tests that lack standard thera-
peutic or preventive options (Secretary’s Advisory Committee
on Genetics and Health, Society 2006). For example, in
individuals who chose to undergo susceptibility testing
for Alzheimer’s disease, a disease for which there is no
proven cure or prevention, information-seeking was an
important motivator for pursuing genetic testing (Hurley
et al. 2005; Roberts et al. 2003). In addition, logistical and
altruistic factors such as future planning, preparing family
members, and contributing to research impact decisions
about undergoing testing (Hurley et al. 2005; Roberts
et al. 2003). Feeling more in control of one’s health has
also been cited as a motivating factor for pursuing sus-
ceptibility testing for complex disease (Gooding et al.
2006; Lerman and Croyle 1994).

Discussion and Future Directions

Technological developments in genetics and genomics
have significantly advanced the field of cancer care in terms
of risk assessment, targeted therapies, and prevention
(Khoury et al. 2011). The use of cancer gene panels is one
example of translational genomics that is rapidly being
adopted into clinical practice. Khoury at al. (2007) outline
a framework for the continuum of translational research in
order to efficiently and effectively integrate genomic dis-
coveries into clinical care. The first Phase (T1) entails the
transformation of a gene discovery into a practical applica-
tion, such as the development of a genetic test for a risk-
increasing gene. Phase 2 (T2) assesses this genomic appli-
cation in efforts to develop evidence-based guidelines for
its clinical use. This is the most challenging and time-
intensive phase of translational research as it involves as-
sessment of analytic and clinical validity, clinical utility, as

well as ethical, legal and social issues surrounding the
genetic test. Phase 3 (T3) involves the application of
evidence-based guidelines into clinical practice. T3 also
has inherent challenges in terms of knowledge dissemina-
tion, integrating new practices into existing infrastructure,
and actual adoption of the new technology. Phase 4 (T4)
assesses population level outcomes research of the geno-
mic application. In the case of gene panels that assess
moderate risk genetic variants of lower frequency, we
seem to be in both the T2 and T3 phases simultaneously.
Although there may be some hesitation to move into
Phase 3 prior to the completion of Phase 2, it is quite
likely that both phases will occur simultaneously
(Domchek et al. 2013). BRCA testing became clinically
available as early as 1995 (Cho et al. 1999), and research
pertaining to this testing is still ongoing (Donnelly et al.
2013; Narod et al. 2013; Sherman et al. 2013). Undoubt-
edly there is still much to learn about these lower pene-
trance cancer genes, and more research needs to be con-
ducted concurrently with the availability of panel testing
in order to maximize the clinical utility of such testing.

To address the difficulty in devising accurate and under-
standable risk estimates, future studies should assess how
composite genetic models predict cancer risk. Prospective
studies with large sample sizes are needed to determine the
frequency and positive predictive value of less common var-
iants (Ng et al. 2009), and it is important to recognize that it
may be difficult to identify and accrue adequate numbers of
individuals for such studies.

Another area of research that deserves attention is the
psychological and behavioral impact of providing per-
sonalized genetic risk assessment using a panel test.
Studies thus far have yielded mixed results regarding
behavior change following genetic susceptibility testing
for complex disease (Chao et al. 2008; “Getting person-
al” 2008; McBride et al. 2005; Vernarelli et al. 2010; Zick
et al. 2005). In general, genetic risk assessment does not
appear to have an adverse psychological effect on pa-
tients (Green et al. 2009; Schlich-Bakker et al. 2006).
This could be explained by the fact that those who feel
that they are at increased risk are more likely to undergo
testing and are therefore more prepared for the results.
They may also be using testing as a way to cope with
concerns and uncertainties about their risk (Gooding et al.
2006). In the case of cancer panel testing however, risks
for multiple different cancers may be uncovered, and the
implications of the test results may be less clear. There-
fore the motivations for undergoing panel testing and the
psychological and behavioral responses to the results
should be explored in order to design a genetic testing
process that optimizes understanding and informed deci-
sion making for the patient, and also maximizes the clin-
ical utility of the testing.
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Conclusions

Cancer panel genetic testing enhances the benefits of genetic
risk assessment by 1) extending testing to a wider population
beyond those who meet standard genetic testing criteria and 2)
broadening the number of gene targets to assess risk, provid-
ing a more comprehensive risk assessment. However there are
also significant challenges and limitations to the use of cancer
panels. Changes to the current paradigm of genetic counseling
and testing for monogenic disease risk will need to be applied
to accommodate the unique nature of panel testing. Although
existing models of genetic counseling for risk assessment and
current recommendations for the medical management of
cancer risk can be used to guide the application of cancer
genetic panels, more information about clinical validity, util-
ity, and the outcomes of panel testing is needed to maximize
the benefits of this testing.
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